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ABSTRACT
Domain adaptation investigates the problem of cross-domain knowl-
edge transfer where the labeled source domain and unlabeled target
domain have distinctive data distributions. Recently, adversarial
training have been successfully applied to domain adaptation and
achieved state-of-the-art performance. However, there is still a fatal
weakness existing in current adversarial models which is raised
from the equilibrium challenge of adversarial training. Specifically,
although most of existing methods are able to confuse the domain
discriminator, they cannot guarantee that the source domain and
target domain are sufficiently similar. In this paper, we propose
a novel approach named cycle-consistent conditional adversarial
transfer networks (3CATN) to handle this issue. Our approach takes
care of the domain alignment by leveraging adversarial training.
Specifically, we condition the adversarial networks with the cross-
covariance of learned features and classifier predictions to capture
the multimodal structures of data distributions. However, since
the classifier predictions are not certainty information, a strong
condition with the predictions is risky when the predictions are
not accurate. We, therefore, further propose that the truly domain-
invariant features should be able to be translated from one domain
to the other. To this end, we introduce two feature translation losses
and one cycle-consistent loss into the conditional adversarial do-
main adaptation networks. Extensive experiments on both classical
and large-scale datasets verify that our model is able to outperform
previous state-of-the-arts with significant improvements.

CCS CONCEPTS
•Computingmethodologies→Computer vision;Transfer learn-
ing; Neural networks.
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1 INTRODUCTION
The amount of data we produce every day is truly mind-boggling,
reported by Forbes, there are 2.5 quintillion bytes of data created
each day at our current pace. These data consists of not only what
we are familiar with but also novel and unseen instances. Con-
ventional machine learning paradigms commonly assume that the
test data are seen during the training stage [17, 19, 44]. Thus, it is
challenging to handle the novel and unseen data in reality with
conventional methods. As a practical alternative, transfer lean-
ing [18, 21, 32] has been verified to be crucial for the success in
novel environment. One of the most essential topics of transfer
learning is domain adaptation [5, 26, 31, 42, 43] which investigates
the problem of cross-domain knowledge transfer where the labeled
source domain and unlabeled target domain have distinctive data
distributions.

The very objective of domain adaptation is to reduce the do-
main distribution shifts between the source domain data and tar-
get domain data, so that the models trained on the well labeled
source domain can be adapted to the target domain. Existing do-
main adaptation methods can be categorized into either shallow
branch [10, 18, 21, 31, 35] or deep branch [3, 8, 13, 26]. Typically,
methods in the shallow branch are built as two-step formulations.
The first step is used for feature extraction and the second step
focuses on domain alignment. Deep methods, however, incorporate
the feature extraction and domain alignment into a united architec-
ture. Since the feature extraction component can receive feedbacks
from the domain alignment component and reinforce itself, deep
approaches achieved state-of-the-art results in recent years [13, 26].

Among various deep domain adaptation methods, adversarial
domain adaptation [8, 14, 26, 42] attracted a lot of attention lately.
Adversarial domain adaptation, as shown in Fig. 1, introduces ad-
versarial training into the deep architecture with the similar idea
of generative adversarial networks (GANs) [11, 29]. Specifically,
adversarial domain adaptation trains a domain discriminator which
aims to distinguish whether a feature is from the source domain
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Figure 1: Adversarial domain adaptation networks. 1) The source
domain Ds and the target domain Dt have different data distribu-
tions. 2) A domain discriminator is trained to distinguish source do-
main features from target domain features. 3) The feature represen-
tation network tries to fool the domain discriminator.

or the target domain. At the same time, a deep feature represen-
tation model tries to learn domain-invariant features to fool the
domain discriminator. Once the domain discriminator fails to tell
the feature sources, adversarial domain adaptation assumes that
the learned features are well aligned. Then, a classifier trained on
the source domain features can be directly deployed to the target
domain features [37, 42].

The basic idea of adversarial domain adaptation is sound and it
has also been empirically verified to be effective in many applica-
tions [3, 4, 13]. However, there is still a fatal weakness existing in
current adversarial models which is raised from the equilibrium
challenge of adversarial training [2]. Specifically, although most of
existing methods are able to confuse the domain discriminator, they
cannot guarantee that the source domain and target domain are suf-
ficiently similar [2]. As recently claimed by Long et al. [26], adversar-
ial adaptation methods may fail to capture the complex multimodal
structures which is reflected only by the cross-covariance between
the features and corresponding classifier predictions [26, 38].

In this paper, we propose a novel approach named cycle-consistent
conditional adversarial transfer networks (3CATN) to align the two
domains. At first, inspired by very recent work [26], we deploy a
conditional domain discriminator by leveraging the cross-covariance
of learned features and corresponding classifier predictions, so that
the complex multimodal structures embedded in the data can be
captured. However, since the classifier predictions are not certainty
information, deploying a strong condition from the classifier is very
risky when the predictions are not sufficiently accurate. If we put
an inaccurate condition on the adversarial domain adaptation net-
works, the learned features may be able to confuse the domain
discriminator, but there is no guarantee that the features are truly
domain-invariant. Therefore, we further argue that truly domain-
invariant features should be able to be translated from one domain
to the other. This assumption does make sense by considering that
domain-invariant actually indicates the feature space is shared by
the two domains. In other words, the domain-invariant features are
represented by the same bases and thus can be represented by each
other. To this end, we train two feature translators, one translates
features from the source domain to the target domain and the other
translates features from the target domain to the source domain.
In addition, we calculate a cycle-consistent loss by leveraging the
two feature translators. With such a formulation, our method is
able to not only capture the complex multimodal data structures
but also avoid the negative effects caused by inaccurate conditions.
In summary, we list the main contributions of this paper as follows:

1) We propose a novel deep method named cycle-consistent condi-
tional adversarial transfer networks (3CATN) for domain adapta-
tion by taking advantage of adversarial training. Compared with
existing adversarial domain adaptation methods, our approach is
able to not only capture the complex multimodal structures but
also avoid the negative effects caused by uncertain conditions.

2) We argue that the condition with classifier predictions is risky
when the the predictions are not sufficiently accurate. To address
this, we further propose that truly domain-invariant features
should be able to be translated from one domain to the other.

3) Experiments on both classical and large-scale datasets verify that
our method is able to outperform previous state-of-the-arts with
significant advantages. We show that our method is especially
remarkable on relatively hard-to-transfer tasks (predictions on
target data are less accurate), which verifies the claims in 2).

The rest of this paper is organized as follows. In section 2, we
give a brief review of previous work reported in the community. In
section 3, we present the proposed method. Section 4 reports the
experiments. At last, we draw the conclusion in section 5.

2 RELATEDWORK
2.1 Transfer Learning and Domain Adaptation
Domain adaptation [3, 7, 18, 22, 26, 31] is a popular branch of
transfer learning [21, 32] which was proposed to handle the training
data scarcity issue in supervised learning. Since most successful
machine learningmodels [12, 16] are trained in a supervised fashion,
it is challenging to handle new environment where there are no
sufficient labeled data [20, 44]. At the same time, it is also unwise
to build every model from scratch with plenty of related models
are available [32]. Transfer learning leverages available resources
to challenge new situations. In fact, the very widespread success
of fine-tuning on pre-trained deep models [12, 16] has verified the
effectiveness of transfer leaning.

A common assumption behind conventional machine learning
algorithms is that the training set and test set have identical data
distributions. However, this assumption does not always hold in
real-world applications [32, 33]. Domain adaptation [34, 41] was
proposed to reduce the domain shifts between the labeled source
domain and unlabeled target domain. Early domain adaptation
methods [1, 10, 31] focus on knowledge transfer techniques which
are invariant with samples features. For instance, most of early
domain adaptation approaches [6, 10, 31] learn a common subspace
which is shared by the two domains, some of them [1, 15] reweight
samples according to the distribution distance with target domain.

With the sweeping success of deep learning, neural networks are
also deployed in domain adaptation. At first, deep domain adapta-
tion approaches align the two domains by minimizing a pre-defined
metric which measures the feature distributions, e.g., minimizing
MMD distance [28], minimizing covariance distance [40]. Recently,
adversarial training [8, 26, 42] was introduced into domain adap-
tation. The main idea of adversarial domain adaptation is to train
a domain discriminator which can distinguish whether a feature
is from the source domain or the target domain. The learned fea-
tures would be considered as domain-invariant once the domain
discriminator is confused by the learned features.
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Figure 2: Idea illustration of our 3CATN. 1) A deep CNN, e.g., ResNet, is trained as a feature learner to learn domain-invariant
feature representations. 2) A domain discriminator Dd is trained to distinguish source domain features from target domain
features. 3) Two feature translatorTs2t andTt2s alongwith their corresponding discriminatorsDt andDs are trained to translate
features from one domain to the other. 4) By leveraging the two feature translators, we calculate a cycle-loss to preserve the
translation consistency. 5) The classifier predictions ps and pt are deployed to condition the adversarial domain adaptation
networks. 6) All losses are backpropagated to the feature representation network to learn truly domain-invariant features.

2.2 Adversarial Domain Adaptation
Adversarial domain adaptation [6, 10, 26, 31] is similar with gener-
ative adversarial networks (GANs) [11] but not exactly the same.
GANs typically have a generator and a discriminator where the
generator synthesizes fake samples from noises to fool the discrim-
inator. Adversarial domain adaptation, however, usually does not
have a “generator” which can synthesize something new. The role
of “generator” in adversarial domain adaptation is played by a fea-
ture extractor. Specifically, the feature extractor learns new feature
representations which is able to confuse the domain discriminator.
Instead of generating from random noises in GANs, the feature ex-
tractor learns meaningful feature representations from both source
domain data and target domain data.

The adversarial training can be performed at either feature level
or pixel level. Feature adaptation methods [8, 26, 42] minimize
the domain discrepancy on the feature space. For instance, Ganin
et al. [8] optimize the standard minimax objective on the feature
space. Tzeng et al. [42] optimize an inverted label objective in a
unified framework. Pixel adaptation methods [3, 24] propose that
the learned representations can be recovered back to raw images.
As a result, pixel adaptation methods are much easier to be un-
derstood by eyes and more friendly to the end visual tasks. For
instance, CoGANs [24] learns a joint distribution of multi-domain
images. However, pixel adaptation methods generally cost much
much more than feature-based ones. They are also sensitive to
noises and missing pixels. For most classification or segmentation
tasks, especially for large-scale applications, it is also unnecessary
to directly handle raw pixels. Meaningful features have more dis-
crimination power than pixels. It is worth noting that one of major
differences between our method and Hoffman et al. [13] is that the
latter emphasizes on pixel adaptation while our method leverages
feature translation. Thus, our method is more computational ef-
ficient than [13]. In addition, as claimed by Long et al. [26], the
pixel-level adaptation methods are carefully tailored to the digits
and synthetic to real adaptation tasks.

In adversarial domain adaptation networks, the idea of condi-
tional GANs [29] is widely used to promote the discriminative

ability of both feature extractor and domain discriminator. For in-
stance, Chen et al. [4] propose a global and class-specific domain
adversarial learning framework for road scene segmenters. Long
et al. [26] propose two novel strategies to condition the domain
discriminator with classifier predictions. Our work is related with
CDAN [26]. We also condition our features with the classifier pre-
dictions to preserve the multimodal data structures. However, our
method is also significantly different from CDAN. The major dif-
ference is that CDAN did not consider the situation where the
classifier predictions may be not sufficiently accurate (Although
entropy condition is proposed in CDAN, entropy itself is an inaccu-
rate metric to measure the classification result). As a result, putting
a wrong condition on the discriminator will lead the feature extrac-
tor into risky situations. This situation is common in fine-grained
visual classification tasks. For instance, a pickup truck can be mis-
predicted as a car. With the condition of car on the discriminator,
pickups would be classified as cars for good. What is worse, the
errors caused by the predictions can be propagated and magnified.
In this paper, we argue that truly domain-invariant features should
be able to be translated from one domain to the other. In our model,
therefore, we introduce two feature translators to map features
from one domain to the other. In addition, a cycle-consistent loss is
calculated to guarantee that the source samples translated to target
style can be translated back to the source domain. Experiments
verify that such a formulation is effective for domain adaptation,
especially for relatively difficult tasks where the gap between the
source domain and the target domain is significantly large. In other
words, compared with CDAN, our formulation is able to not only
capture the complex multimodal data structures but also prevent
and penalize the errors caused by classifier predictions.

3 THE PROPOSED METHOD
3.1 Notations and Definitions
In this paper, we use subscripts s and t to denote source and target,
respectively. Thus, we have ns labeled source samples {Xs ,Ys } and



nt unlabeled target samples Xt for unsupervised domain adapta-
tion. The main challenge of domain adaptation is that the data
distributions, both marginal distributions Ps (Xs ),Pt (Xt ) and con-
ditional distributions Ps (Ys |Xs ),Pt (Yt |Xt ) are distinctive from the
source domain to the target domain. Therefore, our goal is to train
a deep network F : x → y which is able to learn discriminative
domain-invariant features where the domain shifts can be suffi-
ciently reduced. We define the related concepts as follows:

Definition 1: (Domain) A domain D is defined as a sample set
X along with its probability distribution P(X ), i.e, D = {X ,P(X )}.
The source domain and target domain are denoted as Ds and Dt .

Definition 2: (Adversarial Discriminator) An adversarial dis-
criminator D is defined as a binary classifier which is able to distin-
guish real from fake. In this paper, we introduce a domain discrim-
inator Dd which distinguishes a source domain feature from the
target domain. We also train a target sample discriminator Dt to
distinguish the real target samples and fake target samples trans-
lated from the source instances, and a source sample discriminator
Ds to distinguish the real source samples and fake source samples
translated from the target domains.

Definition 3: (Feature Learner) A feature learner F is defined
as a deep neural network which is able to learn domain-invariant
feature representations for both the the source and target domains.
We denote the feature representation of sample x as f = F (x).

Definition 4: (Feature Predictor) A feature predictor P is defined
as a classifier layer which is trained to predict possible categories
of a feature representation, i.e, p = P(f).

Definition 5: (Feature Translator) A feature translator T is de-
fined as a mapping which is able to translate the features from one
domain to the style of the other domain. In this paper, we train two
feature translators Ts2t and Tt2s .

3.2 Overall Idea
Our cycle-consistent conditional adversarial network consists of
a feature learner F , a domain discriminator Dd , a feature predic-
tor P , two feature translators Ts2t , Tt2s along with their sample
discriminators Ds and Dt .

The main goal of our model is to train an effective F which
is able to learn domain-invariant feature representations, so that
the classifier trained on the source domain can be applied to the
target domain. To this end, we introduce the domain discriminator
Dd to evaluate the feature quality of F by an adversarial manner.
The feature predictor P is further added to condition the domain
discriminator Dd , so that we can promote the discriminative ability
of the learned features and preserve the multimodal structures
embedded in the data. However, since the results of P are not always
sufficiently accurate, we further argue that truly domain-invariant
features should be able to be translated from one domain to the
other. Therefore, we train two feature translators Ts2t , Tt2s and
learn a cycle-loss. The sample discriminators Dt and Ds are used
to evaluate Ts2t and Tt2s , respectively, in an adversarial manner.

For clarity, we show the core ideas of our method in Fig. 2. The
base network of our 3CATN is the deep feature extractor F . Addi-
tionally, three adversarial networks are introduced to guide F . The
first one is the domain discriminator Dd which conditioned by the
outputs P . The other two are {Ts2t ,Dt } and {Tt2s ,Ds }. Assuming

that Tt2s (Ts2t (xs )) should be similar (or same in an ideal situation)
with xs , we calculate a cycle-loss to balance the loss of Dd .

3.3 The Conditional Domain Adversarial Nets
Since most of the real tasks are multi-class classification rather than
binary classification, the features learned from a multi-way classi-
fication deep network naturally have multimodal structures [26].
For instance, a liger shares many characteristics of both a lion and
a tiger. Thus, the visual features of a liger would have not only
its specific structures but also the structures of a lion and a tiger.
Such a phenomenon can be reflected by the classifier predictions,
e.g., the classifier indicates the probabilities of categorizing a liger
image into liger, lion and tiger are 0.8, 0.12 and 0.08, respectively. In
other words, the classifier prediction p carries the possible discrim-
inative information of the multimodal data structures. Inspired by
CDAN [26], we condition both the feature learner F and the domain
discriminator Dd with the classifier prediction p. As a result, we
have the following minimax game:

min
F ,P

max
Dd

Lcon = −E[∑C
c=1 1[ys=c]logσ (F (xs ))]

+λ(E[loдDd (δ (hs ))] + E[loд(1 − Dd (δ (ht )))]),
(1)

where λ > 0 is a balancing parameter. In this paper, we follow
CDAN and fix λ = 1 for fair comparisons. The first term in Eq. (1)
is a supervised cross-entropy loss on the source domain, in which
1[·] is an indicator, σ is the softmax and C is the possible cate-
gories. The second term is a conditional loss which is very similar
with conditional GAN [29]. It is worth noting that h = (f, p) is the
joint variable of the domain specific features and corresponding
classification predictions. δ is the conditioning strategy defined as
follows:

δ (h) =
{
δ⊗(f, p) if dimf × dimp ≤ 4096
δ⊙(f, p) otherwise,

(2)

where dim indicates the dimensionality of a vector. δ⊗ is a multi-
linear map and δ⊙ is an explicit randomized multilinear map. More
details of δ⊗ and δ⊙ can be found in [26].

3.4 The Bidirectional Translation
We can learn a conditional domain adversarial network by optimiz-
ing Eq. (1) which is able to capture the multimodal data structures.
However, the success of Eq. (1) builds on the assumption that the
classification prediction p is sufficiently accurate. The bad news is
that such an assumption does not always hold in real-world applica-
tions. If the prediction contains significant errors, the errors would
be propagated to the feature learner. What is worse, the errors can
be magnified with the increase of iterations.

The ultimate goal of adversarial domain adaptation is to learn
domain-invariant features. However, F with flawed conditions is
able to fool the domain discriminator but cannot learn truly domain-
invariant features. In this paper, we argue that the truly domain-
invariant features should be able to be translated from one domain
to the other. To this end, we first train a feature translator Ts2t to
translate the features from the source domain to the target domain.
Specifically, we train Ts2t in an adversarial fashion. A discrimina-
tor Dt is simultaneously trained to distinguish real target domain



features from the translated source features. As a result, we have
the follow loss function:

min
Ts2t

max
Dt

Ls2t = E[loдDt (ft )] + E[loд(1 − Dt (Ts2t (fs )))]. (3)

For convenience, let f̂t = Ts2t (fs ). Since f̂t is translated from fs ,
it is expected that f̂t should have the same class information with
fs . Thus, we further introduce a supervised classification loss on f̂t
to preserve the semantic consistency and rewritten Ls2t as:

min
P,Ts2t

max
Dt

Ls2t = E[loдDt (ft )] + E[loд(1 − Dt (Ts2t (fs )))]

−βE[∑C
c=1 1[ŷt=c]logσ (f̂t )].

(4)

Similarly, we can also train a mapping from the the other direc-
tion. Specifically, we further train Tt2s in an adversarial fashion.
A discriminator Ds is simultaneously trained to distinguish real
source domain features from the translated target features. As a
result, we have the follow loss function:

min
Tt2s

max
Ds

Lt2s = E[loдDs (fs )] + E[loд(1 − Ds (Tt2s (ft )))]. (5)

3.5 The Cycle-consistent Loss
Inspired by the recent work on image-to-image translation [45], we
encourage our model to preserve the original data information. For
instance, preserving the information of fs when translating it to f̂t .
Let us explain this consideration by an example. The handwritten
digit 1 can be similar to 7 if the upper part of 1 is distorted during
the translation. However, if we preserve the original information
of 1, such a error would not happen. In our model, therefore, we
deploy a cycle-consistent loss to keep the consistency of original
features before and after the translation. Formally, we expect that
Tt2s (Ts2t (fs )) ≈ fs and Ts2t (Tt2s (ft )) ≈ ft . As a result, we define
the cycle-loss as:

min
Tt2s ,Tt2s

Lcyc = E[∥Tt2s (Ts2t (fs )) − fs ∥22 ]

+E[∥Ts2t (Tt2s (ft )) − ft ∥22 ],
(6)

3.6 Overall Objective Function
By considering above all discussions on conditional adversarial
training, bidirectional translation and cycle-consistency, we have
the following loss for our 3CATN model:

L3CATN = Lcon + η1(Ls2t + Lt2s ) + η2Lcyc , (7)

where η1,η2 > 0 are two balancing parameters to control the con-
tribution of each part. Since we claim that truly domain-invariant
features should be able to be translated from one domain to the
other, we deploy the same weight forLz2t andLt2s in this paper to
show the equality of the bidirectional translations. With the overall
loss, we have our overall objective function:

min
F ,P,Tt2s ,Tt2s

max
Dd ,Ds ,Dt

L3CATN . (8)

Once the model is well-trained, we can deploy the feature learner
F to learn domain invariant features for both the source and target
domains. Then, the classifier trained on F (Xs ) can be directly used
to handle F (Xt ).

4 EXPERIMENTS
4.1 Datasets Description
MNIST, USPS and Street View House Numbers (SVHN) [30], are
three widely used handwritten digits dataset. MNIST consists of
60,000 training samples and 10,000 test samples. USPS is comprised
of 7,291 training samples and 2,007 test samples. SVHN contains
over 600,000 labeled digits cropped from Street View images.

Office-31 [35] is the most popular benchmark in domain adap-
tation. It consists of three subsets, i.e., Amazon (A), Webcam (W)
and DSLR (D). Specifically, the images in amazon is downloaded
from amazon.com. Webcam and DSLR contain images captured by
a web camera and a digital SLR camera, respectively. In total, there
are 4,652 samples from 31 categories in office-31 dataset.

VisDA [33] classification dataset is the currently largest dataset
in the community. It consists of a training domain, a validation
domain and a test domain. In total, the VisDA dataset contains over
280K images from 12 classes. In this paper, we follow the same
settings in previous works [34, 36] and use the training set as the
source domain and the validation domain as the target domain.

4.2 Experiment Protocols
Our model mainly consists of two parts. The first part is inspired
by CDAN [26] to take advantage of conditioning with classifier
predictions. However, it is easy to figure out that an inaccurate
condition will lead to negative results. Thus, the second part of
our model is a cycle-consistent translation to prevent the negative
results. We argue that truly domain-invariant features should be
able to be translated from one domain to the other. Apparently,
CDAN can be regarded as a baseline of our method. Furthermore,
CDAN is published very recently. The results of CDAN represent
state-of-art performance in the community. As a result, we mainly
compare our method with CDAN. For fair comparisons, we keep
exactly the same experiment protocols with CDAN [26]. Our codes
are available at github1.

In this paper, we deploy the standard unsupervised domain
adaptation settings which were widely used in previous work [10,
26]. Labeled source domain samples {Xs ,Ys } and unlabeled tar-
get domain samples Xt are used for training. The reported re-
sults are the classification accuracy on target samples: accuracy =
|x : x ∈ Xt ∧ ŷt = yt |/|x : x ∈ Xt |, where ŷt is the predicted la-
bel of the target domain generated by our model, and yt is the
ground truth label vector.

For digits recognition on MNIST, USPS and SVHN, we use the
same setting in CDAN. Specifically, 60000, 7291 and 73257 images
from MNIST, USPS and SVHN, respectively, are used for training.
The basic network structure for digits recognition is similar with
LeNet. We set the batch size to 224 and the learning rate as 10−3.

For object recognition on Office-31, we also deploy the same
setting in CDAN. The basic network for feature extraction is ResNet-
50 [12] which is pre-trained on ImageNet. The batch size is 32 and
the learning rate is 10−3. We optimize our model by mini-batch
stochastic gradient descent with a weight decay of 5 × 10−4 and
momentum of 0.9. For the experiments on VisDA 2017, we also
deploy ResNet-50 as the base architecture.

1github.com/lijin118/3CATN



Table 1: Results (%) of digits recognition. The best results are
highlighted by bold numbers. The compared methods have
the same experimental settings except for UNIT on SVHN
→MNIST which uses a larger training set. The results of the
baselines are cited from corresponding papers.

Method MNIST→USPS USPS→MNIST SVHN→MNIST

Source only 82.2 ± 0.8 69.6 ± 3.8 67.1 ± 0.6
DANN [7] - - 73.6
ADDA [42] 89.4 ± 0.2 90.1 ± 0.8 76.0 ± 1.8
DRCN [9] 91.8 ± 0.1 73.7 ± 0.1 82.0 ± 0.1
RevGrad [8] 89.1 ± 0.2 89.9 ± 0.3 −
CoGAN [24] 91.2 89.1 −
UNIT [23] 95.9 93.6 90.5
CDAN [26] 95.6 98.0 89.2

3CATN [Ours] 96.1 ± 0.2 98.3 ± 0.2 92.5 ± 0.3

Target Supervised 96.3 99.2 99.2

The feature translators are implemented by one fc layer and
three conv layers. The discriminator Ds and Dt are implemented
by two conv layers and one fc layer. The domain discriminator Dd
is implemented by three fc layers. All the hyper-parameters of this
paper are tuned by importance weighted cross validation [39]. The
sensitivity of parameters are discussed later in this section.

Traditional methods with deep features: TCA [31] and GFK [10].
Deep CNN methods: DANN [7], DDC [43], DAN [25], DRCN [9],
JAN [28] and SimNet [34]. GAN methods: ADDA [42], JAN-A [28],
RevGrad [8], CoGAN [24], MCD [36] and CDAN [26] are used for
comparison. The results of some compared methods are cited from
JAN and CDAN.

4.3 Digits Recognition
The results of hand-written digits recognition are reported in Ta-
ble 1. We also report the results on source only as a baseline. The
source only means the model is trained on only the source data and
then directly applied on the target data. The other compared meth-
ods are mainly based on GANs. From the results we can see that
our method is able to outperform previous state-of-the-arts. Specif-
ically, we achieved 0.5%, 0.3% and 3.3% accuracy improvement on
MNIST→USPS, USPS→MNIST and SVHN→MNIST, respectively.
It is worth noting that the improvement is very hard to achieve
since previous state-of-the-arts are very close to the results of tar-
get full supervised setting. Nevertheless, we achieve a significant
improvement on the hardest task SVHN→MNIST.

CDAN performs very well when the classifier predictions are suf-
ficiently accurate. The results on the hand-written digits are already
sufficiently accurate for most recent works. Thus, our advantages
are not quite clear on these evaluations. We perform comparably
with the target supervised model. As we claimed before, our model
would significantly improve CDAN when the classifier perditions
are inaccurate. This is somewhat proved by the results on SVHN
→MNIST. It will be further verified in following evaluations. In
conclusion, our method is able to take full advantage of classifier
predictions condition when they are accurate. At the same time,

we can also avoid the negative effects when the classifier condi-
tions are inaccurate. Our approach achieves a dynamic balance by
maximizing the advantages and minimizing the shortages.

It is also worth noting that the entropy conditioning in CDAN
is designed to handle the issue of inaccurate classifier predictions.
However, sample entropy does not necessarily indicate the classifi-
cation accuracy. A strong evidence is that CDAN+E (CDAN with
entropy conditioning) does not show significant advantage against
vanilla CDAN. For instance, the average accuracies of CDAN+E and
CDAN on Office-31 are 87.7% and 86.6%, respectively. The results
of CDAN reported in this paper are all from CDAN+E since it is
generally better than CDAN. We did not specific CDAN+E from
CDAN for the sake of simplicity and clarity.

4.4 Objects Recognition on Office-31
The results of different methods on Office-31 are reported in Table 2.
It is worth noting that we report two average results, e.g., Average 1
and Average 2. Average 1 is the average over all six evaluations.
Average 2 is the average over four evaluations which excludes
W→D and D→W since the two have very high accuracy for almost
every method. As a result, Average 2 can reflect the performance on
relatively harder tasks. From the results, we can have the following
observations:

1) Transfer learning methods perform much better than the
baseline ResNet-50 which is trained on only the source domain data.
It proves that domain adaptation is able to minimize the domain
shift and it is practical for real-world applications.

2) End-to-end deepmethods outperform two-stepmethodswhich
split feature extraction and knowledge adaptation. By simultane-
ously optimizing the two parts, the feature learner is able to receive
the feedback from latter layers. The feedback can benefit the feature
learner to learn more domain-invariant features.

3) Compared with previous end-to-end deep models, adversarial
domain adaptation achieves state-of-the-art performance recently.
Comparing JAN with CDAN, although both of them use the same
base architecture, it is obvious that a conditional domain discrimina-
tor can significantly improve the domain adaptation performance.

4) Comparing average 1 and average 2, we can see that most
methods have a nearly overall average accuracy since the results on
W→D and D→W are very high, the two soft the overall average
on tough tasks. However, the baseline ResNet also performs very
well on the two evaluations. Thus, average 2 is better to reflect the
performance on hard tasks of Office-31. Regarding average 2, we can
see that CDAN really improves state-of-the art, which verifies that
leveraging the condition with classifier prediction is quite effective.
Our method is also benefited from the classifier predictions. At the
same time, we can also observe that CDAN performs remarkably
on A→D and A→W where the classifier predictions are relatively
high (over 80% for JAN). However, for the cases D→A and W→A
where the classifier predictions are relatively poor (below 70% for
JAN), CDAN has no advantage against previous state-of-the-art
approaches. It is even worse than GTA on both D→A and W→A.
This comparison exactly verifies that the condition with classifier
predictions is not reliable when the predictions are inaccurate.

5) Although we deployed the same condition with CDAN, our
model is able to pervert the negative effects caused by inaccurate



Table 2: Domain adaptation results (accuracy %) on Office-31. Where average 1 is the overall average and average 2 is the
average over 4 challenging evaluations except for W→D and D→W. The best results are highlighted by bold numbers.

Method A→D A→W D→A D→W W→A W→D Average 1 Average 2

ResNet [12] 68.9 ± 0.2 68.4 ± 0.2 62.5 ± 0.3 96.7 ± 0.1 60.7 ± 0.3 99.3 ± 0.1 76.1 65.1
TCA [31] 74.1 ± 0.0 72.7 ± 0.0 61.7 ± 0.0 96.7 ± 0.0 60.9 ± 0.0 99.6 ± 0.0 77.6 67.4
GFK [10] 74.5 ± 0.0 72.8 ± 0.0 63.4 ± 0.0 95.0 ± 0.0 61.0 ± 0.0 98.2 ± 0.0 77.5 67.9
DDC [43] 76.5 ± 0.3 75.6 ± 0.2 62.2 ± 0.4 96.0 ± 0.2 61.5 ± 0.5 98.2 ± 0.1 78.3 69.0
DAN [25] 78.6 ± 0.2 80.5 ± 0.4 63.6 ± 0.3 97.1 ± 0.2 62.8 ± 0.2 99.6 ± 0.1 80.4 71.4
RevGrad [8] 79.7 ± 0.4 82.0 ± 0.4 68.2 ± 0.4 96.9 ± 0.2 67.4 ± 0.5 99.1 ± 0.1 82.2 74.3
MCD [36] 74.5 ± 0.6 68.3 ± 0.2 49.9 ± 0.5 90.7 ± 0.8 43.5 ± 0.5 98.3 ± 0.5 70.9 59.1
JAN [28] 84.7 ± 0.3 85.4 ± 0.3 68.6 ± 0.3 97.4 ± 0.2 70.0 ± 0.4 99.8 ± 0.2 84.3 77.2
JAN-A [28] 85.1 ± 0.4 86.0 ± 0.4 69.2 ± 0.4 96.7 ± 0.3 70.7 ± 0.5 99.7 ± 0.1 84.6 77.8
GTA [37] 87.7 ± 0.5 89.5 ± 0.5 72.8 ± 0.3 97.9 ± 0.3 71.4 ± 0.4 99.8 ± 0.4 86.5 80.3
CDAN [26] 92.9 ± 0.2 94.1 ± 0.1 71.0 ± 0.3 98.6 ± 0.1 69.3 ± 0.3 100 ± 0.0 87.7 81.8

3CATN [Ours] 94.1 ± 0.3 95.3 ± 0.2 73.1 ± 0.2 99.3 ± 0.5 71.5 ± 0.6 100 ± 0.0 88.9 83.5

classifier conditions. We argue that truly domain-invariant features
should be able to translate from one domain the other. As a result,
we introduce two feature translation losses and one cycle-consistent
loss. The results verify that our model can perform well with good
classifier conditions. At the same time, our model is also robust with
bad classifier conditions. This verifies our claim that our approach
is able to not only capture the complex multimodal structures but
also avoid the negative effects caused by uncertain conditions.

6) In terms of numbers, we achieved 1.2% accuracy improvement
w.r.t. average 1 and 1.7% accuracy improvement w.r.t. average 2. It
is worth noting that we outperform state-of-the-art CDAN 2.1%
and 2.2% on the two hardest tasks D→A and W→A, respectively.

4.5 Large-scale Test
We further evaluate our model on large-scale domain adaptation
datasets VisDA 2017. It is worth noting that VisDA is more chal-
lenging than Office-31. Compared with Office-31, VisDA has much
more images. It is also worth noting that VisDA challenge has clas-
sification and segmentation tasks. Limited by space, in this paper
we only focus on the classification task. The classification results
on VisDA are reported in Table 3.

The results on VisDA also verify that our method can outperform
previous state-of-the-art with significant advantages. We achieve
3.2% accuracy improvement over the 12 classes in VisDA. From the
results on VisDA, we can see that our method is able to perform
well on large-scale datasets. It is able to maximize the advantages
of accurate predictions and, at the same time, prevent the negative
effects caused by inaccurate predictions.

4.6 Qualitative Evaluation
For a better understanding, we conduct a qualitative evaluation on
W→A. We show some images which are misclassified by CDAN
but well-handled by our method in Fig. 4. On the evaluation of
W→A, there are 163 out of 2849 samples are misclassified by CDAN
but well-handled by our 3CATN. At the same time, almost all the
correctly classified samples by CDAN are also correctly classified by
our 3CATN. There are only 15 exceptions. For the sake of fairness,
we also show some of them in Fig. 4.

4.7 Model Analysis
Parameters. The parameters in our model are tuned by importance
weighted cross validation [39]. In most evaluations, we fix λ = 1 as
in CDAN. Since β plays the similar role with λ, we also set β = 1.
The weight for feature translators η1 is set as 0.01 and the weight
for cycle-loss η2 is set as 0.1. To fully evaluate our model, we report
the parameter sensitivities of β , η1 and η2 in Fig. 3(a), Fig. 3(b) and
Fig. 3(c), respectively. It can be seen that β is not sensitive. Our
model performs stably with different values of β . η1 and η2 are
suggested to be set smaller than 1.
Stability.Adversarial training is famous for hard of training. There-
fore, we report the training stability of our model in Fig. 3(d). It can
be seen that 3CATN performs stably with the increase of iterations
and it usually can achieve a stable result within 10, 000 iterations.
Ablation. To show the effect of each component in our model, we
report the results of ablation study in Table 4. The basic network
of our model is the ResNet which learns new feature representa-
tions. The result of ResNet is reported as S0. Then, we leverage the
conditional adversarial training to capture the multimodal data em-
bedded in the data. The result is reported as S1. Furthermore, two
feature translators are introduced to learn truly domain-invariant
features and balance the inaccurate conditioning issue, which is re-
ported as S2. At last, a cycle-consistent loss is calculated to preserve
the consistency before and after feature translation. The result is
reported as S3. The results in Table 4 verify that each part in our
model plays an important role for the final results.

It is worth noting that S1 is based on CDAN, S2 and S3 are our
contributions. Combining the results in Table 4 and Fig. 4, we can
find that CDAN is risky when the classifier predictions are not
sufficiently accurate, e.g., the classifier may be confused with a
phone and a calculator and putting a condition of calculator on the
category phone leads to the misclassification of phone images. Our
method, however, is able to alleviate the negative effects caused
by inaccurate conditions. In the introduction, we argued that truly
domain-invariant features should be able to be translated from
one domain to the other. To this end, we introduce two feature
translators and one cycle-consistent loss. The results of ablation
study and qualitative evaluation verify that both translators and



Table 3: Domain adaptation results (accuracy %) on VisDA-2017 dataset. All of the base networks are ResNet-50.

Method ResNet[12] DAN [25] RTN [27] RevGrad [8] JAN [28] SimNet [34] CDAN [26] 3CATN [Ours]

Result 49.5 53.0 53.6 55.0 61.6 69.6 70.0 73.2
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(d) Training stability
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Figure 3: Parameter sensitivity (a-c) and training stability (d). The parameters in our model are tuned by importance weighted
cross validation [39]. W→A and A→W on Office-31 dataset are evaluated as examples.
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Figure 4: Qualitative results onW→A. Blue label is the ground-truth and gray label is the prediction. This figuremainly shows
some randomly selected samples which are wrongly predicted by CDAN but correctly classified by our 3CATN. Although
almost all of the samples which are correctly predicted by CDAN are also correctly handled by our method, we show several
exceptions within the dash lines for the sake of fairness.

Table 4: The results of ablation study on D→A and W→A.

Settings D→A W→A

S0: ResNet 62.5 60.7
S1: S0+ conditional transfer loss 71.0 69.3
S2: S1 + feature translation loss 71.9 70.4
S3: S2 + cycle-consistent loss 73.1 71.5
S4: S3 - conditional transfer loss 67.5 66.9

cycle-loss definitely benefit the model. For instance, we can see that
feature translators and cycle-loss boost the overall performance on
D→A with 0.9% and 1.2%, respectively.

5 CONCLUSION
In this paper, we proposed a novel adversarial domain adaptation
method 3CATN. 3CATN takes advantage of conditional adversarial
training. In order to address the inaccurate conditioning issue, we
argue that truly domain-invariant features should be able to be

translated from one domain to the other. As a result, two feature
translators and one corresponding cycle-consistent loss are intro-
duced into conditional adversarial domain adaptation networks.
Extensive experiments verify that our method is able to outper-
form previous state-of-the-art methods with significant advantages.
In our model, we address the inaccurate conditioning issue with
external forces, e.g., balancing the weight between classifier con-
dition and feature translation. In our further work, we will study
handling the problem from internal side, i.e., explicitly evaluating
the accuracy of classifier predictions.
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