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Buildings can achieve energy-efficiency by using solar passive design, energy-efficient structures and materials,
or by optimizing their operational energy use. In each of these areas, efficiency can be improved if the physical
properties of the building along with its dynamic behavior can be captured using low-cost embedded sensor
devices. This opens up a new challenge of installing and maintaining the sensor devices for different types of
buildings. In this article, we propose BuildSense, a sensing framework for fine-grained, long-term monitoring
of buildings using a mix of physical and virtual sensors. It not only reduces the deployment and management
cost of sensors but can also guarantee accurate and fault-tolerant data coverage for long-term use. We evaluate
BuildSense using sensor measurements from two rammed-earth houses that were custom-designed for a
challenging hot-arid climate so that almost no artificial heating or cooling is required. We demonstrate that
BuildSense can significantly reduce the cost of permanent physical sensors whilst still achieving fit-for-purpose
accuracy, fault-tolerance, and stability. Overall, we were able to reduce the cost of a building sensor network
by 60% to 80% by replacing physical sensors with virtual ones while still maintaining accuracy of ≤1.0°C and
fault-tolerance of 2 or more predictors per virtual sensor.
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1 INTRODUCTION
Residential and commercial buildings account for almost 21% and 18% of total U.S. energy consump-
tion, respectively [26]. This has a direct impact on greenhouse gas emission, thus on environmental
health. Emission from the buildings can be reduced either by reducing emissions from the energy
supply (e.g., energy generation through renewable sources) or by reducing energy consumption
through improved building design and lower energy use [5, 26].

A large body of work aims to make buildings more energy-efficient through better utilization of
the HVAC [2, 13] and lighting systems [10, 22]. These systems depend on continuous data collection
by a large number of sensors and an established physical model of the buildings. On the other
hand, new building designs and new building materials are also investigated to reduce energy
consumption. However, there is a lack of scientific evidence about the long-term performance of
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new building designs in real-world settings [9]. For example, a long term study of the houses built
from rammed-earth showed that the state-of-the-art building models significantly underestimated
performance and subsequent comfort, and thus over-estimated energy use [5]. Understanding the
performance of these new building designs requires long term, fine-grained sensor data measured
in situ.

Problem description.With the advent of embedded technologies, automated data collection
using embedded sensor devices has become mainstream. To understand an indoor space, a trivial
solution would be to deploy sensors at every possible corner of the indoor space, collect data
continuously, and infer the current conditions at different parts of the space. However, there are
two major problems with this. Firstly, even if the sensor devices become cheaper, deploying them in
large numbers still incurs a significant cost for purchasing, deployment, and management. Secondly,
for certain locations the permanent installation of physical sensors is infeasible. For example, head-
level temperature sensors would be inconvenient for residents. Though using energy harvesting and
parsimonious scheduling reduces the maintenance cost of changing batteries, it neither solves the
problem of long-term deployment of large numbers of sensors nor the problems of tackling sensor
failures or that some sensor positions are not acceptable for building residents. Thus, a different
approach is required that can provide fine-grained, continuous sensor measurement without the
cost and management burden of large permanent sensor deployment.

Approach. In this article, we aim to reduce the costs of sensor management by mixing real
sensors with virtual sensors, where virtual sensors are models that can use the readings of one
sensor to predict sensed data at another location where there is no physical sensor present. The
obvious question is how to create the virtual sensors and how reliable are they? Our approach
comprises a short training period and a long term operational period. During the training period,
temporary sensors are deployed in the building and measurements are collected. This data is
used to train virtual sensors that predict the readings of a target sensor using the readings of the
predictor sensor. The selection of predictor sensors is data-driven in that the predictor sensors are
not necessarily near the target sensor and may not even sense the same phenomena.

After the training period, the whole system is analyzed to determine an optimal mix of physical
and virtual sensors to achieve the purpose of the sensor network. Sensor selection is a multi-
objective optimization problem balancing the accuracy and robustness of the predictions, with the
cost of deployment. During the operational period, the selected deployed and virtual sensors are
used to deliver data for the application.

The main problem addressed in this article is how to select an optimal set of physical and virtual
sensors for long term monitoring so that the total cost of the deployed sensors is minimized and the
reported values of the sensors and the fault-tolerance for those predictions are within an acceptable
error bound for the domain application. This is particularly important for companies who are selling
sensing as a service. They do not charge their clients based on the number of devices, but rather
for the knowledge gained from the gathered data. If they can meet the application requirement
with minimal fixed hardware that increases their revenue. The main contributions of this article
are summarized in the following.
• We propose a new algorithm for measuring a 3D space using an optimal mix of physical and
virtual sensors for a building sensor network. The algorithm selects physical sensors for cost,
fault-tolerance, and accuracy.
• We evaluate the algorithm using real-world building networks and a vineyard soil monitoring
network, demonstrating that there are opportunities for significantly reducing the complexity
of sensor network deployments and the ongoing costs of their maintenance.
• We show that over a long time period of more than a year our algorithm is able to maintain
accurate predictions and to tolerate sensor failures using only one month of training data.

ACM Trans. Sensor Netw., Vol. 0, No. 0, Article 0. Publication date: 2018.



BuildSense: building monitoring with minimal sensor infrastructure 0:3

2 BACKGROUND
Many studies have addressed the problem of how to achieve energy-efficient buildings. There are
two fundamental approaches: (i) reducing electricity consumption, and (ii) constructing energy-
efficient building structures. In this section, we discuss the pivotal role of sensor networks for both
of these categories. Since managing a sensor network is not a trivial task, a number of approaches
are used to enable a sensor network as a simple data collection tool. We briefly discuss some of
these approaches along with their limitations as a building monitoring tool.

2.1 Electricity consumption reduction
HVAC and lighting systems are identified as the highest contributors to energy consumption in a
building [26]. As a significant proportion of this energy consumption is attributed to inefficient
usage, there is scope for significant energy saving by using efficient means to manage HVAC and
lighting units. One of the prominent approaches is to identify the occupancy of a room and control
the devices accordingly [3, 13].

Though most works focus on identifying occupancy without deploying a large number of sensors,
doing away with any sensors is not feasible. Another approach is to reduce the over-utilization of
HVAC and lighting systems. This method requires a thorough understanding of how much usage
is sufficient. Personal thermal comfort deals with this question [16, 27]. Similarly, lighting controls
based on preference have also been studied [14, 32]. However, this can only be achieved if sufficient
data is available to learn personal comfort and preferences, and ample data is available to assess
the indoor conditions continuously.

2.2 Energy-efficient buildings
Effective control of energy in legacy buildings can certainly save energy. But when constructing
new buildings the opportunity exists to use novel materials and designs to minimize the energy
that will be required for occupants’ comfort [5]. When a new building is planned, its performance
is predicted at the design stage using building physics models, often supported by simulation
software. Many countries mandate energy efficiency standards for new buildings, requiring the new
designs to be rated for their energy efficiency using these models [9]. However, existing models
may not be accurate for novel designs. Thus, in-situ measurements are important for understanding
the performance of novel designs, and ultimately for enabling effective policy on energy-efficient
buildings.

2.3 WSN as a data collection tool
As sensors are an integral part of energy-efficient buildings, the goal of this article is to develop a
building monitoring sensor system which is economical, easily manageable and provides accurate,
fine-grained continuous data. Since the inception of wireless sensor networks (WSN), a large body
of work has focused on fine-grained sensing from minimal measurements. Even though the primary
objectives of these techniques overlap with each other, i.e., energy-efficiency and efficient sensor
management, they differ in terms of their approach and application scenario. In the following, we
briefly discuss these techniques by grouping them into four broad categories. A summary of these
techniques is also provided in Table 1.

Data estimation: As data transmission consumes the most energy for an embedded sensor
device, data estimation techniques are employed to reduce the amount of data transmission per
sensor, thus energy consumption [11, 18, 29, 30]. Hybrid methods combine on-node temporal
compression followed by spatial compression during data collection [1]. Nodes with correlated
readings can form spatial clusters to reporting only one measurement [37]. Clusters can be updated
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over time if the correlations change. Data estimation methods can also be used to tackle missing
sensor data, node failure, or communication failure.

Coverage problem: In many wireless sensor networks, there are more nodes than the optimal
requirement. The reasons can be non-overlapping of the sensing range and the transmission range,
infeasibility of careful deployment, or for robustness to node failure. This leads to redundant sensor
nodes in the network. The coverage problem selects a subset of active nodes (post-deployment)
that are sufficient to cover the whole area while ensuring connectivity [6, 25]. The subset of active
nodes is changed periodically so that there is balanced energy expenditure by the nodes.

Node scheduling: Node scheduling is similar to the coverage problem, where the data from
a subset of deployed nodes are sufficient. However, here the active node selection is not only
based on coverage criteria, but it can be based on spatial and/or temporal correlation among the
nodes [15, 20, 34, 37]. Predictors based on correlation are also studied in our previous work [8, 31]
using linear or hour of day prediction models.

Compressive sensing: This is another technique that reduces the amount of traffic within
the network. If the sensor data is sparse in some domain then using the compressive sensing
technique sensor data of all the sources can be reconstructed from the measurements at a few
sources [23, 33, 36, 38].

Field estimation problem: For some applications, the cost of deploying sensors at all is very
high, but there is still a need for fine-grained field measurements. Applications include monitoring
of soil moisture [35] or air [24] or water [12] quality. Here it is assumed to be impossible to deploy
sufficient sensors to cover the field at all times. Instead, some physical sensors are deployed and
then a statistical model of the application field from models such as computational fluid dynamics
are used to estimate optimal sensor positions. Wu et al. investigate how to optimize the positions
of physical soil moisture sensors in order to maximize either the entropy, mutual information or to
minimize the mean squared error for each virtual sensor [35]. Marjovi et al. consider an air quality
network with mobile sensors. They compare the performance of a log-linear regression model and
a deep learning framework that learns data dependencies [24]. Du et al. generate optimal long-term
sensor placements based on wind models and knowledge of annual monsoon seasons [12]. Our
approach differs because deploying temporary, fixed sensors in building applications is not too
expensive. Thus we can build prediction models and determine the best positions for physical
sensors based on actual measurements rather than a priori field model. In addition, we investigate
the fault tolerance and stability of sensor placements.

2.4 Research gap analysis
It is evident that sensor-based data collection is an essential requirement for buildings to achieve
energy-efficiency. However, most of the existing sensor network optimization techniques are
applied at the post-deployment stage to minimize the activity of deployed sensors. Although they
save energy on the nodes, they do not reduce the number of sensors required. Though there
are pre-deployment strategies for selecting a limited number of sensors [12, 21, 24, 28, 35], they
require applications such as outdoor environmental monitoring where a statistical model of the
measured phenomena and deployment environment are known a priori. In this work, we focus on
a pre-deployment strategy for monitoring in buildings where the statistics of the field is not well
known. We develop a method for fine-grained continuous data collection using only a minimal
set of post-deployment sensors. We extend previous sensor selection methods by simultaneously
optimizing cost, fault-tolerance, and accuracy.
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Table 1. Techniques to infer fine-grained sensor data from limited measurements.

category general technique limitations
data
estimation

correlation in sensor data is exploited to pre-
dict one sensor value with the help of other

applicable only for short-term es-
timation

coverage
problem

avoid overlapped-sensing by multiple sen-
sors; use only a subset of sensors that can
cover the whole area (or all the points)

a priori knowledge about the
field is required and the statistics
should hold true over time

node
scheduling

select only a subset of sensors as active such
that the whole monitoring region is covered
avoiding overlap by multiple sensors

scheduling can be done only in
short burst to cope with varying
dynamics of the field

compressed
sensing

exploiting sparsity in the sensed data, recover
the whole dataset from very few samples

a priori knowledge about the field
is required and the data should be
sparse in certain domain

field
estimation

careful sensor placement that can cover the
entire sensing region or the points of interest
by exploiting the distribution of themeasured
parameter in the field

a priori knowledge of physical
model(s) for the sensed phenom-
ena and the deployment environ-
ment are required

3 BUILDSENSE FRAMEWORK
In this work, we present BuildSense, a framework for monitoring spaces such as buildings and
environmental applications. The main objective of the framework is to create and manage a sensor
network for supporting energy-efficient buildings. Key features of BuildSense include optimal
deployment strategy, low-cost and fault-tolerant deployment, ease of management, building-level
customization, fine-grained and continuous data collection, robust and accurate sensor data. To
attain all these features simultaneously, a number of design choices are made and accordingly
algorithms are developed.

3.1 Design principles
At the core of its design, BuildSense needs to ensure that accurate, fine-grained, continuous sensor
data is available. It is suitable for scenarios where the relative levels between sensor readings at
nearby locations are stable even when the absolute sensed values are constantly changing. Many
phenomena in building monitoring have this feature, including temperature, relative humidity, and
soil moisture [35]. Additionally, its goal is to reduce the deployment and management cost of a
large number of sensor devices. To fulfill these two divergent requirements, BuildSense uses an
optimal mix of physical and virtual sensors, where virtual sensors use a prediction model that can
predict sensor data accurately with the help of other physical sensors. BuildSense addresses the
problem of predicting sensor values at a given set of monitoring locations in 3D space. BuildSense
does not simultaneously address the problem of optimizing sensor locations to satisfy short-range
communication constraints. Instead we assume a star topology for wireless communication where
nodes can reach the sink in a single hop. This scenario is becoming common with the advent of low
power, long range wireless technologies such as LoRa, Sigfox, and NBIoT. The number of physical
sensors is kept as low as possible, which leads to reduced costs. In this way, the use of virtual
sensors ensures fine-grain measurement with a minimal sensor infrastructure. However, solving
this problem raises a number of rudimentary questions: (a) how to create a virtual sensor? (b) how
many physical sensors are required to ensure sufficient granularity in the data? (c) how to ensure
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the accuracy of the reported data over a long time period of months or years? BuildSense follows a
sense-learn-predict model that can tackle these questions.

3.2 System Model
The BuildSense framework does not assume any special system model and can be integrated into
any sensor network. In other words, it inherently supports easy customization for any building or
other environmental monitoring settings. The framework works in three phases: (i) data gathering,
(ii) training, and (iii) operation, which not only allows building-level customization but also helps
to tackle the rudimentary questions mentioned before. Fig. 1 shows how the three phases constitute
the framework.

Temporary and semi-permanent sensor deployment

Data collection at the sink

Monitor building using minimal 
permanent sensors and a 
number of virtual sensors

Is sensor selection within budget and accuracy?
no

yes

operation

tr
ai
ni
ng ga
th
er
in
g

Build virtual sensors and select permanent sensors

Update 
virtual sensors

Fig. 1. The three phases of the BuildSense framework.

During the gathering phase, a large number of sensors are deployed in the building. This
temporary network collects data for a period of a few weeks or months where all the sensors report
their values to a central node, called the sink node. A centralized algorithm is used for training
because it offers higher accuracy than a distributed algorithm and is appropriate for this one-off,
off-line phase. A distributed algorithm for training would be an approximation to the centralized
results. Also, a distributed algorithm can increase communication overhead in the battery operated
nodes. For the use cases addressed in this article (training deployment followed by permanent
deployment), we believe a centralized algorithm is most appropriate since the entire node set is part
of the same deployment. However, in a slightly different scenario, when the deployment in a large
building or region is done by multiple parties and then they collaborate to achieve energy-efficient
sensing, selection of active nodes can be done distributedly. Since there is no single central node in
such a scenario, a distributed mechanism is more suitable. For example, a leader election mechanism
can be employed along with the centralized sensor selection mechanism but this is out of the scope
of this article.
This dense sensor deployment during the data gathering phase helps to understand the char-

acteristics of the building and helps to ensure long term sensor data accuracy using minimal
infrastructure. As mentioned earlier, the goal of BuildSense is to keep the number of permanent
sensors as low as possible without violating the other constraints. As a result, a large number of
sensors are removed after the data gathering phase and only a few remaining sensors become the
permanent infrastructure.
The training phase commences either after sufficient data has been gathered or the data

gathering and training phases can overlap (Fig. 1). Various learning operations are performed
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during the training phase by utilizing the gathered data (details are in Section 4). When the learning
functions attain a predefined level of confidence, the training phase, as well as the data gathering
phase, are finished. Three tasks are performed during the training phase.

T1. The first task is to learn prediction models for the virtual sensors in which the readings of
a physical sensor are used to predict the readings of a virtual sensor. Sensor models are learned
offline.

T2. The second task is to select the best sensor types and positions for long term measurement,
to achieve high prediction accuracy at a low infrastructure cost.

T3. The third task is to control the selection of physical sensors to optimize the fault-tolerance
of the system against possible sensor failure.
Once the training phase finishes, the operational phase kicks in. The temporary sensors are

removed; the rest become the permanent physical sensors. Selection of permanent sensors is
discussed in detail in the next section. During operation, measurement commences using the
physical (permanent) sensors and virtual sensor models are used to predict virtual sensor values.

4 LEARNING IN BUILDSENSE
BuildSense has three learning steps corresponding to each of the tasks. This section describes
the algorithms for each of the learning steps as mentioned in Section 3. Before jumping into the
algorithms, let us formalize the problem statement.

4.1 Problem Statement
Suppose, we have a set of sensed phenomena S = {s1, . . . , sn}, each a time-series of observations
so that si (t) ∈ R for timestamp t . S also represents the set of sensor nodes that generate the time
series (sensed) data. If a sensor si can be estimated using sj during a time period T by a predictor
function pi j within some error bound ϵ , so that ∀t ∈ T , si (t) = pi j (sj (t)) ± ϵ then we say that si
and sj are ϵ-neighbors written si ≈ sj on ϵ,T . By convention, si is not considered a member of
its own neighborhood. BuildSense needs to be fault tolerant to allow for a possible failure of a
predictor sensor and to increase confidence in the predictions. We use a k-coverage approach for
fault tolerance in which each virtual sensor is required to have at least k physical sensors that are
ϵ-neighbors. Each sensor also has a cost ci reflecting its purchase, installation, and maintenance
costs. More simply, costs can be binary for each sensor, i.e., whether to deploy permanently or not.
There is an upper bound, maxCost, on the total cost of permanent sensors for the system.

The problem we address is the following. Given training data from sensors S = {s1, . . . , sn}, find
a set P ⊆ S of permanent sensors and V = S \ P of virtual sensors so that

(1) There is a sufficiently accurate prediction function for every virtual sensor based on a
training period T , i.e.,

∀si ∈ V , ∃ sj ∈ P . si ≈ sj on ϵ,T .

(2) Predictions are fault tolerant in that every virtual sensor has at least k physical sensor
predictors, i.e.,

∀si ∈ V , ∃ ni ⊂ P . size(ni ) ≥ k ∧ ∀ sj ∈ ni . si ≈ sj on ϵ,T .

(3) The total cost of permanent sensors is bounded, i.e.,

Σsj ∈P c j ≤ maxCost.
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Fig. 2. Sensor readings from a bedroom (dotted) and embedded in a wall (black) and their average difference
by the hour of day (red).

4.2 Sensor Predictors
The first task of virtual sensing is to learn predictors for the virtual sensors. Algorithm 1 gives
the pseudo code for this process. Given a field of sensors S = {s1, . . . , sn} that have gathered data
during a time period T , the goal is to learn predictor functions for each pair of sensors si , sj .

In this work, we use one-to-one predictors where a single sensor is used to predict the values of
another sensor. For fault tolerance, multiple, independent, one-to-one prediction functions are used
to estimate of the same virtual sensor. This diversity of predictors provides protection against faulty
sensors and for recognizing the need for retraining. An alternative approach could use many-to-one
predictors that take multiple sensors as input to predict one virtual sensor. We chose the one-to-one
strategy because many-to-one predictors do not have the fault tolerance benefits of independent
predictors and since past work was inconclusive about the accuracy improvement of many-to-one
predictors over one-to-one predictors [30].

Four one to one predictor functions were investigated in detail in [7]: simple nearest neighbor (use
the values of the nearest valued sensor), linear regression, a cubic using the time of day [17], and the
nearest hour of day neighbor. Of these, the nearest hour of day predictor had the best performance.
The nearest hour of day predictor uses an offset oh for each hour of day h ∈ {0, 1, . . . , 23} defined
by oh =mean{si (t) − sj (t) | t .h = h} where t .h is the hour of day at time t . The predictor function
for si is given by pi j (t) =def sj (t) + ot .h and we write sj + o for this function.

Fig. 2 illustrates how the nearest hour of day prediction works. The black lines (dotted and solid
at the top of the graph) show the readings for two sensors, s1 and s2, during a training period: s1 is
in a bedroom and s2 is embedded in the wall of a different room. The solid red line in the lower
part of the figure shows the learned hour of day offset function o for this sensor pair. This offset
function has an amplitude of 1.4 ° C. It minimizes the residuals s1 − (s2 + o).
The simple hour of day estimator turns out to be surprisingly general and effective. For the

example in Fig. 2, which includes some strong context changes in the weather, the root mean
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Fig. 3. Examples of offset vectors learned as nearest hour of day predictors for different sensed phenomena.

squared error (RMSE) for s1 − (s2 + o) is 1.15° C over one month. This is sufficiently accurate for
applications such as energy rating or HVAC control. Phenomena such as relative humidity can also
be predicted, with RMSE of 2% to 4% [7]. The hour of day estimator can be used for many different
types of sensed phenomena. Fig. 3 shows the offset functions learnt for three contrasting types of
sensed phenomena and multiple sensor pairs. For building temperatures (left), the relationships
between sensors are strongly dependent on the hour of day, and they vary in shape for different
pairs of sensors. For soil moisture, on the other hand, Wu et al [35] observed that the relative
values of observations at different spatial locations are very stable, even if their absolute values
are constantly changing. The offset functions shown in Fig. 3 (middle) support that observation.
Soil moisture offsets between sensors have a large range, but little dependence on the hour of day.
Soil temperature (right) is slightly dependent on the hour of day, but much less so than the house
temperatures.
The BuildSense algorithm for learning hour of day predictors is shown in Algorithm 1 which

calculates hour of day offsets and RMSEs for every possible pair of sensors si and sj . First, the
residuals between sensors are used to calculate the hour of day offset function, giving a virtual
sensor estimator for si based on sj . The error statistic for this predictor is a root-mean-squared
error (RMSE). These estimation errors are recorded in matrix E so they can be used in the sensor
selection phase to optimize the selection of virtual sensors. The learned hour of day offset function
for a sensor pair is recorded in matrix F . Since this predictor is additive, the offset for sensor si
using sj is simply -1 times the offset for sj using si .

4.3 Sensor Selection
During the sensor selection phase, three criteria are considered: accuracy, fault tolerance and the
cost of deployment. Algorithm 2 gives the pseudo code for the selection process. It chooses a set of
permanent sensors P ⊂ S so that all the virtual sensors V = S \ P can be estimated with acceptable
accuracy, fault tolerance, and overall cost.
The sensor selection algorithm works as follows. The error matrix E (created in Algorithm 1)

is used to identify the ϵ-neighbors of each sensor. If a particular node is selected as a permanent
sensor, then the values of any of its ϵ-neighbors can be predicted with high accuracy. This can
be viewed as this permanent sensor covering a number of virtual sensors. Naturally, there are n
subsets in this neighbor matrix where each one is associated with a particular node. Then a minimal
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ALGORITHM 1: Learn a predictor for each sensor pair.
Input :S = {s1, . . . , sn },T set of sensors and training period
Output :E matrix of prediction errors for each sensor pair

F prediction function parameters for each sensor pair
Variables :d differences between sensor readings

o = ⟨o0 . . . o23⟩ where oh =mean{si (t) − sj (t) | t .hr = h} vector of learned hourly offsets
v virtual sensor to be predicted
r residuals between actual and predicted values

for i ∈ 1 : n do
for j ∈ (i + 1) : n do

d(T ) = si (T ) − sj (T ) ; // Residuals between sensor series
o = ⟨h0 . . .h23⟩ from d ; // Median hour of day offsets from d
v(T ) = sj (T ) + o ; // Estimated virtual sensor values
r (T ) = v(T ) − si (T )
E[i, j] = RMSE(r (T )); E[j, i] = E[i, j] ; // Record RMSE error
F [i, j] = o; F [j, i] = −1 × o ; // Record hour of day predictor

end
end
return E, F

selection of permanent sensors can be achieved by reducing this problem to the minimum set cover
problem. The goal of BuildSense is to select a subset of permanent nodes that cover all the sensing
points and minimize the deployment cost. To increase the reliability of the system, sensing points
should have multiple (k) covers. This amounts to the weighted set multi-cover problem [4]. It is
well known that no polynomial time algorithm can do better than logn approximation even for unit
demands and weights. Therefore we extend the greedy set cover algorithm so that it becomes also
fault tolerant and cost-effective. An improved lower bound for the weighted multi-cover problem
is possible in some geometric cases [4] but for the use-case scenarios of BuildSense, the correlation
among the sensor nodes may not have the required shallow cell complexity geometric property
and so the benefit of this specialized algorithm cannot be utilized in general.

In the baseline greedy set cover algorithm, a set is selected which covers the maximum number
of uncovered elements of the universe. In this case, the equivalent criteria is that a node is selected
as physical that has maximum neighbors that can be virtual. In the baseline case, the required fault
tolerance for all nodes is 1. Thus, if a node is covered at least once, its weight becomes zero in
the other subsets where it belongs. However, to increase fault tolerance, we can specify ki as the
required level of fault-tolerance for sensor si where ∀i ∈ 1 . . .n. 1 ≤ ki ≤ size(ϵ-neighbors(si )).
When the same coverage weight is used for all sensors we simply write k . Notice that ki cannot
exceed the size of ϵ-neighborhood of si since that gives the maximum number of possible predictors.
Also si can always achieve coverage of at least 1 by being included in the P set, even when its
neighborhood is empty.

During the sensor selection process the number of predictors still required to cover each sensor
is recorded in vector Q . Initially qi = ki for each sensor. When a node becomes a P sensor or is
covered by a sensor added to P then its corresponding Q-weights are decreased by 1. The covering
process continues until Q-weight of every node is zero.

To make sensor selection cost-aware, each candidate node is assigned a selection weight recorded
in vector W . The criteria for selecting physical nodes is decided using the actual cost of the
physical sensor divided by the current combined Q-weight of the nodes that it covers. The function
getWeightedCost calculates thewi value of any node si . A node is best for selection if it has a low
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ALGORITHM 2: Sensor selection that ensures accuracy, fault tolerance and cost efficiency.
Input :S = (s1, . . . , sn ), C = (c1, . . . , cn ) list of sensors and associated per-sensor cost

E, ϵ matrix of prediction errors and error threshold
K = (k1, . . . ,kn ) coverage redundancy required for each sensor
maxCost maximum cost for permanent sensors

Output :P ⊆ S physical sensors
Variables :W = (w1, . . .wn ) weighted cost for each candidate physical sensor

Q = (q1, . . .qn ) coverage still required for each sensor
Pcost total cost of permanent sensors

P = ∅; Pcost = 0; Q = K
// Grow P until the required fault tolerance is achieved ormaxCost is exceeded
while (max(Q) > 0 and Pcost ≤ maxCost) do

for i ∈ 1 : n do
W [i] = getWeightedCost(si , P ,Q,C,E, ϵ) ; // Update weighted costs for all sensors

end
m = arg mini ∈1:n W ; // Choose sm with minimal weighted cost for P
P = P ∪ {sm }
Pcost = Pcost + C[m]
Q[m] = max(Q[m] - 1, 0)
for (j ∈ eNhood(si ,E, ϵ)) do

Q[j] =max(Q[j] − 1, 0) ; // Reduce qi since sj is now predicted by sm
end

end

Function ϵNhood(si ,E, ϵ):
return (which(E[i, ] ≤ ϵ) \ i ) ; // List all ϵ neighbors of si excluding itself

Function getWeightedCost(si , P ,Q,C,E, ϵ):
if s_i ∈ P then

Return∞ ; // Sensor si is already included in P
end
if (eNhood(si ,E, ϵ) = ∅) then

return 0 ; // Orphan si must be selected for P
end
qsum = 0
for (j ∈ eNhood(si ,E, ϵ)) do

qsum ← qsum +Q[j]
end
if (qsum > 0) then

return C[i] / qsum ; // Sensor si can add value to P
else

return∞ ; // All neighbors of si are already covered
end

wi value. This occurs when node si has a low cost (numerator) and/or a high Q-weight sum for
the nodes it covers (denominator). Nodes that are already in the set of physical nodes P and nodes
that have no uncovered neighbors (Q-weight sum is 0) have theirwi set to∞ to indicate they have
no added value for selection. Nodes that have no ϵ-neighbors havewi set to 0 since these nodes
cannot be predicted. Such orphan nodes must be included in the set of physical nodes. The sensor
selection algorithm repeatedly selects physical nodes for P until either the algorithm terminates
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successfully once all nodes have achieved k-coverage or the algorithm terminates unsuccessfully
as soon as the cost of the physical nodes exceedsmaxCost .

4.4 Optimization
We have shown how to partition a network into permanent and virtual sensors for a given error
tolerance and cost limit at a minimal cost. Varying the error tolerance and the degree of fault
tolerance gives rise to a large set of solutions that may be suitable for a given application. But as in
many optimization problems, conflicting objectives need to be satisfied. For example, increasing
the required fault tolerance of a solution usually increases the cost of the physical sensor set. For
this reason, the global Pareto-optimal set for a range of solutions is considered.

In this section, we consider the multi-objective optimization problem of selecting virtual sensors
based on desired characteristics for the deployment. The algorithm selects virtual sensors using
thresholds for RMSE, fault-tolerance, and cost. When comparing solutions, we evaluate the achieved
values for these parameters across all sensors. The following metrics are considered:

Average error The average RMSE error for the virtual sensor predictions (must be ≤ ϵ).
Average fault tolerance The average number of physical predictors for each virtual sensor

(must be ≥ Σiki ).
Total cost The total cost of the physical sensor deployment (must be ≤ maxCost ).
A set of solutions partitioning P and V is generated using different values for ϵ (the upper error

bound), ki (the number of covering sensors for fault tolerance) and maxCost (the maximum sensor
cost of the deployment). Each solution is characterized by a 3-tuple of results (a, f , c) giving the
values of the three performance metrics: average accuracy, average fault-tolerance, and total cost.
Let ri be a 3-tuple solution of results from the set of all results {r1, . . . rm}. ri is dominated by
some r j , ri if and only if ∀ b ∈ (a, f , c). ri .b ⪯ r j .b ∧ ∃ b ∈ (a, f , c). ri .b ≺ r j .b where ≺ means
“is better than" and ⪯ means “is better than or equal to". For the total cost and average accuracy
metrics, lower values are better, while for average fault tolerance higher values are better. Among
a set of solutions R, the non-dominated set of solutions R∗ are those that are not dominated by
any member of the set R. The non-dominated set of the entire feasible search space is called the
globally Pareto-optimal set.
Fig. 4 shows the Pareto fronts for two data sets: temperature and humidity in a rammed earth

house and soil moisture in a vineyard. Solutions were generated with different parameters: ϵ ∈
{0.5, 1, 1.5, . . . to5}, k ∈ {1, 2, 3} andmaximum cost set to 75% of the number of sensors. Algorithm 2
was used to search for a solution for each the 30 possible parameter settings. Solutions were found
for 22 cases for the house data set and 14 cases for the vineyard. The globally Pareto-optimal results
for each dataset are indicated by the highlighted points. For the rammed earth house (H1), the
lowest total cost (2 permanent sensors) has low fault tolerance but a relatively high average RMSE.
The highest cost (8 permanent sensors) has higher fault tolerance but the lowest average error for
the virtual sensors. In between, the optimal solutions offer trade-offs among cost, fault-tolerance,
and accuracy. Selecting the most suitable solution from the highlighted Pareto-optimal fronts can
be decided using external information about which of the optimization factors is most important
for the application. Alternatively, the median value on the Pareto front could be selected.

4.5 Sentinels
BuildSense selects permanent sensors with the goal of ensuring stable predictions over a long time
period. But once the temporary sensors have been removed, how does the user know whether
predictions remain accurate? We propose sentinels for tracking prediction accuracy given possible
changes in environmental dynamics during long term operation.
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Fig. 4. Examples of Pareto-fronts (highlighted points) to minimize cost and prediction error and maximize
fault-tolerance.

A sentinel sensor pair {s1, s2} ⊆ P is any pair of permanent sensors that are ϵ neighbors. For
these sensors, we can track the ground truth measured value as well as the value predicted by the
function learned during the training period. The difference between ground truth and prediction
can be calculated for every measurement point, e.g. every 30 minutes for the house data sets. During
long term operation we observed three categories of differences:

Normal differences are those that are sufficiently close to indicate that the underlying envi-
ronmental dynamics are stable.

Biased differences are consistently suggesting a temporary or long term change in the envi-
ronmental dynamics between the sentinel sensors.

Anomalous differences suggest a large scale environmental disturbance between the sentinel
sensor locations.

During operation, the differences between measured and predicted values for sentinel pairs are
recorded. If the error for one or more sentinel pairs drifts into a biased or anomalous category
too many times then the user can be warned. In the case of biased readings, the user may decide
to trigger the retraining phase with existing data to learn new predictors. Additionally, some
temporary sensors may be redeployed and further data gathered before the system is retrained.
On the other hand, anomalous differences are most likely caused by ad hoc user behaviors of the
occupants. For example, occupants may use small electric heaters on some cold days. Retraining is
not a good strategy for anomalous readings since the changes are short term and unpredictable.
But sentinel anomalies can be used to alert the user of low confidence for predictions across certain
building boundaries. The value of using sentinel pairs to track the proportion of anomalous, biased
and normal predictions is evaluated in Section 5.5.

5 EVALUATION
The goal of BuildSense is to set up an easily manageable sensor infrastructure for any energy-
efficient building or other sensor field requiring fine-grained, long term monitoring. It advocates
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Table 2. Sensor network datasets

ID Application and sensor type Sensors Months Training Month
HH Houses relative humidity 7 22 December
HT Houses temperature 36 22 October
H1 House 1 (insulated rammed earth) 18 22 October
H2 House 2 (monolithic rammed earth) 20 22 November
VM Vineyard soil moisture 70 1 July
VT Vineyard temperature 91 1 July
VA Vineyard all sensors 161 1 July

for a sensor network with minimal sensor deployment, yet supports fine-grained data acquisition
with high accuracy. To validate the framework, we address the following questions using the data
collected from two real-world building monitoring sensor networks and a soil monitoring sensor
network for a vineyard.

Feasibility: How feasible is virtual sensing in real-world applications?
Cost: How effective is the algorithm at finding optimal low-cost monitoring solutions? What

levels of cost saving are possible?
Prediction Accuracy: How accurate and robust are the virtual sensor predictors?
Prediction Stability: Are accurate predictions able to be maintained for long operational

periods?

5.1 Data Sets
Before evaluating BuildSense with respect to these performance criteria, let us first describe briefly
the datasets that are used for the performance measurements. BuildSense is evaluated using data
from two sensor networks that monitor energy-efficient rammed earth houses in the hot-arid
climate of Kalgoorlie in Western Australia’s goldfields [5]. Non-personal data has been made
publicly available at https://doi.org/10.26182/5bff840f65169.
The purpose of the house monitoring networks is to investigate to what extent adopting pas-

sive solar design principles can reduce dependence on artificial climate control. The two single-
floor houses have identical design and orientation, but one was built with the traditional solid
rammed-earth walls (monolithic) and the other with an insulating polystyrene core into the walls
(insulated). The heterogeneous monitoring networks include commercial sensors for temperature
and relative humidity, bespoke sensors including temperature sensor profilers embedded in the
walls of the buildings, temporary sensors that could be deployed only while the buildings were
unoccupied, a local weather station and public data from the nearest Bureau of Meteorology weather
station. The sensing intervals range from 5 minutes to 30 minutes. Linear interpolation was used to
fill in up to 4 hours of missing values where necessary. Half hourly observations were then selected
from each sensor stream, giving around 1440 observations per sensor per month.
Fig. 5 shows the floor plan and the placement of sensors in each of the houses, where KIT, LIV,

BW, BS, BE refer to the Kitchen, Living Room, and Bedrooms West, South and East, respectively.
The WASHING area comprises a toilet, bathroom, and laundry. The environs of the houses are
instrumented with over 150 sensors, mixing temporary and long-term sensing.For each house, as
shown in Fig. 5, M1 to M4 each indicates profilers of 8 temperature sensors embedded within the
rammed earth walls, and H1 to H6 indicate additional temperature sensors embedded in the walls.
A1 to A5 are temperature and humidity sensors at ceiling height. In addition, A1 to A5 indicate the
positions of 20 temporary head-level temperature and humidity sensors that were deployed before
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Fig. 5. House plan and sensor placements for both the monolithic and insulated houses. See the text for an
explanation of the sensor labels.

the building was occupied. Moreover, a weather station with 5 sensors is placed between the two
houses. The monitoring sensor networks ran continuously for 22 months.
Additionally, we evaluate BuildSense using data from a German vineyard, Nierstein bei Mainz,

near Frankfurt [19]measuring soil moisture (volumetric water content %) and soil temperature at soil
depths of 15cm, 30cm and 70cm at 20 locations. Data is available from http://wsn.csse.uwa.edu.au/.
After removing the incomplete time series, there are 161 sensor time series in total. For evaluation
purposes, we partitioned the data into periods of one month. Table 2 summarises the datasets used
for evaluation.

5.2 Feasibility
In this section, we evaluate how practical virtual sensing is in several different real-world scenarios
by investigating the number of potential physical sensors available to predict any virtual sensor.
Fig. 6 shows the distribution of the sizes of ϵ-neighborhoods for seven evaluation datasets (see
Table 2). The neighborhoods for each sensor are evaluated using three error bounds: ϵ = 0.5, ϵ =
1, ϵ = 5. The figure classifies sensors by the size of their neighborhoods using five classes: > 10
neighbors, 5 to 9, 2 to 4, 1 or 0 neighbors (that is, sensors with no predictors). The more nodes that
have large ϵ-neighborhoods, the greater the potential gains from virtual sensing.

Fig. 6 demonstrates that, as expected, as epsilon increases (across each group of 3 in the figure)
so the proportion of nodes with many neighbors increases. Even for error bound as low as 0.5,
virtual sensing has good potential because the majority of sensors have at least 3 ϵ-neighbors
(dark shading). The exception to this rule is relative humidity sensors where virtual sensing is only
feasible for ϵ = 5% or higher.
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Fig. 6. Distribution of ϵ-neighborhood sizes for ϵ ∈ {0.5, 1, 2} (respectively) for contrasting datasets.

Virtual sensing is feasible for different types of sensor data, not just smooth temperature curves
but also more volatile phenomena such as relative humidity and soil moisture. It is of note that
neighborhoods containing more than 10 predictors (darkest green in the figures) are common. This
shows that our nearest neighbor predictor model offers much greater scope for virtual sensing than
the disk sensing range model used in previous studies. In the disk model, each sensor’s predictor
neighborhood contains only those sensors within a limited physical distance. But the nearest
hour-of-day neighbor approach can find neighbors anywhere in the sensor network, even between
sensors of different phenomena.

5.3 Cost-aware sensor selection
As mentioned earlier, if all the sensors are homogeneous in terms of cost, then minimum sensor
selection ensures minimal deployment cost. However, if the sensor nodes have various costs then a
different selection of the same number of sensors can yield a lower deployment cost. The dataset
as described in Section 5.1 is collected using three different types of sensors with the cost of 60, 83,
and 100 AUD. Clearly, if all the selected permanent sensors cost 100 AUD each as opposed to 60
AUD each, the cost of the deployment would be higher. Algorithm 2 provides a cost-aware sensor
selection mechanism. Table 3 shows a comparison between this cost-aware sensor selection and a
simple sensor selection where costs are not considered while selecting permanent sensors. To show
how close these solutions are as compared to an optimal solution, we find the optimal solution (the
possible least cost deployment) by using a linear programming formulation.

The results summarized in Table 3 and Fig. 7 are generated based on a set of simulation experi-
ments. In particular, the results for simple coverage and cost-aware coverage are generated (for
particular parameter set) by implementing the algorithm using Python. On the other hand, the
linear programming formulation to find the optimal solution is solved using the lp-solve tool.
The cost of deployment depends on the number of permanent nodes, which is dictated by the

accuracy requirement. The error threshold to decide the ϵ-neighbors help in this selection. Similarly,
the k-coverage requirement to introduce redundancy also increases the number of permanent
nodes; thus the cost of deployment. The results in Table 3 show that cost-aware selection achieve a
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Table 3. Cost comparison of the permanent sensor deployment (in AUD) using various sensor selection
methods.

coverage (k) error threshold (ϵ) optimal coverage simple coverage cost-aware coverage
1 0.5 392 480 392
1 1.0 196 240 196
2 0.5 722 1172 872
2 1.0 316 526 392
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Fig. 7. Coverage cost of the permanent sensor deployment based on the three sensor selection algorithms,
where coverage cost is equivalent to the total purchasing cost of the deployed nodes in AUD.

lower cost coverage than the simple selection mechanism and it is close to the optimal value. Since
optimal selection by the linear programming formulation is not feasible for large numbers of nodes,
our algorithm provides the best feasible solution.
Cost-aware sensor selection uses a greedy heuristic that neither provides the optimal sensor

selection nor does it provide the guarantee of improved sensor selection as compared to the simple
cover algorithm. However, statistically, it provides a better sensor selection in terms of the cost of
permanent deployment. This claim is substantiated in Fig. 7. The same deployment of sensors as in
Table 3 are considered with varying correlation properties. We use 25 different datasets all with
the same cost and k = 1 but the ϵ-neighbors are significantly different from each other in each of
these datasets. In most of the cases, cost-aware sensor selection is much more cost efficient than
the simple sensor selection mechanism and close to the optimal result. The variation in the dataset
based on the correlation among the sensor nodes signifies that the cost-aware sensor selection is not
biased towards one particular type of node correlation. Hence, it showcases a general improvement
for sensor selection.

5.4 Prediction Accuracy
BuildSense finds virtual sensors using prediction models that replace physical sensors. But how
accurate are those prediction models? And how robust? The prediction model used in BuildSense
is a simple regression model in which the final virtual sensor readings are calculated by adding a
per-hour offset to the measured value. The hourly offsets used for virtual sensors are determined
by a least squares approach that fits a model to the training data. Root mean squared error (RMSE)
is used to define the accuracy of a particular model and for choosing the best model from available
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models. This section investigates the properties of BuildSense that contribute to the quality of those
predictors: their accuracy and robustness.
Consider a predictor sensor p for sensor s and a learned offset o so that the virtual sensor v is

defined by v = p + o∗, where o∗ maps the correct hourly offset at each point in the sequence. The
sequence has length n. The residual r is a time series of the difference between the predicted and
observed values for the virtual sensor: r = v − s . The quality of the virtual sensor models is assessed
using the following metrics for the quality of regression models.

(1) RMSE:
√
Σ(r × r )/n. The RMSE should be as small as possible.

(2) Residual mean: Σ r/n. The mean of the residuals should be as close to 0 as possible.
(3) Homoscedasticity: The variance around the regression line should be the same for all values

of the prediction variable. For example, the variance of the residuals should be similar for
both high and low sensed values. This can be measured by first partitioning the residuals into
groups for each value of the prediction variable (e.g. to the nearest degree) and calculating
the interquartile range (IQR) for each group. Homoscedasticity is the standard deviation of
these IQRs. Its value should be as close to 0 as possible.

(4) Auto-correlation: represents recurring patterns in the residuals related to the time of
observations. This can be calculated by grouping the residuals according to the hour of the
day, calculating the interquartile range (IQR) and taking the standard deviation of the IQRs.
This auto-correlation measure should be as close to 0 as possible.

(5) Correlation: cor (r ,p). This measures the correlation between the physical sensor values
and the residuals from the virtual sensor. Weak correlation indicates that the virtual sensor
model is independent of the underlying context, whereas a strong correlation between these
measures indicates that the model may be missing some parameter. We measure correlation
using the pairwise Spearman correlation coefficient which ranges from -1 to 1. Values close
to 0 indicate the weak correlation we desire.
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Fig. 8. Accuracy metrics for virtual-physical predictors of three datasets for ϵ = 1.0.
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In order to investigate the quality of BuildSense prediction models, we investigate the learned
predictions for all eligible pairs of sensors from the two rammed earth houses and vineyard datasets.
For each dataset, we select all virtual-physical sensor pairs with ϵ ≤ 1.0C (or 1.0 % soil moisture).
Each of these pairs has around 600 hourly readings from its training month. We calculate the
predicted values of the virtual sensor and compare those with the measured values for that sensor.
This gives approximately 600 residuals for each sensor pair, for which the five accuracy metrics are
calculated. Fig. 8 shows the distribution of results. The units are °C or % soil moisture for all metrics
except the correlation coefficient, which is on the scale [−1, 1]. As expected, all estimator RMSEs
are < ϵ and the residual means are near 0 since both these conditions are used in the least squares
construction of the hour of day predictor. But it is notable that the median RMSE is much lower
(0.25 to 0.4 degrees) than ϵ for all three datasets. The variance of the residuals (homoscedasticity)
is largely independent of the prediction variables (temperature or soil moisture). The median of
the correlations between predictions and the measured phenomena are also close to zero (median
of -0.1596 over all pairs). However, there are some pairs where the correlation value indicates a
dependence. It may be useful to use this metric to exclude such pairs from virtual sensor predictions.
The autocorrelation statistic is close to 0 for all datasets which is as expected since the hour of day
predictor already accounts for diurnal effects.

5.5 Stability and Retraining
BuildSense uses a sense-train-predict approach in which sensor data from a certain training period
is used to train a prediction model. In this section, we evaluate the performance of BuildSense over
a long time period. How much do the environmental dynamics change? Is retraining beneficial?
And, if so, what should be the triggers for retraining and how often is it required?

To test the long term stability of predictions we choose pairs of sensors from the house data sets
with at least 400 days of data. There are 95 such sensor pairs. For each sensor pair and training
month, we compared the ground truth of the measured values with the value predicted by the
trained models.
Five scenarios were considered and are reported in Figure 9. As a baseline, the system was

retrained every month. In this case, the nearest hour of day estimates give the best fit for the real
data. We then consider a scenario where retraining is applied after several months of operation. The
system is trained in November and then retrained in February when the season and occupancies of
the houses have changed. The same set of permanent and virtual prediction pairs are used each
time, but the estimation model is re-learned on February data. Finally, we consider three scenarios
with a single training month and no retraining during operation. The nearest hour of day model
learned in the training month is applied to all other months of operation. The no-retraining scenario
is tested for three contrasting training months: November (temperature range 7 to 38, median 22
degrees C), February (range 15 to 44, median 28) and April (range 7 to 27, median 17).

Figure 9 shows the achieved accuracy (RSME) for four representative sensor pairs under the five
training scenarios. With reference to the sensor names of Figure 5 the selected pairs are monolithic
house A5,M2 (top left), A5,A4 (top right) and insulated house A1,A2 (bottom left) all temperature
and A2,A5 relative humidity (bottom right). The five training scenarios are labeled All for retraining
every month, No+Fe train in November then retrain using February data, and No, Fe, Ap trained
only once in November, February, and April (respectively).

As expected the baseline scenario (labeled All) in which the model is refitted every month has the
best (lowest) range of RMSEs. More surprisingly, retraining the model (in November and February)
does not offer much improvement over the scenarios without retraining. And the choice of training
month only has a small effect on prediction accuracy. Notably, the long term accuracy of the
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Fig. 9. Prediction accuracy for representative epsilon neighbor sensors under different retraining scenarios.
See text for details.

prediction models is stable: the nearest hour of day model copes adequately with context drift
connected with seasonal environmental dynamics.
We performed a second experiment to evaluate fine-grained changes in the environmental

dynamics using sentinel pairs. For randomly selected sensor A3 in the insulated house (see Figure 5)
we found 6 epsilon neighbors amongst the permanent sensors using ϵ = 0.6. The sentinel neighbors
were M2 (positions 1,2,3), A2, A5 and A4 (see Figure 5). These neighbors cover large scale differences
in the building environment.

The difference between actual and predicted values was tracked for half hourly readings for each
of these sentinel pairs for 12 months between November 2014 (training month) to Dec 2015 where
sufficient training data was available. The ranges [−1.5, 1.5] degrees Celcius were chosen as normal
for house temperatures, [−5,−1.5] or [1.5, 5] as biased and differences > 5 or < −5 are anomalous.
The results of this experiment were aggregating by months for 77 sentinel pairs and 100,935 half
hourly differences. For these sentinel differences the observed categories were 1.4% anomalous
differences, 14.5% biased and 84.2% normal. Interestingly none of the biased readings persisted for
much more than a week so we did not see any situations where retraining was likely to be useful.
Instead, we observed some periods with one-off changes in environmental dynamics. These results
demonstrate that sentinels are useful for identifying such periods. Since it is not possible to predict
accurately when human activities such as heating will occur we argue that the best solution is to
include permanent sensors in locations likely to be affected by human changes. Expert knowledge
of a building and sensor proximities can be used to review the permanent sensor set suggested by
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the algorithm. The expert can then choose to include additional permanent sensors in significant
locations. For example, at least one permanent sensor could be placed in each room.

6 CONCLUSION
Continuous, long-term, fine-grained, monitoring of buildings is essential for many approaches
to energy-efficiency. Although deploying a large number of sensors throughout the building can
provide an easy solution, it incurs high deployment and management costs. In this work, we propose
BuildSense, a framework that enables continuous and fine-grained monitoring of a building with
minimal sensor infrastructure. In many typical sensor networks, optimal sensor deployment may
not be feasible due to the inaccessibility of the monitoring field or lack of statistical knowledge of
it. On the other hand, buildings offer an accessible and well-planned environment. However, they
differ significantly from each other. Thus, planning an optimal and customized (at building-level)
sensor deployment becomes a non-trivial task. Though we have used the datasets from two building
monitoring networks of a special kind, the data itself does not contain any special characteristics
for those buildings. In other words, the dataset is sufficiently generic to provide a generic evaluation
of our framework. This ensures that BuildSense can be used for any building. Customization
by building-specific physical sensor selection can be applied without any customization of the
algorithm. Furthermore, BuildSense is suitable for other application areas as demonstrated by our
results for a vineyard soil monitoring network.
BuildSense uses a sense-learn-predict approach for customizing sensor deployments. A large

number of temporary sensors are deployed during the learning phase. For the operational phase,
the majority of these sensors are removed and a minimal number of sensors are selected for
permanent monitoring. Using a mix of physical and virtual sensors, BuildSense ensures granular
and continuous sensor data with sufficiently high accuracy, fault tolerance and low cost within a
given budget. Overall, we were able to reduce the cost of a building sensor network by 60% to 80%
by replacing physical sensors with virtual ones while still maintaining the accuracy of ≤1.0°C and
fault-tolerance ≥ 2 predictors per sensor. We have also demonstrated that accurate, fault-tolerant
predictions are sustained for more than one year.
There are several interesting avenues for future work. One area for investigation would be

to incorporate convenience and trustworthiness metrics into the selection criteria for virtual
sensors. Small and unobtrusive sensors tend to be cheaper but also less accurate and reliable than
more expensive sensors. Maybe using a set of small sensors could mask failures and so provide
sufficiently accurate prediction at a lower cost than a single expensive sensor. New prediction
models based on many-to-one rather than one-to-one sensor relations could also be investigated.
Another interesting question is how to use external, contextual data as well as sensor readings in
order to learn context-aware models to support more robust and accurate virtual sensor systems.
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