
OpenVSLAM: A Versatile Visual SLAM Framework

Shinya Sumikura
Nagoya University

Aichi, Japan

sumikura@ucl.nuee.nagoya-u.ac.jp

Mikiya Shibuya
Nagoya University

Aichi, Japan

mikiyan@ucl.nuee.nagoya-u.ac.jp

Ken Sakurada
National Institute of Advanced

Industrial Science and Technology

Tokyo, Japan

k.sakurada@aist.go.jp

Figure 1: One of the noteworthy features of OpenVSLAM: 3D scene mapping with various types of camera models.

ABSTRACT

In this paper, we introduce OpenVSLAM, a visual SLAM framework

with high usability and extensibility. Visual SLAM systems are

essential for AR devices, autonomous control of robots and drones,

etc. However, conventional open-source visual SLAM frameworks

are not appropriately designed as libraries called from third-party

programs. To overcome this situation, we have developed a novel

visual SLAM framework. This software is designed to be easily used

and extended. It incorporates several useful features and functions

for research and development. OpenVSLAM is released at https:

//github.com/xdspacelab/openvslam under the 2-clause BSD license.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories; • Computing methodologies → Scene understanding;

Vision for robotics.

KEYWORDS

Visual SLAM; Visual Odometry; Scene Modeling; Scene Mapping;

Localization; Open Source Software; Computer Vision

ACM Reference Format:

Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. 2019. OpenVSLAM: A

Versatile Visual SLAM Framework. In Proceedings of the 27th ACM Interna-

tional Conference on Multimedia (MM ’19), October 21–25, 2019, Nice, France.

ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3343031.3350539

MM ’19, October 21–25, 2019, Nice, France
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6889-6/19/10.
https://doi.org/10.1145/3343031.3350539

1 INTRODUCTION

Simultaneous localization and mapping (SLAM) systems have ex-

perienced a notable and rapid progression through enthusiastic

research and investigation conducted by researchers in the fields

of computer vision and robotics. In particular, ORB–SLAM [9, 10],

LSD–SLAM [4], and DSO [3] constitute major approaches regarded

as de facto standards of visual SLAM, which performs SLAM pro-

cessing using imagery. These approaches have achieved state-of-

the-art performance as visual SLAM. In addition, researchers can

reproduce the behavior of these systems on their computers be-

cause their source code is open to the public. However, they are not

appropriately designed in terms of usability and extensibility as vi-

sual SLAM libraries. Thus, researchers and engineers have to make

a great effort to apply those SLAM systems to their applications. In

other words, it is inconvenient to use existing open-source software

(OSS) for visual SLAM as the basis of applications derived from 3D

modeling and mapping techniques, such as autonomous control

of robots and unmanned aerial vehicles (UAVs), and augmented

reality (AR) on mobile devices. Therefore, it is definitely valuable

to provide an open-source visual SLAM framework that is easy to

use and to extend by users of visual SLAM.

In this paper, we present OpenVSLAM, a monocular, stereo, and

RGBD visual SLAM system that comprises well-known SLAM ap-

proaches, encapsulating them in several separated components with

clear application programming interfaces (APIs). We also provide

extensive documentation for it, including sample code snippets.

The main contributions of OpenVSLAM are

• It is compatible with various types of camera models and

can be customized for optional camera models.

• Created maps can be stored and loaded, then OpenVSLAM

can localize new images using prebuilt maps.

• A cross-platform viewer running on web browsers is pro-

vided for convenience of users.

Open Source Software Competition MM ’19, October 21–25, 2019, Nice, France

2292

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs International 4.0 License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3343031.3350539&domain=pdf&date_stamp=2019-10-15


Table 1: Comparison of several open-source visual SLAM frameworks.

ORB–SLAM2 [10] LSD–SLAM [4] DSO [3] ProSLAM [14] UcoSLAM [8] OpenVSLAM (ours)

OSS license GPLv3 GPLv3 GPLv3 3-clause BSD GPLv3 2-clause BSD

SLAM method indirect direct direct indirect indirect + marker indirect

camera model perspective perspective perspective perspective perspective
perspective, fisheye,

equirectangular

setup
monocular,

stereo, RGBD
monocular monocular stereo, RGBD

monocular,

stereo, RGBD

monocular,

stereo, RGBD

map store/load � �
customizability � �

One of the noteworthy features of OpenVSLAM is that the system

can deal with various types of camera models, such as perspective,

fisheye, and equirectangular, as shown in Figure 1. AR on mobile

devices such as smartphones needs a SLAM system with a regular

perspective camera. Meanwhile, fisheye cameras are often mounted

on UAVs and robots for visual SLAM and scene understanding be-

cause they have awider field of view (FoV) than perspective cameras.

OpenVSLAM can be used with almost the same implementation

between perspective and fisheye camera models. In addition, it is a

significant contribution that equirectangular images can constitute

inputs to our SLAM system. By using cameras that can capture

omnidirectional imagery, the tracking performance of SLAM can

be improved. Our efforts to make use of equirectangular images for

visual SLAM enable tracking and mapping not to depend on the di-

rection of a camera. Furthermore, OpenVSLAM provides interfaces

that can be employed for applications and researches that use visual

SLAM. For example, our SLAM system incorporates interfaces to

store and load a map database and a localization function based on

a prebuilt map.

We contribute to the community of computer vision and robotics

by providing this SLAM framework with a more lax OSS license

than most of the conventional visual SLAM frameworks, as shown

in Table 1. Additionally, we continuously maintain the software so

that researchers can jointly contribute to its development. Our code

is released at https://github.com/xdspacelab/openvslam.

2 RELATEDWORK

2.1 OSS for Scene Modeling

In this section, mapping and localization techniques whose pro-

grams are released as OSS are briefly described. Such techniques are

essential in a wide variety of application scenarios for autonomous

control of UAVs and robots, AR on mobile devices, etc. Some OSS

packages for those tasks using images have been open to the public.

Structure from motion (SfM) and visual SLAM are often em-

ployed as scene modeling techniques based on imagery. Regard-

ing SfM, it is usually assumed that the entire image set is pre-

pared in advance. Then the algorithm performs 3D reconstruction

via batch processing. Concerning visual SLAM, 3D reconstruction

is processed in real-time. Therefore, it assumes that images are

sequentially input. OpenMVG [7], Theia [17], OpenSfM [1], and

COLMAP [15] are well-known OSS packages for SfM. Some SfM

frameworks [1, 7] are capable of dealing with fisheye and equirect-

angular imagery. The compatibility with such images has improved

the performance and usability of SfM packages as 3D modeling

frameworks. Meanwhile, researchers often use visual SLAM, such

as ORB–SLAM [9, 10], LSD–SLAM [4], and DSO [3], for real-time

3D mapping. Unlike some SfM frameworks, most of the visual

SLAM software programs can only handle perspective imagery. In

our case, inspired by the aforementioned SfM frameworks, we do

provide a novel visual SLAM framework compatible with various

types of camera models. We thus aim at improving usability and

extensibility of visual SLAM for 3D mapping and localization.

2.2 Visual SLAM

Some visual SLAM programs are introduced and some of their fea-

tures are explained in this section. Table 1 compares characteristics

of well-known visual SLAM frameworks with our OpenVSLAM.

ORB–SLAM [9, 10] is a kind of indirect SLAM that carries out vi-

sual SLAMprocessing using local featurematching among frames at

different time instants. In this approach, the FAST algorithm [11, 12]

is used for keypoint detection. The binary vector [13] is then used

for its descriptor. Quick methods that can extract keypoints and

match feature vectors enable visual SLAM algorithms to be pro-

cessed in real-time. Similar approaches are employed in ProSLAM

[14], which is the simple visual SLAM framework for perspective

stereo and RGBD camera systems. UcoSLAM [8] adopts an algo-

rithm that combines artificial landmarks, such as squared fiducial

markers, and binary descriptor used by ORB–SLAM and ProSLAM.

Meanwhile, LSD–SLAM [4] and DSO [3] are two different ap-

proaches of direct SLAM, which realizes visual SLAM processing

directly exploiting brightness information of each pixel in images.

It should be noted that the direct method does not have to explicitly

extract any keypoints from images. Unlike the indirect method,

the direct method can be correctly operated in more texture-less

environments because it utilizes whole information from images.

However, the direct method presents more susceptibility to changes

in lighting conditions. Additionally, it has been reported that the

direct method achieves lower performance than the indirect one

when using rolling shutter cameras [3, 4]. Given that image sen-

sors in smartphones and consumer cameras are rolling shutter,

OpenVSLAM adopts the indirect method for visual SLAM.

Most of the visual SLAM frameworks cannot store and load

map databases, as highlighted in Table 1. Localization based on

a prebuilt map is important in practical terms for a lot of appli-

cation. Accordingly, it is clear that the ability to store and load

created maps improves the usability and extensibility of a visual

SLAM framework. Therefore, functions for I/O of map databases

are implemented in OpenVSLAM.

Open Source Software Competition MM ’19, October 21–25, 2019, Nice, France

2293



Figure 2: Main modules of OpenVSLAM: tracking, mapping,

and global optimization modules.

3 IMPLEMENTATION

OpenVSLAM is mainly implemented with C++. It includes well-

known libraries, such as Eigen1 for matrix calculation, OpenCV2

for I/O operation of images and feature extraction, and g2o [6] for

map optimization. In addition, extensive documentation including

sample code snippets is provided. Users can employ these snippets

for their programs.

3.1 SLAM Algorithm

In this section, we present a brief outline of the SLAM algorithm

adopted by OpenVSLAM and its module structure. As in ORB–

SLAM [9, 10] and ProSLAM [14], the graph-based SLAM algo-

rithm [5] with the indirect method is used in OpenVSLAM. It adopts

ORB [13] as a feature extractor. The module structure of OpenVS-

LAM is carefully designed for the customizability.

The software of OpenVSLAM is roughly divided into three mod-

ules, as shown in Figure 2: tracking, mapping, and global optimiza-

tion modules. The tracking module estimates a camera pose for

every frame that is sequentially inputted to OpenVSLAM via key-

point matching and pose optimization. This module also decides

whether to insert a new keyframe (KF) or not. When a frame is

regarded as appropriate for a new KF, it is sent to the mapping and

the global optimization modules. In the mapping module, new 3D

points are triangulated using the inserted KFs; that is, the map is cre-

ated and extended. Additionally, the windowed map optimization,

called local bundle adjustment (BA), is performed in this module.

Loop detection, pose-graph optimization, and global BA are carried

out in the global optimization module. Trajectory drift, which often

becomes a problem in SLAM, is resolved via pose-graph optimiza-

tion implemented with g2o [6]. Scale drift is also canceled in this

way, especially for monocular camera models.

3.2 Camera Models

OpenVSLAM can accept images captured with perspective, fisheye,

and equirectangular cameras. In regard to perspective and fish-

eye camera models, the framework is compatible not only with

monocular but also with stereo and RGBD setups. Additionally,

1C++ template library for linear algebra: http://eigen.tuxfamily.org/
2Open Source Computer Vision Library: http://opencv.org/

Figure 3: Absolute trajectory errors on the 11 sequences in

EuRoC MAV dataset (monocular). Lower is better.

users can easily add new camera models (e.g., dual fisheye and cata-

dioptric) by implementing new camera model classes derived from

a base class camera::base. This is a great advantage compared

to other SLAM frameworks because new camera models can be

implemented easily.

It is a noteworthy point that OpenVSLAM can perform SLAM

with an equirectangular camera. Equirectangular cameras, such as

RICOH THETA series, insta360 series, and Ladybug series, have

been recently used to capture omnidirectional images and videos.

In regard to visual SLAM, being compatible with equirectangular

cameras implies a significant benefit for tracking and mapping

because they have omnidirectional view, unlike perspective ones.

To the best of our knowledge, this is the first open-source visual

SLAM framework that can accept equirectangular imagery.

3.3 Map I/O and Localization

As opposed to most of the visual SLAM frameworks, OpenVSLAM

has functions to store and load map information, as shown in Ta-

ble 1. In addition, users can localize new frames based on a prebuilt

map. The map database is stored in MessagePack format, hence the

map information can be reused for any third-party applications in

addition to OpenVSLAM.

4 QUANTITATIVE EVALUATION

In this section, tracking accuracy of OpenVSLAM is evaluated using

EuRoC MAV dataset [2], which has ground-truth trajectories. ORB–

SLAM2 [10], the typical indirect SLAM, is selected for comparison.

Tracking times are also compared.

Absolute trajectory error (ATE) [16] is used for evaluation of es-

timated trajectories. To align an estimated trajectory and the corre-

sponding ground-truth, Sim(3) transformation parameters between

the two trajectories are estimated using Umeyama’s method [18].

The laptop computer used for the evaluations equips a Core i7-

7820HK CPU (2.90GHz, 4C8T) and 32GB RAM.

Figure 3 shows ATEs on the 11 sequences of EuRoC MAV dataset.

From the graph, it is found that OpenVSLAM is comparable to ORB–

SLAM with respect to tracking accuracy for UAV-mounted cameras.

Concerning the sequences including dark scenes (MH_04 and MH_05),
the trajectories estimated with OpenVSLAM are more accurate

than that with ORB–SLAM. This is mainly because frame tracking

method based on robust matching is additionally implemented in

OpenVSLAM.

Subsequently, tracking timesmeasured using the MH_02 sequence
of EuRoC MAV dataset are shown in Figure 4. Mean and median

Open Source Software Competition MM ’19, October 21–25, 2019, Nice, France

2294



ORB–SLAM OpenVSLAM

mean [ms/frame] 27.96 23.84

medain [ms/frame] 24.97 23.38

Figure 4: Tracking times on the MH_02 sequence of EuRoC

MAV dataset (monocular). The table shows mean and me-

dian tracking times on each of the two frameworks. The

graph shows the change in tracking times. Lower is better.

Figure 5: Mapping result using the indoor equirectangular

video. Tracking succeeds even in the texture-less areas.

tracking times are presented in the table as well. From the table,

it is found that OpenVSLAM consumes less tracking time than

ORB–SLAM. This is mainly because the implementation of ORB

extraction in OpenVSLAM is more optimized than that in ORB–

SLAM. In addition, it should be noted that OpenVSLAM requires

less tracking time than ORB–SLAM in later parts of the sequence

as shown in the graph. This is because OpenVSLAM efficiently

prevents a local map from being enlarged in the tracking module

when a global map is expanded.

5 QUALITATIVE EVALUATION

In this section, experimental results of visual SLAM with a RICOH

THETA V, a consumer equirectangular camera, are presented. The

3D map shown in the right half of Figure 1 is created with Open-

VSLAM using an equirectangular video captured outdoor. The FPS

is 10.0 and the number of frames is 15000. Meanwhile, Figure 5

presents the 3D map based on an indoor equirectangular video.

In this case, the FPS is 10.0 and the number of frames is 1430. It

should be noted that the camera poses are correctly tracked even

in texture-less areas thanks to omnidirectional observation. These

results allow us to conclude that visual SLAM with equirectangular

cameras is correctly performed both outdoors and indoors.

6 CONCLUSION

In this project, we have developed OpenVSLAM, a visual SLAM

framework with high usability and extensibility. The software is

designed to be easily used for various application scenarios of vi-

sual SLAM. It incorporates several useful functions for research and

development. In this paper, examples of visual SLAM with perspec-

tive and equirectangular camera models are presented. In addition,

the quantitative performance is evaluated using the benchmarking

dataset. We will continuously maintain this framework for further

development of computer vision and robotics fields.

ACKNOWLEDGMENTS

The authors would like to thank Mr. H. Ishikawa, Mr. M. Ichihara,

Dr. M. Onishi, Dr. R. Nakamura, and Prof. N. Kawaguchi, for their

support for this project.

REFERENCES
[1] Mapillary AB. 2019. OpenSfM. https://github.com/mapillary/OpenSfM.
[2] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,

Sammy Omari, Markus W Achtelik, and Roland Siegwart. 2016. The EuRoC
micro aerial vehicle datasets. International Journal of Robotics Research (IJRR) 35,
10 (2016), 1157–1163. https://doi.org/10.1177/0278364915620033

[3] Jakob Engel, Vladlen Koltun, and Daniel Cremers. 2018. Direct Sparse Odometry.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 40, 3
(2018), 611–625. https://doi.org/10.1109/TPAMI.2017.2658577

[4] Jakob Engel, Thomas Schöps, and Daniel Cremers. 2014. LSD–SLAM: Large-Scale
Direct Monocular SLAM. In Proceedings of European Conference on Computer
Vision (ECCV). 834–849. https://doi.org/10.1007/978-3-319-10605-2_54

[5] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard. 2010.
A Tutorial on Graph-Based SLAM. IEEE Transactions on Intelligent Transportation
Systems Magazine 2, 4 (2010), 31–43. https://doi.org/10.1109/MITS.2010.939925

[6] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram
Burgard. 2011. g2o: A general framework for graph optimization. In Proceedings
of IEEE International Conference on Robotics and Automation (ICRA). 3607–3613.
https://doi.org/10.1109/ICRA.2011.5979949

[7] Pierre Moulon, Pascal Monasse, Renaud Marlet, et al. 2019. OpenMVG: An Open
Multiple View Geometry library. https://github.com/openMVG/openMVG.

[8] Rafael Muñoz-Salinas and Rafael Medina Carnicer. 2019. UcoSLAM: Simultaneous
Localization and Mapping by Fusion of KeyPoints and Squared Planar Markers.
https://doi.org/10.13140/RG.2.2.31751.65440 arXiv:1902.03729

[9] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. 2015. ORB–SLAM: a
Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics
31, 5 (2015), 1147–1163. https://doi.org/10.1109/TRO.2015.2463671

[10] Raúl Mur-Artal and Juan D. Tardós. 2017. ORB–SLAM2: an Open-Source SLAM
System for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics
33, 5 (2017), 1255–1262. https://doi.org/10.1109/TRO.2017.2705103

[11] Edward Rosten and Tom Drummond. 2006. Machine Learning for High-Speed
Corner Detection. In Proceedings of European Conference on Computer Vision
(ECCV). 430–443. https://doi.org/10.1007/11744023_34

[12] Edward Rosten, Reid Porter, and Tom Drummond. 2010. Faster and Better: A
Machine Learning Approach to Corner Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 32, 1 (2010), 105–119. https://doi.org/
10.1109/TPAMI.2008.275

[13] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB:
An efficient alternative to SIFT or SURF. In Proceedings of IEEE International
Conference on Computer Vision (ICCV). 2564–2571. https://doi.org/10.1109/ICCV.
2011.6126544

[14] Dominik Schlegel, Mirco Colosi, and Giorgio Grisetti. 2018. ProSLAM: Graph
SLAM from a Programmer’s Perspective. In Proceedings of IEEE International
Conference on Robotics and Automation (ICRA). 1–9. https://doi.org/10.1109/
ICRA.2018.8461180

[15] Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion
Revisited. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 4104–4113. https://doi.org/10.1109/CVPR.2016.445

[16] Jrgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. 2012. A Benchmark for the Evaluation of RGB-D SLAM Systems. In
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 573–580. https://doi.org/10.1109/IROS.2012.6385773

[17] Christopher Sweeney, Tobias Hollerer, and Matthew Turk. 2015. Theia: A Fast
and Scalable Structure-from-Motion Library. In Proceedings of the 23rd ACM
International Conference onMultimedia. 693–696. https://doi.org/10.1145/2733373.
2807405

[18] Shinji Umeyama. 1991. Least-Squares Estimation of Transformation Parameters
Between Two Point Patterns. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 13, 4 (1991), 376–380. https://doi.org/10.1109/34.88573

Open Source Software Competition MM ’19, October 21–25, 2019, Nice, France

2295


