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Deep learning has seen tremendous success over the past decade in computer vision, machine translation, and

gameplay. This success rests crucially on gradient-descent optimization and the ability to łlearnž parameters of

a neural network by backpropagating observed errors. However, neural network architectures are growing

increasingly sophisticated and diverse, which motivates an emerging quest for even more general forms of

differentiable programming, where arbitrary parameterized computations can be trained by gradient descent.

In this paper, we take a fresh look at automatic differentiation (AD) techniques, and especially aim to demystify

the reverse-mode form of AD that generalizes backpropagation in neural networks.

We uncover a tight connection between reverse-mode AD and delimited continuations, which permits

implementing reverse-mode AD purely via operator overloading and without managing any auxiliary data

structures. We further show how this formulation of AD can be fruitfully combined with multi-stage pro-

gramming (staging), leading to an efficient implementation that combines the performance benefits of deep

learning frameworks based on explicit reified computation graphs (e.g., TensorFlow) with the expressiveness

of pure library approaches (e.g., PyTorch).
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1 INTRODUCTION

Under the label deep learning, artificial neural networks have seen a remarkable renaissance over
the last decade. After a series of rapid advances, they now match or surpass human performance
in computer vision, machine translation, and gameplay. Common to all these breakthroughs is
the underlying dependency on optimization by gradient descent: a neural network łlearnsž by
adjusting its parameters in a direction that minimizes the observed error on a task. Hence, a crucial
ability is that of backpropagating errors through the network to compute the gradient of a loss
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function [Rumelhart et al. 1986]. Beyond this commonality, however, deep learning architectures
vary widely. In fact, many of the practical successes are fueled by increasingly sophisticated
and diverse network architectures that in many cases depart from the traditional organization
into layers of artificial neurons. For this reason, prominent deep learning researchers have called
for a paradigm shift from deep learning towards differentiable programming [LeCun 2018; Olah
2015] Ð essentially, functional programming with first-class gradients Ð based on the expectation
that further advances in artificial intelligence will be enabled by the ability to łtrainž arbitrary
parameterized computations by gradient descent.
Programming language designers and compiler writers, key players in this vision, are faced

with the challenge of adding efficient and expressive program differentiation capabilities. Forms
of automatic gradient computation that generalize the classic backpropagation algorithm are
provided by all contemporary deep learning frameworks, including TensorFlow and PyTorch. These
implementations, however, are ad-hoc, and each framework comes with its own set of trade-offs and
restrictions. In the academic world, automatic differentiation (AD) [Speelpenning 1980; Wengert
1964] is the subject of study of an entire community. Unfortunately, results disseminate only slowly
between communities, and while the forward-mode flavor of AD is easy to grasp, descriptions of the
reverse-mode flavor that generalizes backpropagation often appear mysterious to PL researchers.
A notable exception is the seminal work of Pearlmutter and Siskind [2008], which cast AD in a
functional programming framework and laid the groundwork for first-class, unrestricted, gradient
operators in a functional language. Recent work by Elliott [2018] presented a unification of forward-
and reverse-mode AD based on the łcompiling to categoriesž approach [Elliott 2017], translating
Haskell code to parameterized cartesian closed categories. However, the technique still needs
primitive functor-level loop-style operations such as map, sum, and zip, and currently lacks support
for general recursion or Turing-completeness.
The goal of the present work is to further demystify differentiable programming and reverse-

mode AD for a PL audience, and to reconstruct the forward- and reverse-mode AD approaches
based on well-understood program transformation techniques, without relying on category theory.
We describe forward-mode AD as the symbolic differentiation of ANF-transformed programs, and
reverse-mode AD as a specific form of symbolic differentiation of CPS-transformed programs. In
doing so, we uncover a deep connection between reverse-mode AD and delimited continuations.

In contrast to previous descriptions, this formulation suggests a novel view of reverse-mode AD
as a purely local program transformation which can be realized entirely using operator overloading
in a language that supports shift/reset [Danvy and Filinski 1990] or equivalent delimited control
operators1. By contrast, previous descriptions require non-local program transformations to care-
fully manage auxiliary data structures (often called a tape, trace, orWengert-list [Wengert 1964]),
either represented explicitly, or in a refunctionalized form as in Pearlmutter and Siskind [2008].
Delimited control operators lead to an expressive implementation in the (define-by-run) style

of PyTorch. We further show how to combine this approach with multi-stage programming to
derive a framework in the (define-then-run) style of TensorFlow. The result is a highly-efficient and
expressive DSL, dubbed Lantern2, that reifies computation graphs at runtime in the style of Tensor-
Flow [Abadi et al. 2016], but also supports unrestricted control flow in the style of PyTorch [Paszke
et al. 2017a]. Thus, our approach combines the strengths of these systems without their respective
weaknesses, and explains the essence of deep learning frameworks as the combination of two
well-understood and orthogonal ideas: staging and delimited continuations.

1Our description reinforces the functional łLambda, the ultimate backpropagatorž view of Pearlmutter and Siskind [2008]

with an alternative encoding based on delimited continuations, where control operators like shift/reset act as a powerful

front-end over λ-terms in CPS Ð hence, as the łpenultimate backpropagatorž.
2https://github.com/feiwang3311/Lantern
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We first presented the idea of reverse-mode AD via delimited continuations and staging as a
poster and accompanying abstract in the workshop track at ICLR [Wang and Rompf 2018], followed
by a detailed tech-report on arXiv [Wang et al. 2018b]. We then presented this idea to the Machine
Learning community at NeurIPS [Wang et al. 2018a], along with an evaluation of our prototypic
implementation (which only supported a CPU backend) of the framework Lantern. The NeurIPS
paper focused primarily on the intuitions and high-level ideas; no formal presentation was provided.
The current paper presents a unified view of automatic differentiation from a PL perspective and
extends earlier publications through the following contributions:

• We first bridge the conceptual distinction between automatic differentiation and symbolic
differentiation by casting forward-mode AD as the application of standard high-school symbolic
differentiation rules on ANF-transformed terms, with only constant expression size increase.
Based on that insight, we define a formal transformation that implements forward-mode AD
directly (Section 2).
• We then analyze reverse-mode AD, and relate its łthere and back againž computation flow
pattern to programs using nested continuations, as seen in CPS (continuation-passing style). By
presenting detailed formal transformations (available as artifact online3) for reverse-mode AD
based on CPS, with or without the use of control operators (shift/reset), in the target or meta-
language, we reveal the formal relationship between reverse-mode AD and CPS transformation
(Section 3).
• We demonstrate different ways to combine our forward- and reverse-mode AD for higher order
gradients, and present a concrete OO-style class hierarchy for higher-order AD (Sections 2.4 2.5
3.7, available as artifact online3). We also discuss the question of mutability and describe one
way to make reverse-mode AD purely functional via store-passing using an immutable map
data-structure (Section 3.6).
• We illustrate the interplay between CPS transformation and staging, and relate the implemen-
tation of control flow operations (IF, WHILE, and TREE as a representative of recursive machine
learning models) to formal rules for reverse-mode AD transformation. We also demonstrate
examples showing intermediate code generation steps (Section 4).
• We demonstrate the performance of the complete Lantern framework on realistic benchmark
models (TreeLSTM, SqueezeNet, ResNet, and DeepSpeech2) on GPU (Section 5).

Finally, Section 6 discusses related work, and Section 7 offers concluding thoughts.

2 DIFFERENTIABLE PROGRAMMING BASICS

Broadly speaking, a neural network is a specific kind of parameterized function approximator f̂w .
The training process optimizes the parametersw to improve the approximation of an unknown
ground truth function f based on training data.

f : A→ B f̂w : A→ B w ∈ P

For training, we take input/output samples (a, f (a)) ∈ A×B and updatew according to a learning

rule. In typical cases where the functions f and f̂w are maps Rn → Rm and w is of the form Rk ,

we want to find the weightsw that achieve the smallest error or loss L(w) =





f (a) − f̂w (a)






on a

given training set, in the hope that the training set is representative enough that the quality of the

approximation of f̂w will generalize to other inputs of f .

3https://github.com/feiwang3311/demystifying-ad
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Syntax:

e ::= c

| x

| e + e

| e ∗ e

| let x = e in e

Symbolic differentiation rules:

d/dx ⟦c⟧ = 0
d/dx ⟦x⟧ = 1

d/dx ⟦e1 + e2⟧ =
d/dx ⟦e1⟧ + d/dx ⟦e2⟧

d/dx ⟦e1 ∗ e2⟧ =
d/dx ⟦e1⟧ ∗ e2 + e1 ∗ d/dx ⟦e2⟧

d/dx ⟦let y = e1 in e2⟧ = let y = e1 in

let y′ = d/dx ⟦e1⟧ in
d/dx ⟦e2⟧

d/dx ⟦y⟧ = y′ (y , x)

Fig. 1. Symbolic differentiation for a simple expression language, extended with let expressions.

While there exists a myriad of ways to updatew , the most popular method is gradient descent.
This is largely due to the fact that gradients can be computed efficiently even for extremely large
numbers of parameters. We briefly describe gradient descent, as follows:

Given a training sample (a, f (a)) ∈ A × B and some initialization ofw atw i , both the loss L(w i )

and the gradient4 ∇L(w i ) can be computed. The gradient marks the direction which increases the
loss L(w i ) the most rapidly, and the gradient descent algorithm dictates thatw should be updated
in the direction of the negative gradient by a small step proportional to the learning rate r .

w i+1
= w i − r ∗ ∇L(w i )

This update step is performed many times. In practice, however, gradient descent is almost never
used in this pure form. Most commonly used are stochastic gradient descent (SGD) flavors that
operate on batches of training samples at a time. Popular variants are SGD with momentum [Qian
1999], Adagrad [Duchi et al. 2011], and Adam [Kingma and Ba 2014].

An important property of gradient computation is that differentiability is compositional. Tra-
ditional neural networks (i.e., those organized into layers) are simple function compositions

f̂w = f̂n,wn
◦ . . . ◦ f̂1,w1 where each f̂i ,wi

represents a layer. Other architectures compose in a
similar way and enable end-to-end training. A popular example is image captioning, which com-
poses convolutional neural networks (CNN) [LeCun et al. 1990] and recurrent neural networks
(RNN) [Elman 1990].

Imagine, however, that f̂w and by extension L(w) is not just a simple sequence of function
compositions, but is instead defined by a program, e.g., a λ-term with complex control flow. How,
then, should ∇L(w) be computed?

2.1 From Symbolic Differentiation to Forward-Mode AD

Symbolic differentiation techniques to obtain the derivative of an expression are taught in high
schools around the world. Some of the most well-known rules are shown in Figure 1 (the rule in-
volving let expressions is explained shortly). As such, symbolic differentiation is the first candidate
to compute derivatives of program expressions. However, some differentiation rules may cause
code explosion; not only in size, but also in terms of computation cost. Consider the following
example:

d/dx ⟦e1 ∗ e2 ∗ ... ∗ en⟧ = d/dx ⟦e1⟧ ∗ e2 ∗ ... ∗ en +

e1 ∗ d/dx ⟦e2⟧ ∗ ... ∗ en +

... +

e1 ∗ e2 ∗ ... ∗ d/dx ⟦en⟧

4The gradient ∇f of a function f : Rn → R is defined as the vector of partial derivatives of f with respect to each of its

parameters: ∇f (u) = (
∂f (u)
∂u1

,
∂f (u)
∂u2

, ... ,
∂f (u)
∂un
)
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The size-n term on the left-hand side is transformed into n size-n terms, which is a quadratic
increase. Worse, each ei is now evaluated n times.
This problem is well recognized in the AD community and often cited as a major motivation

for more efficient approaches. In fact, many AD papers go to great lengths to explain that łAD is
not symbolic differentiationž [Baydin et al. 2018; Pearlmutter and Siskind 2008]. However, let us
consider what happens if we convert the program to administrative normal form (ANF) [Flanagan
et al. 1993] first, binding each intermediate result in a let expression:

d/dx ⟦ let y1 = e1 in

...

let yn = en in

let z1 = y1 ∗ y2 in

let z2 = z1 ∗ y3 in

...

let zn−1 = zn−2 ∗ yn in

zn−1 ⟧

= let y1 = e1 in let y′1 =
d/dx ⟦e1⟧ in

...

let yn = en in let y′n =
d/dx ⟦en⟧ in

let z1 = y1 ∗ y2 in let z′1 = y
′
1 ∗ y2 + y1 ∗ y

′
2 in

let z2 = z1 ∗ y3 in let z′2 = z′1 ∗ y3 + z1 ∗ y
′
3 in

...

let zn−1 = zn−2 ∗ yn in let z′n−1 = z′n−2 ∗ yn + zn−2 ∗ y
′
n

in z′n−1

After ANF-conversion, the expression size increases only by a constant factor. The program
structure remains intact, and just acquires an additional let binding for each existing binding. No
expression is evaluated more often than in the original computation.

This example uses the standard symbolic differentiation rules for addition and multiplication, but
also makes key use of the let rule in Figure 1, which splits a binding lety = ... into lety = ... and
lety ′ = .... Using terminology from the AD community, we call y the primal and y ′ the tangent.
The rules in Figure 1 work with respect to a fixed x , which we assume by convention does not
occur bound in any let x = ... expression. All expressions are of type R, so a derivative can be
computed for any expression. We write d/dx ⟦e⟧ using bracket syntax to emphasize that symbolic
differentiation is a syntactic transformation.

Symbolic differentiation of ANF-transformed termsmaintains the asymptotic runtime-complexity.
Let us consider a concrete example: y = 2 ∗ x + x ∗ x ∗ x . We start from its ANF-transformed form.
d/dx ⟦ let y1 = 2 ∗ x in

let y2 = x ∗ x in

let y3 = y2 ∗ x in

let y = y1 + y3 in

y ⟧

= let y1 = 2 ∗ x in let y′1 = 2 ∗ x
′ in

let y2 = x ∗ x in let y′2 = x
′ ∗ x + x ∗ x ′ in

let y3 = y2 ∗ x in let y′3 = y
′
2 ∗ x + y2 ∗ x

′ in

let y = y1 + y3 in let y′ = y′1 + y
′
3 in

y′

Note that we differentiate with respect to x , and x ′ = 1. The computation of derivatives follows
the rules in Figure 1. The final two let bindings compute the primal value y and the tangent y ′ of y
with respect to x . The tangent is returned as the result of the program after transformation. We
can confirm the correctness of the calculation easily, which reduces to 2 + 3 ∗ x ∗ x .
For a generic straight-line program, we can see this pattern of computation of forward-mode

AD (Figure 2). The abstract flow of the forward-mode AD is depicted in Figure 2 on the right. We
use squares to denote value computations, and triangles to denote gradient computations. The
transformed program interleaves value computations with gradient computations (Forward 1). We
can further combine each value computation with its gradient computation (Forward 2), so that the
transformation can be realized via operator overloading.
For straight-line programs, applying ANF conversion followed by symbolic differentiation

achieves exactly the standard presentations of forward-mode AD. Hence, it seems to us that
the AD community has taken a too narrow view of symbolic differentiation, excluding the possibil-
ity of let bindings, and we believe that repeating the mantra łAD is not symbolic differentiationž
is ultimately harmful and contributes to the mystical appearance of the field. We believe that

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 96. Publication date: August 2019.
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We denote ptk as the kth parameter of t th computation,

where ptk ∈ {c} ∪ {x} ∪ {yj |j < t}

let y1 = p11 ⊕ p12 in

let y′1 =
d/dp11 ⟦p11 ⊕ p12⟧ ∗ p′12 +

d/dp12 ⟦p11 ⊕ p12⟧ ∗ p′11 in

let y2 = p21 ⊕ p22 in

let y′2 =
d/dp21 ⟦p21 ⊕ p22⟧ ∗ p′22 +

d/dp22 ⟦p21 ⊕ p22⟧ ∗ p′21 in

...

let yn = pn1 ⊕ pn2 in

let y′n = d/dpn1 ⟦pn1 ⊕ pn2⟧ ∗ p′n2 +
d/dpn2 ⟦pn1 ⊕ pn2⟧ ∗ p′n1 in

y′n
Fig. 2. Pattern of computation of forward-mode AD for generic straight-line program

understanding sophisticated AD algorithms as specific forms of symbolic differentiation will overall
lead to a better understanding of these techniques.

2.2 Forward-Mode AD for Lambda Calculus

CORE LANGUAGE

Expressions: EXP

e ::= c | x | e + e | e ∗ e | λx . e | @ e e | let x = e in e

| fst e | snd e | (e , e) | ref e | ! e | e := e

| inl e | inr e | case e of x ⇒ e or x ⇒ e

| shift x in e | ⟨ e ⟩

Values: VAL

structure left abstract

DERIVED CONSTRUCTS

Booleans and conditionals:

Value: True = inl ()

Value: False = inr ()

if b then t else e = case b of y ⇒ t or z ⇒ e

Loops and recursion:

letrec f = λx . e1 in e2 = let f0 = λf1 .λx . let f = @ f1 f1 in e1 in

let f = @ f0 f0 in e2
Loops: expressed as tail recursive functions

Tree data structures:

Example tree term: t = inr (inl 5, inl 6)

Syntactic sugar:

y1 += ! y2 = y1 := ! y1 + ! y2
let (y, y′) = e1 in e2 = let ỹ = e1 in let y = fst ỹ in let y′ = snd ỹ in e2

e1 ; e2 = let _ = e1 in e2

Fig. 3. Formal definition of the language we consider. It serves as both object- and meta-language (for
transformation). We show the syntax of the core languages (untyped, but types can be added), as well as
derived constructs that express branches, loops, recursion, and recursive data structures in a standard way.
Syntactic sugar used in our presentation is also listed here.

We assume Barendregt’s variable convention throughout, such that all bound variables are pairwise different
and different from the free variables. This allows several rules to be simplified compared to other formulations
(no need for variable substitutions in transformations).

For transformation, we assume that the target language is the same as the object language unless noted
otherwise.

We now proceed beyond straight-line programs and formalize a variant of λ-calculus with let

bindings, products, sum-type constructs (inl, inr, case), and mutable state (Figure 3). The language
also contains delimited control operators shift and reset (denoted via ⟨ . ⟩), which will be used in
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For automatic differentiation (both forward-mode and reverse-mode in later sections), we use the following variable

sugaring .̂ notation. This variable sugaring is not strictly necessary but we find it convenient for + and ∗ rules. Also, note

that this variable sugaring is always used at positions where we know for sure that the sugared variables bind with R typed

values, so that they must have gradients (denoted via variables with ′).

Variable Sugaring: ŷ = (y, y′)

Also note that for AD (both forward-mode and reverse-mode), we drop shift/reset terms from the source language, since

the focus is to provide a semantics for AD in a standard language, and shift/resetwill play a crucial role for the semantics

of AD transformation in reverse mode. Our AD also supports mutable state in the source language.

Transform(f ) = λx . let ŷ = @
−→
D⟦f ⟧ (x , 1) in y′

where
−→
D⟦.⟧ : EXP→ EXP is defined as below:

−→
D⟦c⟧ = c if c < R
−→
D⟦c⟧ = (c , 0) if c ∈ R
−→
D⟦y⟧ = y

−→
D⟦e1 + e2⟧ = let ŷ1 =

−→
D⟦e1⟧ in

let ŷ2 =
−→
D⟦e2⟧ in

(y1 + y2, y
′
1 + y

′
2)

−→
D⟦e1 ∗ e2⟧ = let ŷ1 =

−→
D⟦e1⟧ in

let ŷ2 =
−→
D⟦e2⟧ in

(y1 ∗ y2, y1 ∗ y
′
2 + y

′
1 ∗ y2)

−→
D⟦λy . e⟧ = λy .

−→
D⟦e⟧

−→
D⟦@ e1 e2⟧ = @

−→
D⟦e1⟧

−→
D⟦e2⟧

−→
D⟦let y = e1 in e2⟧ = let y =

−→
D⟦e1⟧ in

−→
D⟦e2⟧

−→
D⟦fst e⟧ = fst

−→
D⟦e⟧

−→
D⟦snd e⟧ = snd

−→
D⟦e⟧

−→
D⟦ref e⟧ = ref

−→
D⟦e⟧

−→
D⟦! e⟧ = !

−→
D⟦e⟧

−→
D⟦e1 := e2⟧ =

−→
D⟦e1⟧ :=

−→
D⟦e2⟧

−→
D⟦(e1, e2)⟧ = (

−→
D⟦e1⟧,

−→
D⟦e2⟧)

−→
D⟦inl e⟧ = inl

−→
D⟦e⟧

−→
D⟦inr e⟧ = inr

−→
D⟦e⟧

−→
D⟦case e of y1 ⇒ e1 or y2 ⇒ e2⟧ = case

−→
D⟦e⟧ of y1 ⇒

−→
D⟦e1⟧ or y2 ⇒

−→
D⟦e2⟧

Fig. 4. Transformation rules for forward-mode AD. Note that there is no metalanguage redex generated in the
transformation, so by default, all constructs on the right-hand-sides are dynamic/target language constructs.
Rules that are different from the standard are highlighted in blue.

later sections. Note that the language is untyped, though types can be added in a standard way.
Control operators (shift/reset) and mutable state are orthogonal features, so their interaction does
not pose any difficulties.

We define a new differentiation operator
−→
D⟦e⟧, where the arrow indicates forward-mode, and

provide the forward-mode AD transformation rules in Figure 4. Note that differentiation is still
with respect to a fixed x . However, we always transform abstractions (for any non-abstraction term

e , we add an η-redex, and perform @
−→
D⟦λx .e⟧ (x, 1)). By Barendregt’s variable convention,

−→
D⟦.⟧

never applies to the special variable x , thus the
−→
D⟦x⟧ rule is elided in the formal presentation.

Compared to Section 2.1, we no longer rely on an ANF-pre-transform pass. Instead, the rules for
addition and multiplication insert let bindings directly. It is important to note that the resulting
program may not be in ANF due to nested let bindings, but code duplication is still eliminated due
to the strict pairing of primals and tangents. Readers acquainted with forward-mode AD will note
that this methodology is standard [Baydin et al. 2018], though the presentation is not.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 96. Publication date: August 2019.
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2.3 Implementation using Operator Overloading

Pairing the primal and tangent values for numeric expressions handles computations in different
scopes easily because, in function applications, the let insertions require both the primal and
tangent of the parameters to perform the tangent computation. Since the transformation is purely
local, working with pairs of numeric expressions makes it immediately clear that this strategy
can be implemented easily in standard programming languages by operator overloading. This is
standard practice, which we illustrate through our implementation in Scala (Figure 5).

// Differentiable number type.

class NumF(val x: Double, val d: Double) {

def +(that: NumF) =

new NumF(this.x + that.x, this.d + that.d)

def *(that: NumF) =

new NumF(this.x * that.x,

this.d * that.x + that.d * this.x)
...

}

// Differentiation operator.

def grad(f: NumF => NumF)(x: Double) = {

val y = f(new NumF(x, 1.0))
y.d

}
// Example and test.

val df = grad(x => 2*x + x*x*x)
forAll { x => df(x) == 2 + 3*x*x }

Fig. 5. Forward-mode AD in Scala (operator overloading)

The NumF class encapsulates the primal as x and the tangent as d, with arithmetic operators
overloaded to compute primal and tangent values at the same time. To use the forward-mode AD
implementation, we still need to define an operator grad to compute the derivative of any function
NumF => NumF (Figure 5 upper right). Internally, grad invokes its argument function with a tangent
value of 1 and returns the tangent field of the function result. In line with the previous sections, we
only handle scalar functions, but the approach generalizes to multidimensional functions as well.
An example using the grad operator is shown in Figure 5 lower right. Note that the constant 2 is
implicitly converted to new NumF(2.0, 0.0) (tangents of constants are 0.0 because constants do not
change). The use of Double instead of a generic number type is simply for clarity of presentation.
Note how the implementations in Figure 5 correspond directly to the formal rules in Figure 4.

2.4 Nested Gradient Invocation and Perturbation Confusion

In the current implementation, we can compute the gradient of any function of type NumF => NumF

with respect to any given value using forward-mode AD. However, our grad function is not truly
first-class, since we cannot apply it in a nested fashion, as in grad(grad(f)). This prevents us from
computing higher order derivatives, and from solving nested min/max problems in the form of:

minxmaxy f (x,y)

Yet, even this somewhat restricted operator has a few subtleties. There is a common issue with
functional implementations of AD that, like ours, expose a gradient operator within the language.
In the simple example shown below, the inner call to grad should return 1, meaning that the outer
grad should also return 1.

grad { x: NumF =>

val shouldBeOne = grad(y => x + y)(1) // Evaluates to 2 instead of 1! Unexpected.

val z = NumF(shouldBeOne, 0)
x * z

}(1)

However, this is not what happens. The inner grad function will also collect the tangent from x,
thus returning 2 as the gradient of y. The outer gradwill then give a result of 2 as the gradient of x.
This issue is called perturbation confusion because the grad function is confusing the perturbation
(i.e. derivative) of a free variable used within the closure with the perturbation of its own parameter.

The root of this problem is that the two grad invocations differentiate with respect to different
variables (outer gradwrt. x, inner gradwrt. y), and that their gradient updates should not be mixed.
We do not provide any new solutions for perturbation confusion, but our implementation can be
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easily extended to support known solutions, either based on dynamic tagging or based on types as
realized in Haskell5, which lifts tags into the type system using rank-2 polymorphism, just like the
STmonad [Launchbury and Peyton Jones 1994].

2.5 First-Class Gradient Operator

While not the main focus of our work, we outline one way in which our NumF definition can be
changed to support first-class gradient computation, while preventing perturbation confusion.
Inspired by DiffSharp [Baydin et al. 2016], we change the class signatures as shown below. We
unify NumF and Double in the same abstract class Num, and add a dynamic tag value tag. The grad
operator needs to assign a new tag for each invocation, and overloaded operators need to take tags
into account to avoid confusing different ongoing invocations of grad.

abstract class Num

class NumV(val x: Double) extends Num

class NumF(val x: Num, val d: Num, val tag: Int) extends Num {...}

def grad(f: Num => Num)(x: Num): Num = {...}

This class hierarchy provides a flexible way to compose higher-order gradient computation
(implementation available online3). Alternative implementations that use parametric types and
type classes instead of OO-style inheritance are also possible.
This concludes the core ideas of forward-mode AD. Implementations based on operator over-

loading are simple and direct, and exist in many languages. As noted earlier, we propose that
forward-mode AD be viewed as a specific kind of symbolic differentiation, either using standard
differentiation rules after ANF-conversion, or using transformation rules that insert let bindings
on the fly, operating on value-derivative pairs (i.e. primals and tangents).

3 DIFFERENTIABLE PROGRAMMING WITH REVERSE-MODE AD

Forward-mode AD is straightforward to implement and generalizes to functions with multiple
inputs and outputs. However, it is inefficient for functions with many inputs, and neural networks
generally have many inputs and few outputs. To compute the gradient of a function f :Rn → R,
we have to compute n forward derivatives either sequentially or simultaneously, but this leads to
O(n) more operations than the original function. Is there a better approach?

We consider again f : Rn → R represented as a straight-line program in ANF, i.e., as a sequence
of letyj = ej expressions, with inputs xi and outputym . The basic intuition is: instead of computing
all n ∗m internal derivatives d/dxi yj as in forward-mode, we would rather only compute them + n
derivatives d/dyj ym and d/dxi ym . For this, we need a way to compute derivatives starting with
d/dym ym = 1, and accumulate derivatives backwards through the program until we reach the inputs
xi . This form of AD is called reverse-mode AD, and is the basis for backpropagation for neural
networks. The approach generalizes to functions Rn → Rm with multiple outputs, and is generally
more efficient than forward-mode AD when n >> m.
But how do the gradients propagate backward? The basic idea is rooted in the chain rule of

differentiation, which states that:

d/du f (д(u)) = d/dv f (v) ∗ d/du д(u) wherev = д(u)

To interpret the chain rule in English, it says that the łsensitivityž of f (д(u)) to changes in u is
the łsensitivityž of f (v) to changes in v , where v = д(u), amplified by the łsensitivityž of д(u) to
changes in u.

5http://conway.rutgers.edu/~ccshan/wiki/blog/posts/Differentiation
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For the e1 ∗ e2 term in the grammars in Figure 1, we may be tempted to write:

dy/d⟦e1⟧ = dy/d⟦e1 ∗ e2⟧ ∗ d⟦u ∗ e2⟧/du
dy/d⟦e2⟧ = dy/d⟦e1 ∗ e2⟧ ∗ d⟦e1 ∗ u⟧/du , where u is fresh variable

The rules can be read as: the łsensitivityž ofy to ⟦e1⟧ is the łsensitivityž ofy to ⟦e1 ∗ e2⟧ amplified
by the łsensitivityž of ⟦e1⟧’s context to ⟦e1⟧, and the łsensitivityž of y to ⟦e2⟧ is the łsensitivityž of y
to ⟦e1 ∗ e2⟧ amplified by the łsensitivityž of ⟦e2⟧’s context to ⟦e2⟧, For direct correlation between the
above grammars and the chain rule, just do the following substitutions in the first transformation
rule: the first y to f (д(u)), ⟦e1⟧ to u, the second y to f (v), ⟦e1 ∗ e2⟧ to v , and ⟦u ∗ e2⟧ to д(u).
However, the above transformation rules are not exactly correct. If both e1 and e2 contains x ,

then the sensitivity of y to x should be the sum of dy/d⟦x⟧ s that occurred in multiple places (in both
dy/d⟦e1⟧ and dy/d⟦e2⟧ ). This accumulation of gradients is often modeled by mutable references and +=
operations on the mutable references. We call this destination-passing style, where the reference
cells accumulating the gradients are passed to the operations in the backward pass. (An alternative
pure functional implementation is discussed in Section 3.6.) Let us again try our running example
y = 2 ∗ x + x ∗ x ∗ x (after ANF-transformation), and map out the procedures for reverse-mode
AD (Figure 6 top left). Note that we have to run a forward-pass first to compute and remember
intermediate values, and then a backward-pass to accumulate the gradients. This is simply due to
the fact that the derivative of the łcontextsž may depend on the intermediate values computed in
the forward pass.
For the running example, we deliberately reverse the statements in the backward-pass (com-

putation flow should follow the double arrows in the figure), so that the forward-pass and the
backward-pass of the same computation are on the same row. A more general presentation of
reverse-mode AD for straight-line programs is given in Figure 6 bottom.

Simple running example: x is input
y = 2 ∗ x + x ∗ x ∗ x where x ′ = ref 0

Forward pass: Backward pass:

let (y1, y
′
1) = (2 ∗ x , ref 0) in ⇓ ⇑ x ′ += !y′1 ∗ 2;

let (y2, y
′
2) = (x ∗ x , ref 0) in ⇓ ⇑ x ′ += !y′2 ∗ x ; x

′
+= !y′2 ∗ x ;

let (y3, y
′
3) = (y2 ∗ x , ref 0) in ⇓ ⇑ y′2 += !y′3 ∗ x ; x

′
+= !y′3 ∗ y2;

let (y4, y
′
4) = (y1 + y3, ref 0) in ⇓ ⇑ y′1 += !y′4; y

′
3 += !y′4;

y′4 := 1.0;
  

1
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n

2

1

1

2

n n

2

1

1

2

n n

2

1

k1

k2

kn

Reverse 1 Reverse 2 Reverse 3

General straight-line example: x is input and x ′ = ref 0
We denote ptk as the k th parameter of t th computation, where ptk ∈ {c } ∪ {x } ∪ {yj |j < t }

Forward pass: Backward pass:

let (y1, y
′
1) = (p11 ⊕ p12, ref 0) in ⇓ ⇑ p′11 +=

d/dp11 ⟦p11 ⊕ p12⟧ ∗ !y′1; p
′
12 +=

d/dp12 ⟦p11 ⊕ p12⟧ ∗ !y′1;
let (y2, y

′
2) = (p21 ⊕ p22, ref 0) in ⇓ ⇑ p′21 +=

d/dp21 ⟦p21 ⊕ p22⟧ ∗ !y′2; p
′
22 +=

d/dp22 ⟦p21 ⊕ p22⟧ ∗ !y′2;
... ⇓ ⇑ ...

let (yn , y
′
n ) = (pn1 ⊕ pn2, ref 0) in ⇓ ⇑ p′n1 +=

d/dpn1 ⟦pn1 ⊕ pn2⟧ ∗ !y′n ; p
′
n2 +=

d/dpn2 ⟦pn1 ⊕ pn2⟧ ∗ !y′n ;
y′n := 1.0;

Fig. 6. Running examples of reverse-mode AD, the transformation of general straight-line programs, and
abstract computation flow that motivated continuation-passing style.

Now if we look at the abstract computation flow shown in Figure 6 top right, in comparison with
forward-mode AD, the computation flow of reverse-mode AD processes all value computations in
the forward order, then processes all gradient computations in the reverse order (Reverse 1). We
can łfoldž the gradient calculations up in parallel with the value calculations (Reverse 2), like in
our examples. We can further nest the computations into continuations (k1, k2, ... , kn in Reverse 3),
following the inspiration from łThere and Back againž [Danvy and Goldberg 2005], and look for
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ways to model the computation as a sequence of function calls, where the call path implements the
forward pass and the return path implements the backward pass.
With this intuition, it is not hard to see that a transformation to continuation-passing style

(CPS) provides exactly the right structure, i.e., for each computation step, the subsequent forward-
backward combinations are contained in a set of nested continuations (as k1,k2, ...,kn in Reverse 3,
Figure 6 upper-right). In contrast to regular CPS, our continuations do return and can be followed
by other computation/program statements. This kind of continuations, which behaves more like
regular callback functions, is called delimited continuations [Felleisen 1988].

3.1 Implementation Using Operator Overloading

We first express the idea via an implementation in Scala that directly follows the intuitions in
Figure 6, where each overloaded operator is provided with a (delimited) continuation k . The code
is shown in Figure 7. Just like in forward-mode AD, we associate values and their gradients as two
fields of a class, here NumR0. Every operator takes a delimited continuation k, which is expected to
take the intermediate variable y, handle the rest of the forward pass after this computation step, as
well as the leading part of the backward pass before this step. Once the continuation returns, the
gradients (y.d and possibly other gradients in the closure) should have been correctly updated, and
the operator then updates the gradients of the dependent variables using += operations.

// Differentiable real number type.

class NumR0(val x: Double, var d: Double) {

def +(that: NumR0) = { (k: NumR0=>Unit) =>

val y = new NumR0(this.x + that.x, 0.0); k(y)

this.d += y.d; that.d += y.d
}

def *(that: NumR0) = { (k: NumR0=>Unit) =>

val y = new NumR0(this.x * that.x, 0.0); k(y)

this.d += that.x * y.d

that.d += this.x * y.d
} ...

}

// Differentiation operator.

def grad(f: NumR0 => (NumR0=>Unit)=>Unit )(x:Double)={

val z = new NumR0(x, 0.0)
f(z)((r: NumR0) => r.d = 1.0)
z.d

}
// Example: 2*x + x*x*x.

val df = grad { x => k =>

(2*x) (y1=>( x*x )(y2=>(y2 *x )(y3=>(y1 + y3)(k))))

}
forAll { x =>
df(x) == 2 + 3*x*x

}

Fig. 7. Automatic Differentiation in Scala: reverse-mode AD in continuation-passing style (left), grad function
definition and use case (right). Handling of continuations is highlighted. Note that val and var mean immutable
and mutable variables respectively in Scala. Constants are implicitly lifted to NumR0s. Code first appeared
in [Wang and Rompf 2018].

However, this implementation is not yet taking care of the generation of delimited continuations.
As a consequence, it is cumbersome to use. Even for our simple running exampley = 2∗x +x ∗x ∗x ,
we have to explicitly construct delimited continuations for each step (shaded box in Figure 7 lower-
right). Fortunately, there exist delimited control operators [Felleisen 1988] that enable programming
with delimited continuations in a direct style, without making continuations explicit. As a next
step, we are going to use the shift/reset pair of operators [Danvy and Filinski 1990] to simplify
our implementation.

3.2 Implementation using Control Operators

The shift and reset operators [Danvy and Filinski 1990] work together to capture a partial return
path up to a programmer-defined bound: in our case the remainder of the forward pass. They
are readily available in Scala as a compiler plug-in [Rompf et al. 2009], thus we can simply use
them in our NumR implementation. In Figure 8, the keyword shift provides access to a delimited
continuation that reaches up the call chain to the nearest enclosing reset. The Scala compiler
transforms all the intermediate code into a continuation, and passes it to the shift construct as

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 96. Publication date: August 2019.



96:12 Fei Wang, Daniel Zheng, James Decker, Xilun Wu, Grégory M. Essertel, and Tiark Rompf

the parameter k [Rompf et al. 2009]. As a result, the implementation of NumR with shift/reset
operators is almost identical to the CPS NumR0 implementation in Figure 7 (modulo the added shift).
The implementation also corresponds to formal translation rules we provide in Section 3.3 and
especially Figure 9.
The shift/reset operators in Scala are tracked by types annotated in the form of A @cps[B].

Semantically, this means that the shift construct can be used anywhere A-typed values are needed,
but it must be within a reset context of type B. For reverse-mode AD, we expect the continuation k

to be of type NumR => Unit, and the body of shift to be of type Unit.

// Differentiable number type.

class NumR(val x: Double, var d: Double) {

def +(that: NumR) = shift {(k: NumR=>Unit) =>

val y = new NumR(this.x + that.x, 0.0); k(y)

this.d += y.d; that.d += y.d
}

def *(that: NumR) = shift {(k: NumR=>Unit) =>

val y = new NumR(this.x * that.x, 0.0); k(y)

this.d += that.x * y.d

that.d += this.x * y.d
} ...

}

// Differentiation operator.

def grad(f: NumR => NumR @cps[Unit] )(x: Double) = {

val z = new NumR(x, 0.0)

reset { f(z).d = 1.0 }

z.d
}
// Example: 2*x + x*x*x.

val df = grad { x =>
2*x + x*x*x

}
forAll { x =>
df(x) == 2 + 3*x*x

}

Fig. 8. Automatic Differentiation in Scala: reverse-mode using delimited continuations, with shift/reset
operators (left), grad function definition, and use case (right). Handling of continuations (shaded boxes) is
confined to implementation logic and does not leak into user code. Constants are implicitly lifted to NumRs.
Code first appeared in [Wang and Rompf 2018].

3.3 Reverse-Mode AD for Lambda Calculus

We now formalize reverse-mode AD as a transformation based on the same lambda calculus as used
for the forward mode (Figure 3). The straightforward first step is to make use of shift/reset control
operators in the target language to capture continuations delimited at the end of AD computation.
We provide formal rules for this transformation in Figure 9, matching the Scala implementation

in Figure 8. Note that the arrow of the new differentiation operator
←−
D⟦.⟧ indicates reverse-mode.

Similar to the forward differentiation operator, the differentiation is still with respect to a fixed

x , but the
←−
D⟦.⟧ operator never encounters the special x , since we only transform the abstraction

λx .e , assuming Barendregt’s variable convention.
Making use of shift/reset control operators in the target language, the formal rules in Figure 9

precisely capture the idea of the abstract nested computation flow in Figure 6 and the Scala
implementation in Figure 8. However, what if we want to use a target language that does not
provide shift/reset operators? This can be achieved by moving the uses of shift/reset into the
meta-language [Danvy and Filinski 1992] (so that they are used at the time of translation), and
generating target terms in explicit CPS (without shift/reset). We provide formal rules for this
transformation in Figure 10. The result of this translation matches the Scala implementation in
Figure 7. Note that in this and following figures, we use overline/underline notations (adapted from
Danvy and Filinski [1992]) to mark static/metalanguage constructs (overline), and dynamic/target
language constructs (underline). We also introduce a wavy underline notation for handling proper
tail calls, with special reduction-upon-construction logic (Figure 10 lower). Note that the wavy
underline notation for łletž means that let bindings should be removed if and only if the right-hand
side of the let binding is just a variable/symbol, so this wavy underline normalization performs only
renaming, not full substitution. This rule is not strictly necessary for properly tail-recursive calls,
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Transform(f ) = λx . let x̂ = (x , ref 0) in

⟨ let ẑ = @
←−
D⟦f ⟧ x̂ in z′ := 1.0 ⟩;

! x ′

where
←−
D⟦.⟧ : EXP→ EXP is defined as below:

←−
D⟦c⟧ = c if c < R
←−
D⟦c⟧ = (c , ref 0) if c ∈ R
←−
D⟦y⟧ = y

←−
D⟦e1 + e2⟧ = let ŷ1 =

←−
D⟦e1⟧ in

let ŷ2 =
←−
D⟦e2⟧ in

shift k in let ŷ = (y1 + y2, ref 0) in
@ k ŷ ;
y′1 += ! y′;
y′2 += ! y′

←−
D⟦e1 ∗ e2⟧ = let ŷ1 =

←−
D⟦e1⟧ in

let ŷ2 =
←−
D⟦e2⟧ in

shift k in let ŷ = (y1 ∗ y2, ref 0) in
@ k ŷ ;
y′1 += ! y′ ∗ y2;
y′2 += ! y′ ∗ y1

←−
D⟦λy . e⟧ = λy .

←−
D⟦e⟧

←−
D⟦@ e1 e2⟧ = @

←−
D⟦e1⟧

←−
D⟦e2⟧

←−
D⟦let y = e1 in e2⟧ = let y =

←−
D⟦e1⟧ in

←−
D⟦e2⟧

←−
D⟦fst e⟧ = fst

←−
D⟦e⟧

←−
D⟦snd e⟧ = snd

←−
D⟦e⟧

←−
D⟦ref e⟧ = ref

←−
D⟦e⟧

←−
D⟦! e⟧ = !

←−
D⟦e⟧

←−
D⟦e1 := e2⟧ =

←−
D⟦e1⟧ :=

←−
D⟦e2⟧

←−
D⟦(e1, e2)⟧ = (

←−
D⟦e1⟧,

←−
D⟦e2⟧)

←−
D⟦inl e⟧ = inl

←−
D⟦e⟧

←−
D⟦inr e⟧ = inr

←−
D⟦e⟧

←−
D⟦case e of y1 ⇒ e1 or y2 ⇒ e2⟧ = case

←−
D⟦e⟧ of y1 ⇒

←−
D⟦e1⟧ or y2 ⇒

←−
D⟦e2⟧

Fig. 9. Transformation of reverse-mode AD with shift/reset and mutable state in the target language
(identical to interpretation except for the handling of environments). Rules that are different from standard
transformation are highlighted in blue. Note that in arithmetic rules (+ and *), the computations for both
forward-pass and backward-pass are defined in the same rule, with the captured continuation k executed
in between. This programming pattern directly fits the abstract computation flow in Figure 6 upper-right,
where continuations are triggered in-between forward computations and backward computations. The
transformation is also local.

but it removes unnecessary symbol bindings for the case expression in abstraction (supporting
implementation of this transformation in Scala with examples is available online3).
It is of course also possible to express the CPS transformation without shift/reset entirely by

switching the meta-language code to CPS. This can be achieved formally by applying the same
transformation as above to the meta-language translation code. The result is that occurrences of
shift/reset are fully erased from the right-hand sides of the translation (Figure 11). A complete
version of the formal presentation with standard interpretations/transformations and examples of
loops and recursions is available online3.
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Transform(f ) = λx . let x̂ = (x , ref 0) in

@ (@
←−
D⟦f ⟧ x̂ ) (λ

✿

z . let ẑ = z in z′ := 1.0);

! x ′

where
←−
D⟦.⟧ : EXP→ EXP is defined as below:

←−
D⟦c⟧ = c if c < R
←−
D⟦c⟧ = (c , ref 0) if c ∈ R
←−
D⟦y⟧ = y

←−
D⟦e1 + e2⟧ = shift k in let ŷ1 =

←−
D⟦e1⟧ in

let ŷ2 =
←−
D⟦e2⟧ in

let ŷ = ( y1 + y2 , ref 0) in

@ k ŷ ;
y′1 += ! y′;
y′2 += ! y′

←−
D⟦e1 ∗ e2⟧ = shift k in let ŷ1 =

←−
D⟦e1⟧ in

let ŷ2 =
←−
D⟦e2⟧ in

let ŷ = ( y1 ∗ y2 , ref 0) in

@ k ŷ ;
y′1 += ! y′ ∗ y2 ;
y′2 += ! y′ ∗ y1

←−
D⟦λy . e⟧ = λy . λk . ⟨@

✿

k
←−
D⟦e⟧ ⟩

←−
D⟦ @ e1 e2⟧ = shift k in @ (@

←−
D⟦e1⟧

←−
D⟦e2⟧)(λ

✿

a .@ k a)

#
←−
D⟦let y = e1 in e2⟧ = shift k in let y =

←−
D⟦e1⟧ in ⟨@ k

←−
D⟦e2⟧ ⟩

←−
D⟦fst e⟧ = fst

←−
D⟦e⟧

←−
D⟦snd e⟧ = snd

←−
D⟦e⟧

←−
D⟦ref e⟧ = ref

←−
D⟦e⟧

←−
D⟦! e⟧ = !

←−
D⟦e⟧

←−
D⟦e1 := e2⟧ =

←−
D⟦e1⟧ :=

←−
D⟦e2⟧

←−
D⟦(e1, e2)⟧ = (

←−
D⟦e1⟧ ,

←−
D⟦e2⟧)

←−
D⟦inl e⟧ = inl

←−
D⟦e⟧

←−
D⟦inr e⟧ = inr

←−
D⟦e⟧

←−
D⟦case e of y1 ⇒ e1 or y2 ⇒ e2⟧ = shift k in let

✿✿

k1 = λ
✿

a . @ k a in
✿

case
←−
D⟦e⟧ of y1 ⇒ ⟨@

✿

k1
←−
D⟦e1⟧ ⟩ or y2 ⇒ ⟨@

✿

k1
←−
D⟦e2⟧ ⟩

normalization rules for wavy underline :
λ
✿

y . @
✿

e y → e

let
✿✿

y = y1 in
✿

e → e[y ← y1]

Fig. 10. Transformation of reverse-mode AD with shift/reset in the meta-language. Rules that are different
from standard transformation are labeled in blue. The standard rules are adapted from Danvy and Filinski
[1992], and the # symbol denotes rules that are simplified due to Barendregt’s variable convention. We also
adapted the overline/underline notation from Danvy and Filinski [1992], such that the overline denotes
static/meta-language constructs, and the underline denotes dynamic/target-language constructs. Departing
slightly from Danvy and Filinski [1992], we introduce another wavy underline notation to implement
proper tail calls. Wavy underline denotes target-language terms just as normal underline, but wavy terms
will be normalized with respect to the contraction rules while the target expression is built up (lower part of
this figure). Note that wavy underline normalization does only renaming, not full substitution.

3.4 Relation to Previous Functional Approaches

It is important to note at this point that our description of reverse-mode AD may appear similar to
Pearlmutter and Siskind [2008]. However, there are substantial differences despite the similarities
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Transform(f ) = λx . let x̂ = (x , ref 0) in

@
←−
D⟦f ⟧ (λm . @ (@m x̂ ) (λ

✿

z . let ẑ = z in z′ := 1.0));

! x ′

where
←−
D⟦.⟧ : EXP→ EXP is defined as below:

←−
D⟦c⟧ = λκ . @ κ c if c < R
←−
D⟦c⟧ = λκ . @ κ (c , ref 0) if c ∈ R
←−
D⟦y⟧ = λκ . @ κ y

←−
D⟦e1 + e2⟧ = λκ . @

←−
D⟦e1⟧(λp1 . @

←−
D⟦e2⟧(λp2 . ##

let ŷ1 = p1 in let ŷ2 = p2 in

let ŷ = ( y1 + y2 , ref 0) in

@ κ ŷ ;
y′1 += ! y′;
y′2 += ! y′))

←−
D⟦e1 ∗ e2⟧ = λκ . @

←−
D⟦e1⟧(λp1 . @

←−
D⟦e2⟧(λp2 . ##

let ŷ1 = p1 in let ŷ2 = p2 in

let ŷ = ( y1 ∗ y2 , ref 0) in

@ κ ŷ ;
y′1 += ! y′ ∗ y2 ;
y′2 += ! y′ ∗ y1 ))

←−
D⟦λy . e⟧ = λκ . @ κ (λy . λk . @

←−
D⟦e⟧(λ m . @

✿

k m))

←−
D⟦@ e1 e2⟧ = λκ . @

←−
D⟦e1⟧(λm . @

←−
D⟦e2⟧(λn . @ (@m n) (λ

✿

a . @ κ a)))

#
←−
D⟦let y = e1 in e2⟧ = λκ . @

←−
D⟦e1⟧(λy1 . let y = y1 in @

←−
D⟦e2⟧ κ)

←−
D⟦fst e⟧ = λκ . @

←−
D⟦e⟧(λy . @ κ (fst y))

←−
D⟦snd e⟧ = λκ . @

←−
D⟦e⟧(λy . @ κ (snd y))

←−
D⟦ref e⟧ = λκ . @

←−
D⟦e⟧(λy . @ κ (ref y))

←−
D⟦! e⟧ = λκ . @

←−
D⟦e⟧(λy . @ κ ( ! y))

←−
D⟦e1 := e2⟧ = λκ . @

←−
D⟦e1⟧(λy1 . @

←−
D⟦e2⟧(λy2 . @ κ (y1 := y2)))

←−
D⟦(e1, e2)⟧ = λκ . @

←−
D⟦e1⟧(λy1 . @

←−
D⟦e2⟧(λy2 . @ κ ((y1 , y2))))

←−
D⟦inl e⟧ = λκ . @

←−
D⟦e⟧(λy . @ κ (inl y))

←−
D⟦inr e⟧ = λκ . @

←−
D⟦e⟧(λy . @ κ (inr y))

←−
D⟦case e of y1 ⇒ e1 or y2 ⇒ e2⟧ = λκ . let

✿✿

k = λ
✿

a . @ κ a in
✿

@
←−
D⟦e⟧(λv . case v

of y1 ⇒ @
←−
D⟦e1⟧(λ m . @

✿

k m)

or y2 ⇒ @
←−
D⟦e2⟧(λ n . @

✿

k n))

Fig. 11. Transformation of source language for reverse-mode AD in CPS (meta-language does not contain
shift/reset). Rules that are different from standard CPS transformation are highlighted by color. Note

that in the plus rule and the multiplication rule (labeled by ##), we avoided using variable sugaring in λp1

and λp2 so that we can introduce a dynamic let binding for them. The dynamic let bindings are necessary
to preserve sharing, evaluation order, and asymptotic complexity, since the right-hand sides of them are
accessed multiple times via y1,y′1,y2, and y

′
2.

and shared goals. The implementation proposed by Pearlmutter and Siskind returns a pair of a
value and a backpropagator: x 7→ (v,dy/dv 7→ dy/dx) for backward propagation. Doing this
correctly requires a non-local program transformation, as noted in that paper. Further tweaks are
required if a lambda uses variables from an outer scope: there must be some mechanism that allows
backpropagation for captured variables, not just the function inputs.
In contrast to Pearlmutter and Siskind [2008], using delimited continuations with shift/reset

operators enables reverse-mode AD with only local transformations. Any underlying non-local
transformations are implicitly resolved by shift and reset. Beyond this, it is also worth noting
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that our method can allocate all closures and mutable variables on the stack, i.e, we never need to
return closures that escape their allocation scope. The proposed implementation is also extremely
concise, to the point that it can serve as a specification of reverse-mode AD and can be used to
teach AD to students.

3.5 Relation to Tape-Based Approaches

From our implementation using delimited continuations, we can derive a classic tape-based formu-
lation of reverse-mode AD. We first realize that conceptually, our use of delimited continuations
builds an implicit representation of a tape-like structure on the call stack instead of representing it
as an explicit data structure on the heap. We can map this implicit structure back to the heap, by
accumulating the gradient-update code that follows the invocations of k into closures, and storing
their composition in a global mutable variable, which is used to explicitly invoke the backward
pass. After this change, all invocations of continuations become tail calls, and hence delimited
continuations or control operators are no longer necessary. The downside of this approach is the
potentially costly management of heap-allocated closures, and, crucially, a less straightforward
mapping to staged or define-then-run AD implementations that reify computation graphs, which
falls out very naturally for CPS-based formulations (see Section 4).
We show a Scala implementation in Figure 12, noting that a similar implementation has been

proposed by Roesch et al. [2018] in their framework Relay. It is easy to see that this implementation
can be defunctionalized [Danvy and Nielsen 2001; Reynolds 1998] to obtain a classic tape-based
AD formulation, and thus can be seen as a refunctionalized version [Danvy and Millikin 2009] of
such a classic tape datastructure.
// Refunctionalized tape.

var tape = (u: Unit) => ()
// Differentiable number type.

class NumB(val x: Double, var d: Double) {

def +(that: NumB) = {

val y = new NumB(this.x + that.x, 0.0)

tape = ((x:Unit)=> this.d += y.d) andThen tape
tape = ((x:Unit)=> that.d += y.d) andThen tape
y

}

def *(that: NumB) = {

val y = new NumB(this.x * that.x, 0.0)

tape = ((x:Unit)=> this.d += that.x*y.d) andThen tape

tape = ((x:Unit)=> that.d += this.x*y.d) andThen tape
y

} ...
}

// Differentiation operator.

def grad(f: NumB => NumB)(x: Double) = {

val z = new NumB(x, 0.0)
f(z).d = 1.0
tape()
z.d

}

// Example: 2*x + x*x*x.

val df = grad { x =>
2*x + x*x*x

}

forAll { x =>
df(x) == 2 + 3*x*x

}

Fig. 12. Reverse-mode Automatic Differentiation with a global refunctionalized tape. The andThen infix
operator is for function composition in Scala. Since new additions are composed before the old tape, calling
tape() will play the tape in reverse order of insertion.

3.6 Purely Functional Implementation

Since our presentation makes central use of the mutable state, an interesting question is whether a
purely functional formulation is also possible. For example, since the continuation k takes a new
NumR, updates its gradient, and returns Unit, why not simply let k return the new gradient and avoid
mutation? The type of k would change to Double => Double accordingly. Unfortunately, this simple
change is not enough, because the continuation kmay update the gradients of more than one NumRs.
If earlier NumRs are also involved in the computations in k, then k needs to update their gradients
too, but returning just a Doublewithout side-effects cannot achieve that. Thus, a pure functional
implementation is easy to achieve for straight-line programs [Elliott 2018], but not for ones with
complex control flow and especially nested lambdas.
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Based on this observation, we can build a purely functional implementation by adding a layer
of indirection. Each NumR is assigned a unique id, and we change the type of continuations to
NumR => Map[Id, Double], returning an immutable map from NumR ids to their calculated gradient
updates. In essence, this model uses a reified functional store for gradient updates instead of storing
the gradients directly in the Scala heap. Since there is no conceptual simplification, we prefer the
model based on direct mutation for our presentation.

3.7 Nested Invocations For Higher-Order Gradients

Just like with forward-mode AD in Section 2.5, we are interested in extending the reverse-mode AD
implementation to support nested invocations of the grad operator. The way to achieve this nesting
of reverse-mode AD within reverse-mode AD (i.e., reverse-of-reverse) is to use multiple levels of
continuations, and their corresponding higher-order control operators such as shift2 [Danvy and
Filinski 1990]. Unfortunately, we cannot directly implement this in Scala, since the Scala compiler
only provides a single CPS transform layer. However, we can manually embed a shift/reset layer
within another shift/reset via explicit CPS to create a similar functionality as shift2 (Figure 13).

// Type of contexts (explicit or implicit CPS).

type Ctx = ((Unit => Unit) => Unit)
type Ctxi = Unit @cps[Unit]
// Definition of (restricted) shift2.

def shift2(body:(NumRR=>Ctxi)=>Ctxi): NumRR @cps[Ctx] =
shift { k: (NumRR => Ctx) => k2: (Unit => Unit) =>

def kk(y: NumRR) = shift((k3: Unit=>Unit) => k(y)(k3))
reset { body(kk); k2() }

}
// Differentiable number class.

class NumRR(val x: NumR, var d: NumR) {

def * (that: NumRR) = shift2 {k: (NumRR => Ctxi) =>

val y = new NumRR(x * that.x, new NumR(0.0,0.0))
k(y)

this.d = this.d + y.d * that.x

that.d = that.d + y.d * this.x
}
...

}

// Differentiation operator.

def gradRR(f: NumRR => NumRR @cps[Ctx])(x: NumR) =
shift { (k: NumR => Unit) =>

val z = new NumRR(x, new NumR(0.0,0.0))

val ff = reset {
f(z).d = new NumR(1.0,0.0)
(k2: Unit => Unit) => k2()

}
ff((u: Unit) => k(z.d))

}

// Example: 2*x + x*x*x.

val df = grad { gradRR { x =>
2*x + x*x*x

}}
forAll { x =>
df(x) == 6*x

}

Fig. 13. Second order reverse-of-reverse AD via explicit CPS in shift/reset.

Another way to realize higher-order gradients is to nest forward-mode AD in reverse-mode AD
(i.e. compute the first-order gradient via reverse-mode AD, and higher order gradient via forward-
mode AD). This approach is practically efficient if the higher-order gradient is for functions
R
m → Rn , where n is relatively large compared tom. This "forward-of-reverse" combination can

efficiently compute Hessians as the Jacobian of gradients [Baydin et al. 2018], and Hessian-vector
products in a single forward-of-reverse pass [Christianson 1992].

4 REIFYING COMPUTATION GRAPHS VIA MULTI-STAGE PROGRAMMING

CPS conversion puts reverse-mode AD on a firm basis, rooted in programming language concepts.
Extending the Num type to tensors and relaying tensor operations to high performant libraries
provides all the necessary machinery for a deep learning framework in the expressive PyTorch-
style that performs gradient computation as part of the normal program execution (łdefine-by-runž).

From PyTorch-style to TensorFlow-style. However, TensorFlow-style frameworks have tradition-
ally been more performant than define-by-run ones, by constructing a restricted dataflow model
before executing gradient computation, which offers a larger optimization surface on the tensor IR
level (łdefine-then-runž). Can we also realize a TensorFlow-style framework, but with a richer and
more standard IR language, better supporting native control flow and recursion?
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TensorFlow-style via Multi-Stage Programming. This question can be naturally addressed by
leveraging the idea found in the formal model of moving the use of shift/rest into the metalanguage
to generate code in CPS (Section 3). We use multi-stage programming (staging) as a practical way
to realize the overline/underline distinction found in the formal model. Modern tools such as LMS
(Lightweight Modular Staging) [Rompf and Odersky 2010] blend normal program execution with
IR construction. In LMS, a type constructor Rep[T] is used to mark staged expressions. That is to
say, all Rep[T]-typed variables (whether directly labeled or type-inferred) will trigger LMS-based IR
construction. Through type inference and advanced operator overloading, normal syntax can be
used to stage built-in control-flow constructs such as if, for, and while. We can relate staging via
LMS to the formal rules in Figure 10, though the different stages are determined by types in LMS
[Rompf 2016].
To show the flavor of LMS as well as how to make use of LMS in our reverse-mode AD to

reify computation graphs (LMS-based IR), let us walk through our running example again: y =
2 ∗ x + x ∗ x ∗ x , where we simply focus on first-order reverse-mode AD such that x is of type NumR.
To stage our running example, the most important change is the type signature of the NumR class:
class NumR(val x: Rep[Double], val d: Rep[Var[Double]]) {...}

Here, the Rep[T] type of x and d states that all handling of x and d will construct nodes in LMS-IR.
The Rep[Var[Double]]maps to staged mutable reference (such as type double& in C++), which allows
us to accumulate gradients d by reference. Note that our presentation is isomorphic to staging NumR
as in Rep[NumR], since both fields of NumR are already staged. However, staging only the fields of NumR
gives us a more concise generated code.
There are no fundamental challenges with staging our reverse-mode AD in CPS using LMS, as

it is a well-known insight that multi-stage programs that use continuations at generation time
can generate code in CPS [Bondorf 1992; Danvy and Filinski 1992] (relating to formal rules in
Figure 10). LMS can also be set up to generate low-level, efficient code in C++ and CUDA. This
enables a TensorFlow-style framework with rich analysis and optimization opportunities, much
like an aggressive whole-program compiler.
The apparent downsides of TensorFlow-style systems, however, are the rather clunky user

programming model offered by current frameworks, the absence of sophisticated control flow
constructs, and the inability to use standard debugging facilities. However, our system largely avoids
the downsides of current static frameworks thanks to staging (in particular, the LMS framework).
Of course, TensorFlow can also be viewed as a staged programming model, but the staged language
is a restricted dataflow language. On the other hand, LMS provides a rich staged language that
includes subroutines, recursion, and more.
We show below how CPS code generation is supported in a natural form, in straight-line code,

branches, loops, and recursion. Note that our setup is mostly similar to Figure 10, where only the
metalanguage has shift/reset, but not identical, since stages are controlled by types (more redexes
can be simplified). Also, we will refer to generic types (A, B, and C) for control flow constructs in the
following part of this section to illuminate the abstraction of branches, loops, and recursion.

4.1 Staging Reverse-Mode AD: Straight-Line Code

We begin by investigating how to stage and perform AD on straight-line programs (i.e., those
without loops, branches, or recursion). Let us start with a very simple straight-line program.
def snippet(in: Rep[Double]): Rep[Double] = grad(x => x * x)(in)

We show the code after reducing arithmetic operations, grad function, and shift/reset control
operators (left), and the generated pseudo-LMS-IR (middle). Note that in this example, since the NumR
class itself is not Rep[T]-typed (both fields of NumR are), fields of NumRwill trigger IR-construction
for code generation, but all NumR object construction and field accesses will be staged away. The IR
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can be used to generate C++ code (with optimizations including dead code elimination, constant
folding, etc., shown on the right):

def snippet(in: Rep[Double]): Rep[Double] = {

val z = new NumR(in, 0.0)

val y = new NumR(z.x * z.x, 0.0)
y.d = 1.0
z.d += y.d * z.x
z.d += y.d * z.x
z.d

}

def snippet(in) = {
d0 = ref 0
v1 = in * in; d1 = ref 0
d1 := 1.0
d0 += ! d1 * in
d0 += ! d1 * in
! d0

}

double snippet(in: double) =
return 2 * in;

4.2 Staging Reverse-Mode AD: Conditionals

The conditionals are closely related to the case rule in Figure 10 (e.g., reset in both branches). We
define a syntactically different IF operator that takes a Rep[Boolean] condition and two (=> Rep[A]

@cps[Rep[B]]) typed parameters for the then- and else-branches. In Scala, => T typed parameters
are passed by name, so that the parameters are evaluated each time they are used. Following the case
rule, the IF function accesses the delimited continuation k via shift, lifts k to a dynamic function
k1 (to avoid code duplication), and invokes k1 with both the then-branch and the else-branch
argument. In LMS, the fun function lifts static functions to dynamic ones [Rompf 2016]:
def fun(f: Rep[A] => Rep[B]): Rep[A => B]

We use overline/underline to mark function names in function applications and definitions, and
control flow constructs to indicate their stages (meta-language vs target language). This is similar
to the formal rules in Section 3, but added here purely for reasons of readability.

def IF(c: Rep[Boolean])(a: => Rep[A] @cps[Rep[B]])(b: => Rep[A] @cps[Rep[B]]): Rep[A] @cps[Rep[B]] =

shift { k: (Rep[A] => Rep[B]) =>
// Emit k1 as a dynamic function to avoid code duplication.

val k1 = fun (k)
// Emit conditional, with each branch enclosed by a reset.

if (c) reset(k1(a)) else reset(k1(b))

}

Below is an example using the IF construct. For readability, we only selectively label some names
with overline/underline to highlight stages of some constructs.
def snippet(in: Rep[Double]): Rep[Double] = grad(x => IF(x.x > 0.0){ -1.0*x*x }{ x*x })(in)

We show the code after we reduce grad, fun, and some shift/reset (upper left), the pseudo-IR (right),
and the generated C++ code with optimizations including inlining and hoisting (lower left):

def snippet(in: Rep[Double]): Rep[Double] = {

val z = new NumR(in, 0.0)

val k1: Rep[NumR => Unit] = (t => t.d = 1.0)
// elide process of reset block (similar to straight-line program)

if (z.x > 0.0) reset { k1 (-1.0 * z * z) }

// elide process of reset block (similar to straight-line program)

else reset { k1 (z * z) }

z.d
}

double Snippet(double in) {
auto k = [&](double x, double& d) { d = 1.0; };
double d = 0.0;

if (in > 0.0) { k(-in * in, d); return -2.0 * in * d; }

else { k(in * in, d); return 2.0 * in * d; }
}

def snippet(in) = {
d0 = ref 0
k = (x, d) => d := 1.0

if (in > 0.0) {
v1 = - in * in; d1 = ref 0
k(v1, d1)
d0 += ! d1 * (- in)
d0 += ! d1 * (- in)
! d0

} else {
v1 = in * in; d1 = ref 0
k(v1, d1)
d0 += ! d1 * in
d0 += ! d1 * in
! d0

}
}

4.3 Staging Reverse-Mode AD: Loops

Differentiable loop constructs are important for deep learning, for example in recurrent neural
networks. By the rules of CPS transformation, loops need to be transformed into tail-recursive
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functions. A loop construct consists of an initial value Rep[A], a loop guard, and a loop body of type
Rep[A] => Rep[A]@cps[Rep[B]]as parameters. The loop guard can be eitherRep[A] => Rep[Boolean],
like a while construct, or simply a Rep[Int], like a for construct. The actual loop logic can be de-
scribed as follows: if the loop guard is true, recursively call the loop after invoking the loop body;
else call the continuation. The WHILE construct is defined below, mimicking the standard while loop.

def WHILE(init: Rep[A])(c: Rep[A] => Rep[Boolean])(b: Rep[A] => Rep[A] @cps[Rep[B]]): Rep[A] @cps[Rep[B]] =

shift { k: (Rep[A] => Rep[B]) =>
// tail recursive function implementing loop semantics.

def loop: Rep[A => B] = fun { (x: Rep[A]) =>

if (c(x)) reset(loop(b(x))) else reset(k(x))

}
loop(init)

}

Below is an example using the WHILE construct:
def snippet(in: Rep[Double]): Rep[Double] = grad(x => WHILE(x)(t => t.x > 1.0)(t => t * 0.5))(in)

We show the code after we reduce grad, fun, some shift/reset, and application of b, c, and k (left),
the pseudo-IR (middle), and the generated C++ code (right):

def snippet(in:Rep[Double]):Rep[Double]= {

val z = new NumR(in, 0.0)

def loop: Rep[A => B] = (t =>

// elide process of reset block

// similar to straight-line program

if (t.x > 1.0) reset(loop(t * 0.5))

else t.d = 1.0

)
loop(z)

z.d
}

def snippet(in) = {
d0 = ref 0

def loop = (x, d) => {

if (x > 1.0) {
v1 = x * 0.5; d1 = ref 0
loop(v1, d1)
d += 0.5 * ! d1

} else d := 1.0
}
loop(in, d0)
! d0

}

double Snippet(double in) {

double d = 0.0;

auto loop = [&](double x, double& d) {

if (x > 1.0) {

double d1 = 0.0;
loop(0.5 * x, d1);
d += 0.5 * d1;

} else d = 1.0;
};
loop(in, d);
return d;

}

We can also relate our WHILE definition to the formal rules. Although we did not include an
explicit letrec rule in Figure 10, Figure 3 explains how letrec can be derived from let, λ, @ ,
and case constructs, the rules of which are identical to the standard transformations in Figure 10.
Thus, the letrec rule is also the same as in the standard transformation [Danvy and Filinski 1992]
(modulo wavy underline notation), which we recap here:

#
←−
D⟦letrec f = λx .e1 in e2⟧ = shift k in letrec f = λ x .λ k1 . ⟨@

✿

k1
←−
D⟦e1⟧ ⟩ in ⟨@ k

←−
D⟦e2⟧ ⟩

Note that the rule is simplified due to Barendregt’s variable convention (no variable substitution
needed). However, specific constraints of loops guarantee that the recursive calls always appear in
tail positions, and the recursive function should only be applied once, in the original location of
the loop. That means the abstraction of continuation (k1 in the rule) can be optimized away, just
like the contification optimization for closures. The formal rule should now be adapted (note that
the transformation rule of apply for f should also adapt accordingly) to:

#
←−
D⟦letrec f = λx .e in @ f y⟧ = shift k in letrec f = λ x . ⟨@ k

←−
D⟦e⟧ ⟩ in @ f y

The abstract body e in the above rule is most likely a conditional construct that needs to be
translated to IF. Our WHILE definition can be derived after normalization of IF (containing shift)
with its surrounding reset context.

4.4 Staging Reverse-Mode AD: Functions & Recursion

As a true differentiable programming framework, we aim to handle general forms of recursion.
This is useful in deep learning: one application is processing tree-structured data, such as sentence
parse trees (see Section 5). We have already seen in Section 4.2 how we can use fun to generate
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staged functions in LMS, but how do we make those differentiable? The answer is simply to provide
an equivalent of fun that generates a staged function in CPS (FUN below):

def FUN(f: Rep[A] => Rep[B] @cps[Rep[C]]) = (y: Rep[A]) => shift {k: (Rep[B] => Rep[C]) =>

val f1 = fun((t: Rep[A], k1: Rep[B => C]) => reset(k1(f(t))))

f1((y, fun(k)))

}

With this FUN subroutine, implementing a differentiable tree traversal is straightforward. We can
define a TREE abstraction to recursively traverse a Rep[Tree] data structure. For empty trees, the
init value is returned directly. For non-empty trees, the function b composes the recursive results
from the subtrees.
def TREE(init: Rep[B])(t: Rep[Tree])(b: (Rep[B], Rep[B]) => Rep[B] @cps[Rep[C]]): Rep[B] @cps[Rep[C]] = {

def f = FUN { tree: Rep[Tree] =>
// If tree is not empty, recurse on subtrees and compose results, otherwise return the initial values.

IF (tree.notEmpty) { b(f(tree.left), f(tree.right)) } {init}

}

f(t)
}

How do the above implementations relate to the formal letrec rule? The FUN definition is similar

to the representation of λy.
←−
D⟦letrec f = λt . e in @ f y⟧, which can be transformed as below:

λ y .
←−
D⟦letrec f = λt . e in @ f y⟧

= λ y . shift k in letrec f = λ t . λ k1 . ⟨@
✿

k1
←−
D⟦e⟧ ⟩ in @ (@ f y) (λ

✿

a . @ k a)

= λ y . shift k in letrec f = λ t̂ . λ k1 . ⟨@
✿

k1 (@ (λ t .
←−
D⟦e⟧) t̂ ) ⟩ in @ (@ f y) (λ

✿

a . @ k a)

Note that in this term, we use blue color to highlight the sub-term that corresponds to the parameter
of FUN (also marked in blue). We can also see that the body of TREE (i.e. f(t) in the code) evaluates to
←−
D⟦letrec f = λt . e in@ f t⟧. Below is an example using the TREE construct:
def snippet(tree:Rep[Tree], in:Rep[Double]):Rep[Double] = grad(x => TREE(x)(tree){(l, r) => l * r * tree.value})(in)

The code after reducing grad, FUN, TREE, and some shift/reset is shown below, The generated pseudo
LMS-IR and the generated C++ code are in Figure 14.
def snippet(tree: Rep[Tree], in: Rep[Double]): Rep[Double] = {

val z = new NumR(in, 0.0)

val k: Rep[NumR => Unit] = (x => x.d = 1.0)

def f1(t: Rep[Tree], k0: NumR => Unit) = if (t.notEmpty) {

val k_l: Rep[NumR => Unit] = (l =>
// elide process of reset block (similar to straight-line program)

val k_r: Rep[NumR => Unit] = (r => reset{ k0(l * r * t.value) })

f1(t.right, k_r))

f1(t.left, k_l)

} else k0(z)

f1(tree, k)

z.d
}

With the above implementations, we have established a staged reverse-mode AD framework
that supports branches, loops, and recursion. Though implementing these control-flow operators
requires some engineering, they simply combine CPS transformation with staging in the standard
way (as shown in Figure 10). The resulting framework provides a programming interface that is
similar in style and expressiveness to PyTorch. It also generates an intermediate representation with
inlined AD logic (pure manipulation of Doubles or Tensors) which allows extensive optimizations
similar in style to TensorFlow.

We note in passing that while it is, naturally, an option to implement CPS at the LMS IR level, we
choose to forgo this route in favor of the presented implementation for accessibility and simplicity.
A good, selective, CPS transform (that transforms only the minimum necessary code to CPS) is
nontrivial to implement [Rompf et al. 2009].
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def snippet(tree, in) = {
d0 = ref 0
k = (x, d) => d := 1.0

f1 = (t, k0) => if (t.notEmpty) {
k_l = (x_l, d_l) => {
k_r = (x_r, d_r) => {
v0 = t.value
v1 = x_l * x_r * v0; d1 = ref 0
k0(v1, d1)
d_l += x_r * v0 * (! d1)
d_r += x_l * v0 * (! d1)

}
f1(t.right, k_r)

}
f1(t.left, k_l)

} else k0(in, d0)
f1(tree, k)
! d0

}

double Snippet(Tree tree, double in) {

double d = 0.0;

auto k = [&](double x, double& d) { d = 1.0; };

auto rec = [&](Tree tree, function<void(double, double&)> k) {

if (tree.notEmpty) {

auto k_l = [&](double x_l, double& d_l) {

auto k_r = [&](double x_r, double& d_r) {

double x_t = tree.value; double dt = 0.0;
k(x_l * x_r * x_t, dt);
d_l += x_r * x_t * dt;
d_r += x_l * x_t * dt;

};
rec(tree.right, k_r);

};
rec(tree.left, k_l);

} else k(in, d);
};
rec(tree, k);
return d;

}

Fig. 14. Generated pseudo LMS-IR (left) and the generated C++ code (right) of the tree example.

5 EVALUATION

So far, we have shown both how to implement plain PyTorch-style reverse-mode AD using delimited
continuations, and how to mix in multi-stage programming for TensorFlow-style graph reification.
Now, we extend our implementation to tensor operations, and present a system, Lantern2, that
scales our described approach to real-world deep learning workloads.
The snippet below shows the basic structure of the staged tensor API:

class Tensor(val data: Rep[Array[Double]], val dimension: Array[Rep[Int]]) {...}

class TensorR(val x: Tensor, val d: Tensor) {...}

The type of field dimension, Array[Rep[Int]], indicates that the tensor rank (number of dimensions)
is always known at staging time. The TensorR class takes two Tensors, one as the value, and the
other as the gradient. Operators in TensorR are overloaded with shift constructs, providing access
to delimited continuations. In analogy with the CPS-style implementation in Section 3, class Tensor
takes the role of Double, and TensorR that of NumR.
The Tensor class provides all tensor-level operations including element-wise operations with

broadcasting, matrix multiplication, convolution, and so on. Lantern provides abstractions to
run each of those operations either on CPU or GPU. Implementations make use of BLAS library
functions (for CPU) and cuBLAS/cuDNN library functions (for GPU), but also include nested for
loops (for CPU) and custom CUDA kernels (for GPU).

We would like to stress that the efficiency of Lantern can be further improved by more sophisti-
cated backend engineering, which is not the focus of this paper. One direction is tensor IR level
optimization similar to TVM [Chen et al. 2018] and Glow [Rotem et al. 2018], including operator
fusion, and systematic operation scheduling. LMS provides fusion and array facilities [Rompf et al.
2013] that have been used in OptiML [Sujeeth et al. 2011] and other DSLs based on the Delite
compiler framework [Brown et al. 2016, 2011]. These could be leveraged for Lantern as well.
Tensor IR level optimization is naturally supported by define-then-run systems (e.g. Lantern

and TensorFlow), but not by define-by-run systems (e.g. PyTorch, though recently PyTorch 1.0
moves towards this direction by extracting computation graphs using Torch Script [PyTorch 2019]).
Another important direction is advanced batching support, either in the form of autobatching à la
Dynet [Neubig et al. 2017b] or dynamic batching à la TensorFlow Fold [Looks et al. 2017]. Advanced
batching support is particularly useful in dynamic models where manual batching is challenging.
Another use is suggesting optimal batch sizes based on model and hardware details (e.g. GPU
memory size).
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Even with the current level of backend engineering, our evaluation shows that Lantern is
competitive on contemporary machine learning models, thus pushing the boundaries of existing
frameworks in various dimensions (expressivity and efficiency).

5.1 Recursive Neural Network: TreeLSTM

In this and the following sections, we evaluate Lantern on several commonly used machine learning
models. Our evaluation focuses on expressivity (the ability to express various kinds of machine
learning models) and efficiency (the runtime for training those machine learning models on a
single GeForce GTX 1080 Ti with CUDA 10, using PyTorch version 1.0rc, TensorFlow version
1.12.0-rc0). Runtime results are reported as the median runtime of 5 epochs with 3 repeats. The
correctness of the computed gradients is implicit (we have extensive unit tests, and we check
our gradients with PyTorch). We elide loss curves and other dimensions of evaluation such as
hyperparameter-tuning/cross-validation/testing.
We start the evaluation with TreeLSTM, which is a state-of-the-art recursive machine learning

model that heavily depends on dynamic control flow guided by structural training data. Models like
this are useful for handling natural language parse trees and abstract syntax trees of programming
languages. At the same time, such dynamic models pose interesting challenges to machine learning
frameworks.

We showcase TreeLSTM on the Sentiment Classification task [Tai et al. 2015] using the Stanford
Sentiment Treebank dataset [Chuang 2013]. The dataset contains sentences of movie reviews,
which are parsed into binary trees based on language semantics. Each leaf node contains a word
that can be mapped to a known numeric vector (embedding) based on word semantics. TreeLSTM
should model a function (Bi-LSTM) that recursively computes hidden states for all nodes, and a
mapping from hidden states to sentiment scores, both of which are then trained end-to-end by
minimizing softmax-cross-entropy loss with regard to true sentiment labels of each node.
The recursive function that computes hidden states of node i can be written as below:

hi = Bi-LSTM(Embedding(i .word),hi .left,hi .right)

where hi represents hidden state of node i , Embedding represents the known mapping from words
to their embeddings, i .word, i .left, i .right represent the optional word, left-child, and right-child
of node i , and Bi-LSTM is a variant of LSTM that can handle two hidden states as inputs.
It is easy to express this model in Lantern since Lantern supports unrestricted control flow

including branches, loops, and recursion. We show the core of the TreeLSTM model in Lantern
(function lossFun) below. The TREE abstraction (Section 4.4) makes the code very concise. Users
merely need to supply the (anonymous) function that computes the state of the current node from
the states of the left and right children (lState/rState):
def lossFun(node: Rep[Tree]) = {

val initialState = State(loss = 0, hidden = 0, cell = 0)

val resultState = TREE(initialState)(node) { (lState, rState) =>

val embedding = IF (node.isLeaf) { Embedding(node.word) } { 0 }

val (hidden, cell) = BiLSTM(embedding, lState, rState)

val loss = softmaxCrossEntropyLoss(Linear(hidden), node.score)
State(loss, hidden, cell)

}
resultState.loss

}

This model can also be expressed easily in define-by-run frameworks like PyTorch where com-
putation graphs are constructed on-the-fly (via Python recursive functions in this case). However,
as we can see from the runtime (Figure 15), training TreeLSTM in PyTorch is very slow (more than
4 times slower than Lantern), mainly due to the overhead incurred for each individual computation
step. In comparison, another define-by-run framework called DyNet [Neubig et al. 2017b] has a
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more lightweight internal graph representation and optimized C++ backend [Neubig et al. 2017a],
which makes it run faster than PyTorch (see DyNetNB, short for DyNet-No-Batching), though still
about 1.6 times slower than Lantern.

Fig. 15. Running time of TreeLSTM for different frameworks.

On the other hand, TensorFlow has trouble expressing TreeLSTM, or any other recursive neural
network models. This is mainly due to limitations of TensorFlow’s static graph construction
interface, which does not support recursion. As a consequence, TensorFlow can neither define static
computation graphs that are recursive and covers structural data of different shapes (like Lantern),
nor define computation graphs dynamically based on each structural data (like PyTorch). Other
ways to flatten structural data into sequences and model them with recurrent neural networks
often incur high memory overhead. Interestingly, TensorFlow Fold [Looks et al. 2017], a library
on top of TensorFlow, manages to push this limited static computation graph even further for
training recursive neural networks such as TreeLSTM. The main idea is that, given a set of static
computation graphs of different shapes, TensorFlow Fold rewrites them into one static computation
graph that handles all given graphs, by extensively using extra concat and gather operations to
move data around. The added benefit is that instances of the same operations at the same depth
can be batched together (in machine learning, batching refers to processing multiple pieces of data
simultaneously, often in a mini-batch), which makes training more efficient. Indeed TensorFlow
Fold (TF20, short for TensorFlow Fold at batch size 20) is the most efficient framework in our
evaluation of TreeLSTM.
The dynamic batching approach of TensorFlow Fold is not the only way to batch training data

for recursive neural networks. DyNet provides another strategy called autobatching. Being a
dynamic framework, DyNet has the freedom to construct and manipulate computation graphs
on-the-fly, including automatically batching nodes in computation graphs based on node types,
data dimensions, and node dependencies. However, it should be noted that using autobatching
efficiently requires good batching heuristics from the framework, and some input from the user,
who controls the partitioning of computation graphs considered for autobatching. In our case,
DyNetB (short for DyNet-Batching) shows about 50% improvement on GPU runtime when we
allow autobatching within each input structure, but not across multiple input structures. Although
both batched frameworks outperform Lantern, it should be noted that dynamic batching (as in
TensorFlow Fold) could also be added to Lantern with additional engineering effort.

5.2 Convolutional Neural Networks: SqueezeNet and ResNet50

For non-recursive models, batching simply means adding an extra dimension to the input data,
which is supported in Lantern. We now evaluate representative convolutional neural networks.

SqueezeNet [Iandola et al. 2016] and ResNet50 [He et al. 2016] are contemporary convolutional
neural network models for image classification. SqueezeNet uses a carefully designed CNN ar-
chitecture so that it contains fewer parameters, but shows a similar level of accuracy as larger
models. ResNet50 belongs to the ResNet family of CNN architectures, which makes use of batch-
normalization, residual connections, and other techniques for fast/stabilized training.
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PyTorch and TensorFlow implementations of these models exist on GitHub. We hand-wrote
identical Lantern models and also imported existing ONNX (Open Neural Network Exchange)
models into Lantern. We evaluate these implementations on the CIFAR-10 dataset [Krizhevsky
2012]. As shown in Figure 16, Lantern and TensorFlow perform slightly better than PyTorch on
SqueezeNet, and all three models have similar runtime performance on ResNet50. This result
is expected since SqueezeNet and ResNet50 are mostly composed of convolution layers, which
dominate the runtime cost. Convolution layers heavily rely on hardware-specific library functions
such as cuDNN API functions, rendering other graph-level optimizations (of TensorFlow and
potentially Lantern) insignificant. However, getting Lantern on par with PyTorch and TensorFlow
took non-trivial effort: memory management techniques were crucial when using cuDNN API
functions.

Fig. 16. Running time of SqueezeNet and ResNet50 for different frameworks.

5.3 DeepSpeech2

DeepSpeech2 [Amodei et al. 2015] is a representative deep neural network for automatic speech
recognition (ASR), which reaches state-of-the-art performance on real-world datasets. DeepSpeech2
is the most complex model in our evaluation: it is a real production model with convolutional,
batch norm, and RNN layers, and is trained with the CTC (Connectionist Temporal Classification)
loss function. A variant of this model is included in the MLPerf benchmark suite [mlperf.org 2018].

Fig. 17. Running time of
DeepSpeech2 for differ-
ent frameworks.

We evaluated DeepSpeech2 models on the Librispeech [Panayotov et al.
2015] dataset, but skipped TensorFlow because it uses a custom CPU
implementation of CTCLoss, making a fair comparison impossible. Lantern
and PyTorch models both use bidirectional RNNs with ReLU activation
and SGD with momentum.

At the time of writing, Lantern is ∼10% faster than PyTorch (Figure 17)
on this model, most likely because Lantern spent extra time to select
better CuDNN kernel functions for CNN in the first mini-batch. Additional
engineering can probably further improve Lantern’s efficiency, via better
hand-written kernel functions (such as softmax, activation, and so on).
However, surpassing the performance of existing frameworks on these
well-tuned model implementations has not been our primary goal; the aim of this paper was merely
to demonstrate the scope of Lantern, and to validate our fundamental design.

6 RELATED WORK

Automatic Differentiation: A History. Gradient-based optimization lies at the heart of machine
learning, with backpropagation [Rumelhart et al. 1986], an application of differentiation, as a key
ingredient for training neural networks. The fundamental idea of automatic differentiation (AD)
emerged in the 1950s as programs that calculate derivatives alongside the normal computation [Beda
et al. 1959; Nolan 1953]. A formal introduction to forward-mode AD appeared in the 1960s [Wengert
1964]. The application of gradient descent to large-scale optimization first arose in control theory
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[Bryson and Ho 1975; Bryson and Denham 1962], although the underlying ideas are of course much
older. In the 1970s, Linnainmaa [1976] introduced the concept of reverse-mode AD and the related
idea of computation graphs, which are now widely used by modern machine learning frameworks.
Speelpenning [1980] implemented reverse-mode AD in a general-purpose language, which is
considered the first implementation of reverse-mode AD that performed gradient computations
automatically. At the same time, backpropagation was invented and reinvented within the machine
learning community [Parker et al. 1985; Rumelhart et al. 1986; Werbos 1974]. This divergence
continued until Hecht-Nielsen [1988] brought together the work from both communities.

Automatic Differentiation: A PL View. AD has also received attention from the programming
language community, with recent proposals to generalize neural network models to differentiable
functional programs [Fong et al. 2017; Olah 2015]. This development is also fueled by modern deep
learning frameworks, which define neural networks łvery much like a regular programž [Abadi
et al. 2017; LeCun 2018]. Some recent research demonstrates this direct correspondence between
the two fields by implementing differentiable analogs of traditional data structures [Grefenstette
et al. 2015] and machine models [Graves et al. 2014]. Another line of work has aimed to formalize
AD, both forward-mode [Siskind and Pearlmutter 2008] and reverse-mode [Pearlmutter and Siskind
2008]. There exist high-level languages with first-class AD operators [Siskind and Pearlmutter
2016], as well as flexible AD library implementations, e.g., DiffSharp [Baydin et al. 2016]. A Haskell
implementation of forward-mode AD was proposed by Elliott [2009]. Swift for TensorFlow [Ten-
sorFlow 2019] integrates AD as a first-class feature in a general purpose language. Shaikhha et al.
[2018] demonstrated that forward-mode AD can sometimes outperform reverse-mode AD when
combined with aggressive fusion and code motion techniques in a functional array programming
language. This could also be achieved in Lantern using existing fusion and array facilities in LMS
[Rompf et al. 2013], as used in OptiML [Sujeeth et al. 2011] and other DSLs based on the Delite
compiler framework [Brown et al. 2016, 2011; Rompf et al. 2011]. Baydin et al. [2018] provided a
thorough review of AD and deep learning from a functional programming perspective.

A Tale of Two Styles. Most modern deep learning frameworks compute gradients of training loss
with respect to neural network parameters in one of two ways [Baydin et al. 2018]. The first is to
let users define computation graphs using a domain-specific language (DSL) and to interpret graph
operations at runtime. Computation graphs represent entire programs and are more amenable to
global analysis and optimizations like operator fusion. However, graph-building DSLs are limited in
expressivity, contain unintuitive control structures, and are difficult to debug. Frameworks such as
Theano [Al-Rfou et al. 2016] and TensorFlow [Abadi et al. 2016] belong to this category. The other
way is to integrate general-purpose programming languages with reverse-mode AD as a library, of
which Torch [Collobert et al. 2011], PyTorch [Paszke et al. 2017a,b], Autograd [Maclaurin 2016], and
Chainer [Tokui et al. 2015] are well-known representatives. Caffe [Jia et al. 2014], MXNet [Chen
et al. 2015], and CNTK [Seide and Agarwal 2016] are somewhere in the middle. The tight integration
between host languages and AD frameworks of the pure-library category has certain usability
benefits, such as natural control flow and easy debugging, but comes at the expense of efficiency.
Neural network exchange formats such as ONNX [ONNX working groups 2017] aim to bridge this
gap by enabling an easy conversion between frameworks.
Previous attempts at building source-to-source deep learning compilers mostly focus on either

the define-by-run or define-then-run approach, as noted by Baydin et al. [2018]. Tangent [van
Merriënboer et al. 2017; Wiltschko 2017] implements a source-to-source compiler in Python which
supports automatic differentiation, but this framework constrains the host language to a limited
subset of Python. DLVM [Wei et al. 2017a,b] compiles deep learning programs written in Swift
into a domain-specific SSA IR, performs analyses and transformations (including source code

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 96. Publication date: August 2019.



Demystifying Differentiable Programming: Shift/Reset the Penultimate Backpropagator 96:27

transformation AD), and generates code via LLVM. Swift for TensorFlow [TensorFlow 2019] mixes
the two approaches: it enables imperative-style programs but uses a łgraph program extractionž
compiler transform to automatically extract tensor code and build computation graphs.

Staging: A Unification of the Two Styles. The present work aims to reap the benefits of both styles
by using a computation graph DSL that really is a general-purpose programming language. Our
transformation of high-level neural networks to low-level code is fueled by the idea of multi-stage
programming (staging). More than 30 years ago, Jùrring and Scherlis [1986] observed that many
computations can be naturally separated into stages distinguished by frequency of execution or
availability of data. The idea to treat staging as an explicit programming model was popularized,
among others, by Taha and Sheard [2000]. Since then, modern staging approaches blend normal
program execution with the delayed construction of an intermediate program representation (IR),
which may be a computation graph, or in more traditional systems, an abstract syntax tree (AST).
We use the Lightweight Modular Staging (LMS) framework [Rompf and Odersky 2010], which
provides a rather seamless implementation of staging in the Scala language and has been utilized
in a range of existing applications [Rompf and Amin 2015; Rompf et al. 2015; Sujeeth et al. 2011].

Delimited Continuations: A Simpler Essence. Lantern relies on delimited continuations [Danvy
and Filinski 1990, 1992; Danvy and Nielsen 2003], as implemented in Scala [Rompf et al. 2009].
In parallel to our work, which first appeared as tech report on arXiv [Wang et al. 2018b], Elliott
[2018] proposed a generalized view of AD based on the paradigm of łcompiling to categoriesž
[Elliott 2017]. The paper echoes our view of AD as a specific form of symbolic differentiation and
also mentions continuations for reverse AD, but overall it approaches the problem from a very
different categorical perspective. In comparison, our work proposes what we think is an łeven
simpler essencež of automatic differentiation. In particular, we show that continuations are central
to reverse-mode AD, but that category theory is optional. Focusing on continuations as the key
enabler makes reverse-mode AD (and hence gradient-descent optimization) immediately applicable
to basically any program, including in-graph recursion and higher-order functions.

7 CONCLUSIONS

With this paper, we set out to demystify automatic differentiation by examining it through the
lens of program transformation. We established a tight connection between reverse-mode AD and
delimited continuations. With the help of delimited continuation control operators, we provided
an implementation of reverse-mode AD using operator overloading that is no more complex than
forward-mode AD.
We further combined this formulation of AD with multi-stage programming (staging), which

leads to a highly efficient implementation that combines the performance benefits of deep learning
frameworks based on explicit reified computation graphs (e.g., TensorFlow) with the expressivity
of pure library approaches (e.g., PyTorch).

Based on these two ideas, we have built a deep learning framework named Lantern. With native
C++/CUDA backends, Lantern attains competitive performance for a variety of state-of-the-art
deep learning models, such as SqueezeNet, ResNet, DeepSpeech2, and TreeLSTM.
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