Working Group

ITiCSE 20, June 15-19, 2020, Trondheim, Norway

Assessing How Pre-requisite Skills Affect Learning of Advanced
Concepts

Greg L. Nelson"

Filip Stromback”

Ari Korhonen*

University of Washington Linképing University Aalto University
Seattle, Washington Linkoping, Sweden Espoo, Finland
glnelson@uw.edu filip.stromback@liu.se archie@cs.hut.fi
Ibrahim Albluwi Marjahan Begum Ben Blamey
Princeton University Copenhagen Business School Uppsala University

Princeton, New Jersey
isma@cs.princeton.edu

Karen H. Jin
University of New Hampshire
Manchester, New Hampshire

karen.jin@unh.edu

Copenhagen, Denmark

mbe.msc@cbs.dk

Violetta Lonati
Universita degli Studi di Milano
Milano, Italy
lonati@di.unimi.it

Uppsala, Sweden
ben.blamey@it.uu.se

Bonnie MacKellar
St John’s University
Queens, New York
mackellb@stjohns.edu

Mattia Monga
Universita degli Studi di Milano
Milano, Italy
mattia.monga@unimi.it

ABSTRACT

Students often struggle with advanced computing courses, and
comparatively few studies have looked into the reasons for this.
It seems that learners do not master the most basic concepts, or
forget them between courses. If so, remedial practice could improve
learning, but instructors rightly will not use scarce time for this
without strong evidence. Based on personal observation, program
tracing seems to be an important pre-requisite skill, but there is yet
little research that provides evidence for this observation.

To investigate this, our group will create theory-based assess-
ments on how tracing knowledge affects learning of advanced
topics, such as data structures, algorithms, and concurrency. This
working group will identify relevant concepts in advanced courses,
then conceptually analyze their pre-requisites and where an imag-
ined student with some tracing difficulties would encounter barriers.
The group will use this theory to create instructor-usable assess-
ments for advanced topics that also identify issues caused by poor
pre-requisite knowledge. These assessments may then be used at
the start and end of advanced courses to evaluate to what extent
students’ difficulties with the advanced course originate from poor
pre-requisite knowledge.

“Leaders

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE °20, June 15-19, 2020, Trondheim, Norway

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6874-2/20/06.

https://doi.org/10.1145/3341525.3394990

506

CCS CONCEPTS

« Applied computing — Education; » Theory of computation
— Concurrency; Design and analysis of algorithms; « Information
systems — Data structures.

KEYWORDS

computer science education, concurrency, data structures and algo-
rithms, tracing

ACM Reference Format:

Greg L. Nelson, Filip Strémback, Ari Korhonen, Ibrahim Albluwi, Marja-
han Begum, Ben Blamey, Karen H. Jin, Violetta Lonati, Bonnie MacKellar,
and Mattia Monga. 2020. Assessing How Pre-requisite Skills Affect Learning
of Advanced Concepts. In 2020 ACM Conference on Innovation and Technol-
ogy in Computer Science Education (ITiCSE’20), June 15-19, 2020, Trondheim,
Norway. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3341525.
3394990

1 INTRODUCTION

In computing education, we have initial evidence that learners have
weaknesses with pre-requisite knowledge when they take advanced
classes, which may negatively affect learning outcomes. The Lis-
ter 2004 working group suggested many students lack mastery of
program tracing after CS1 [5]. Other studies show this may con-
tinue into later courses. Valstar et al. showed more than 30% of
students could not do questions on pointers or tracing recursion at
the start of an upper level data structures class, and this correlated
with final exam scores [11]. Fisler et al. showed more than 30% of
3rd and 4th year CS majors failed questions on scope, parameter
mutation, and/or variable mutation [2]. These prior studies did
not use learning outcome questions carefully designed to detect
difficulties caused by poor pre-requisite knowledge, or assessments

https://doi.org/10.1145/3341525.3394990
https://doi.org/10.1145/3341525.3394990
https://doi.org/10.1145/3341525.3394990

Working Group

ITiCSE 20, June 15-19, 2020, Trondheim, Norway

Table 1: Abilities in advanced concepts in concurrency based on tracing knowledge

Tracing weaknesses

Concurrency stage #1: Identify shared data

Concurrency stage #2: Individual locking of shared data

+ Can identify concurrency issues

No weaknesses .
- Unable to solve any issues present

+ Can solve simple tasks with individual variables
- Unable to solve problems with multiple dependent variables

Scoping weakness:
Local variables are shared
between different calls

+ Can identify concurrency issues

- Will identify additional variables as problematic

+ Can solve simple tasks with individual variables
- Too much synchronization due to misconception
- Incorrect placement of lock variables

Scoping weakness:
Reference vs. value semantics

with validity arguments. The Basic Data Structures Inventory with
a validity argument was just published in 2019 [8]. Other work
towards validity has designed assessments or assessment questions
for particular advanced topics [1, 3, 4, 10] or tracing [6, 7].

To deeply understand why and how often pre-requisite knowl-
edge difficulties affect later learning, careful assessment design and
validity work is needed; sometimes assessment questions are not
detailed enough to diagnose 1) difficulties with the more advanced
concept vs. 2) weaknesses with more basic concepts that may lead to
incorrect application of the advanced concept. For example, suppose
the advanced concept involves synchronizing data for concurrency,
and the weakness is scoping (what variables are shared across func-
tion calls/class instances). The following seemingly good question
does not separate case 1 vs. 2: asking a learner to add concurrency
controls to a piece of code that reads a shared (perhaps global)
variable and adds the value to a local variable, since the learner may
arrive at a working solution even while holding the belief that local
variables are shared. The learner may also get the question wrong
due to weakness with scoping, not a misunderstanding of how to
add concurrency controls or how concurrency controls work.

To address these barriers, the working group will contribute as-
sessment designs that distinguish among these cases, which will be
useful for answering the question: “How does tracing knowledge af-
fect learning of advanced topics, such as data structures, algorithms,
and concurrency?”, according to the method in the next section.
While the group’s report will only include theory-based assessment
designs and questions, they may be used in later research to answer
the motivating research question.

2 METHOD

Based on previous work on difficulties with tracing and advanced
topics, we will identify advanced concepts and developmental stages
for learning them, which consist of what learners can and cannot do
at each stage. These will form the basis for developing assessment
questions to distinguish among these stages. For example, in con-
currency: 1) finding shared data, 2) locking shared data individually,
3) locking overly large sections of code, and 4) fine-grained locking.

Using our identified advanced concepts, we will analyze their
required basic tracing knowledge, and where an imagined student
with tracing difficulties would encounter barriers, in order to focus
our assessment work on the most affected concepts. Table 1 shows
an example of what that analysis may look like. It asks “What
can learners do and not do, at different developmental stages of
understanding an advanced concept in concurrent programming,
with or without pre-requisite tracing knowledge?”. Similar analysis
will be carried out for data structures and algorithms.

+ Can identify some concurrency issues
- Unable to identify data shared by reference

507

+ Can solve simple tasks with simple variables
- Missing synchronization for data shared by reference

Based on our conceptual analysis, our working group will make
assessments that can detect differences between 1) knowing related
tracing concepts without knowing the advanced concept, 2) know-
ing both, and 3) knowing the advanced concept but misapplying
it due to weak tracing knowledge. One way to do this is to cre-
ate questions with distractor answers that correspond to particular
knowledge combinations, as shown in Table 1. For example, we may
decompose the problematic assessment question in the introduction
into 3 separate questions, similar to what was done by Strombéack
et al [9]. First, one on identifying shared data (which depends on
tracing knowledge). Second, a question about what kind of controls
shared data needs to have for concurrency to work correctly. Lastly,
a question on modifying a given code example to work, by adding
concurrency controls, with distractors that correspond to different
combinations of tracing and advanced knowledge.

REFERENCES

[1] Holger Danielsiek, Wolfgang Paul, and Jan Vahrenhold. 2012. Detecting and
Understanding Students > Misconceptions. SIGCSE’12 (2012), 21-26.

Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. Assessing
and teaching scope, mutation, and aliasing in upper-level undergraduates. ITiCSE
(2017), 213-218. https://doi.org/10.1145/3017680.3017777

Sally Hamouda, Stephen H Edwards, Hicham G Elmongui, Jeremy V Ernst, and
Clifford A Shaffer. 2017. A basic recursion concept inventory. Computer Science
Education 27, 2 (2017), 121-148. https://doi.org/10.1080/08993408.2017.1414728
Kuba Karpierz and Steven A. Wolfman. 2014. Misconceptions and concept inven-
tory questions for binary search trees and hash tables. SIGCSE (2014), 109-114.
https://doi.org/10.1145/2538862.2538902

Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Mostrém, Kate Sanders, Otto
Seppild, and et al. 2004. A Multi-national Study of Reading and Tracing Skills in
Novice Programmers. ACM, 119-150. https://doi.org/10.1145/1044550.1041673
Andrew Luxton-Reilly, Jacqueline Whalley, Brett A. Becker, Yingjun Cao, Roger
McDermott, Claudio Mirolo, Andreas Miihling, Andrew Petersen, Kate Sanders,
and Simon. 2017. Developing Assessments to Determine Mastery of Programming
Fundamentals. In ITiCSE-WGR °17. ACM Press, 47-69. https://doi.org/10.1145/
3174781.3174784

Greg L. Nelson, Andrew Hu, Benjamin Xie, and Amy J. Ko. 2019. Towards validity
for a formative assessment for language-specific program tracing skills. Koli
Calling (2019). https://doi.org/10.1145/3364510.3364525

Leo Porter, Daniel Zingaro, Soohyun Nam Liao, Cynthia Taylor, Kevin C Webb,
Cynthia Lee, and Michael Clancy. 2019. BDSI: A Validated Concept Inventory
for Basic Data Structures Leo. In ICER ’19. ACM Press, 111-119. https://doi.org/
10.1145/3291279.3339404

Filip Stromback, Linda Mannila, Mikael Asplund, and Mariam Kamkar. 2019. A
student’s view of concurrency — A study of common mistakes in introductory
courses on concurrency. ICER (2019), 229-237. https://doi.org/10.1145/3291279.
3339415

[10] Jan Vahrenhold and Wolfgang Paul. 2014. Developing and validating test items
for first-year computer science courses. Computer Science Education 24, 4 (2014),
304-333. https://doi.org/10.1080/08993408.2014.970782

Sander Valstar, William G. Griswold, and Leo Porter. 2019. The relationship
between prerequisite proficiency and student performance in an upper-division
computing course. SIGCSE (2019), 794-800. https://doi.org/10.1145/3287324.
3287419

[2

[3]

[4]

[5

7

8

—_
2

[11

https://doi.org/10.1145/3017680.3017777
https://doi.org/10.1080/08993408.2017.1414728
https://doi.org/10.1145/2538862.2538902
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/3364510.3364525
https://doi.org/10.1145/3291279.3339404
https://doi.org/10.1145/3291279.3339404
https://doi.org/10.1145/3291279.3339415
https://doi.org/10.1145/3291279.3339415
https://doi.org/10.1080/08993408.2014.970782
https://doi.org/10.1145/3287324.3287419
https://doi.org/10.1145/3287324.3287419

	Abstract
	1 Introduction
	2 Method
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 38.52, 717.11 Width 539.24 Height 29.96 points
 Origin: bottom left

 1
 0
 BL

 2
 AllDoc
 20

 CurrentAVDoc

 38.5172 717.1055 539.2412 29.9578

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryList_V1
 qi2base

