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Abstract
The performance and behavior of large-scale distributed ap-
plications is highly influenced by network properties such
as latency, bandwidth, packet loss, and jitter. For instance,
an engineer might need to answer questions such as: What
is the impact of an increase in network latency in applica-
tion response time? How does moving a cluster between
geographical regions affect application throughput? What
is the impact of network dynamics on application stability?
Currently, answering these questions in a systematic and re-
producible way is very hard due to the variability and lack of
control over the underlying network. Unfortunately, state-of-
the-art network emulation or testbed environments do not
scale beyond a single machine or small cluster (i.e., MiniNet),
are focused exclusively on the control-plane (i.e., CrystalNet)
or lack support for network dynamics (i.e., EmuLab).
In this paper, we address these limitations with Kollaps,

a fully distributed network emulator. Kollaps hinges on two
key observations. First, from an application’s perspective,
what matters are the emergent end-to-end properties (e.g.,
latency, bandwidth, packet loss, and jitter) rather than the
internal state of the routers and switches leading to those
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properties. This premise allows us to build a simpler, dy-
namically adaptable, emulation model that does not require
maintaining the full network state. Second, this simplified
model is amenable to be maintained in a fully decentralized
way, allowing the emulation to scale with the number of
machines required by the application.

Kollaps is fully decentralized, agnostic of the application
language and transport protocol, scales to thousands of pro-
cesses and is accurate when compared against a bare-metal
deployment or state-of-the-art approaches that emulate the
full state of the network. We showcase how Kollaps can
accurately reproduce results from the literature and predict
the behaviour of a complex unmodified distributed key-value
store (i.e., Cassandra) under different deployments.
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tion.
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1 Introduction
Evaluating large-scale distributed systems is hard, slow, and
expensive. This difficulty stems from the large number of
moving parts one has to be concerned about: system depen-
dencies and libraries, heterogeneity of the target environ-
ment, network variability and dynamics, among others.
Such uncontrollable and poorly specified environment

leads to a slow experimental cycle, results that are hard to
1

https://doi.org/10.1145/3342195.3387540
https://doi.org/10.1145/3342195.3387540
https://doi.org/10.1145/3342195.3387540
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3342195.3387540&domain=pdf&date_stamp=2020-04-17


EuroSys ’20, April 27–30, 2020, Heraklion, Greece Gouveia et. al

reproduce, and potential downstream costs worth millions
of dollars [24]. It is therefore of the utmost importance to
have tools that allow to precisely describe the environment
and control key parts of the system such as the network.

On the one hand, the advent of container technology (e.g.,
Docker [58], Linux LXC [18]) and container orchestration
(e.g., Docker Swarm [15], Kubernetes [17]) greatly simplifies
the description and deployment of complex systems and
partially addresses the problem. On the other hand, there is
an acute need for tools that allow to precisely control the
network in complex, large-scale experiments.

As a matter of fact, the inherent variability of WAN condi-
tions (i.e., failures, contention and reconfigurations), makes
it hard to assess the impact of changes in the application
logic. Is the observed performance improvement really due
to improvements in the application, or due to a lucky run
when the network was lightly loaded? How is performance
affected by common network dynamics, such as background
traffic, or link flapping? The very same questions and issues
also arise in the reproducibility crisis currently plaguing
the system’s community [29, 64]. Different results for the
same system emerge not only because systems are evalu-
ated in different uncontrollable conditions, but also because
research testbeds such as Emulab [46], CloudLab [72], or
PlanetLab [35] used to conduct experiments tend to get over-
loaded right before system conference deadlines [51]. We
therefore need tools to systematically assess and reproduce
the evaluation of large-scale applications. Notably, similar
tools could be used to test and (otherwise) prevent costly in-
cidents due to mis-configurations, as in recent events [4, 20].

One approach to systematically evaluate a large-scale dis-
tributed system is to resort to simulation, which relies on
models that capture the key properties of the target system
and environment [25]. Simulation provides full control of
the system and environment — achieving full reproducibility
— and allows to study the model of the system in a vari-
ety of scenarios. However, simulations suffer from several
well-known problems. In fact, there is a large gap between
the simulated model and the real-world deployment, usually
leading to several unforeseen behaviors not captured by the
model [34, 40, 41, 63]. And even if the simulated model yields
correct results, the real implementation is not guaranteed
to faithfully follow the simulated model. Moreover, despite
some efforts to model complex systems either through for-
mal method analysis [60] or simulation, this is, to the best
of our knowledge, seldom the case for large-scale systems.
The alternative is to resort to network emulation. In a

network emulation, the real system is run against a model
of the network that replicates real-world behavior by model-
ing a network topology together with its network elements,
including switches, routers and their internal behavior. Em-
ulation thus allows to reach conclusions about the behavior
of the real system in a concrete scenario rather than its
model. Unfortunately, state-of-the art network emulators
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Figure 1. Left: 3 application containers (c1, sv1, sv2) and 2 network
elements (s1, s2). Right: collapsed topology with links describing
maximum bandwidth and minimum latency between each two
nodes.

suffer from several limitations. MiniNet [44] is limited to a
single physical machine and therefore cannot be used to em-
ulate a large-scale resource-intensive system. MaxiNet [87]
and the multi-host version of MiniNet support distributed
clusters but scale poorly [56]. ModelNet [83] and alike rely
on a dedicated cluster of nodes to maintain the emulation
model to which the application nodes must connect. How-
ever, accuracy is dependent on application traffic patterns
and can degrade with a modest increase in the number of
application nodes [81]. CrystalNet [56] accurately emulates
the control-plane of large-scale networks (e.g. routing tables,
software switch versions or device firmwares) but cannot be
used to emulate the data-plane (e.g. latency, bandwidth), and
hence evaluate the behavior of large-scale distributed appli-
cations. While emulation testbeds (e.g., Emulab [46]) provide
a semi-controlled environment and network, they cannot
model network dynamics and thus one cannot assess their
impact on application behavior. In summary, existing tools
cannot systematically assess and reproduce the evaluation
of large-scale applications subject to network dynamics.
In this paper we introduce Kollaps, a decentralized net-

work emulator for large-scale applications. Kollaps over-
comes the state-of-the-art limitations through three key in-
sights. First, from the perspective of a distributed application,
the observable end-to-end properties, such as latency, jitter,
bandwidth and packet loss, are more relevant to its behavior
than the underlying state of each networking element lead-
ing to these properties. This enables us to build a simplified
model that does not require emulating the full-state of the in-
ternal network elements (e.g., routers, switches) but provides
equivalent behavior. Second, it is possible to accurately main-
tain this emulation model in a fully-distributed fashion thus
allowing the emulation to scale with the application nodes
without sacrificing accuracy. Finally, the simplified model
lends itself to quick changes enabling us to emulate dynamic
events such as link removals and additions or background
traffic in a fraction of a second. To understand Kollaps’s
main principle, consider the topology in Figure 1 (left), with
two network elements (s1 and s2) and three containers (c1,
sv1, and sv2). Rather than emulating the full network and the
state of the switches (s1 and s2), we rely on a network collaps-
ing technique to collapse the topology to virtual end-to-end
links that retain the properties of the original topology, as
depicted in Figure 1 (right). Note that the bandwidth and
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Table 1. Classification of network emulation tools. NetEm [45] uses a different queueing discipline to implement bandwidth shaping.
Dockemu uses ns-3 [73] for link-level features. E: ability to dynamically change this property. P=process, V=virtual machine, C=container.

Concurrent Path Link-Level emulation capabilities Any Topology
Name Year Mode HW ind. Orchestration deployments congestion Bandwidth Delay Packet loss Jitter Language dynamics Unit

DelayLine [47] 1994 User ✓ Centralized ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ P
ModelNet [81] 2002 Kernel ✓ Centralized ✗ ✓ ✓E ✓E ✓E ✗ ✓ ✓ P
Nist NET [33] 2003 Kernel ✓ Centralized ✗ ✗ ✓E ✓E ✓E ✓E ✓ ✗ P
NetEm [45] 2005 Kernel ✓ (N/A: single link emulation only) ✗ ✓ ✓ ✓ ✓ ✗ P
Trickle [39] 2005 User ✓ (N/A: single link emulation only) ✓ ✓ ✗ ✗ ✓ ✗ P

EmuSocket [23] 2006 User ✓ (N/A: single link emulation only) ✓E ✓E ✗ ✗ ✓ ✗ P
ACIM/FlexLab [71] 2007 Kernel ✓ Centralized ✗ ✓ ✓E ✓E ✓E ✓E ✓ ✓ V

NCTUns [85] 2007 Kernel ✓ Centralized ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ P
Emulab [46, 88] 2008 Kernel ✗ Centralized ✗ ✓ ✓E ✓E ✓E ✗ ✓ ✓ V
IMUNES [70] 2008 Kernel ✗ Centralized ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ P

MyP2P-World [75] 2008 User ✓ Centralized ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ P
P2PLab [61] 2008 Kernel ✓ Centralized ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ P
Netkit [67] 2008 Kernel ✓ Centralized ✗ ✓ ✓E ✓E ✓E ✗ ✓ ✗ V
DFS [79] 2009 User ✓ Centralized ✓ ✗ ✓E ✓E ✓ ✓ ✗ ✓ P

Dummynet [32] 2010 Kernel ✓ Centralized ✗ ✗ ✓E ✓E ✓E ✗ ✓ ✗ P
Mininet [53] 2010 Kernel ✓ Centralized ✗ ✓ ✓E ✓E ✓E ✓E ✓ ✓ P

SliceTime [86] 2011 Kernel ✗ Centralized ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ V
Mininet-HiFi [44] 2012 Kernel ✓ Centralized ✗ ✗ ✓E ✓E ✓E ✓E ✓ ✓ C

SplayNet [76] 2013 User ✓ Decentralized ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ P
MaxiNet [87] 2014 Kernel ✓ Centralized ✗ ✓ ✓E ✓E ✓E ✓E ✓ ✓ P
Dockemu [80] 2015 User ✓ Centralized ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ C
EvalBox [77] 2015 Kernel ✓ Centralized ✗ ✗ ✓E ✓E ✓E ✓E ✓ ✓ P

ContainerNet [65] 2016 Kernel ✓ Centralized ✗ ✓ ✓E ✓E ✓E ✓E ✓ ✓ C,V
Kathará [30] 2018 Kernel ✓ Centralized ✗ ✓ ✓E ✓E ✓E ✗ ✓ ✗ C

Kollaps 2020 Kernel ✓ Decentralized ✓ ✓ ✓E ✓E ✓E ✓E ✓ ✓ C,V

latency values in the collapsed network depict the maximum
available bandwidth and the minimum achievable latency
between each two nodes, as if it is the only active flow. The
actual link properties are then maintained through a dis-
tributed network emulation algorithm that models latency,
bandwidth, jitter and packet loss. The distributed nature
of Kollaps and its simplified emulation model allows it to
scale to thousands of processes with accuracy on par with
centralized state-of-the-art emulators.

Contributions. Our main contributions are:
1. Kollaps, the first network topology emulator that allows

to evaluate large-scale applications in dynamic networks;
2. We integrate Kollaps with Docker Swarm [15] and Kuber-

netes [17], to deploy and evaluate unmodified container-
ized (distributed) systems;

3. A comparison of Kollaps’s emulation accuracy versus
bare-metal deployments and state-of-the-art approaches.
Our evaluation scenarios includes static and dynamic
topologies, various workload patterns (i.e., short and long-
lived data flows) and different TCP congestion models,
including TCP Reno and Cubic;

4. A showcase of the new types of experiments that Kollaps
enables. Namely, we reproduce results from published
papers [28, 78], and assess how Apache Cassandra [13, 52]
is affected by different network characteristics as-if it
were deployed on AWS.

Organization.This paper is organized as follows.We survey
related work in §2. The design and system architecture of
Kollaps are described in §3, with implementation details
presented in §4. In §5 we present our in-depth evaluation.
We discuss the current limitations and future work in §6,
before concluding in §7.

2 Related Work
We categorize network emulators along several dimensions
(Table 1): where the link shaping is executed (user/kernel
mode), independence from the underlying hardware, type
of orchestration across the cluster (centralized or decentral-
ized), support for concurrent experiments and users, sup-
port for path congestion (i.e., multiple independent flows
sharing the same emulated link), link-level emulation fea-
tures (bandwidth, delay, packet loss, jitter), ability to dynam-
ically adjust such features on the fly as well as to change the
topology itself (i.e., add/remove links, switches and nodes),
implementation-language restrictions for the programs un-
der emulation, and the supported deployment unit (virtual
machines, containers or native processes). Due to lack of
space, we only detail how Kollaps compares with some rep-
resentative systems, and we consider simulation-based tools
(e.g., ns-3 [73], PeerSim [59]) out of the scope.

Few recent works cover orthogonal aspects of network
emulation and illustrate the relevance of controlled experi-
ments. CrystalNet [56] focuses on large-scale emulation of
the control-plane, enabling network engineers to evaluate
changes to the control-plane before deploying in produc-
tion. Kollaps only deals with data-plane, and it is hence
complementary to CrystalNet. To enhance the efficiency of
large-scale control-plane analysis, Bonsai [27] leveraged the
idea of network compression while persevering the network
properties. Kollaps’ network collapsing achieves a similar
goal, however, it targets a different set of network properties,
again in the data-plane. Pantheon [89] is used to evaluate
Internet congestion-protocols. It gathers ground-truth data
and compares it with results obtained from several emu-
lators for a variety of congestion control algorithms. The
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work done in Pantheon provides evidence that it is possible
to approximate the behavior of a wide range of congestion
algorithms by relying only on a small number of end-to-
end properties. In this paper, we rely on the same insight
to provide a network emulator able to emulate large-scale
topologies with accuracy.

User-space approaches. Trickle [39] uses dynamic link-
ing and preloading functionality of Unix-based systems to
insert its code between unmodified binaries and the system
calls to the sockets API. It performs bandwidth shaping and
delay before delegating to the actual underlying socket calls,
based on a simple configuration process. Although multi-
ple instances of Trickle can cooperate, setting up a multi-
host system to emulate large networks involves tedious and
error-prone manual configuration since there is no central
deployment control system. Further, Trickle does not support
statically linked binaries. In contrast, Kollaps is indepen-
dent of the application as it works with unmodified binaries,
either dynamically or statically linked. EmuSocket [23] and
DelayLine [47] are userspace tools, similar in design and
features to Trickle. DelayLine supports the deployment of
complex topologies, but it lacks several important network
emulation features (such as bandwidth or jitter).
MyP2P-World [75] is a Java-based application-level em-

ulator aimed at peer-to-peer protocols. Applications must
be implemented in Java and rely on Apache Mina [5] to in-
tercept and emulate large-scale network conditions. While
Kollaps can be used for Java applications, it can be used
with any other language as well.

SplayNet [76] extends Splay [54] to allow emulation
of arbitrary network topologies, deployed across several
physical hosts in a fully decentralized manner. SplayNet, is
fully distributed as it does not rely on dedicated processes
for network emulation. To emulate the network topology,
SplayNet relies on graph analysis and distributed emula-
tion algorithms, effectively collapsing the inner topology and
delivering packets directly from one emulated host to the des-
tination host. However, it requires developers to implement
their programs in a Domain Specific Language using the
Splay framework and the Lua programming language, pre-
cluding its usage to evaluate real-world systems. Moreover,
it does not support dynamics nor does it emulate packet loss
upon congestion. Kollaps adopts a similar fully decentral-
ized approach while completely overcoming its limitations.
In fact, Kollaps can be used with unmodified, off-the-shelf
applications and assess their performances under different
network conditions also including dynamic topologies.

Kernel-space approaches.Next, we survey network em-
ulators that require explicit or specialized support from the
underlying OS and kernel. Dummynet [74] operates directly
on a specific network interface. It is used as a low-level
tool to build full-fledged emulators, such as Modelnet [81].
Modelnet allows the deployment of unmodified applications.
Applications are deployed on edge nodes and all network

traffic is routed through a set of core routers - dedicated
machines that collectively emulate the properties of the de-
sired target network before relaying the packets back to the
destination’s edge nodes. Kollaps relies on Linux’s Traffic
Control (tc) [19] to offer the same low-level traffic shaping
features, but (1) without requiring dedicated hosts and (2) at
the same time providing a complete testbed integrating with
large-scale container orchestration tools.

The Emulab [88] testbed supports the deployment of user-
provided operating systems. As ModelNet and Kollaps, it
leverage Linux’s tc to shape the traffic directly at the edge
nodes. Emulab supports large topologies over shared clusters
while maintaining the user requested resource allocation,
and the ability to perform this scheduling optimally. Its graph
coarsening technique is similar in principle to Kollaps ap-
proach for collapsing the topology.

Container-based approaches. Finally, we look at em-
ulation tools used with containers. Mininet [53] emulates
network topologies on a single host. It relies on Linux’s light-
weight virtualization mechanisms (i.e., cgroups) to emulate
separated network hosts. Similarly to Docker, it creates vir-
tual Ethernet pairs running in separated namespaces and it
assigns processes to those. Mininet can emulate hundreds
of networked hosts (instances) on a single physical host,
with dedicated instances for switches and routers running
on their own processes. Conversely, Kollaps does not re-
quire these additional network instances, relying instead on
maintaining and updating the state of the emulation at each
container. Mininet is limited to a single-host deployment
hence preventing its use for large-scale resource-intensive
applications that cannot fit a single machine. Besides, even
with a simple topology, Mininet’s accuracy quickly degrades
under certain workloads such as short-flows. Maxinet [87]
extends Mininet to allow for cluster deployments of worker
hosts and with native support for Docker containers. It does
so by tunneling links that cross different workers. However,
it requires all emulated hosts that connect to the same switch
to be deployed on the same worker as the switch. In con-
trast, Kollaps does not impose co-located deployments of
workers and switches. ContainerNet [65, 66] extendsMininet
to add native support for Docker containers and dynamic
topologies. Still, it is limited to single machine deployments.
A similar limitation is present in Dockemu [80], a network
emulation tool based on Docker containers.

To the best of our knowledge, Kollaps is the only system
that can be used to evaluate unmodified large-scale appli-
cations over arbitrary topologies, supporting a richer set
of emulation features, and providing good accuracy when
compared to bare metal and state-of-the-art systems. Finally,
it is worth noting that the decentralized design of Kollaps’
metadata exchange is similar in spirit to the hose model of
ElasticSwitch [68], which was used to provide bandwidth
guarantees for virtual machines in cloud environments.
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Figure 2. Kollaps system design. Note that the bootstrapper com-
ponent is not required in a Kubernetes deployment (§4).

3 The Kollaps System
In this section we describe the system design and architec-
ture of Kollaps. Figure 2 depicts the main components and
a deployment over several hosts. Kollaps consists of several
components. The Emulation Manager has a single instance
per physical machine and is responsible for maintaining and
enforcing the emulation model. The TC Abstraction Layer
(TCAL) is deployed once per application container, and it
retrieves and sets the link properties. The Bootstrapper is
started once per physical machine: it initiates Kollaps in
Docker Swarm deployments (but is not needed under Kuber-
netes, as detailed in §4). The Dashboard exposes a web-based
interface to monitor and control the experiments. Finally, the
Deployment Generator converts an experiment description
(e.g., Listing 1 and Listing 2) into a deployment plan. Next,
we detail these components and their interactions.

The Deployment Generator translates a topology de-
scription into an actual container deployment plan. Kollaps
supports an XMLModelnet-like syntax [81] to facilitate port-
ing of existing topology descriptions, as well as a lean YAML-
based syntax that we show here. Listing 1 describes the net-
work topology from Figure 1 (left). The topology description
language supports services, bridges, links, and dynamic
elements. The services correspond to sets of containers
sharing the same image. The image names must be valid and
available from private or public Docker registries (Listing 1,
lines 4 and 6). Each service supports several parameters (e.g.,
total replicas or additional parameters to pass to the running
containers once deployed). The bridges map to networking
devices, e.g., routers and switches that have unique names
(lines 9–10) and are arbitrarily connected, to realize complex
topologies, via links. Links can be uni– or bi—directional,
with mandatory attributes to specify the source, destination,
properties (i.e., latency, bandwidth, packet loss, jitter), and
the name of the container network to attach to (lines 12–17).
In case of jitter, the link latency follows by default a nor-
mal distribution but others are supported, with mean and

Listing 1. Static topology.
1 experiment:
2 services:
3 name: c1
4 image: "iperf"
5 name: sv
6 image: "nginx"
7 replicas: 2
8 bridges:
9 name: s1
10 name: s2
11 links:
12 orig: c1
13 dest: s1
14 latency: 10
15 up: 10Mbps
16 down: 10Mbps
17 jitter: 0.25
18 #others not shown

Listing 2. Dynamic events.
19 dynamic:
20 orig: c1
21 dest: s1
22 jitter: 0.5
23 time: 120
24 action: leave
25 name: s1
26 time: 200
27 action: join
28 orig: c1
29 dest: s2
30 up: 100 Mbps
31 down: 100 Mbps
32 latency: 10
33 time: 210
34 action: leave
35 name: sv
36 time: 240

standard deviation to match the specified latency and jitter
attributes. Internally, all links are unidirectional: declaring
a bi-directional link results in the creation of two identi-
cal links in opposite directions, with same attributes except
for the bandwidth capacity where upload and download at-
tributes might differ. The dynamic part (Listing 2) injects
changes into the topology dynamically while the experiment
progresses. Kollaps supports a rich set of dynamic events,
e.g., modification of any of the properties of the links, addi-
tion and removal of links, bridges and services. This captures
a wide range of dynamics, not only in the application itself,
whose nodes (containers) may come and go during the ex-
periment, but also in the network topology. For example, the
rapid removal and insertion back into the topology of a link
emulates a flapping link [69]. Each event maps to an action
element, either for changes to link properties (lines 21–23) or
for addition and removal of services, links and bridges (lines
24–36). A dedicated DSL to easily program more complex
dynamic patterns on top of Kollaps is detailed in [55].
The Emulation Manager (EM) is the main component

of Kollaps. An instance of EM is deployed on every physical
server involved in the experiment. Each instance is responsi-
ble for providing containers collocated on the same physical
host with their emulated end-to-end network properties.

Since Kollaps does not directly emulate network elements
nor their internal state, we must accurately describe the
topology at the end hosts. This is achieved as follows. The
EM starts by parsing the topology description (e.g., Listing 1)
into a graph structure, maintained throughout the emulation.
Next, the EM computes the shortest paths between every
pair of reachable containers. Each shortest path is composed
of several links, whose properties are used to determine
the end-to-end network properties. Formally, given a path
P composed of links P = {l1, l2, . . . , ln}, the end-to-end
properties of the path can be computed as follows:

5
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Latency(P) =
∑n

i=1 Latency(li )

Jitter (P) =

√∑n
i=1 Jitter (li )

2

Loss(P) = 1.0 −
∏n

i=1(1.0 − Loss(li ))
maxBandwidth(P) = min∀li ∈P Bandwidth(li )

For latency, packet loss and jitter (assuming a uniform
distribution), it is enough to sum or multiply the properties
of the links (variance for the jitter case).

Bandwidth requires more considerations though, because
it is limited not only by the physical capacity of the path, but
also by all active flows on each link. The maximum band-
width in the path is determined by the link with the least
bandwidth. However, the bandwidth allocated to each active
flow depends on all active flows in the same path and thus
it must be dynamically recomputed at runtime. Moreover,
when the bandwidth required by each flow surpasses the
maximum available bandwidth, the links become congested
and therefore we need a mechanism to ensure a fair allo-
cation of bandwidth among the competing flows. In a real
deployment, when competing flows require more bandwidth
than the available capacity, network elements such as routers
and switches buffer packets to accommodate the excess load
up to a point where the buffers overflow and packets are
dropped. Unreliable transport protocols (i.e., UDP) ignore
packet loss but reliable transport protocols (i.e., TCP) have
congestion control mechanisms to adjust the throughput
with the goal of allowing all competing flows to get a fair
bandwidth share. In Kollaps, rather than modeling the in-
ternals of network elements, which is expensive, we rely
instead on a model to compute a fair share of the bandwidth
available for each competing flow.

In particular, we leverage the RTT-AwareMin-Maxmodel [49,
57], which gives a share to each flow that is proportional
to its round-trip time and is inspired by TCP Reno [62], a
widely adopted congestion control implementation.

Formally, the fair share of a long-lived flow f is given by:

Share(f ) =
(
RTT (f )

∑n
i=1

1
RTT (fi )

)−1
where f ∈ { f1, f2, . . . , fn} are active flows on a link.
This bandwidth sharing model gives the percentage of the

maximum bandwidth any flow is allowed to use at capacity.
However, it does not guarantee that the available bandwidth
on a link will be fully utilized, for instance when a given flow
is not consuming all its available share. Therefore, when the
sum of shares of all active flows is less than the maximum
bandwidth on the link, the EM performs a maximization step
that increases the share of the other flows, proportionally to
their original shares. Note that Kollaps enforces bandwidth
sharing per destination, not per flow.
Congestion. The chosen model computes, per each flow,

the maximum available bandwidth allowed at any given time.
While this works well when bandwidth usage is below or at
capacity, it produces unrealistic results when the cumulative

bandwidth required by flows surpasses the maximum band-
width capacity. The reason for this is a complex interplay
between the Linux kernel Traffic Control’s shaping action,
the congestion algorithms of reliable transport protocols,
and the implementation of such transport protocols in the
kernel itself. In a real deployment with TCP, the protocol
throttles its throughput dynamically by observing reported
packet loss or delay when the buffers at network devices
overflow. Unlike TCP, UDP is insensitive to packet loss and
simply continues to send packets at the application sending
rate. A first approach to model packet loss due to congestion
would be to dimension the buffers (queue sizes) in the TCAL
following known network buffer sizing strategies [82, 84].
However, this approach does not work due to the differ-
ences in behavior between tc queues and those found in a
switch or router. On one hand, when a buffer in a router or
switch fills up, it drops further incoming packets.1 On the
other hand, when the htb qdisc queue (used by the kernel)
is full, rather than dropping packets, it back-pressures the
application. The reasons for these discrepancies between
tc and router queues are because modeling packet loss is
done in netem [1] and not in htb qdiscs, and also due to
Linux’s TCP Small Queues (TSQ) [3] (since kernel v3.6). TSQ
reduces the number of packets in qdiscs and device queues
with the goal of reducing the RTT, hence mitigating buffer-
bloat. It works by tracking the amount of data waiting to
be transmitted, and when this surpasses a given limit, the
socket is throttled down, preventing further packets to be
enqueued. The impact of this depends on the application
— when writing to a socket, an application using blocking
I/O would block, while an application using non-blocking
I/O would observe zero bytes written. From our perspective,
this means that there is no packet loss upon congestion and
thus congestion control algorithms sensitive to loss would
behave differently when emulated in Kollaps than in prac-
tice. We address this limitation as follows. When we observe
that the overall requested bandwidth surpasses the avail-
able bandwidth we leverage netem to drop packets per flow
proportionally to the oversubscribed capacity. This dynamic
adjustment of packet loss according to the excess bandwidth
exposes packet loss to the congestion avoidance algorithm,
allowing TCP connections to adjust their throughput.
For each container, the EM spawns an Emulation Core

process attached to the network namespace of the respective
container. Each Emulation Core is responsible for obtaining
the container bandwidth usage, exchange this metadata with
the neighboring Emulation Cores to update the emulation
model described above, and enforce the topology constraints
through the TCAL, described below. This design has several

1This is a simplification, as in practice packets already in the queue might
be dropped to make room for incoming traffic with higher priority.
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advantages. First, it allows Kollaps to support any container-
ized (including third-party, legacy, code-obfuscated) appli-
cations without modifications. Second, Emulation Cores on
the same physical machine exchange emulation metadata
via shared memory, reducing computational and networking
overhead. Finally, it allows the EM to aggregate the data from
the local Emulation Cores and exchange it directly with the
EMs on the other physical machines. Note that having an
EM per physical host allows metadata traffic to scale with
the number of physical hosts rather than the number of ap-
plication containers. Further, each EM only computes the
part of the topology that affects the local containers thus
reducing the computational overhead.
Dynamic Topologies. The Emulation Core also enforces

the dynamic features of the topology. The dynamic topology
elements are reflected bymodifications to the graph structure
discussed above. Rather than computing modifications to
the graph on the fly while the experiment executes, we pre-
compute offline all the modifications before the experiment
starts, as an ordered sequence of graphs. We resort to this
approach because while computing all the required metadata
(e.g., all-pairs shortest paths, end-to-end properties, etc.) is
fast for small graphs (e.g., few milliseconds), for large graphs
with thousands of nodes it could take several seconds thus
precluding accurate emulation of sub-second dynamics.
The TC Abstraction Layer (TCAL) interfaces with

Linux’s Traffic Control (tc). tc is a Linux user-space tool
that allows manipulating the network properties (i.e., latency,
bandwidth, packet loss, jitter) and retrieving bandwidth us-
age of active connections. To this end, the tc exposes an
interface that allows for applying filters to classify data and
then manipulate the network properties of each class in-
dependently. To control the network properties for each
class, tc supports a wide range of queuing disciplines (qdiscs)
where the packets are enqueued before being sent. Kollaps
leverages two different types of qdiscs:(i) hierarchical token
bucket (htb qdisc), a type of qdisc to control the bandwidth
of outgoing packets and (ii) netem qdisc, that allows to apply
delay and packet loss. For each destination, Kollaps creates
a htb qdisc that enforces the bandwidth allocated to flows
towards that destination. Besides, a netem qdisc is also used
to apply latency, jitter, and packet loss.
Outbound traffic is matched to netem qdiscs through an

u32 universal 32bit [10] traffic control filter. The filter is a
two-level hashtable that matches against the destination IP
address of packets and directs them to their corresponding
netem qdisc. This two-level design is due to limitations in the
u32, which does not provide a real hashing mechanism (for
speed reasons) but just a simple index in a 256 position array.
With a /16 netmask this could result in several collisions,
degrading performance. We map the third octet of the IP ad-
dress to the first level and the fourth octet to the second level
of the hashtable, achieving constant lookup times. Traffic di-
rected to the netem qdisc will first be subjected to the netem

rules to enforce latency, jitter and packet loss. When packets
are dequeued from netem, they are immediately queued in
the parent htb qdisc, to enforce bandwidth restrictions. The
TCAL structures are queried and updated very frequently
during each experiment, namely to retrieve bandwidth us-
age and enforce the dynamic properties. To minimize the
overhead of these calls, we rely on netlink sockets [50] that
communicate directly with the kernel, circumventing the
need to periodically spawn a new tc process.
The Dashboard allows users to monitor the progress of

their experiments via a graphical web-based interface (not
shown). This dashboard shows a graph-based representation
of the emulated topology, the status of the services, ongoing
traffic and dynamic events.
As shown in §5, the decentralized design and simplified

emulation model allows Kollaps to achieve accuracy on par
with state-of-the-art approaches, while scaling to thousands
of containers.

4 Implementation
Kollaps components are implemented in Python (v3.6), C
and C++, and available at https://angainor.science/kollaps.
It requires a Docker daemon (v1.12) running on each ma-
chine. The Deployment Generator currently supports Docker
Swarm (v1.12) and Kubernetes (v1.14) by generating Docker
Compose or Kubernetes Manifest files, respectively. Users
can customize these files (as required by many real applica-
tions [31]) before starting an actual deployment.

Privileged bootstrapping. In order for an application
running inside a Docker container to use tc (as the TCAL
does), it must be executed with CAP_NET_ADMIN capabil-
ity [14]. Although Docker allows executing applications in
standalone containers with user-specified capabilities, this
feature is currently unavailable for Docker Swarm. We cir-
cumvent this limitation as follows. We deploy a bootstrap-
ping container (the bootstrapper) on every Swarm node. Its
job is to launch, on that machine and outside Swarm itself,
the Emulation Manager (Em). The Em shares the PID names-
pace with the host and has elevated privileges. It has access
to the local Docker daemon and monitors the local creation
of new containers. Upon the creation of a new container,
the Em launches an Emulation Core responsible for that con-
tainer, as discussed in §3. We distinguish between containers
whose network should be emulated by Kollaps and regular
containers through a tag injected in the configuration by the
Deployment Generator. We expect future releases of Docker
Swarm to allow for a simplified mechanism. When using
Kubernetes, such restrictions do not hold and the Em is
indeed deployed automatically.

Integration with container orchestrators. The design
of Kollaps facilitates the integration with existing Docker
images and container orchestration tools (e.g., Docker
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Swarm, Kubernetes). In addition to producing ready-to-
deploy Compose/Manifest files, the Kollaps deployment
toolchain must configure three key resources managed in
very different manners by the mentioned container orches-
trators: (1) access to the orchestrator APIs, used at runtime
for name resolution, (2) the topology descriptor file, read
by each Em instance to setup the initial network state and
compute the graph of the dynamic changes, and (3) the setup
of multiple virtual networks.

4.1 Emulation Core and TCAL
The TCAL library provides an interface to setup the initial
networking configuration, retrieve bandwidth usage, and
modify the maximum available bandwidth on paths. It is
implemented in C for performance reasons and consists of
2693 SLOC. The Emulation Core is implemented in Python
and consist of 2963 SLOC.
The execution is split into two stages: initialization and

emulation loop. Once the initial graph representation is built,
this component resolves the names of all services to obtain
their IP addresses via the internal Swarm discovering ser-
vice or Kubernetes’s API. Then, it runs an all-pairs shortest
path graph traversal [38] between the local instance and
all the other reachable instances. Finally, it computes the
properties of the collapsed topology as described previously.
The properties of the paths are then set up by the TCAL,
before moving to the emulation loop stage. The emulation
loop maintains a data structure with the bandwidth usage of
each flow. It works by periodically executing the following
steps: (1) clear the state of all local active flows; (2) obtain
the bandwidth usage by querying the TCAL; (3) disseminate
the local bandwidth usage to the other instances; (4) com-
pute bandwidth usage on each path and its constituent links;
(5) enforce bandwidth restrictions. In parallel to the above
algorithm, each Emulation Core instance collects the data
sent at step (3) by the other Emulation Core instances. This
is used at (4) to compute the global bandwidth usage on a
path and link basis.

4.2 Metadata dissemination
All metadata is disseminated via Aeron [11], an open-source,
efficient and reliable UDP and IPC message transport pro-
tocol. For containers on the same machine, the metadata is
exchanged through shared memory. This is possible because
all Emulation Core processes are running on the Emula-
tion Manager’s process namespace. Across remote machines,
metadata is disseminated through UDP messages. For each
Emulation Manager there is an Aeron Media Driver responsi-
ble for the dissemination of messages. Every process reads
from and writes to the Media Driver using a C++ library. The
metadata messages embed the following fields: (i) number
of flows, 2 bytes; (ii) list of used bandwidth per flow, 4 bytes
per flow; (iii) number of links; (iv) list of link identifiers. For
emulated networks with ⩽ 256 nodes, it is possible to pack

Table 2. Bandwidth shaping accuracy for several emulated link
capacities on a simple point-to-point client-server topology.

Link BW Kollaps Mininet trickle (def.) trickle (tuned)
Low (Kb/s)
128 Kb/s 122 (-5%) 123 (-4%) 262 (+104%) 131 (+2%)
256 Kb/s 245 (-5%) 286 (+11%) 472 (+184%) 262 (+2%)
512 Kb/s 490 (-5%) 490 (-5%) 717 (+40%) 525 (+2%)

Mid (Mb/s)
128 Mb/s 122 (-5%) 122 (-5%) 250 (+95%) 131 (+2%)
256 Mb/s 245 (-5%) 245 (-5%) 493 (-4%) 261 (+1%)
512 Mb/s 487 (-5%) 486 (-5%) 952 (+85%) 518 (+1%)

High (Gb/s)
1 Gb/s 954 (-4%) 933 (-7%) 1.67 (+67%) 1.00 Gb/s
2 Gb/s 1.91 (-4%) N/A 1.93 (-3%) 1.97 (-1.5%)
4 Gb/s 3.79 (-7%) N/A 4.12 (+3%) 3.61 (-10%)

the metadata information for links and identifiers in a single
byte each (2 bytes are used for bigger emulated topologies).
As shown in §5, this approach allows to fit into a single
UDP datagram as much information as possible, reducing
the metadata traffic.

5 Evaluation
We evaluated Kollaps through a series of micro- and macro-
benchmark experiments in our cluster. Furthermore, to val-
idate the soundness of our approach against realistic sce-
narios, we compare the behavior of applications running
on Amazon EC2 and under Kollaps. Overall, our results
show that: (1) Kollaps scales with the number of flows and
containers, and has constant cost regardless of the emulated
bandwidth usage; (2) running an application with Kollaps
in a cluster or in Amazon EC2 yields similar results; (3) Kol-
laps emulation accuracy is comparable with, and in some
scenarios better than, tools that emulate the full network
state such as Mininet.

Evaluation settings. Our cluster is composed of 5 Dell
PowerEdge R630 server machines, with 64-cores Intel Xeon
E5-2683v4 clocked at 2.10 GHz CPU, 128 GB of RAM and
connected by a Dell S6010-ON 40 GbE switch. The nodes
run Ubuntu Linux 18.04 LTS, kernel v4.15.0-65-generic. The
tests conducted on Amazon EC2 use r4.16xlarge instances,
the closest type in terms of hardware-specs to the machines
in our cluster. We use the latest stable releases of Mininet
(v2.2.2) and Maxinet (v1.2).

5.1 Link-level Emulation Capabilities
First we evaluate the accuracy of our bandwidth shaping
mechanism under a topology that consists of two services
running iPerf3 [16], connected by a single link. iPerf3 is a tool
that measures the maximum bandwidth between its client
and server instances. In this experiment, we use iPerf3 to
assess the accuracy of Kollaps to emulate a range of different
target bandwidths, and compare the results withMininet [53]
and Trickle [39], a userspace bandwidth shaper. During the
experiment, we run iPerf3 for 60 seconds, and report the
average bandwidth in Table 2. The values obtained with
Kollaps and Mininet are similar since both systems rely on
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Table 3. Jitter shaping accuracy for several emulated links with
source at us-east-1.

→ Destination Latency (ms) EC2 Jitter (ms) Kollaps Jitter (ms)
us-east-1 6 0.5607 0.6367
us-east-2 17 1.2411 1.4018
ca-central-1 24 1.2451 1.3872
us-west-1 70 1.3627 1.5438
eu-west-1 78 1.2000 1.3684
eu-west-2 85 1.6609 1.8592
eu-north-1 119 1.2850 1.4479
ap-northeast-1 170 1.4217 1.6031
ap-south-1 194 2.0233 2.2758
ap-northeast-2 200 1.8364 2.0888
ap-southeast-2 208 1.4277 1.6290
ap-southeast-1 249 1.2111 1.3728

the htb qdisc to perform the bandwidth shaping. Mininet
however does not allow imposing bandwidth limits greater
than 1Gb/s. Kollaps does not impose that restriction and
ensures the same level of accuracy of both systems at lower
bandwidth rates (≈ 95%). Results using the default Trickle
settings deviate significantly from the specified bandwidth
rates. After a more detailed investigation, we were forced to
tune iPerf3 to use smaller TCP sending buffers to achieve
accuracy comparable with the other systems.

Next, we evaluate the accuracy of jitter emulation. For this,
we set up a sequence of experiments using the same topol-
ogy of two nodes connected through a single link, with one
sending 10,000 ping requests to the other. We assign the link
different latency values according to the measured latencies
between services deployed on us-east-1 and other Amazon
AWS regions. Table 3 shows for each destination AWS region
(2nd column), the measured latency and jitter values in the
3rd and 4th columns, respectively. On the right-most column,
we present the jitter value emulated by Kollaps using the
same latency. The overall mean squared error between the
observed and emulated jitter is 0.2029. While smaller errors
could be achieved by directly controlling the network infras-
tructure on which Kollaps is deployed, this is beyond the
scope of this work.

5.2 Scalability
Kollaps relies on metadata dissemination to model and em-
ulate bandwidth restrictions for competing flows. In this
section, we assess the scalability of Kollaps by analysing
metadata traffic growth and emulation accuracy with an
increasing number of physical nodes.
First, we study the cost of metadata dissemination by de-

ploying several dumbbell topologies, across a cluster of in-
creasing size. The containers are distributed evenly among
the physical nodes, with the client containers on one side
and the server containers on the other side of the dumbbell
topology. We use iPerf3 to generate steady TCP traffic of
50Mb/s , the maximum capacity of the shared link. We de-
note each configuration by a tuple (C,F), with C the total
deployed containers and F the number of concurrent flows.
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Figure 3. Kollaps metadata network usage with an increasing
number of containers (C), flows (F), and hosts.
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Figure 4. Aggregate throughput of twelve memcached clients (left)
and the metadata traffic per host (right) for emulation on 1, 2, 4, 8
and 16 physical hosts. Note that the lines on the right figure overlap.

Results with clusters of up to four physical machines are
shown in Figure 3.

As discussed in §3 and §4, Kollaps uses shared memory
on top of the network (through Aeron) to exchange metadata
among the local Emulation Cores and the Emulation Man-
ager components residing on each machine, respectively. As
expected, running on one single machine leads to zero band-
width usage, and increasing the number of physical hosts
increases the metadata bandwidth. Interestingly, though,
we observe that the metadata traffic is not affected by the
number of containers. This is because: (i) only active flows
require the exchange of metadata and (ii) bandwidth sharing
is enforced per destination and not per flow, thus reducing
the overall bandwidth.

Note that metadata traffic does not increase with the emu-
lated application bandwidth, since the messages have a con-
stant size. Overall, we observe that metadata traffic require-
ments are quite modest even for topologies with 160 con-
tainers deployed across 4 physical machines, i.e., 493KB/s .
Despite growing linearly with the number of physical hosts,
the overall metadata traffic is negligible when considering
the available bandwidth of the dedicated clusters we target
with Kollaps. We further study this in the next experiment.

To study how metadata grows with an increasing number
of nodes, and how distribution affects the emulation, we
design the following experiment. We deploy memcached [7],
an in-memory key-value store, in a geo-distributed topology
with 4 emulated Amazon AWS regions [78] (also used in the
experiments of §5.6). We place a memcached server container
on each region, collocated with three client containers. Each
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Figure 5. Error rate of bandwidth measures for long-lived (top) and
short-lived (bottom) flows in Kollaps and Mininet when compared
to a bare-metal deployment. Flows correspond to iPerf3 and wrk2
traffic respectively.

server handles two local clients and a remote one. Clients
execute the memtier benchmark [22] for key-value stores.
Figure 4 reports the results for two different configurations
of the client, with 1 and 10 connections per client, which cor-
respond to an increase in the number of the flows. The target
load was selected to fit the experiment in a single physical
machine thus allowing us to observe how the distribution
across an increasing number of physical machines affects
the application metrics. We deploy the experiment on top of
1, 2, 4, 8 and 16 physical machines.

We report the aggregate throughput of all the twelve
clients and the metadata traffic consumed per physical hosts.
The aggregate throughput (Figure 4, left) for both configura-
tions (1 and 10 connections per clients) is consistent across
the number of hosts. This results confirms that the decentral-
ized nature of Kollaps allows to emulate the same behavior
with a larger number of physical hosts. Looking at the meta-
data traffic (Figure 4, right), it indeed increases with the
number of physical hosts but the overall value is negligi-
ble when compared to the available bandwidth in the target
cluster.

5.3 Long- and short-lived flows
We now study the accuracy of Kollaps when handling short-
lived and long-lived flows. To this end we set up a bare-metal
experiment with one server and two clients interconnected
through a 1Gb/s switch. For the long-lived flows we use
iPerf3 and tcpdump (v4.9.2) to measure the throughput of
Cubic [43] and Reno [48] congestion control algorithms over
100 seconds. We then repeat the experiment with Mininet
and Kollaps and compute the observed deviation (error)
from bare metal as

��1 − observed bandwidth
baremetal bandwidth

��. Results are de-
picted in Figure 5 (top). Note that due to the unpredictable
nature of congestion control algorithms the overall deviation
is more important than momentary fluctuations over time.
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Figure 6. Throughput of a HTTP server serving different number
of curl clients using Kollaps and Mininet when compared to a
bare-metal deployment.

Interestingly, we observe that in general Kollaps is closer to
the bare metal observations than Mininet, despite the former
fully modeling the full state of the network switch.
We repeat the same experiment for short-lived flows us-

ing wrk2 [21], a popular HTTP benchmarking tool. This
tool maintains a set of open connections (i.e., 100 connec-
tions over 2 threads, the default configuration) and executes
continuous HTTP requests (∼64KB each) over them for a
given duration. Results are depicted in Figure 5 (bottom). In
this scenario, Kollaps is on-par with Mininet, both with a
relative error smaller than 2% for most of the experiment.

Note that wrk2 keeps a connection open and sends several
small requests over the same connection. We now show the
results for small requests sent over short connections, i.e.,
each request starts a new TCP connection. To this end, we
use the same request size used for wrk2, but instead rely
on curl [2], a popular command-line HTTP client. In this
experiment we use a 100Mb/s bandwidth link. We varied the
number of concurrent clients from 1 to 8 to control the load
on the network. Figure 6 shows the result for this setting. As
expected, increasing the number of clients increases the load
proportionally, as each client is independent and the server
has sufficient capacity (i.e., memory and cpu) to accomodate
the increasing load.We can see that Kollaps provides similar
throughput to bare-metal deployment across the different
configurations. On the contrary, in such workload, Mininet
fails to keep up as the client load increases. We explain this
behaviour by the fact that Mininet needs to maintain the full
state of the switches, which becomes a significant overhead
when the number of (short) connections grows.

Lastly, we design an experiment involving both short-
and long-lived data flows. We set up three hosts: host one
running an HTTP webserver and an iPerf3 client, host two
running a wrk2 client querying host one, and host three run-
ning an iPerf3 server being queried by host one. We run this
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Figure 7. Error rate of bandwidth measurements in a mixed
short- and long-lived flows deployment. We compare the measures
recorded from host 1 (wrk2 server and iPerf3 client - top), host 2
(wrk2 client - middle) and host 3 (iPerf3 server) for Kollaps and
Mininet against a bare-metal baseline.

setting for 6 minutes. Until minute two, only the long-lived
(iPerf3) client is sending data. From minute two to minute
four, the short lived (wrk2) client tries to utilize the link to its
full capacity. For the remainder, only the long-lived client is
sending data, like the first two minutes. Figure 7 presents the
deviation from the bare-metal deployment, when reproduc-
ing this scenario with Kollaps and Mininet. We observe that
the error rate for Mininet and Kollaps are comparable and
mostly below 5% with only a spike in the transition period
in both systems.

5.4 Decentralized Bandwidth Throttling
Next we investigate the effectiveness of our bandwidth shar-
ing model when the bandwidth requested by the application
exceeds the available capacity. To assess this, we set up a
topology with six clients (C1 - C6), three bridges (B1 - B3)
and 6 servers (S1 - S6). The first three clients are connected
to B1 through links with bandwidths of 50, 50 and 10Mb/s
and latencies of 10, 5 and 5ms , respectively. The other three
clients are connected to B2 with the same links properties.
All servers are linked to B3 through equal links with 50Mb/s
bandwidth and 5ms latency. Finally, B1 is connected to B2
by a 50Mb/s link with 10ms latency, and B2 is connected to
B3 by a 100Mb/s link with 10ms latency.
Figure 8 shows the bandwidth of each of the established

flows along the time. We use iPerf3 to establish continuous
TCP flows between clients and servers, while the experiment
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Figure 8. Decentralized bandwidth throttling: several clients com-
pete on a shared link. Each gets a different share of bandwidth,
adjusted at runtime.

proceeds as follows. In the first half of the experiment we
start each client sequentially in 60 second intervals. Initially,
only C1 has an active flow, and hence it uses all the available
bandwidth. Upon starting C2, both clients will compete for
the bandwidth over the shared links. At this point, since C2
has a smaller RTT than C1, it gets a proportionally higher
share of the bandwidth. Following the model in §3, these
shares are 23.08Mb/s and 26.92Mb/s , respectively. When
C3 starts, it will be allowed an equal share of the bandwidth
to C2. However, C3 is limited by a 10Mb/s link prior to the
contended one. Consequently, the bandwidth share of the
other two clients is increased proportionally to their original
shares, resulting in 18.45, 21.55, and 10Mb/s , respectively.
At 180 seconds, C4 starts. It can reach 50Mb/s because

the throughput of all other three clients is limited by the
50Mb/s link connecting the bridges B1 and B2. Hence, the
link between B2 and B3 can accommodate all four clients.
When C5 starts, this is no longer the case. Now, all five clients
are competing for the 100Mb/s link. C3 remains limited to
10 Mb/s , below its allowed share. The shares for all other
clients is increased accordingly resulting in 16.89, 19.75, 10,
23.74, and 29.62Mb/s , respectively. At 300 seconds, C6 starts
and, like C3, the maximum bandwidth it can use is lower than
its given share. The expected bandwidths therefore become
15.04, 17.55, 10, 21.06, 26.33, and 10Mb/s for clients C1-C6,
respectively.

On the second half of the experiment (from 360s until the
end) we sequentially shutdown the clients every 60s in the
reverse order of arrival. Despite the decentralized emula-
tion model, Kollaps is able to quickly adjust the bandwidth
shares to the dynamic behavior of clients.

5.5 Large-scale topologies
We now compare Kollaps with Mininet [53] and Max-
inet [87] in large-scale topologies.
We consider large-scale topologies generated using the

preferential attachment algorithm [26]. This method yields
scale-free networks, which are representative of the char-
acteristics of Internet topologies. The experiment consists
of end-nodes sending ICMP echo requests (ping) to other
random end-nodes for 10 minutes. We compare the obtained
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Table 4. Mean squared error exhibited on latency tests with large
scale-free topologies in Kollaps, Mininet and Maxinet.

Topology size #Nodes #Switches Kollaps Mininet Maxinet
1000 666 334 0.0261 0.0079 28.0779
2000 1344 656 0.0384 NA 347.5303
4000 2668 1332 0.0721 NA NA

round-trip times (RTT) with the theoretical ones statically
computed from the topology. The results are presented in
Table 4 as a mean squared error between these two quantities
for topologies with 1000, 2000, and 4000 elements. Kollaps
and Maxinet are deployed on four machines while Mininet is
deployed in a single machine as a multiple machine deploy-
ment is not supported. We observe that Mininet produces
smaller errors than Kollaps for the 1000 topology. The rea-
sons are twofold. First, the container networking in Docker
introduces small yet measurable delays. Second, because
Kollaps is running on different physical machines, there
is also a small but measurable delay when packets need to
traverse the physical links. Despite these two factors, the
largest deviations from the theoretical RTTs observed with
Kollaps were 0.27ms , 0.4ms and 0.55ms for the 1000, 2000,
and 4000 topologies, respectively. For reference, the mini-
mum theoretical RTTs in the three topologies are 10ms , 22ms
and 14ms , respectively. Accordingly, the deviation values cor-
respond to a MSE of 0.0261, 0.0384, and 0.0721, respectively,
as depicted in the Table 4.
Due to the current limitations with Mininet, it was not

possible to gather results for the larger topologies. Max-
inet requires an external controller to manage the emulated
switches. We experimented with several configurations with
POX [9] modules, Floodlight [6], and Opendaylight [8] to
find out which one yielded the best results. The controller
configuration used for these experiments rely on 4 distinct
POX controllers executing the forwarding.l2_nx module,
the best performing one for this scenario. The error obtained
for Maxinet is significantly higher than both Kollaps and
Mininet, with the largest deviation reaching 11ms and 40ms
on the 1000 and 2000 topologies respectively, larger than the
minimum theoretical delays in each topology. We attribute
this to the overhead of having an external controller, as well
as to the type of controller (other configurations produced
even worse results). For these reasons, we did not run further
experiments for Maxinet in the 4000 topology. To a lesser
extent, Maxinet also suffers from the small yet measurable
delay when packets need to traverse the physical links.

5.6 Geo-replicated systems
We turn our attention to macro-benchmarks to assess and
motivate the behavior of Kollaps in real-world scenarios.
Reproducibility. In this experiment, we reproduce re-

sults obtained for two Byzantine fault tolerant state machine
replication libraries: BFT-SMaRt [28], and its optimized ver-
sion Wheat [78]. The authors of these systems evaluate and
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Figure 9. Reproduction of an experiment with a geo-replicated
deployment of BFT-SMaRt and Wheat. The experiment measures
the latencies of clients located in different Amazon EC2 regions
(left: results from [78], right: same experiments with Kollaps).
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Figure 10. Throughput/latency of a geo-replicated Cassandra de-
ployment on Amazon EC2 and Kollaps.

compare them through a geo-distributed deployment on
Amazon EC2 instances spanning 5 regions [78]. The experi-
ment consists of placing one server and one client at each
region, with servers running a simple replicated counter.
Aside from the experimental results, the authors also pro-
vide the measured average latency and jitter between regions
( [78], Table II), which we use to model a topology in Kollaps
that mimics the one observed in their experiments.
Figure 9 shows the results of the original experiment on

EC2 (left), and using Kollaps (right). As we can observe, the
results of executing the experiment in Kollaps are close to
the results achieved by the authors on EC2, with a maximum
difference of 7.3% observable between the 90th percentiles
of the Wheat client in Ireland. BFT-SMaRt results were even
closer, with a maximum difference of 2.7%.
We attribute the difference to the following. Since the

authors only provide the average and standard deviation
latency measurements, we assumed for the Kollaps exper-
iments a normal jitter distribution. However, the Amazon
EC2 t1.micro instances used by the authors in their exper-
iments are prone to jittery behavior [12], potentially not
following a normal distribution. This is relevant in particular
to Wheat as its more latency sensitive than BFT-SMaRt and
thus more affected by the jitter distribution.

NoSQL evaluation. We now compare the results of
benchmarking a geo-replicated Apache Cassandra [13, 52]
deployment on Amazon EC2 and on Kollaps in our local
dedicated cluster. The deployment consists of 4 replicas in

12



Kollaps: Decentralized and Dynamic Topology Emulation EuroSys ’20, April 27–30, 2020, Heraklion, Greece

 0

 100

 200

 300

 400

 500

 600

0 1000 2000 3000 4000 5000

Original Halved latency

L
a

te
n

c
y
 (

m
s
)

Throughput (ops/sec)

Read Update Read Update

Figure 11. Throughput/latency of a geo-replicated Cassandra on
Kollaps using a hypothetical topology answering the question:
what-if nodes were moved from ap-south to ap-northeast?

Frankfurt, 4 replicas in Sydney and 4 YCSB [37] clients in
Frankfurt. Cassandra is set up to active replication with a
replication factor of 2. The YCSB operations are configured
to require a quorum on updates and only one response on
reads, with a 50/50 mix of reads and updates. YCSB will di-
rect most requests at the replicas in Frankfurt which are
closer, however, a reply from the replicas in Sydney must
always be present for a write quorum to succeed. In order
to model the network topology in Kollaps, we collected
the average latency and overall jitter between all the Ama-
zon EC2 instances used, prior to executing the experiment
on Amazon. Figure 10 shows the throughput-latency curve
obtained from the benchmark on both the real deployment
on Amazon EC2 and on Kollaps in our local cluster. The
results are a close match, showing only slight differences
after the turning point where response latencies climb fast,
as Cassandra replicas are under high stress. This experiment
illustrates how Kollaps can be used to assess the behavior of
real systems in a controlled environment without requiring
expensive real-life deployments.

The what-if use-cases. Finally, we present a possible
use-case for Kollaps, evaluating applications in an hypo-
thetical what-if scenario. For instance, it might be useful
to study the behavior of Cassandra if the latencies between
EC2 regions were to be halved. In practice, this would cor-
respond to the scenario of moving 4 Cassandra nodes from
Sydney (ap-south) to Seoul (ap-northeast). Instead of re-
lying on a costly and time-consuming real-life deployment,
Kollaps enables this study with a simple change in the topol-
ogy configuration file. Figure 11 shows the obtained results.
For the sake of readability and to ease the comparison, we
further split the previous results (from the Frankfurt and
Sydney deployment) into read and write curves and show
them alongside the hypothetical results (obtained from Kol-
laps emulation) with the halved latency scenario. In this
case, Cassandra behaves as expected: request latencies drop
by about half and Cassandra reaches higher throughputs.

6 Limitations
We identify the following limitations in Kollaps.

Interactivity. For dynamic topologies, we compute off-
line, and locally at each node, the sequence of all graph states
over time. While this approach allows to achieve sub-second
emulation precision, it also prevents the support to establish
an interactive testing session for which a precise crash plan
is not defined statically by configuration but rather decided
by the user on the fly. In principle, it is possible to support in-
teractive experiments by computing and applying the graph
changes online at the expense of some accuracy. The experi-
menter can afterwards decide, based on the reported error, if
the experiment is satisfactory or if the same sequence of steps
should be converted into a statically defined experiment.

Multipath routing.While the emulated topology itself
can include multiple paths between each two pairs of nodes,
Kollaps uses a shortest path algorithm to compute the col-
lapsed links between every pair of containers, effectively
discarding any multipath routing [36] considerations. We
plan to support this in the future by: i) extending the lan-
guage to allow the specification of multiple paths, ii) use a
k-shortest paths algorithm for link collapsing, and iii) extend
the emulation model to take this into account.

Multicast. Note also that Kollaps does not currently sup-
port multicast because the multicast tree is maintained at
the network elements such as switches and bridges, which
we do not model.

Beyond the physical links. Kollaps only emulates net-
work topologies whose aggregate capacity fits into the limits
of the underlying physical cluster (i.e., it is impossible to
emulate a link of 10Gb/s if Kollaps is running on a cluster
with 1Gb/s connections). Moreover, the fact that the band-
width sharing is updated upon each iteration of the Emula-
tion Manager forces a lower bound on the minimum latency
that Kollaps can emulate. For example, Kollaps will either
fail to capture and update the bandwidth sharing for short
flows that span a time interval shorter than a single iteration,
or would react after the flow has ended. In this sense, our
design and implementation is better suited for emulating
WAN deployments rather than emulating data-center envi-
ronments. Possible approaches to mitigate these limitations
are discussed in Section 7.

7 Conclusion and Future Work
The present work stems from the need to simplify the evalu-
ation of large-scale geo-distributed applications. Rather than
emulating the full network state, we argue that application-
level metrics are mostly affected by the macro network prop-
erties, such as end-to-end latency, bandwidth, packet loss
and jitter. We assessed the feasibility of this idea by design-
ing, implementing and evaluating Kollaps a decentralized
topology emulator. Our experiments, on small and large-
scale Internet-like topologies, in both static and dynamic
settings, show that Kollaps is able to accurately reproduce
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real-world deployments of off-the-shelf popular systems,
such as Cassandra. To our community, reproducibility of
results is increasingly important and we believe Kollaps
can be a useful tool to achieve this goal. We showed this by
reproducing results from a geographically distributed state
machine replication system presented in the literature [78].
Finally, Kollaps can also be used by engineers to predict
application performance and correctness under hypothetical,
but fully controlled, network conditions.
In future work, we plan to address several limitations of

Kollaps. To emulate networks with capacities higher than
the infrastructure upon which Kollaps is running, we plan
to investigate time dilation [42] capabilities, both in Kol-
laps and on the containers themselves. This can also help
in mitigating the limitation of flows shorter than a single
iteration of the Emulation Manager, and therefore enable
Kollaps to emulate data-center environments, as recently
proven to help in the context of SDN emulation [90]. To
further enhance efficiency of the Emulation Manager and
lowering the lower bound of the minimum latency that can
be emulated, one can switch from periodic metadata dissem-
ination to sending updates only upon changes in the flows.
This approach reduces the metadata traffic, especially in the
presence of long-lived flows, and will allow the Emulation
Manager to react more promptly to short-lived flows.
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