
Common Bugs in Scratch Programs
Christoph Frädrich
fraedric@fim.uni-

passau.de
University of Passau
Passau, Germany

Florian Obermüller
obermuel@fim.uni-

passau.de
University of Passau
Passau, Germany

Nina Körber
koerber@fim.uni-

passau.de
University of Passau
Passau, Germany

Ute Heuer
ute.heuer@uni-

passau.de
University of Passau
Passau, Germany

Gordon Fraser
gordon.fraser@uni-

passau.de
University of Passau
Passau, Germany

ABSTRACT

Bugs in Scratch programs can spoil the fun and inhibit learning
success. Many common bugs are the result of recurring patterns
of bad code. In this paper we present a collection of common code
patterns that typically hint at bugs in Scratch programs, and the
LitterBox tool which can automatically detect them. We empiri-
cally evaluate how frequently these patterns occur, and how severe
their consequences usually are. While fixing bugs inevitably is
part of learning, the possibility to identify the bugs automatically
provides the potential to support learners.

CCS CONCEPTS

• Social and professional topics → Software engineering ed-

ucation; K-12 education; • Software and its engineering →
Visual languages.

KEYWORDS

Scratch, Block-based programming, Code quality

ACM Reference Format:

Christoph Frädrich, Florian Obermüller, Nina Körber, Ute Heuer, and Gor-
don Fraser. 2020. Common Bugs in Scratch Programs. In Proceedings of the

2020 ACM Conference on Innovation and Technology in Computer Science

Education (ITiCSE ’20), June 15–19, 2020, Trondheim, Norway. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3341525.3387389

1 INTRODUCTION

Block-based programming languages like Scratch [13] are hugely
successful at introducing and engaging young learners with the
concepts of programming, and once children are hooked they use
their imagination to produce complex and intricate games, stories,
and other types of programs. Often these programs do not work
immediately because of bugs, i.e., mistakes in the assembled blocks.
While finding and fixing such bugs (i.e., debugging programs) is an
essential skill and an important aspect of learning, bugs can never-
theless be the source of endless frustration, discouraging learners
and potentially inhibiting their learning success.

Bugs can occur for different reasons, for example when program-
ming concepts are not well understood, or simply because it is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6874-2/20/06. . . $15.00
https://doi.org/10.1145/3341525.3387389

Figure 1: Common Scratch bug, taken from a publicly

shared project: The comparison of the literals “Level” and

“21” in the if-condition will never be true. Instead of “Level”,

the user should have used the variable with the same name.

challenging to produce correctly working programs, regardless of
whether one writes code in Scratch or any other programming
language. Often, code that works initially is written in a clumsy and
confusing way (commonly referred to as code that smells, such as
long scripts or duplicated code [9, 19]). This causes bugs to be intro-
duced later, when changing and extending the existing code. While
there is no end to the creativity with which learners produce bugs,
many of these bugs are the result of similar misunderstandings, and
manifest in similar, reoccurring patterns of bugs. For example, con-
sider Figure 1: The comparison of two literals frequently happens
if variables are not fully comprehended or if code is incomplete.
Identifying such patterns offers the potential to support learners.

In this paper, we present a catalogue of 25 bug patterns based on
common misunderstandings and programming errors in Scratch.
We introduce LitterBox, an automated program analysis tool
which can find occurrences of these bug patterns in Scratch pro-
grams. Given a Scratch project ID, LitterBox retrieves and parses
the source code of the project, and reports all instances of bug pat-
terns identified. To investigate how common the bug patterns are
in practice, we applied LitterBox to a random sample of 74,830
Scratch projects. Since the occurrence of a bug pattern does not
guarantee that a program is broken, we further investigated the
typical severity of each of the bug patterns by manually checking
how they affect real Scratch programs.

Our investigations show that a commonmisunderstanding lies in
the usage of key-event handlers as the best way of reacting to user
input (resulting in Stuttering Movement), and that synchronising
scripts with messages or backdrops (e.g., Missing Backdrop Switch)
can be error prone. Some bug patterns like Stuttering Movement al-
most always break programs, while some bugs are more subtle, like
the Position Equals Check, where positions are checked using exact
equality instead of more permissive relations, resulting in fragile
and misbehaving programs. In either case, however, an instance
of a bug pattern is a sign of a problem. The possibility to identify
bugs automatically can help learners with the inevitable debugging
part of learning, and in producing working Scratch programs.

ar
X

iv
:2

11
2.

00
85

8v
1

 [
cs

.S
E

]
 1

 D
ec

 2
02

1

https://doi.org/10.1145/3341525.3387389
https://doi.org/10.1145/3341525.3387389

Table 1: Common code smells for Scratch.

Code Smell Reference

Broad variable scope [18]
Complex animation [4]
Dead code [4, 8, 18]
Duplicate code [4, 8, 18]
Duplicate string [18]
Empty script [8, 18]
Empty sprite [8]
Feature envy [8, 18]
Inappropriate intimacy [8, 18]
Long script [8, 18]
Many parameters [8]
Middle man [8, 18]
Uncommunicative name [4, 18]
Unused variable [8, 18]

2 BACKGROUND

In this paper we investigate bug patterns in Scratch [13] pro-
grams. Scratch is a widely used visual block-based programming
language that aims at making programming more accessible for
novices. It favours exploration over recall, implements visualisation
of grammar rules and visually distinguishes different categories of
statements and expressions [3]. The block-based nature of Scratch
prevents syntactical errors in the program code, but it is neverthe-
less possible to produce Scratch code that is problematic or plain
wrong. Bad programming practices often lead to code that uses
inefficient, confusing, or awkward constructions to achieve its re-
sult. In programming, characteristics of source code that represent
bad quality and are indicative of deeper problems are commonly
referred to as code smells:

Definition 1 (Code Smell). A code smell is a code idiom that

increases the likelihood of bugs in a program [7].

It has been established that certain code smells such as longmeth-
ods or duplicated code are prevalent in Scratch programs [9, 19].
Categories of code smells in Scratch are mostly derived by map-
ping smells from other programming languages [9] but also by
defining new smells that exist only in block based languages [14].
There is also evidence that code smells can have a negative ef-
fect on the learning progress of novice programmers [8]. Table 1
summarises the code smells that have been defined for Scratch.

Smelly code is not wrong per se; the program likely still works
correctly. However, smells typically decrease understandability and
increase the chances of programmers using and extending the code
wrongly in the future, thus introducing bugs. The term bug is often
ambiguously used; when talking about bugs in this paper we refer
to defects as defined in the IEEE Standard Classification of Software
Anomalies [1]:

Definition 2 (Defect). A defect is a weakness in code that pre-

vents software from meeting its specification and needs to be fixed [1].

Defects in programs can stem from misconceptions affecting the
programmer’s problem solving process. This is a serious challenge

for novices even in Scratch [17]. A defect represents functionally
incorrect code, but the consequences of the defect are not necessar-
ily visible to the user of the program. Only under certain conditions
does a defect result in an observable deviation from the correct and
expected behaviour. For example, the defect often has to be executed
in a particular way in order to cause the program to misbehave,
thus causing a failure:

Definition 3 (Failure). A failure represents the termination of

the ability of a program to perform its required function. The execution

of a defect may result in a failure.

In practice, failures often result in program crashes, exploitable
security holes, data-loss, or other severe consequences. In Scratch
programs a failure represents a change in the output on the stage,
such as erroneous movement of a sprite, wrong backdrops being
shown, lack of reaction to a user input, and it might also result
in the execution stopping unexpectedly or generally decrease the
usability of the program (e.g., by slowing the program execution).
On one hand, failures can be incredibly frustrating to learners. On
the other hand, productive failure is seen as an emerging innovation
in pedagogic practice and is considered a promising approach in
computer science education as well [6].

Failures are typically found through testing, i.e., running the
program and checking the result against a specification (potentially
automatically [11, 16]). Given a failure, debugging describes the
activities of (1) identifying the underlying defect, and (2) producing
an appropriate fix for the defect. When debugging programmers
may gain insights on the programming task, into its pitfalls and
proper solutions. Related pedagogic interventions should facilitate
and strengthen these insights. Therefore meaningful teaching and
training activities can encourage and guide reflection and com-
munication about critical thinking involved in the debugging pro-
cess. [5, 12]. However, not all defects easily manifest in failures,
potentially making them hard to spot. Failing to identify defects
reduces chances for learners to practice fixing. Failing to fix defects,
programs may never work.

In order to support learners in identifying defects, we therefore
aim to automatically identify defects in Scratch programs. For
this, we define and identify bug patterns. A bug pattern is a code
idiom that is likely to be a defect [10].

Definition 4 (Bug Pattern). A bug pattern in Scratch is a

composition of blocks typical of defective code, or a common erroneous

deviation of a correct code idiom.

The difference between a code smell and a bug pattern is that a
code smell reports negative attributes of the code (e.g., long, confus-
ing, duplicate, unused code), whereas bug patterns report specific
combinations of blocks that are indicative of defects. Although
previous work on code quality in Scratch focused on code smells,
some of these are actually bug patterns, in particular the undefined
block smell [18] as well as Hairball’s checks for (1) matching broad-
cast and receive blocks, (2) synchronisation of say and sound blocks,
and (3) proper initialisation of attributes and variables. Note that
the occurrence of a bug pattern does not guarantee the existence
of a defect (i.e., there may be false positives):

Definition 5 (False Positive). Non-defective code that matches

a bug pattern constitutes a false positive.

False positives are common for static program analysis tools [10],
and may occur for any approximate analysis. In particular, for bug
patterns false positives may result if it is not possible to describe
a combination of blocks that precisely distinguishes all defective
from non-defective cases. Bug patterns are commonly used in pro-
fessional programming, where tools like FindBugs [10] implement
checks for catalogues of common bug patterns for the Java lan-
guage. In this paper, we aim to define a catalogue of bug patterns
for Scratch.

3 BUG PATTERNS IN SCRATCH

In this section we describe bug patterns for Scratch programs.
These patterns mostly originate from our experiences of teaching
and building an analysis infrastructure for Scratch programs, and
some are specialised versions of code smells [4, 9]. We organise
patterns in three categories: (1) Bugs that are effectively syntax
errors, as a compiler would detect them in a text-based language;
(2) bugs that can occur in any programming language; and (3) bug
patterns that are specific to Scratch.

3.1 Syntax Errors

AmbiguousCustomBlock Signature: Scratch does not enforce
unique names for custom blocks. Two custom blocks with the same
name can only be distinguished if they have a different number or
order of parameters. When two blocks have the same name and
parameter order, no matter which call block is used, the program
will always execute the custom block which was defined earlier.
Ambiguous Parameter Name: The parameter names in custom
blocks do not have to be unique. When two parameters have the
same name, no matter the type or which one is used inside the
custom block, it will always be evaluated as the last parameter.
Call Without Definition:When a custom block is called without
being defined nothing happens. This can occur in two different
situations: 1) Earlier releases of Scratch 3 allowed removal of a
custom block definition even when the custom block is still in use.
2) A script using a call to a custom block can be dragged and copied
to another sprite, probably no custom block with the same signature
as the call exists here and thus the call has no definition.
Expression As Touchable Or Colour: This happens when inside
a block that expects a colour or sprite as parameter (e.g., set pen color
to or touching mouse-pointer?) a reporter block, or an expression
with a string or number value is used.
Missing Termination Condition: The repeat until blocks require
a stopping condition. If the condition is missing, the result is an in-
finite loop. This will then prevent the execution of blocks following
the loop in the script.
Orphaned Parameter:When custom blocks are created the user
can define parameters, which can then be used in the body of the
custom block. However, the block definition can be altered, includ-
ing removal of parameters even if they are in use. Any instances
of deleted parameters are retained, and then evaluated with the
default value for the type of parameter in the underlying JavaScript
execution of the Scratch virtual machine (i.e., 0 or empty string),
since they are never initialised.
Parameter Out Of Scope: The parameters of a custom block can
be used anywhere inside the sprite that defines the custom block.

However, they will never be initialised outside the custom block,
and will always have the default value.

3.2 General Bugs

Comparing Literals: Reporter blocks can be used to evaluate the
truth value of certain expressions. Not only is it possible to compare
literals to variables or the results of other reporter blocks, literals
can also be compared to literals (e.g. Fig. 1). Since this will lead to
the same result in each execution this construct is unnecessary and
it can obscure that certain blocks will never or always be executed.
CustomBlockWith Forever: If a custom block contains a forever
loop and the custom block is used in the middle of another script,
that other script will never be able to complete its execution. The
forever loop in the custom block cannot be left, resulting in the
calling script never being able to proceed.
Custom Block With Termination: If a custom block contains a
Stop all or Delete this clone and the custom block is called in the
middle of another script, the script will never reach the blocks
following the call.
EndlessRecursion: If a custom block calls itself inside its body and
has no condition to stop the recursion, it will run for an indefinite
amount of time.
Forever Inside Loop: If two loops are nested and the inner loop
is a forever loop, the inner loop will never terminate. Thus any
statements preceeding the inner loop are only executed once (e.g.
Fig. 3). Furthermore, any further statements following the outer
loop can also never be reached.
Message Never Received: This pattern is a specialised version of
unmatched broadcast and receive blocks [4]. It occurs when there
are blocks to send messages, but theWhen I receive message event
handler is missing. Since no handler reacts to this event, themessage
stays unnoticed.
Message Never Sent: This pattern is a specialised version of un-
matched broadcast and receive blocks [4]. When there are blocks to
receive messages but the corresponding broadcast message block is
missing, that script will never be executed.
Missing Clone Call: If theWhen I start as a clone event handler is
used to start a script, but the sprite is never cloned, the event will
never be triggered and the script is dead.
Missing Clone Initialisation: When a sprite creates a clone of
itself but has no scripts started byWhen I start as a clone orWhen

this sprite clicked events, clones will not perform any actions. The
clones remain frozen until they are deleted by delete this clone blocks
or the program is restarted.
Missing Loop Sensing: If a script is supposed to execute actions
conditionally when an event occurs, this is often done by contin-
uously checking for the event inside a forever or until loop. If the
loop is missing, the occurrence of the event is only checked once
and thus likely missed.
No Working Scripts: The empty script smell (cf. Lazy Class [9])
occurs if an event handler has no other blocks attached to it. The
dead code smell [9] occurs when a script has no event handler and
can never be executed automatically. If both smells occur simulta-
neously without any other scripts in a sprite we consider it a bug,
since the script should likely consist of the event handler attached
to the dead code.

Position Equals Check: Scratch uses floating point values to
store positions and calculate distances to other sprites or the mouse-
pointer. Since two floating point values might never match exactly,
using exact comparisons of these values as guards in conditional
statements or loops such as until/wait until is prone to failure.
Recursive Cloning: Scripts starting with aWhen I start as a clone

event handler that contain a create clone of myself block may result
in an infinite recursion.

3.3 Scratch-specific Bugs

Missing Backdrop Switch: If theWhen backdrop switches to event
handler is used to start a script and the backdrop never switches to
the selected one, the script is never executed. This does not apply to
programs including at least one of the switch options next, previous
or random.
Missing Erase All: If a sprite uses a pen down block but never an
erase all block, then all drawings from a previous execution might
remain, making it impossible to get a blank background without
reloading the Scratch project.
Missing Pen Down: Scripts of a sprite using a pen up block but
never a pen down are likely wrong since either the sprite is supposed
to draw something and does not, or the pen up may intefere with
later additions of pen down blocks.
Missing Pen Up: A sprite that uses pen down blocks but never a
pen up may draw right away, when the project is restarted. This
might not be intended.
Stuttering Movement: A common way to move sprites in re-
sponse to keyboard input is to use the specific event handler When

key pressed followed by a move steps, change x by or change y by

statement. Compared to the alternative to use a forever loop with a
conditional containing a key pressed? expression, the first approach
results in noticeably slower reaction and stuttering movement of
the sprite moved.

4 EVALUATION

We aim to answer the following research questions:
RQ1: How common are the bug patterns?
RQ2: How severe are the consequences of the defects?
RQ1 aims to give an overview on how many projects are affected
by each bug pattern. By answering RQ2 our goal is to understand
how often bug patterns cause failures.

4.1 Experimental Setup

Analysis tool: We implemented the bug patterns listed in Sec-
tion 3 in our own Java-based static analysis tool LitterBox. For the
analysis LitterBox first constructs an abstract syntax tree (AST).
Each bug pattern finder is implemented as a visitor of the AST, and
application to a Scratch program reports all instances of the bug
pattern found in the AST.
Dataset: Since LitterBox parses Scratch projects in the new
data format introduced with Scratch version 3, we could not use
existing datasets (e.g., [2]). Therefore we created a new dataset of
real Scratch programs by downloading the most recent programs
from the Scratch platform over a period of 3 weeks. For this we
first downloaded the project IDs of the most recent projects via

the Scratch REST API1 which LitterBox then used to directly
download the JSON project file from the project host2. On average
between 5,000 and 10,000 new programs were created each day,
resulting in 135,164 projects for our dataset. A replication package
containing all data and software needed to reproduce the results
can be found at https://github.com/se2p/artifact-iticse2020.
RQ1: To answer RQ1 we applied LitterBox on the data set. Since
it is common to start a new Scratch project by remixing an exist-
ing one it may also happen that bug patterns are inherited from
the original projects. Counting the same bug patterns in remixed
code multiple times would potentially skew our analysis of bug
pattern frequency. Therefore we excluded all projects that were
remixes. This led to the exclusion of 60,334 projects with 74,830
remaining for the analysis. We consider the cumulative number
of bug patterns found as well as the number of projects that con-
tain at least one instance of each pattern. We further consider the
weighted method count (WMC, i.e., sum of cyclomatic complex-
ity of all scripts) to quantify the average complexity of projects
containing bug patterns.
RQ2: To answer RQ2 we sampled 10 affected projects for each bug
pattern from our data set, excluding remixes. We then manually
classified whether the occurrence of the pattern results in a failure
based on Definition 3. Based on this definition we only counted
occurrences of a pattern as a failure if it has a noticeable effect
for the user. Thus, the classification required understanding each
project and its intended behaviour, as well as executing and playing
with the program in order to derive a verdict. In case a bug pattern
did not yield a failure, we further classified whether this was a) due
to the bug pattern being contained in code that was not executed
at all, b) the occurrence of a false positive or c) for other reasons.
Each project was independently classified by two authors. In case
of disagreements the bug pattern instances were discussed. If no
consensus was reached, at least one more author was consulted.
Threats To Validity: To avoid skewing the numbers, we exclude
remixes in our analysis. Our dataset consists of only publicly shared
projects; it is conceivable that bug patterns might occur more fre-
quently in unfinished projects not yet shared. To avoid bias we
randomised the selection of projects. For the manual classification
(RQ2), each project was independently classified by at least two
authors of this paper.

4.2 RQ1: How Common are the Bug Patterns?

In the evaluation of our data set without remixes we found instances
of all the bug patterns defined in Section 3. Table 2 shows howmany
projects are affected by each bug pattern, how often each pattern
occurs in total and what the average weighted method count of
affected projects is. Of the 74,830 projects 33,655 contained at least
one bug pattern, resulting in 109,951 bug patterns in total. The most
common bug patterns in terms of affected projects are Stuttering
Movement (5,541), Message Never Received (5,933), and Message

Never Sent (4,781). The least common are Ambiguous Parameter

Name (25), Orphaned Parameter (88) and Ambiguous Custom Block

Signature (92).

1https://github.com/LLK/scratch-rest-api/wiki, last accessed 17.1.2020
2https://projects.scratch.mit.edu, last accessed 17.1.2020

https://github.com/se2p/artifact-iticse2020
https://github.com/LLK/scratch-rest-api/wiki
https://projects.scratch.mit.edu

Table 2: Number of projects affected by each pattern and

number of pattern instances found in total.

Pattern #Projects #Patterns AVGWMC

Ambiguous CB Signature 92 317 138.74
Ambiguous Parameter Name 25 402 39.28
Call Without Definition 164 569 288.2
Comparing Literals 1,999 4,939 242.95
Custom Block With Forever 176 574 313.58
Custom Block With Termination 263 985 243.6
Endless Recursion 109 386 141.54
Expression As Touchable Or Color 365 1,076 217.79
Forever Inside Loop 2,158 9,617 192.48
Message Never Received 5,933 12,479 163.95
Message Never Sent 4,781 24,933 193.99
Missing Backdrop Switch 903 4,282 154.47
Missing Clone Call 625 1,522 356.33
Missing Clone Initialization 1,691 5,862 185.71
Missing Erase All 164 245 73.12
Missing Loop Sensing 3,282 8,372 130.54
Missing Pen Down 164 199 203.17
Missing Pen Up 988 1,931 47.98
Missing Termination 709 1,564 257.43
No Working Scripts 549 730 86.61
Orphaned Parameter 88 175 308.19
Parameter Out Of Scope 461 1,493 400.15
Position Equals Check 1,472 4,725 206.81
Recursive Cloning 953 3,318 267.74
Stuttering Movement 5,541 19,256 34.02

Projects with Stuttering Movement arguably usually still provide
the expected functionality, but the pattern causes the projects to
be almost unusable, as is well known to the Scratch community
and frequently discussed in forums and educational material3. The
pattern is nevertheless often used as a means to introduce beginners
as it allows controlling sprites without the need for conditional
statements. The very low average WMC of 34.02 for projects with
Stuttering Movement confirms that they are simple and small.

Bug patterns related to the pen feature are also used in simple
projects (e.g., average WMC of 47.98 for Missing Pen Up), which
often have little functionality besides drawing basic patterns. How-
ever, only 5,303 projects in our datasets use pen blocks at all,
which is likely because pen blocks are an optional extension since
Scratch 3.0.

Bug patterns related to custom blocks (e.g., Ambiguous Parameter

Name or Ambiguous Custom Block Signature) are less common.
The main reason for this is that custom blocks are an advanced
programming concept in Scratch, to which students are usually
introduced later. As a result, out of all the projects only 10,576 used
custom blocks. The average WMC confirms that these projects tend
to be more complex (e.g., 313.58 for Custom Block With Forever).

Besides bugs related to custom blocks, theMissing Clone Call bug
pattern stands out because it is contained in more complex projects
(average WMC of 356.33). This is most likely because it is easier to
miss that a sprite is not cloned in big projects. A notable example
was a project where theWhen Green Flag clicked event triggered the
3https://en.wikibooks.org/wiki/Scratch/Lessons/Movement#Smooth_Movement, last
accessed 17.1.2020

same behaviour as the When I start as clone event, suggesting that
cloning is a topic that is not easy to understand right away. Message-
related bugs may result from missing refactoring support: When
removing one part of a synchronised communication, Scratch
does not warn the user that the other part remains.

Summary (RQ1) Bugs frequently appear in Scratch programs
regardless of their complexity, and often follow a similar structure
which we can use to automatically identify them.

4.3 RQ2: How Severe are the Consequences of

the Defects?

Figure 2 shows the results of the manual classification for each bug
pattern. Out of the 250 projects we inspected, 70 instances of bugs
manifested into failures. Of the remaining bug patterns, 96 were
defects without visible impact, 52 did not result in failures because
the defective code was never executed, and 32 bugs were identified
as false positives.

The most severe failures cause their project to stop working com-
pletely (i.e., no reactions to user inputs and sprites not performing
any actions), and sometimes even slow down the web browser to
the point where it becomes unusable. For example, this happened
in a project with an instance of Forever Inside Loop with multiple
nested loops. Figure 3 shows an example of this bug pattern taken
from one of the Scratch projects in our analysis: Since the inner
forever-loop is never left, all clones are created at the same location
and the same orientation, breaking the intended graphical effect.

The defects most frequently causing failures are Stuttering Move-

ment (10 of 10 executed) and Missing Backdrop Switch (7 of 8 ex-
ecuted). The frequent occurrence of Stuttering Movement is not
surprising as this pattern is often even taught to students as a “cor-
rect” or “first” approach to animating sprites. Notably, the latter
can be created without modifying code: Most affected projects had
scripts that waited for a backdrop that no longer existed. This leads
us to believe that this bug often happens by accident or that students
often do not clean up their projects.

Some failures are subtle: For example, some projects have mul-
tiple scripts triggered by different messages, resulting in similar
behaviour (e.g., switching to different costumes of a sprite). In this
scenario a Message Never Sent bug may be difficult to notice as it
rarely manifests as a failure.

Some defects do not cause a failure when the program is run for
the first time, but only in later executions. For example, theMissing

Pen Up pattern may only be noticed when the program is reset and
the sprite clutters the screen.

There are, however, also multiple reasons why a bug may exist
in a project and not lead to a failure. The most common and simple
reason is that the code containing the bug is never executed, as was
the case in 52 projects. A reason why a bug is never executed can
be as simple as it being located in unreachable code (e.g., inside an
if with a condition that always evaluates to false). For example, the
Comparing Literals pattern caused only one actual failure, whereas
in the other 9 cases the defect was located in disconnected blocks
that were not executed, suggesting that the authors of Scratch
programs may be somewhat aware of this problem.

Sometimes programs also simply ignore the wrong behaviour
such as custom blocks with Ambiguous Parameter Names that do

https://en.wikibooks.org/wiki/Scratch/Lessons/Movement#Smooth_Movement

0

2

4

6

8

10

Ambiguous C
B Sig.

Ambiguous P
ara

m.

Call
 W

ith
out D

ef.

Compari
ng Lite

ral
s

CB W
ith

 Forev
er

CB W
ith

 Term
.

Endles
s R

ec
ursi

on

Exp
r A

s T
. o

r C
.

Forev
er

Insid
e L

oop

Msg
. N

ev
er

Rec
.

Msg
. N

ev
er

Sen
t

Miss
ing B

ac
kd

ro
p

Miss
ing C

lone C
all

Miss
ing C

lone

Miss
ing Eras

e A
ll

Miss
ing Loop

Miss
ing Pen

 D
own

Miss
ing Pen

 U
p

Miss
ing Term

.

No W
orki

ng Scri
pts

Orp
han

ed
 Para

m.

Para
m. O

ut O
f

Pos.
Equals

 C
hec

k

Rec
ursi

ve
 C

loning

Stutte
rin

g M
ove

.

False Positive Not Executed No Failure Failure

Figure 2: Results of the manual classification of Scratch projects.

Figure 3: Example of a Forever Inside Loop bug pattern, taken

from a publicly shared project: The blocks in the outer

forever-loop will only be executed once, since the execution

will not leave the inner forever-loop.

not use the parameters at all. Sometimes the sprites with the bug are
affected in their behaviour (e.g., position, movement, or size), but
do not result in a failure because they are hidden. An example are
hidden sprites, with custom blocks that contain a forever loop that
never stops. The Position Equals Check caused no failures because
the sprites always arrived at the checked positions; moving the
sprite only one pixel away broke the program in most cases. In
other cases the bug did not lead to failures because the author of
the program worked around the bug; for example, aMissing Pen Up

may not lead to any noticeable problems if the program erases all
drawings multiple times.

As anticipated, we also found several cases (32) of false positives
where the creator of the project deliberately used the mechanism

we consider as a bug and also took measures to prevent a failure.
For example, the Custom Block With Termination pattern may be
correct if the termination statement is contained in conditional code.
As our static analysis is an overapproximation it currently cannot
correctly detect this case. Similarly, Recursive Cloning produces
false positives when a clone takes care of deleting itself.

Summary (RQ2)When defective code is executed, it frequently
results in failures, but dead code and redundant expressions often
prevent visible impact.

5 CONCLUSIONS

Bug patterns help to identify bugs and provide a common vocabu-
lary to people talking about these bugs. To this end we introduced
and empirically evaluated a new catalogue of 25 bug patterns in
Scratch. Our evaluation found occurrences for each of the bug
patterns, which shows that the concept of bug patterns can be
successfully transferred to Scratch.

In this paper we focused on the actual bug patterns, but an im-
portant next step will be to study the effects of these bugs on the
learning success of novice programmers, as well as guidelines for
instructors on how to teach students about these patterns. Detec-
tion of bug patterns might enable learners to engage in debugging
processes more easily since the cognitive load of localising a po-
tential bug can be reduced. This fosters discussion of successful
and unsuccessful debugging activities and helps students reflect
on underlying missing concepts or misconceptions. In the future
it would be interesting to investigate whether bug patterns result
from misconceptions in programming as some of these seem to be
a symptom of those [15, 17]. In this light, productive failure seems
to be a promising approach that we will pursue and investigate
further in the future.

We also plan to further improve our LitterBox tool with ad-
ditional bug patterns and lower false positive rates. LitterBox is
available at: https://github.com/se2p/LitterBox

ACKNOWLEDGEMENTS

This work is supported by DFG project FR 2955/3-1 “Testing, De-
bugging, and Repairing Blocks-based Programs”. We would like to
thank Florian Sulzmaier and Andreas Stahlbauer for their contribu-
tions to LitterBox.

https://github.com/se2p/LitterBox

REFERENCES

[1] 2010. IEEE Standard Classification for Software Anomalies. IEEE Std 1044-2009

(Revision of IEEE Std 1044-1993) (Jan 2010), 1–23. https://doi.org/10.1109/IEEESTD.
2010.5399061

[2] Efthimia Aivaloglou, Felienne Hermans, Jesús Moreno-León, and Gregorio Robles.
2017. A dataset of scratch programs: scraped, shaped and scored. In Proceedings of
the 14th International Conference on Mining Software Repositories. IEEE, 511–514.

[3] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017.
Learnable Programming: Blocks and Beyond. Commun. ACM 60, 6 (May 2017),
72–80. https://doi.org/10.1145/3015455

[4] Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and
Diana Franklin. 2013. Hairball: Lint-inspired static analysis of scratch projects.
SIGCSE 2013 - Proceedings of the 44th ACM Technical Symposium on Computer

Science Education, 215–220. https://doi.org/10.1145/2445196.2445265
[5] David Deliema, Maggie Dahn, Virginia Flood, Ana Asuncion, Dor Abrahamson,

Noel Enyedy, and Francis Steen. 2019. Debugging as a Context for Fostering

Reflection on Critical Thinking and Emotion. 209–228. https://doi.org/10.4324/
9780429323058-13

[6] Katrina Falkner and Judy Sheard. 2019. Pedagogic Approaches. Cambridge Uni-
versity Press, 445–480. https://doi.org/10.1017/9781108654555.016

[7] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA.

[8] Felienne Hermans and Efthimia Aivaloglou. 2016. Do code smells hamper novice
programming? A controlled experiment on Scratch programs. In 2016 IEEE 24th

International Conference on Program Comprehension (ICPC). 1–10. https://doi.
org/10.1109/ICPC.2016.7503706

[9] Felienne Hermans, Kathryn T. Stolee, and David Hoepelman. 2016. Smells
in Block-Based Programming Languages. In 2016 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC) (2016-09). IEEE, 68–72.
https://doi.org/10.1109/VLHCC.2016.7739666

[10] David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy. SIGPLAN Not.

39, 12 (Dec. 2004), 92–106. https://doi.org/10.1145/1052883.1052895

[11] David E Johnson. 2016. ITCH: Individual Testing of Computer Homework for
Scratch Assignments. In Proceedings of the 47th ACM Technical Symposium on

Computing Science Education. ACM, 223–227.
[12] Yasmin B. Kafai, David DeLiema, Deborah A. Fields, Gary Lewandowski, and

Colleen Lewis. 2019. Rethinking Debugging as Productive Failure for CS Educa-
tion. In Proceedings of the 50th ACM Technical Symposium on Computer Science

Education (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 169–170. https://doi.org/10.1145/3287324.3287333

[13] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The Scratch Programming Language and Environment. ACM

Transactions on Computing Education (TOCE) 10 (11 2010), 16. https://doi.org/10.
1145/1868358.1868363

[14] Jesús Moreno-León and Gregorio Robles. 2014. Automatic detection of bad
programming habits in scratch: A preliminary study. In 2014 IEEE Frontiers in

Education Conference (FIE) Proceedings. 1–4. https://doi.org/10.1109/FIE.2014.
7044055

[15] Juha Sorva. 2018. Misconceptions and the Beginner Programmer.
[16] Andreas Stahlbauer, Marvin Kreis, and Gordon Fraser. 2019. Testing scratch

programs automatically. In Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. 165–175.
[17] Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. 2018. Programming

Misconceptions for School Students. In Proceedings of the 2018 ACM Conference on

International Computing Education Research (ICER ’18). Association for Comput-
ing Machinery, New York, NY, USA, 151–159. https://doi.org/10.1145/3230977.
3230995

[18] Peeratham Techapalokul and Eli Tilevich. 2017. Quality Hound — An online
code smell analyzer for scratch programs. In 2017 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC). 337–338. https://doi.org/
10.1109/VLHCC.2017.8103498

[19] Peeratham Techapalokul and Eli Tilevich. 2017. Understanding Recurring Quality
Problems and Their Impact on Code Sharing in Block-Based Software. In 2017

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

(2017-10). IEEE, 43–51. https://doi.org/10.1109/VLHCC.2017.8103449

https://doi.org/10.1109/IEEESTD.2010.5399061
https://doi.org/10.1109/IEEESTD.2010.5399061
https://doi.org/10.1145/3015455
https://doi.org/10.1145/2445196.2445265
https://doi.org/10.4324/9780429323058-13
https://doi.org/10.4324/9780429323058-13
https://doi.org/10.1017/9781108654555.016
https://doi.org/10.1109/ICPC.2016.7503706
https://doi.org/10.1109/ICPC.2016.7503706
https://doi.org/10.1109/VLHCC.2016.7739666
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1145/3287324.3287333
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1109/FIE.2014.7044055
https://doi.org/10.1109/FIE.2014.7044055
https://doi.org/10.1145/3230977.3230995
https://doi.org/10.1145/3230977.3230995
https://doi.org/10.1109/VLHCC.2017.8103498
https://doi.org/10.1109/VLHCC.2017.8103498
https://doi.org/10.1109/VLHCC.2017.8103449

	Abstract
	1 Introduction
	2 Background
	3 Bug Patterns in Scratch
	3.1 Syntax Errors
	3.2 General Bugs
	3.3 Scratch-specific Bugs

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: How Common are the Bug Patterns?
	4.3 RQ2: How Severe are the Consequences of the Defects?

	5 Conclusions
	References

