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relation that can be used to relate a program to its specification, or even calculate effectful programs that are
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1 INTRODUCTION

One of the key advantages of pure functional programming is compositionality. Pure programs
may be tested in isolation; referential transparencyÐthe ability to freely substitute equals for
equalsÐenables us to employ equational reasoning to prove two expressions equal [Wadler 1987].
This has resulted in a rich field of program calculation in the Bird-Meertens style [Bird 2010; Bird
and De Moor 1996], transforming an inefficient executable specification to an efficient alternative
implementation.

Many programs, however, are not pure, but instead rely on a variety of effects, such as mutable
state, exceptions, general recursion, or non-determinism. Unfortunately, it is less clear how to reason
about such impure programs in a compositional fashion, as we can no longer exploit referential
transparency to reason about subexpressions regardless of their context.

In recent years, algebraic effects have emerged as a technique to incorporate effectful operations
in a purely functional language [Plotkin and Power 2002; Pretnar 2010]. Algebraic effects clearly
separate the syntax of effectful operations and their semantics, described by effect handlers. In
contrast to monad transformers [Liang et al. 1995], different effects may be processed in any given
order using a series of handlers.
This paper defines a predicate transformer semantics for effectful programs, culminating in a

constructive framework for deriving verified effectful programs from their specifications, inspired
by existing work on program calculation in the refinement calculus [Back and von Wright 2012;
Morgan 1994]. We will briefly sketch the key techniques, before illustrating them with numerous
examples throughout the remainder of the paper.
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• The syntax of effectful computations may be represented by a free monad in type theory.
Assigning meaning to such free monads amounts to assigning meaning to the syntactic
operations each effect provides.

• In this paper, we show how to assign predicate transformer semantics to computations arising
from the Kleisli arrows on these free monads. This enables us to compute the weakest
precondition associated with a given postcondition. By defining these semantics as a fold
over the free monad, we can establish compositionality results, allowing us to decompose
the verification of a large program into smaller parts. These results hold for any semantics
defined as a fold, provided the predicate transformers are monotone.

• Using these weakest precondition semantics, we can define a notion of refinement on com-
putations. We show how to use this refinement relation to show a program satisfies its
specification, or indeed, calculate a program from its specification. By allowing specifications
to appear in the leaves of our free monad, we can mix operations and specifications, enabling
the step by step refinement of a specification to a complete program.

These principles are applicable to a range of different effects, including exceptions (Section 3),
state (Section 4), non-determinism (Section 5), and general recursion (Section 6). Each section is
illustrated with numerous examples, each selected for their portrayal of proof principles rather than
being formidable feats of formalisation. Besides relating effectful programs to their specification,
we show how programs and specifications may be mixed freely, allowing verified programs to be
calculated from their specification one step at a time (Section 7).
The definitions, examples, theorems and proofs presented in this paper have all been formally

verified in the dependently typed programming language Agda [Norell 2007], but the techniques
translate readily to other proof assistants based on dependent types such as Idris [Brady 2013a] or
Coq [Coq Development Team 2017].

2 BACKGROUND

2.1 Free Monads

We begin by defining a datatype for free monads in the style of Hancock and Setzer [2000a,b]:

data Free (C : Set) (R : C → Set) (a : Set) : Set where

Pure : a → Free C R a

Step : (c : C) → (R c → Free C R a) → Free C R a

You may want to think of C as being the type of commands. A computation described by the free
monad Free C R either returns a result of type a or issues a command c : C. For each c : C,
there is a set of responses R c. The second argument of the Step constructor corresponds to the
continuation, describing how to proceed after receiving a response of type R c. It is straightforward
to show that the Free C R datatype is indeed a monad:

map : (a → b) → Free C R a → Free C R b

map f (Pure x) = Pure (f x)

map f (Step c k) = Step c (λ r → map f (k r))

return : a → Free C R a

return = Pure

_>>=_ : Free C R a → (a → Free C R b) → Free C R b

Pure x >>= f = f x

Step c x >>= f = Step c (λ r → x r >>= f)
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The examples of effects studied in this paper will be phrased in terms of such free monads; each
effect, described in a separate section, chooses C and R differently, depending on its corresponding
operations. This choice of operationsÐas is usually the case for algebraic effectsÐdetermines a
syntax to which we must still assign semantics [Hyland et al. 2006].

2.2 Weakest Precondition Semantics

The idea of of associating weakest precondition semantics with imperative programs has a rich
history, dating back to Dijkstra’s Guarded Command Language [1975]. In this section, we recall the
key notions that we will use throughout the remainder of the paper.
There are many different ways to specify the behaviour of a function f : a → b. One might

provide a reference implementation, define a relation R : a → b → Set, or write contracts and
test cases. In this paper, we will, however, focus on predicate transformer semantics. Where these
predicate transformers traditionally relate the state space of an (imperative) program, they can be
readily adapted to the functional setting.
In general, we will refer to values of type a → Set as a predicate on the type a; predicate

transformers are functions between such predicates. The most famous example of a predicate
transformer is the weakest precondition, given by the function wp below:

wp : (f : a → b) → (b → Set) → (a → Set)

wp f P = λ x → P (f x)

The wp predicate transformer maps a function f : a → b and a desired postcondition on the
function’s output, b → Set, to the weakest precondition a → Set on the function’s input that
ensures the postcondition will be satisfied. Its definition, however, is simply (reverse) function
composition.
This notion of weakest precondition semantics is often too restrictive. In particular, there is no

way to specify that the output is related in a particular way to the input. This can be addressed
easily enough by allowing the function f to be dependent, yielding the following definition for
weakest preconditions:

wp : (f : (x : a) → b x) → ((x : a) → b x → Set) → (a → Set)

wp f P = λ x → P x (f x)

Although this type is a bit more complicated, wp f still maps a predicate to a predicateÐhence we
refer to it as a predicate transformer semantics for the function f.

When working with predicates and predicate transformers, we will sometimes use the following
shorthand notation:

_⊆_ : (a → Set) → (a → Set) → Set

P ⊆ Q = ∀ x → P x → Q x

Predicate transformer semantics give rise to a notion of refinement [Back and von Wright 2012;
Morgan 1994]:

_⊑_ : (pt1 pt2 : ((x : a) → b x → Set) → (a → Set)) → Set

pt1 ⊑ pt2 = ∀ P → pt1 P ⊆ pt2 P

This refinement relation is defined between predicate transformers. As we will assign predicate
transformer semantics to both programs and specifications, we can relate them using this refine-
ment relation. For example, we can use this refinement relation to show a program satisfies its
specification; or to show that one program is somehow ‘better’ than another, where the notion of
‘better’ arises from our choice of predicate transformer semantics.
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It is straightforward to show that this refinement relation is both transitive and reflexive:

⊑-trans : P ⊑ Q → Q ⊑ R → P ⊑ R

⊑-refl : P ⊑ P

In a pure setting, this refinement relation is not particularly interesting: the refinement relation
corresponds to extensional equality between functions. The following lemma follows from the
‘Leibniz rule’ for equality in intensional type theory:

refinement : ∀ (f g : a → b) →

(wp f ⊑ wp g) ↔ (∀ x → f x ≡ g x)

In the impure setting, however, we will use different notions of weakest precondition, which in
turn lead to different notions of refinement.

In the remainder of this paper, we will define predicate transformer semantics for Kleisli arrows
of the form a → Free C R b. While we could use the wp function to assign semantics to
these computations directly, we are typically not interested in syntactic equality between free
monadsÐbut rather want to study the semantics of the effectful programs they represent. To define
a predicate transformer semantics for effects we need to define a function of the following form:

pt : (a → Set) → (Free C R a → Set)

These functions show how to lift a predicate on the type a over an effectful computation returning
values of type a. The definition of pt depends very much on the semantics we wish to assign to the
effects of the free monad; the coming sections will give many examples of such semantics. Crucially,
the choice of pt and our weakest precondition semantics, wp, together give us a way to assign
weakest precondition semantics to Kleisli arrows representing effectful computations. Using these
semantics for effectful computations, we can then specify, verify, and calculate effectful programs.

3 PARTIALITY

We can define the datatype for Partial computations, corresponding to the Maybe monad, by
making the following choice for commands C and responses R in our Free datatype:

data C : Set where

Abort : C

R : C → Set

R Abort = ⊥

Partial : Set → Set

Partial = Free C R

There is a single command, Abort; there is no continuation after issuing this command, hence there
are no valid responses, as denoted by ⊥, the empty type. It is sometimes convenient to define a
smart constructor for failure:

abort : Partial a

abort = Step Abort (λ ())

A computation of type Partial a will either return a value of type a or fail, issuing the abort

command. Note that the responses to the Abort command are empty; the smart constructor abort
uses this to discharge the continuation in the second argument of the Step constructor. Such smart
constructors are sometimes referred to as generic effects in the algebraic effects literature [Plotkin
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and Power 2003]. With the syntax in place, we can turn our attention to verifying programs using
a suitable predicate transformer semantics.

3.1 Example: Division

We begin by defining a small expression language, closed under division and natural numbers:

data Expr : Set where

Val : Nat → Expr

Div : Expr → Expr → Expr

We can specify the semantics of this language using an inductively defined relation:

data _⇓_ : Expr → Nat → Set where

Base : Val x ⇓ x

Step : l ⇓ v1 → r ⇓ (Succ v2) → Div l r ⇓ (v1 div (Succ v2))

In this definition, we rule out erroneous results by requiring that the divisor always evaluates to a
non-zero value.
Alternatively we can evaluate expressions by defining a monadic interpreter, using the Partial

monad to handle division-by-zero errors:

J_K : Expr → Partial Nat

J Val x K = return x

J Div e1 e2 K = J e1 K >>= λ v1 →

J e2 K >>= λ v2 →

v1 ÷ v2

This interpreter uses the following division operator that may fail when the divisor is Zero:

_÷_ : Nat → Nat → Partial Nat

n ÷ Zero = abort

n ÷ (Succ k) = return (n div (Succ k))

The division operator from the standard library (div) requires an implicit proof that the divisor is
non-zero. In the case when the divisor is Zero, we fail explicitly using abort.
How can we relate these two definitions? We can assign a weakest precondition semantics to

Kleisli arrows of the form a → Partial b as follows:

wpPartial : (f : (x : a) → Partial (b x)) → (P : (x : a) → b x → Set) → (a → Set)

wpPartial f P = wp f (mustPT P)

where

mustPT : (P : (x : a) → b x → Set) → (x : a) → Partial (b x) → Set

mustPT P (Pure y) = P y

mustPT P (Step Abort ) = ⊥

To call the wp function we defined previously, we need to show how to transform a predicate
P : b → Set to a predicate on partial results, Partial b → Set. To do so, we define the
auxiliary function mustPT; the proposition mustPT P c holds when a computation c of type
Partial b successfully returns a value of type b that satisfies P. The predicate transformer semantics
we wish to assign to partial computations is determined by how we define mustPT. In this case,
we wish to rule out failure entirely; hence the case for the Abort constructor returns the empty
type. Alternatively, we could consider a different semantics for partiality, such as requiring that
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computations fail or return a result satisfying some desired property. As we shall see in the rest of
this paper, there is often some freedom to choose different semantics for a single effect.
Now that we have a predicate transformer semantics for Kleisli arrows in general, we can

study the semantics of our monadic interpreter. To do so, we pass the interpreter, J_K, and desired
postcondition, _⇓_, as arguments to wpPartial:

wpPartial J_K _⇓_ : Expr → Set

This results in a predicate on expressions. For all expressions satisfying this predicate, we know that
the monadic interpreter and the relational specification, _⇓_, must agree on the result of evaluation.

But what does this tell us about the correctness of our interpreter? To understand the resulting
predicate better, we might consider manually defining our own predicate on expressions:

SafeDiv : Expr → Set

SafeDiv (Val x) = ⊤

SafeDiv (Div e1 e2) = (e2 ⇓ Zero → ⊥) ∧ SafeDiv e1 ∧ SafeDiv e2

We would expect that any expression e for which SafeDiv e holds can be evaluated without
encountering a division-by-zero error. Indeed, we can prove that SafeDiv is a sufficient condition
for our two notions of evaluation to coincide:

correct : SafeDiv ⊆ wpPartial J_K _⇓_

This lemma relates the two semantics, expressed as a relation and an evaluator, for those expressions
that satisfy the SafeDiv property.

We may not want to define predicates such as SafeDiv ourselves. Instead, we can define the more
general predicate characterising the domain of a partial function:

dom : ((x : a) → Partial (b x)) → (a → Set)

dom f = wpPartial f (λ → ⊤)

Once again, we can show that the two semantics agree precisely on the domain of the interpreter.

sound : dom J_K ⊆ wpPartial J_K _⇓_

complete : wpPartial J_K _⇓_ ⊆ dom J_K

Both proofs proceed by induction on the argument expression; despite the necessity of a handful of
auxiliary lemmas, they are fairly straightforward.

3.2 Refinement

The weakest precondition semantics on partial computations defined above give rise to a refinement
relation on Kleisli arrows of the form a → Partial b. We can characterise this relation by proving
the following lemma:

refinement : (f g : a → Partial b) →

(wpPartial f ⊑ wpPartial g) ↔ (∀ x → (f x ≡ g x) ∨ (f x ≡ abort))

Why care about this refinement relation? Not only can we use it to relate Kleisli morphisms, but
it can also relate a program to a specification given by a pre- and postcondition, as we shall see
shortly.
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3.3 Example: Add

Suppose we are writing an interpreter for a simple stack machine. To interpret the ADD instruction,
we replace the top two elements of the stack with their sum; this may fail if the stack has too few
elements. This section shows how to prove that the obvious definition meets its specification.
We begin by defining a notion of specification in terms of a pre- and postcondition. In general,

the specification of a function of type (x : a) → b x consists of a precondition on a and a
postcondition relating inputs that satisfy this precondition and the corresponding outputs:

record Spec (a : Set) (b : a → Set) : Set where

constructor [_,_]

field

pre : a → Set

post : (x : a) → b x → Set

As is common in the refinement calculus literature, we will write [ P , Q ] for the specification
consisting of the precondition P and postcondition Q. In many of our examples, the type b does
not depend on x : a, motivating the following type synonym:

SpecK : Set → Set → Set

SpecK a b = Spec a (K b)

This definition uses the combinator K to discard the unused argument of type a.
Using this definition, we can define the following specification for our addition function:

data Add : List Nat → List Nat → Set where

AddStep : Add (x1 :: x2 :: xs) ((x1 + x2) :: xs)

addSpec : SpecK (List Nat) (List Nat)

addSpec = [ (λ xs → length xs > 1) , Add ]

That is, provided we are given a list with at least two elements, we should replace the top two
elements with their sum. Here we describe the desired postcondition by introducing a new datatype,
Add, relating the input and output stacks.

How can we relate this specification to an implementation? We have seen how the wpPartial
function assigns predicate transformer semantics to functionsÐbut we do not yet have a correspond-
ing predicate transformer semantics for our specifications. The wpSpec function does precisely
this:

wpSpec : Spec a b → (P : (x : a) → b x → Set) → (a → Set)

wpSpec [ pre , post ] P = λ x → (pre x) ∧ (post x ⊆ P x)

Given a specification, Spec a b, the wpSpec function computes the weakest precondition necessary
to satisfy an arbitrary postcondition P: namely, the specification’s precondition should hold and its
postcondition must imply P.
Using this definition we can precisely formulate the problem at hand: can we find a program

add : List Nat → Partial (List Nat) that refines the specification given by addSpec:

correctness : wpSpec addSpec ⊑ wpPartial add

Defining such a program and verifying its correctness is entirely straightforward:

pop : List a → Partial (a × List a)

pop Nil = abort

pop (x :: xs) = return (x , xs)

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 103. Publication date: August 2019.



103:8 Wouter Swierstra and Tim Baanen

add : List Nat → Partial (List Nat)

add xs =

pop xs >>= λ {(x1 , xs) →

pop xs >>= λ {(x2 , xs) →

return ((x1 + x2) :: xs)} }

We include this example here to illustrate how to use the refinement relation to relate a specification,
given in terms of a pre- and postcondition, to its implementation. When compared to the refinement
calculus, however, we have not yet described how to mix code and specificationsÐa point we will
return to later (Section 7). Before doing so, however, we will explore several other effects, their
semantics in terms of predicate transformers, and the refinement relation that arises from these
semantics.

3.4 Alternative Semantics

The predicate transformers arising from the wpPartial function are not the only possible choice of
semantics. In particular, sometimes we may use the Abort command to ‘short-circuit’ a computa-
tion and handle the corresponding exception. This section explores how to adapt our definitions
accordingly.
Suppose we have a function that computes the product of the numbers stored in a list:

product : List Nat → Nat

product = foldr _*_ 1

If this list contains a zero, we can short circuit the computation and return zero immediately. To do
so, we define the following computation:

fastProduct : List Nat → Partial Nat

fastProduct Nil = return 1

fastProduct (Zero :: xs) = abort

fastProduct (k :: xs) = map (_*_ k) (fastProduct xs)

To run this computation, we provide a handler that maps abort to some default value.

defaultHandler : a → Partial a → a

defaultHandler (Pure x) = x

defaultHandler d (Step Abort ) = d

Now the question arises how to assign a suitable predicate transformer semantics to the
fastProduct function. We could choose to use the wpPartial function we defined previously; doing
so, however, would require the input list to not contain any zeros. It is clear that we want to assign
a different semantics to our aborting computations. To do so, we provide the following wpDefault
function that requires the desired postcondition P holds of the default value when the computation
aborts:

wpDefault : (d : b) → (f : a → Partial b) → (P : a → b → Set) → (a → Set)

wpDefault d f P = wp f defaultPT

where

defaultPT : (x : a) → Partial b → Set

defaultPT x (Pure y) = P x y

defaultPT x (Step Abort ) = P x d
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The wpDefault function computes some predicate on the function’s input. But how do we know
that this predicate is meaningful in any way? We could compute simply return a trivial predicate
that is always holds. To relate the predicate transformer semantics to the defaultHandler we need
to prove the following soundness result:

soundness : (P : a → b → Set) → (d : b) → (c : a → Partial b) →

∀ x → wpDefault d c P x → P x (defaultHandler d (c x))

Put simply, this soundness result ensures that whenever the precondition computed by wpDefault

holds, the output returned by running the defaultHandler satisfies the desired postcondition.
Now we can finally use our refinement relation to relate the fastProduct function to the original

product function:

correctness : wp product ⊑ wpDefault 0 fastProduct

This example shows how to prove soundness of our predicate transformer semantics with
respect to a given handler. The predicate transformers, such as wpDefault and wpPartial, return
some predicate; by proving such soundness results, we can ensure that the semantics is meaningful.
Furthermore, this example shows how different choices of handler may exist for the same effectÐa
point we shall return to when discussing non-determinism (Section 5).

4 MUTABLE STATE

In this section, we will explore how to develop similar predicate transformer semantics for mutable
state, giving rise to a familiar Hoare logic. In what follows, we will assume a fixed type s : Set,
representing the type of the state. As before, we can define the desired free monad in terms of
commands C and responses R:

data C : Set where

Get : C
Put : s → C

R : C → Set

R Get = s

R (Put ) = ⊤

State : Set → Set

State = Free C R

To facilitate writing stateful computations, we can define a pair of smart constructors:

get : State s
get = Step Get return

put : s → State ⊤

put s = Step (Put s) (\_ → return tt)

The usual handler for stateful computations maps our free monad, State s, to the state monad:

run : State a → s → a × s

run (Pure x) s = (x , s)

run (Step Get k) s = run (k s) s

run (Step (Put s) k) = run (k tt) s
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Inspired by the previous section, we can define the following predicate transformer that for every
stateful computation of type State b, maps a postcondition on b × s to the required precondition
on the initial state of type s:

statePT : (b × s → Set) → State b → (s → Set)

statePT P (Pure x) = λ s → P (x , s)

statePT P (Step Get k) = λ s → statePT P (k s) s

statePT P (Step (Put s) k) = λ → statePT P (k tt) s

We can generalise this predicate transformer slightly. As we saw before, we sometimes describe
postconditions as a relation between inputs and outputs. In the case for stateful computations, this
amounts to allowing the postcondition to also refer to the initial state:

statePT′ : (s → b × s → Set) → State b → (s → Set)

statePT′ P c i = statePT (P i) c i

In the remainder of this section, we will overload the variable name statePT to refer to both
variations of the same function; the context should disambiguate the version being used.

Finally, we can define a weakest precondition semantics for Kleisli morphisms of the form
a → State b:

wpState : (a → State b) → (P : a × s → b × s → Set) → (a × s → Set)

wpState f P (x , i) = wp f (λ c → statePT (λ j → P (x , j)) c i) x

Given any predicate P relating the input, initial state, final state and result of the computation,
the wpState function computes the weakest precondition required of the input and initial state to
ensure P holds upon completing the computation. The definition amounts to composing the wp
and statePT functions we have seen previously. As we did in the previous section for wpDefault,
we can prove soundness of this semantics with respect to the run function:

soundness : (P : a × s → b × s → Set) → (f : a → State b) →

∀ i x → wpState f P (x , i) → P (x , i) (run (f x) i)

4.1 Example: Tree Labelling

To show how to reason about stateful programs using our weakest precondition semantics, we
revisit a classic verification problem proposed by Hutton and Fulger [2008]: given a binary tree as
input, relabel this tree so that each leaf has a unique number associated with it. A typical solution
uses the state monad to keep track of the next unused label. The challenge that Hutton and Fulger
pose is to reason about the program, without expanding the definition of the monadic operations.
We begin by defining the type of binary trees:

data Tree (a : Set) : Set where

Leaf : a → Tree a

Node : Tree a → Tree a → Tree a

One obvious choice of specification might be the following:

relabelSpec : SpecK (Tree a × Nat) (Tree Nat × Nat)

relabelSpec = [ K ⊤ , relabelPost ]

where

relabelPost : Tree a × Nat → Tree Nat × Nat → Set

relabelPost (t , s) (t’ , s’) = (flatten t’ ≡ [s . . . s + size t]) ∧ (s + size t ≡ s’)
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The precondition of this specification is trivially true regardless of the input tree and initial state;
the postcondition consists of a conjunction of two auxiliary statements: first, flattening the resulting
tree t’ produces the sequence of numbers from s to s + size t, where t is the initial input tree;
furthermore, the output state s’ should be precisely size t larger than the input state s. Note that
our size function only counts the number of leaves, as these are only of interest for relabelling.
We can now define the obvious relabelling function as follows:

relabel : Tree a → State (Tree Nat)

relabel (Leaf x) = map Leaf fresh

relabel (Node l r) =

relabel l >>= λ l’ →

relabel r >>= λ r’ →

return (Node l’ r’)

Here the auxiliary function fresh increments the current state and returns its value.
Next, we would like to show that this definition satisfies the intended specification. To do so, we

can use our wpState function to compute the weakest precondition semantics of the relabelling
function and formulate the desired correctness property:

correctness : wpSpec relabelSpec ⊑ wpState relabel

The proof is interesting. Initially, it proceeds by induction on the input tree. The base case for the
Leaf constructor is easy enough to discharge; the inductive case, however, poses a greater challenge.
In particular, we assume that the wpSpec relabelSpec P holds for some arbitrary predicate P; the
goal we wish to prove in the case for the Node constructor amounts to proving the following
statement:

statePT (P (Node l r , i)) (relabel l >>= (λ l’ → relabel r >>= (λ r’ → Pure (Node l’ r’)))) i

At first glance, it is not at all obvious how to use our induction hypothesis! Although we can use
our induction hypothesis to show P holds for l and rÐit is not clear how to use this information to
prove the above goal, without knowing anything further about P.

4.2 Compositionality

To complete the proof, we need an auxiliary lemma that enables us to prove a property of a
composite computation, c >>= f, in terms of the semantics of c and f:

compositionality : (c : State a) (f : a → State b) →

∀ i P → statePT P (c >>= f) i ≡ statePT (wpState f P) c i

Most predicate transformer semantics of imperative languages have a similar rule, mapping se-
quential composition of programs to the composition of their associated predicate transformers:

wp (c1; c2, R) = wp (c1, wp (c2, R))

By defining semantics for Kleisli morphisms, wpState, in terms of the predicate transformer
semantics of computations, statePT, we can prove this analogous result. The proof, by induction
on the stateful computation c, is trivial.
Using this compositionality property, we can massage the proof obligation of our correctness

lemma to the point wherewe can indeed apply our induction hypotheses and complete the remaining
proof obligations.
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At this point, it is worth pointing out that this compositionality property does not hold exclusively
for stateful computations. In fact, we can prove a more general result that holds for any predicate
transformer semantics pt defined as a fold over the free monad:

compositionality : (c : Free C R a) (f : a → Free C R b) →

∀ P → pt (c >>= f) P ≡ pt c (wp f P)

Note that this proof requires that the semantics of Kleisli morphisms, wp, is defined in terms of the
predicate transformer pt. If we restrict ourselves to Kleisli arrows, however, we can formulate similar
properties even more succinctly. First, we can define the usual composition of Kleisli morphisms as
follows:

_>=>_ : (a → Free C R b) → (b → Free C R c) → a → Free C R c

f >=> g = λ x → f x >>= g

Using this composition operator, we can show that for any compositional predicate transformer
semantics, the following property holds:

compositionality-left : (f1 f2 : a → Free C R b) (g : b → Free C R c) →

wp f1 ⊑ wp f2 →

wp (f1 >=> g) ⊑ wp (f2 >=> g)

This is a central result of our developmentÐit shows how the compositionality of any weakest pre-
condition semantics is respected when considering refinement proofs. These results establish that
these predicate transformers form an ordered monad [Katsumata and Sato 2013]. Just as referential
transparency guarantees that pure expressions may be substituted freely during equational reason-
ing, this lemma guarantees that predicate transformers may be substituted freely during refinement
proofs. It is worth repeating that this lemma holds for any predicate transformer semantics defined
as a fold over a free monad.

A similar property also holds when considering refinements on the second argument of a Kleisli
composition.

compositionality-right : (f : a → Free C R b) (g1 g2 : b → Free C R c) →

wp g1 ⊑ wp g2 →

wp (f >=> g1) ⊑ wp (f >=> g2)

This second property, however, only holds under the assumption that the predicate transformers
computed over a free monad are monotone, that is to say, the function pt satisfies the following
property:

monotonicity : P ⊆ Q → (c : Free C R a) → pt c P → pt c Q

This monotonicity property holds of all the predicate transformers presented in this paper and is
straightforward to prove for all of them.

4.3 Rule of Consequence

This example illustrates how reasoning about programswritten using the statemonad give rise to the
typical pre- and postcondition reasoning found in the verification of imperative programs. Indeed,
we can also show that the familiar laws for the weakening of preconditions and strengthening of
postconditions also hold:

weakenPre : (P ⊆ P’) → (wpSpec [ P , Q ] ⊑ wpSpec [ P’ , Q ])

strengthenPost : (∀ (x : a) → Q’ x ⊆ Q x) → (wpSpec [ P , Q ] ⊑ wpSpec [ P , Q’ ])
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Such laws are particularly useful when ‘bookkeeping’ large proof obligations that can sometimes
arise during program verification.

4.4 Equations

Typically the intended semantics of algebraic effects is given by means of equations, identifying
syntactically different terms. Indeed, the genesis of algebraic effects can be found in the work by
Plotkin and Power [2002], that identified a handful of equations on relating get and put opera-
tions that completely determined the state monad. How do these equations relate to the weakest
precondition semantics presented here?
Firstly, we can define the following equivalence relation between stateful computations:

_≃_ : State b → State b → Set

t1 ≃ t2 = (wpState t1 ⊑ wpState t2) ∧ (wpState t2 ⊑ wpState t1)

where

wpState : State b → (P : s → b × s → Set) → (s → Set)

Here we define a degenerate instance of the previous wpState function that works on terms of type
State b rather than Kleisli arrows a → State b. To do so, we simply call the previous semantics,
instantiating the type variable a to the unit type.
To establish that an equation between two terms t1 and t2 holds with respect to the wpState

semantics, amounts to proving that t1 ≃ t2. For example, the following four laws follow immediately
from our definitions for all k, x, and y:

law1 : k ≃ (get >>= λ s → put s >> k)

law2 : (get >>= λ s1 → get >>= λ s2 → k s1 s2) ≃ (get >>= λ s → k s s)

law3 : (put y >> (put x >> k)) ≃ (put x >> k)

law4 : (put x >> (get >>= k)) ≃ (put x >> k x)

More generally, we can use such an equivalence relation to verify that the predicate transformer
semantics respect a set of equations that are expected to hold for a given algebraic effect.

5 NON-DETERMINISM

Can we repeat this construction of predicate transformer semantics for other effects? In this
section, we will show how we can define a weakest precondition semantics for non-deterministic
computations. Once again, we begin by defining a free monad describing the effects that can be
used to describe such computations:

data C : Set where

Fail : C
Choice : C

R : C → Set

R Fail = ⊥

R Choice = Bool

Here we have chosen to define two possible commands: Fail and Choice. The Fail constructor
corresponds to a non-deterministic computation that will not return any results; conceptually, the
Choice constructor takes two arguments and non-deterministically chooses between them. To
model this, the response used in the continuation of the free monad, R Choice, is a Bool, indicating
which argument to choose. We can make this more clear by defining the following shorthands for
non-deterministic computations, ND, and its constructors.
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ND : Set → Set

ND = Free C R

fail : ND a

fail = Step Fail (λ ())

choice : ND a → ND a → ND a

choice c1 c2 = Step Choice (λ b → if b then c1 else c2)

Next, we turn our attention to defining a suitable predicate transformer semantics on Kleisli arrows
of the form (x : a) → ND (b x). There are two canonical ways to do so:

allPT : (P : (x : a) → b x → Set) → (x : a) → ND (b x) → Set

allPT P (Pure x) = P x

allPT P (Step Fail k) = ⊤

allPT P (Step Choice k) = allPT P (k True) ∧ allPT P (k False)

wpAll : ((x : a) → ND (b x)) → (P : (x : a) → b x → Set) → (a → Set)

wpAll f P = wp f (allPT P)

anyPT : (P : (x : a) → b x → Set) → (x : a) → ND (b x) → Set

anyPT P (Pure x) = P x

anyPT P (Step Fail k) = ⊥

anyPT P (Step Choice k) = anyPT P (k True) ∨ anyPT P (k False)

wpAny : ((x : a) → ND (b x)) → (P : (x : a) → b x → Set) → (a → Set)

wpAny f P = wp f (anyPT P)

These two predicate transformers are dual: allPT P holds for a non-deterministic computation
precisely when all possible results satisfy P; anyPt P holds for a non-deterministic computation
precisely when some possible result satisfies P. As we saw for other effects, we can relate both
these predicates to the usual ‘list handler’ for non-determinism.

run : ND a → List a

run (Pure x) = [ x ]

run (Step Fail ) = Nil

run (Step Choice k) = run (k True) ++ run (k False)

Finally, we can prove that our predicate transformers are sound with respect to this semantics. In
the case for the wpAll function, for example, this boils down to showing:

wpAllSoundness : (f : (x : a) → ND (b x)) →

∀ P x → wpAll f P x → All (P x) (run (f x))

The predicate All P xs holds whenever the predicate P holds for all the elements of the list xs.

5.1 Refinement

These two predicate transformer semantics give rise to two different refinement relations. To
characterise both these refinement relations, we begin by defining the Elem relation below, that
states that a given value may be returned by a non-deterministic computation:

data Elem (x : a) : ND a → Set where

Here : Elem x (Pure x)

Left : Elem x (k True) → Elem x (Step Choice k)

Right : Elem x (k False) → Elem x (Step Choice k)
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We can extend this relation to define a ‘subset’ relation on non-deterministic computations:

_⊆_ : ND a → ND a → Set

nd1 ⊆ nd2 = ∀ x → Elem x nd1 → Elem x nd2

With these relations in place, we can give the following characterisation of the refinement relation
induced by both the wpAll and wpAny predicate transformers:

refineAll : (f g : a → ND b) → (wpAll f ⊑ wpAll g) ↔ ((x : a) → g x ⊆ f x)

refineAny : (f g : a → ND b) → (wpAny f ⊑ wpAny g) ↔ ((x : a) → f x ⊆ g x)

Interestingly, the case for the wpAny predicate flips the subset relation. Intuitively, if you know that
a predicate P holds for some element returned by a non-deterministic computation, it is even ‘better’
to know that P holds for a non-deterministic computation that returns fewer possible results.

5.2 Example: Non-deterministic Deletion

To illustrate how to reason about such non-deterministic computations, we will define a function
that non-deterministically removes a single element from an input list, returning both the element
removed and the remaining list. Such a function can typically be used to non-deterministically
inspect the elements of an input list one-by-one.
Once again, we begin by defining the specification of our function:

selectPost : List a → a × List a → Set

selectPost xs (y , ys) = Σ (y ∈ xs) (λ e → delete xs e ≡ ys)

removeSpec : SpecK (List a) (a × List a)

removeSpec = [ K ⊤ , selectPost ]

The precondition holds trivially; the postcondition consists of two parts, paired together using a
Σ-type. The first component of the postcondition states that the element returned, y, is an element
of the input list xs. Here we use the _∈_ relation characterising the elements of a list from the
standard library. The second component of the postcondition states that removing this element
from the input list produces the output list. Here we use an auxiliary function, delete, that removes
an existing element from a list:

delete : (xs : List a) → x ∈ xs → List a

The definition recurses over the proof of x ∈ xs, reconstructing the output list along the way.
With the specification in place, we can define the following function that draws an element from

its input list non-deterministically.

remove : List a → ND (a × List a)

remove Nil = fail

remove (x :: xs) = choice (return (x , xs)) (map (retain x) (remove xs))

where

retain : a → a × List a → a × List a

retain x (y , ys) = (y , (x :: ys))

Verifying the correctness of this function amounts to proving the following lemma:

removeCorrect : wpSpec removeSpec ⊑ wpAll remove

Note that this correctness property merely states that all the pairs returned by remove satisfy the
desired postcondition. It does not require that all possible decompositions of the input list also
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occur as possible results of the remove function. There is a trivial proof that the fail computation
also satisfies this specification:

trivialCorrect : wpSpec removeSpec ⊑ wpAll (const fail)

In other words, the lemma removeCorrect guarantees the soundness, but not the completeness of
our non-deterministic computation.
We can address this by proving an additional lemma, stating that the remove function returns

every possible list decomposition:

completeness : (y : a) (xs ys : List a) → selectPost xs (y , ys) → Elem (y , ys) (remove xs)

The proof proceeds by induction on the first component of the postcondition, y ∈ xs.

6 GENERAL RECURSION

Giving a constructive semantics for general recursion may seem quite difficult at first glance. There
are a variety of techniques that account for general recursion in type theory [Bove et al. 2016].
Inspired by McBride [2015], however, we show how the call graph of a recursive function can be
described as a free monad, to which we can in turn assign predicate transformer semantics.
Suppose we wish to define a recursive function of type (i : I) → O i, for some input type

I : Set and output type O : I → Set. If the recursion is structural, we typically do so by induction
on the argument of type I. If it is not, we may still want to describe the intended function and its
behaviourÐdeferring any proof of termination for the moment. We can describe such functions as
follows:

_ ↬ _ : (I : Set) (O : I → Set) → Set

I ↬ O = (i : I) → Free I O (O i)

Once again, we have a Kleisli arrow on the Free monad. The choice of ‘commands’ and ‘responses’,
however, are somewhat puzzling at first. The intuition is that the ‘effect’ we are allowed to use
amounts to consulting an oracle, that given an input j : I returns the corresponding output in O j.
A Kleisli arrow of the form I ↬ O takes an input i : I and may make any number of recursive
calls, before returning a value in O i.

As before, we define a smart constructor to make such calls:

call : (i : I) → Free I O (O i)

call x = Step x Pure

Note that we do not define recursive functionsÐbut rather define an explicit representation of the
call graph of the function we wish to define. This gives a finite representation of the recursive
structure of our program.
To illustrate this point, we can define McCarthy’s 91-function. The recursive structure of this

function is notoriously difficult to express in a total language such as Agda:

f91 : Nat ↬ K Nat

f91 i with 100 lt i

f91 i | yes = return (i - 10)

f91 i | no = call (i + 11) >>= call

This definition is not recursive, but merely makes the recursive structure of the function body,
f91 (f91 (i + 11)), explicit. The first call corresponds to the inner application f91 (i + 11); the result
of this is fed to the second call, corresponding to the outer application.
How can we reason about such functions? As is customary in the literature on predicate trans-

former semantics, we distinguish between total correctness and partial correctness. For the moment,
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wewill only concern ourselves with proving partial correctness of our programs: provided a program
terminates, it should produce the right result.
To prove partial correctness of the f91 function, we define the following specification:

f91Post : Nat → Nat → Set

f91Post i o with 100 lt i

f91Post i o | yes = o ≡ i - 10

f91Post i o | no = o ≡ 91

f91Spec : SpecK Nat Nat

f91Spec = [ K ⊤ , f91Post ]

Although we cannot directly run ‘recursive’ functions defined in this style, such as the f91

function, we can reason about their correctness. To do so, we would like to show that a Kleisli
arrow I ↬ O satisfies some specification of type Spec I O. To achieve this, we begin by defining
an auxiliary function, invariant, that asserts that a given call-graph Free I O (O i) respects the
invariant arising from a given specification:

invariant : (i : I) → Spec I O → Free I O (O i) → Set

invariant i [ pre , post ] (Pure x) = pre i → post i x

invariant i [ pre , post ] (Step j k) = (pre i → pre j)

∧ ∀ o → post j o → invariant i [ pre , post ] (k o)

If there are no recursive calls, the postcondition must hold, provided the precondition does. If
there is a recursive call on the argument j : I, the precondition must hold for j, assuming it holds
initially for i. Furthermore, for any for result o : O j satisfying the postcondition, the remaining
continuation k o must continue to satisfy the desired specification.

Using this definition, we can now formulate a predicate transformer semantics for Kleisli arrows
of the form I ↬ O.

wpRec : Spec I O → (f : I ↬ O) → (P : (i : I) → O i → Set) → (I → Set)

wpRec spec f P i = wpSpec spec P i ∧ invariant i spec (f i)

In contrast to the semantics we have seen so far, the wpRec function requires a specification as
argument to determine a semantics of a computation. This is analogous to how imperative programs
require an explicit loop invariant: assigning semantics to recursive functions requires an explicit
specification. The predicate transformer semantics wpRec states that this specification is indeed
satisfied if any recursive call respects the corresponding invariant.

Using the wpRec function, we can formulate the partial correctness of the f91 function as follows.

f91Partial-correctness : wpSpec f91Spec ⊑ wpRec f91Spec f91

The proof mimics the definition of the f91 function. After comparing the input i to 100, the base
case follows immediately. The recursive case, however, requires various auxiliary lemmas stating
properties of subtraction.

What do we know about the soundness of wpRec? The semantics compute some predicate on the
input I, but we would like to have some guarantee that this predicate is meaningful. Unfortunately,
there is no way to run arbitrary recursive functions without compromising the soundness of Agda’s
type system. There are, however, a variety of techniques to guarantee the termination of recursive
functions such as: bounding the number of iterations, generating a coinductive trace, adding a
coinductive fixpoint operator [Capretta 2005], proving the recursive calls are well-founded, or
performing induction on an auxiliary data structure [Bove and Capretta 2005].
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We can prove a simple soundness result in terms of the ‘petrol-driven semantics’ that runs a
computation for a fixed number of steps.

petrol : (f : I ↬ O) → Free I O a → Nat → Partial a

petrol f (Pure x) n = return x

petrol f (Step ) Zero = abort

petrol f (Step c k) (Succ n) = petrol f (f c >>= k) n

The last case is the only interesting one: it unfolds the function f once, decrementing the number
of steps remaining. We would like to use this semantics, to formulate and prove the soundness of
wpRec. There is one problem: the petrol function may fail to return a result and abort. Fortunately,
we can define yet another predicate transformer semantics for partial computations:

mayPT : (a → Set) → (Partial a → Set)

mayPT P (Pure x) = P x

mayPT P (Step Abort ) = ⊤

With these definitions in place, we can finally formulate and prove a soundness result regarding
our wpRec semantics:

soundness : (f : I ↬ O) (spec : Spec I O) (P : (i : I) → O i → Set) →

(∀ i → wpRec spec f P i) → ∀ n i → mayPT (P i) (petrol f (f i) n)

This lemma guarantees thatÐunder the assumption that wpRec holds for all inputsÐwhenever
the petrol-driven semantics manages to produce a result, this result is guaranteed to satisfy the
predicate P. We could show similar soundness results for the other handlers that McBride [2015]
proposes for general recursion; this soundness result, however, provides at least some evidence
that the predicate transformer semantics for recursion, wpRec, is correct.

7 STEPWISE REFINEMENT

In the examples we have seen so far, we have related a complete program to its specification. Most
work on the refinement calculus, however, allows programs and specifications to mix freely, thereby
enabling the step-by-step refinement of a specification into an executable program. How can we
support this style of program calculation using the predicate transformer semantics we have seen
so far?
Until now we have concerned ourselves with free monads of the form Free C R a and the

Kleisli arrows that produce them. Such free monads give a structured representation of a series of
interactions, (potentially) ending in a value of type a. By varying this information stored in the
leaves of the free monad, we can mix unfinished specifications and program fragments.
To this end, we begin by defining the following shorthand for specifications on values, rather

than the specifications on (Kleisli) arrows we have considered previously:

SpecVal : Set → Set

SpecVal a = SpecK ⊤ a

These specifications consist of a precondition of type Set and a predicate a → Set. Next, we can
define the datatype I a, corresponding to either a specification on a or a value of type a.

data I (a : Set) : Set where

Done : a → I a

Hole : SpecVal a → I a
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Here we use the Hole constructor to store a specification, corresponding to some unfinished part
of the program being calculated. We can assign a predicate transformer semantics to values of type
I a easily enough, reusing our previous wpSpec function:

ptI : I a → (a → Set) → Set

ptI (Done x) P = P x

ptI (Hole spec) P = wpSpec spec P tt

Furthermore, given the commandsC and responses R that determine the operations of a free monad,
we can define the following datatype for partially finished programs:

M : Set → Set

M a = Free C R (I a)

The typeM a describes computations thatmix code and specifications. A value of typeM a consists
of a number of operations, given by the Step constructor of the Free C R type constructor; in
contrast to free monads we have seen so far, however, the leaves contain either values of type a or
specifications, representing unfinished parts of the program’s derivation.

In what follows, we will be careful to distinguish executable codeÐthat is programs without spec-
ification fragmentsÐfrom programs, that may still contain specifications. The following predicate
characterises the executable fragment of M a:

isExecutable : M a → Set

isExecutable (Pure (Done )) = ⊤

isExecutable (Pure (Hole )) = ⊥

isExecutable (Step c k) = ∀ r → isExecutable (k r)

Although we have defined the syntactic structure of our mixed computations, M a, we have not
yet given their semantics. We can reuse the notion of weakest precondition on I to define a notion
of weakest precondition for the computations in M. To do so, however, we need to assume that we
have some weakest precondition semantics for Kleisli morphisms:

wp : ((x : a) → Free C R (b x)) → ((x : a) → b x → Set) → (a → Set)

We have seen many examples of such semantics in the previous sections for specific choices of C
and R. We can now assign semantics to ‘unfinished’ programs as follows:

wpM : ((x : a) → M (b x)) → ((x : a) → b x → Set) → (a → Set)

wpM f P x = wp f (λ x ix → ptI ix (P x)) x

The crucial step here is to transform the argument predicate P to work on specifications or values
of type I a, using the ptI function defined above.

7.1 Defining Derivations

The wpM function assigns a predicate transformer semantics to unfinished programs, where the
leaves of a free monad may consist of values or specifications. We can use this semantics to derive
a program from its specification in series of refinement steps. A program derivation consists of a
series of refinement steps from some initial specification:

wpSpec spec ⊑ wpM i1 ⊑ wpM i2 ⊑ ... ⊑ wp c
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Here the intermediate steps (i1, i2, and so forth) may mix specifications and effectful computations;
the final program, c, must be executable.

Before calculating an example program in this style, we will develop a handful of auxiliary defi-
nitions, specialised to the stateful computations described in Section 4; it should be straightforward
to adapt the definitions to work for other effects. In what should be a familiar pattern, we begin by
defining a handful of smart constructors:

done : a → M a

get : M Nat

put : Nat → M ⊤

Note that these smart constructors now produce computations inM, mixing effects and spec-
ifications, rather than the free monad, State, we saw previously. We can define the following
postconditions characterising get and put:

getPost : Nat → Nat × Nat → Set

getPost t (x , t’) = (t ≡ x) ∧ (t ≡ t’)

putPost : Nat → Nat → ⊤ × Nat → Set

putPost t ( , t’) = t ≡ t’

As you would expect, these postconditions state that get returns the current state but does not
modify it; the put command overwrites the current state. We can prove that get and put commands
satisfy these postconditions using our wpM semantics:

getCorrect : ∀ pre → wpSpec [ pre , (λ i o → pre i ∧ getPost i o) ] ⊑ ptM get

putCorrect : ∀ pre x → wpSpec [ pre , (λ i o → pre i ∧ putPost x i o) ] ⊑ ptM (put x)

While we will not use these properties in the remainder of our calculation directly, they form an
important sanity check, guaranteeing that the specifications we have chosen for get and put are
correct.

To derive a program from its specification, we will perform a series of refinement steps. While we
could use the transitivity of the refinement relation to chain together various intermediate programs
explicitly, we take a slightly different approach. Each refinement step is allowed to introduce a
single new command of type C, thereby changing the remaining refinement problem. We can try
to make this manifest in the following (incomplete) datatype:

data Derivation (spec : SpecVal b) : Set where

Done : (x : b) → wpSpec spec ⊑ ptM (done x) → Derivation spec

Step : (c : C) → (∀ (r : R c) → Derivation ...) → Derivation spec

A value of typeDerivation spec describes a series of refinement steps, yielding a value satisfying the
desired specification. In the base case, the derivation is done and returns a value x : b that satisfies
the desired specification; otherwise, we perform the command c and continue the remainder of the
program derivationÐ but how does introducing the command c modify the remaining specification
problem? To answer this question, we need to make explicit what the effect of each command is on
the current specification goal. Fortunately, the specifications of get and put defined previously will
allow us to do just that.

We would like to define a function that, given a new command c, computes the specification of
the remaining continuation:

step : (c : C) (spec : SpecVal (b × Nat)) → SpecK (R c × Nat) (b × Nat)
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To achieve this, we define a pair of predicate transformers that use the postcondition associated
with the command c to modify the current specification. The first such transformer computes a
new precondition of type b → Set, given the current specification’s precondition P : a → Set.

_ ◁ _ : (Q : a → b → Set) (P : a → Set) → b → Set

_ ◁ _ Q P = λ y → Σ a (λ x → P x ∧ Q x y)

This limited form of relational composition requires an intermediate result, x : a, and proofs that x
satisfies both P and Q. Our second transformer computes a new postcondition of the remaining
specification:

_ ▷ _ : (Q : a → b → Set) → (SpecK a c) → b → c → Set

_ ▷ _ Q [ pre , post ] = λ y z → ∀ x → pre x ∧ Q x y → post x z

The new postcondition requires that the original postcondition post holds, whenever the post-
condition QÐassociated with the new command we are introducingÐand initial precondition pre

hold.
Using these definitions, we can complete the definition of the step function:

step : (c : C) (spec : SpecVal (b × Nat)) → SpecK (R c × Nat) (b × Nat)

step Get [ pre , post ] = [ getPost ◁ pre , getPost ▷ [ pre , post ] ]

step (Put x) [ pre , post ] = [ (putPost x) ◁ pre , (putPost x) ▷ [ pre , post ] ]

The step function uses the above operators, together with the postconditions associated with get

and put, to compute a new specification for the remaining derivation.
Before completing the definition of derivations, there is one last issue to address. Using the

step function, we can compute a new specification for the remaining continuation after a put or
get command. Our derivations, however, only contain specifications of valuesÐrepresented by
SpecValÐrather than the specification of a function, represented by Spec. Fortunately, we can easily
convert between the two:

intros : SpecK (a × Nat) (b × Nat) → a → SpecVal (b × Nat)

The intros function (partially) applies the precondition and postcondition to the argument of type
a; the name is suggestive of the corresponding Coq tactic. Finally, we can complete the definition
of derivations using the step and intros functions.

data Derivation (spec : SpecVal (b × Nat)) : Set where

Done : (x : b) → wpSpec spec ⊑ ptM (done x) → Derivation spec

Step : (c : C) → (∀ (r : R c) → Derivation (intros (step c spec) r)) → Derivation spec

The interesting case is in the continuation of the Step constructor. For each possible response r : R c,
we need to provide a derivation of the remaining specification. Note that we have specialized this
type to work over stateful computations by requiring a specification on the result and output state.

It is no coincidence that the structure of our derivationsmimics that of the computations described
by our Free datatype. One advantage of giving a manifest representation of such derivations is that
we can easily extract executable code from a given derivation:

extract : (spec : SpecVal (b × Nat)) → Derivation spec → State b

extract (Done x ) = Pure x

extract (Step c k) = Step c (λ r → extract (k r))

Furthermore, we can prove that any extracted program does indeed satisfy its intended specification.
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7.2 Case Study: Calculating the Maximum

With our definition of derivations in place, we can finally turn our attention to an example calcu-
lation. In this section, we will derive a simple program that computes the greatest element of a
non-empty list. Although there is a simple, purely functional implementation, we choose to derive
a stateful version that stores the greatest element encountered so far. Once again, we stress that
our aim is not to perform complex program calculations, but rather to illustrate the definitions we
have given in the previous pages.
We begin by defining the specification of our desired function:

maxPre : List Nat × Nat → Set

maxPre (xs , i) = (i ≡ 0) ∧ (¬ (xs ≡ Nil))

maxPost : List Nat × Nat → Nat × Nat → Set

maxPost (xs , i) (o , ) = All (o ⩾_) xs ∧ (o ∈ xs)

maxSpec = [ maxPre , maxPost ]

Given an initial state 0 and non-empty list xs, ourmax function should find a number o that is both
greater than or equal to all the elements of xs and also occurs in xs.

To calculate a suitable implementation amounts to proving that Derivation maxSpec is inhabited.
A direct proof quickly fails, as the statement is not general enough to reuse our induction hypothesis.
We can prove, however, the following lemma that allows us to modify the target of our derivation:

refineDerivation : wpSpec spec ⊑ wpSpec spec’ → Derivation spec’ → Derivation spec

The proof recurses over the derivation and relies on the monotonicity of our predicate transformers.
In particular, we can use this lemma, together with the weakenPre and strengthenPost lemmas
from Section 4, to generalise our specification and perform the bookkeeping necessary on the
intermediate specifications we encounter during derivation.
We can use the refineDerivation lemma to show that the following formulation of the desired

postcondition also suffices:

maxPost : List Nat × Nat → Nat × Nat → Set

maxPost (xs , i) (o , ) = All (o ⩾_) (i :: xs) × (o ∈ (i :: xs))

Now we can finally turn our attention to completing our derivation. Here is where using an
interactive proof assistant such as Agda is invaluable. We begin by performing induction on the
input list, and splitting our goal accordingly. We can then repeatedly fill in parts of the program,
one command at a time, inspecting the remaining derivation problem as we go. Along the way, we
can call the refineDerivation lemma to simplify any open specifications, if they grow too complex.
Indeed, if we replace the proofs in our derivation with ellipses, we can read off the program we
have calculated directly:

max : (xs : List Nat) → Derivation (intros maxSpec xs)

max Nil = Step Get λ i →

Done i . . .

max (x :: xs) = Step Get λ i →

if x <? i

then (λ lt → . . . (max xs))

else (λ geq → Step (Put x) (. . . (max xs)))

The proof steps themselves are not particularly hard. In both recursive calls, we need to perform a
call to the refineDerivation lemma and prove that the result of the call is strong enough to fulfil
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the current proof goal. In the base case, we can give a direct proof that the current state i satisfies
the desired specification.
One result of formulating the step function in terms of the predicate transformers ◁ and ▷ is

that the new goals after issuing a particular command are computed automatically from these
definitions, but may be more verbose than what a programmer might write by hand, for example,
by containing superfluous equalities between intermediate states. We could avoid this by defining
custom transformations on our specifications for put and get directly, at the expense of losing some
generality. Nonetheless, it is encouraging to see that we can calculate a program together with our
proof assistant, rather than verify a program post-hoc.

8 DISCUSSION

Throughout this paper, we have had to choose between presenting the most general definition
possible and a less general choice, that sufficed for the examples we intended to cover. When
possible, we have favoured simplicity over generality. For instance, the type of our specifications
can be generalised even further, making the postcondition dependent on the precondition:

record Spec (a : Set) (b : a → Set) : Set where

field

pre : a → Set

post : (x : a) → pre x → b x → Set

The resulting definition is that of an indexed container [Altenkirch et al. 2015]. We have chosen to
present a simply-typed version of a functionÐeven if a more general dependently typed alternative
existsÐwhen the added generality was unnecessary for our examples.
Throughout this paper, we have not concerned ourselves with issues of size. Yet some of our

definitions, such as those for specifications and derivations, are too large to live in Set. In the
accompanying Agda development, we show how a suitable choice of universe level can be used to
stratify these definitions; for the sake of presentation, however, we have omitted these annotations
in the code in this paper.

8.1 Related Work

Traditionally, reasoning about pure functional programs is done through equational reasoning.
There are several attempts to extend these techniques to the kinds of effectful programs we have
presented in this paper [Gibbons 2013; Gibbons and Hinze 2011; Hutton and Fulger 2008].
There is a great deal of work studying how to reason about effects in type theory [Brady

2013b; Nanevski and Morrisett 2005; Nanevski et al. 2006, 2008; Swierstra 2009a,b; Swierstra and
Altenkirch 2007]. F⋆ has introduced the notion of Dijkstra monads [Swamy et al. 2011, 2013] to
collect the verification conditions arising from a program using a weakest precondition semantics.
The wpSpec function corresponds to the predicate transformer semantics that F⋆ associates with
specifications [Ahman et al. 2017; Swamy et al. 2016]. The compositionality results presented here
correspond to subtyping of the sequential composition in F⋆. Where F⋆ typically uses an SMT
solver to resolve verification conditions, the use of an interactive theorem prover and higher-order
logic may facilitate the verification of properties that are difficult to encode in the SMT solver’s logic.
More recently, Maillard et al. [2019] have investigated the predicate transformer and specification
semantics of effectful programs, similar to the effects presented here.
There is also a great deal of existing work on using interactive theorem provers to perform

program calculation. Back and von Wright [1989] have given a formalisation of several notions,
such as weakest precondition semantics and the refinement relation, in the interactive theorem
prover HOL. This was later extended to the Refinement Calculator [Butler et al. 1997], that built
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a new GUI on top of HOL. Dongol et al. [2015] have extended these ideas even further in HOL,
adding a separation logic and its associated algebraic structure. Boulmé [2007] has given a direct
embedding of the refinement calculus in Coq. Alpuim and Swierstra [2018; 2016] have given
an similar development to the one presented here, tailored specifically to stateful computations.
Chlipala et al. [2017] have recently proposed using the Coq proof assistants to derive correct
programs from their specification. Their work on the Fiat framework is geared towards describing
data refinement and the synthesis of abstract datatypes, packaging methods and data.

8.2 Further Work

This paper does not yet consider combinations of different effects. In principle, however, we believe
it should be possible to take the coproduct of our free monads in the style of Swierstra [2008] to
combine the different effects syntactically. We hope that the composition of predicate transformers
can be used to assign semantics to programs using a variety of different effectsÐmuch as we defined
a semantics of mixed programs and specifications from their constituent parts. Similar ideas have
already been explored when embedding algebraic effects in Haskell by Wu et al. [2014].

There are well-known efficiency problems when working with free monads directly, as we have
done here. While efficiency was never our primary concern, we hope that we might adapt existing
solutions to avoid these issues [Kiselyov and Ishii 2015; Voigtländer 2008].

8.3 Conclusions

We have presented several small example programs and verified their correctness. The aim of
these examples is to illustrate our definitions and validate our design choices, rather than solve
any realistic verification challenge. There is a great deal of further engineering work necessary to
ensure these ideas scale easily beyond such simple examples: custom tactics and notation could
help facilitate program calculation; further proof automation is necessary to keep the complexity of
intermediate calculations in check. Nonetheless, we believe that the predicate transformer semantics
defined in this paper offer a functional account of effects that is worth exploring further.
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