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ABSTRACT

Students often struggle with advanced computing courses, and
comparatively few studies have looked into the reasons for this.
It seems that learners do not master the most basic concepts, or
forget them between courses. If so, remedial practice could improve
learning, but instructors rightly will not use scarce time for this
without strong evidence. Based on personal observation, program
tracing seems to be an important pre-requisite skill, but there is yet
little research that provides evidence for this observation.

To investigate this, our group will create theory-based assess-
ments on how tracing knowledge affects learning of advanced
topics, such as data structures, algorithms, and concurrency. This
working group will identify relevant concepts in advanced courses,
then conceptually analyze their pre-requisites and where an imag-
ined student with some tracing difficulties would encounter barriers.
The group will use this theory to create instructor-usable assess-
ments for advanced topics that also identify issues caused by poor
pre-requisite knowledge. These assessments may then be used at
the start and end of advanced courses to evaluate to what extent
students’ difficulties with the advanced course originate from poor
pre-requisite knowledge.
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CCS CONCEPTS

« Applied computing — Education; » Theory of computation
— Concurrency; Design and analysis of algorithms; « Information
systems — Data structures.
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1 INTRODUCTION

In computing education, we have initial evidence that learners have
weaknesses with pre-requisite knowledge when they take advanced
classes, which may negatively affect learning outcomes. The Lis-
ter 2004 working group suggested many students lack mastery of
program tracing after CS1 [5]. Other studies show this may con-
tinue into later courses. Valstar et al. showed more than 30% of
students could not do questions on pointers or tracing recursion at
the start of an upper level data structures class, and this correlated
with final exam scores [11]. Fisler et al. showed more than 30% of
3rd and 4th year CS majors failed questions on scope, parameter
mutation, and/or variable mutation [2]. These prior studies did
not use learning outcome questions carefully designed to detect
difficulties caused by poor pre-requisite knowledge, or assessments


https://doi.org/10.1145/3341525.3394990
https://doi.org/10.1145/3341525.3394990
https://doi.org/10.1145/3341525.3394990

Working Group

ITiCSE 20, June 15-19, 2020, Trondheim, Norway

Table 1: Abilities in advanced concepts in concurrency based on tracing knowledge

Tracing weaknesses

Concurrency stage #1: Identify shared data

Concurrency stage #2: Individual locking of shared data

+ Can identify concurrency issues

No weaknesses .
- Unable to solve any issues present

+ Can solve simple tasks with individual variables
- Unable to solve problems with multiple dependent variables

Scoping weakness:
Local variables are shared
between different calls

+ Can identify concurrency issues

- Will identify additional variables as problematic

+ Can solve simple tasks with individual variables
- Too much synchronization due to misconception
- Incorrect placement of lock variables

Scoping weakness:
Reference vs. value semantics

with validity arguments. The Basic Data Structures Inventory with
a validity argument was just published in 2019 [8]. Other work
towards validity has designed assessments or assessment questions
for particular advanced topics [1, 3, 4, 10] or tracing [6, 7].

To deeply understand why and how often pre-requisite knowl-
edge difficulties affect later learning, careful assessment design and
validity work is needed; sometimes assessment questions are not
detailed enough to diagnose 1) difficulties with the more advanced
concept vs. 2) weaknesses with more basic concepts that may lead to
incorrect application of the advanced concept. For example, suppose
the advanced concept involves synchronizing data for concurrency,
and the weakness is scoping (what variables are shared across func-
tion calls/class instances). The following seemingly good question
does not separate case 1 vs. 2: asking a learner to add concurrency
controls to a piece of code that reads a shared (perhaps global)
variable and adds the value to a local variable, since the learner may
arrive at a working solution even while holding the belief that local
variables are shared. The learner may also get the question wrong
due to weakness with scoping, not a misunderstanding of how to
add concurrency controls or how concurrency controls work.

To address these barriers, the working group will contribute as-
sessment designs that distinguish among these cases, which will be
useful for answering the question: “How does tracing knowledge af-
fect learning of advanced topics, such as data structures, algorithms,
and concurrency?”, according to the method in the next section.
While the group’s report will only include theory-based assessment
designs and questions, they may be used in later research to answer
the motivating research question.

2 METHOD

Based on previous work on difficulties with tracing and advanced
topics, we will identify advanced concepts and developmental stages
for learning them, which consist of what learners can and cannot do
at each stage. These will form the basis for developing assessment
questions to distinguish among these stages. For example, in con-
currency: 1) finding shared data, 2) locking shared data individually,
3) locking overly large sections of code, and 4) fine-grained locking.

Using our identified advanced concepts, we will analyze their
required basic tracing knowledge, and where an imagined student
with tracing difficulties would encounter barriers, in order to focus
our assessment work on the most affected concepts. Table 1 shows
an example of what that analysis may look like. It asks “What
can learners do and not do, at different developmental stages of
understanding an advanced concept in concurrent programming,
with or without pre-requisite tracing knowledge?”. Similar analysis
will be carried out for data structures and algorithms.

+ Can identify some concurrency issues
- Unable to identify data shared by reference
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+ Can solve simple tasks with simple variables
- Missing synchronization for data shared by reference

Based on our conceptual analysis, our working group will make
assessments that can detect differences between 1) knowing related
tracing concepts without knowing the advanced concept, 2) know-
ing both, and 3) knowing the advanced concept but misapplying
it due to weak tracing knowledge. One way to do this is to cre-
ate questions with distractor answers that correspond to particular
knowledge combinations, as shown in Table 1. For example, we may
decompose the problematic assessment question in the introduction
into 3 separate questions, similar to what was done by Strombéack
et al [9]. First, one on identifying shared data (which depends on
tracing knowledge). Second, a question about what kind of controls
shared data needs to have for concurrency to work correctly. Lastly,
a question on modifying a given code example to work, by adding
concurrency controls, with distractors that correspond to different
combinations of tracing and advanced knowledge.
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