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ABSTRACT
Generating image descriptions in different languages is essential
to satisfy users worldwide. However, it is prohibitively expensive
to collect large-scale paired image-caption dataset for every target
language which is critical for training descent image captioning
models. Previous works tackle the unpaired cross-lingual image
captioning problem through a pivot language, which is with the
help of paired image-caption data in the pivot language and pivot-to-
targetmachine translationmodels. However, such language-pivoted
approach suffers from inaccuracy brought by the pivot-to-target
translation, including disfluency and visual irrelevancy errors. In
this paper, we propose to generate cross-lingual image captionswith
self-supervised rewards in the reinforcement learning framework
to alleviate these two types of errors. We employ self-supervision
from mono-lingual corpus in the target language to provide fluency
reward, and propose a multi-level visual semantic matching model
to provide both sentence-level and concept-level visual relevancy
rewards. We conduct extensive experiments for unpaired cross-
lingual image captioning in both English and Chinese respectively
on two widely used image caption corpora. The proposed approach
achieves significant performance improvement over state-of-the-art
methods.
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Figure 1: Illustration of cross-lingualChinese image caption-
ing with English language as pivot. The translated Chinese
caption in red suffers from disfluency errors while sentence
in blue contains visual irrelevancy errors.

1 INTRODUCTION
Generating natural language sentences to describe the image con-
tent, a.k.a image captioning, has received more and more attention
in recent years. It could help visually impaired people to better
understand the real world, and make it easier to index and re-
trieve massive images on the web. Thanks to the rapid development
of computer vision and natural language generation, remarkable
progress has been made in automatic image captioning. However,
most of previous works have mainly focused on generating English
captions for images. As we know, there are more than 6.6 billion
non-native English speakers in the world, and the benefits of image
captioning technology should also be brought to these users. There-
fore, it is necessary to generate captions in different languages,
which is also called the cross-lingual image captioning task.

Since image captioning models are generally data-hungry, the
main challenge for cross-lingual image captioning is the lack of
large-scale image caption dataset in the target language. It is also
prohibitively expensive to collect dataset for each language. For-
tunately, great efforts have already been made in collecting large-
scale image-caption datasets in English, as well as machine trans-
lation datasets from English to other languages. Therefore, for
cross-lingual image captioning, a natural way to avoid the demand
of paired image-caption data in the target language is to employ
another language, such as English, as the pivot to bridge the image
and the target language [11], so that the image caption is first gen-
erated by an image-to-pivot captioning model, and then translated
into the target language by a pivot-to-target machine translation
(MT) model. Figure 1 illustrates the idea of utilizing English as pivot
for cross-lingual Chinese image captioning.

The major limitation of such language-pivoted approach is that
translation errors brought by the pivot-to-target MT model cannot
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be corrected which seriously affects the quality of generated cap-
tions, especially when the MTmodel is trained in a different domain
from image captions. In order to alleviate the domain mismatch, Gu
et al. [11] propose to share parameters between the image-to-pivot
captioning model and the pivot-to-target MT model, and jointly
train these two models, which can enforce the MT model to adapt
styles towards image captions. However, this approach is hard to
generalize and computationally expensive to employ state-of-the-
art MT models for pivot-to-target translation. Lan et al. [20] instead
directly take advantage of the state-of-the-art translator 1 to gener-
ate pseudo image-target caption pairs to train the image-to-target
captioning model. They propose to re-weight the translated cap-
tions by the language fluency. However, in addition to the disfluent
sentences, the imperfect translations may also contain fluent but vi-
sually irrelevant sentences as shown in Figure 1, which also greatly
affect the accuracy of cross-lingual caption generation.

In this paper, we propose a self-supervised rewarding model
(SSR) to deal with both disfluency and visual irrelevancy errors in
language-pivoted unpaired image captioning. Our model is based
on the reinforcement learning framework, which utilizes two types
of rewards learned from self-supervisions to encourage the cap-
tion generator to correct above errors. Specifically, to improve
the caption fluency, we propose a fluency reward based on a tar-
get language model, which is trained with self-supervision loss
on mono-lingual sentences in the target language. In order to im-
prove the visual relevancy, we propose a multi-level visual semantic
matching model (ML-VSE) to provide relevancy rewards, which
employs self-supervised pseudo image-target caption pairs from
the pivot-to-target translation model for training. The ML-VSE
model contains both sentence-level and concept-level visual seman-
tic matching between images and captions, which provides coarse-
and fine-grained rewards respectively. Extensive experiments on
two widely used image caption datasets show that our model sig-
nificantly outperforms prior works on all the caption performance
metrics.

The main contributions of this work are summarized as follows:

• We propose to employ the reinforcement learning frame-
work to deal with errors in language-pivoted approaches for
unpaired cross-lingual image captioning.

• Introspective self-supervisions with respect to the fluency
and visual relevancy of generated captions are designed as
the rewards to improve the quality of cross-lingual captions.

• Extensive experiments for both unpaired English image cap-
tioning and Chinese image captioning demonstrate that our
proposed approach achieves significant improvement over
previous methods on both objective caption metrics and
human evaluation.

2 RELATEDWORKS
2.1 Image Caption Generation
Image caption generation is a challenging task which connects
computer vision and natural language processing. With the rapid
development in deep learning, great breakthroughs have been made

1Baidu online translation: http://api.fanyi.baidu.com

in image captioning [9, 14, 16, 22, 28, 33]. Vinyals et al. [28] first pro-
pose an end-to-end image captioning model based on the encoder-
decoder framework [6]. A convolutional neural network (CNN) [17]
is used to encode the image into a fix-dimensional feature vector
and a recurrent neural network (RNN) [15] is used as the decoder
to generate captions based on the encoder output. The model is
jointly optimized by maximizing the log probability of groundtruth
descriptions.

Later, many improvements based on such encoder-decoder frame-
work are proposed. Xu et al. [31] propose the spatial attention mech-
anism for image captioning, which divides the image into grids,
and teaches the model to attend to the corresponding grid at each
decoding step. Anderson et al. [1] replace the grids with detected
objects in a bottom-up attention to enhance the previous top-down
attention method. You et al. [32] propose semantic attention which
pre-defines a list of visual concepts to be attended to in the decoding
step. Gu et al. [12] propose to explore both long-term and temporal
information in captions with a CNN-based image captioning model.
Recently, Biten et al. [3] propose to integrate contextual informa-
tion into the captioning pipeline to deal with the out-of-vocabulary
named entity generation.

Besides model structures, the training target also plays an im-
portant role in image captioning. The model trained by traditional
maximum likelihood target suffers from exposure bias and evalua-
tion mismatch. The exposure bias is caused by the training setting
called “Teacher-Forcing” [2], where the model has never been ex-
posed to its own predictions in the training progress, which results
in the error accumulation at test time. The evaluation mismatch
exists because cross entropy is used as the training loss, but metrics
such as BLEU, CIDEr and METEOR are instead used for caption per-
formance evaluation. Therefore, reinforcement learning approaches
are proposed to address these two problems. Rennie et al. [25] pro-
pose a new training method based on reinforcement learning with
a baseline reward called “Self-Critical”. They provide “reward” for
captions sampled frommodel distribution, and the reward is directly
evaluated by CIDEr. In order to enhance the stability of training,
they use the reward of captions generated at test time as a baseline
reward. Works in [23, 30] propose to train the captioning model
by providing rewards of discriminability to improve the diversity
of generated captions. Our training strategy is similar to Rennie et
al. [25] except that we use self-supervision with respect to fluency
and relevancy as rewards for model learning.

2.2 Cross-lingual Image Captioning
Cross-lingual image captioning is a more challenging captioning
task which has not been well investigated yet, since most previous
works have mainly focused on generating English captions. Tsut-
sui et al. [26] propose to generate image captions in Japanese by
collecting a large-scale parallel image-caption dataset in Japanese.
However, it may not be feasible for many languages due to the
expensive cost of dataset collection. Feng et al. [10] propose an un-
supervised image captioning model with a visual concept detector
which is trained on Visual Genome dataset [19]. Although they do
not need paired image-caption corpus, a large-scale dataset with
images and grounded objects annotations is also difficult to col-
lect in any language. Recently, cross-modal pivoted approaches are
popularly used in solving zero-resource learning problems. Chen



et al. [4, 5] propose to utilize images as pivots for zero-resource
machine translation. While, Gu et al. [11] and Lan et al. [20] utilize
language as pivot for cross-lingual image captioning. Gu et al. [11]
propose to train the English image captioning model on images
paired with Chinese captions and English-Chinese parallel transla-
tion pairs. The model is performed in two steps through language
pivoting, which has an inherent deficiency due to translation error
accumulation. Lan et al. [20] instead directly take advantage of the
state-of-the-art translator to generate pseudo image-target caption
pairs to train the captioning model. They propose to re-weight
translated captions by language fluency to alleviate the disfluency
errors brought about by the translator. However, in addition to
disfluent sentences, the translation errors also contain fluent but
visually irrelevant sentences, which are ignored in their works.

3 UNPAIRED CROSS-LINGUAL IMAGE
CAPTIONINGWITH SELF-SUPERVISION

In this section, we will describe our self-supervised rewarding (SSR)
model for unpaired cross-lingual image captioning. We first present
the overview of the model framework in Section 3.1, which is based
on reinforcement learning with two types of rewards to address
the error accumulation problem in language-pivoted approaches.
Then in Section 3.2 and Section 3.3, we describe the proposed self-
supervised fluency and relevancy rewards in details.

3.1 Overview
The goal of unpaired cross-lingual image captioning is to gener-
ate a natural language sentence to describe the image content in
the target language without image-target caption pairs for train-
ing. We tackle this problem via a pivot language with the super-
vision from the help of image-caption pairs in the pivot language
and the pivot-to-target translation model. We refer to the pivot-to-
target translation model as fP→T , and the image caption dataset
in pivot language as DP = {(I (i),d(i)P )}Ni=1, where I

(i) refers to an
image instance, d(i)P refers to its corresponding sentence description
in the pivot language, and N is the total number of such image-
caption pairs. Therefore, although we don’t have manually anno-
tated image-caption pairs in the target language, we can generate
pseudo pairs DT = {(I (i),d(i)T )}Ni=1 based on fP→T and DP where
d
(i)
T = fP→T (d(i)P ) for training.
If the translationmodel fP→T is perfect, the pseudo pair (I (i),d(i)T )

can be used as groundtruth to train the target image captioning
model in a supervised way. Thus the unpaired cross-lingual image
captioning can be converted to a standard image captioning task. In
this work, we employ the vanilla image captioning model based on
an encoder-decoder framework [28]. The encoder is a deep CNN
[17] to encode the image I to a fixed-dimensional feature vector v .
The decoder is a RNN [15] to generate descriptions word by word
conditioned onv . The whole model is optimized by maximizing the
probability of generating each “groundtruth” caption words. The
generation loss function can be expressed as:

Lcap = −
N∑
i=1

n∑
j=1

log P(w(i)
T , j |w

(i)
T ,0:j−1,v

(i);θcap ), (1)

where d(i)T = {w(i)
T ,1, · · · ,w

(i)
T ,n }, n is the length of d(i)T , w(i)

T ,0 is the
sentence beginning signal <BOS>, and θcap is the parameters of
the image caption model.

However, in reality, fP→T is not perfect and can produce dif-
ferent translation errors such as disfluent translations or visually
irrelevant translations as shown in Figure 1. Such translation errors
can greatly deteriorate the image captioning performance because
the training supervision Lcap for the captioning model relies on
the translated sentences. Therefore, extra supervisions are needed
to mitigate the negative effects from fP→T , and provide accurate
guidance for the caption generator. In this paper, we utilize rein-
forcement learning framework to improve the caption performance
by providing various rewards.

In reinforcement learning framework, the caption generation
can be seen as a sequence decision process. The decoder of the
captioning model can be seen as an agent, and the generation of
each word can be seen as an action taken by the agent in each
step. When action decisions are finished, rewards will be fed back
to the agent to “tell” how good these actions are. The objective of
reinforcement learning is to maximize expected rewards in the end
of decision. In order to address the disfluency and visual irrelevancy
translation errors, we propose a fluency reward function rf lc (·)
in Section 3.2 and multi-level visual relevancy reward functions
rsr lv (·) and rcr lv (·) in Section 3.3 to “tell” the captioningmodel how
to improve the generated captions at both coarse and fine-grained
levels. Specifically, we adopt the “self-critical” [25] reinforcement
learning algorithm to train our model. Firstly, we carry out Monte-
Carlo sampling to sample a sentence s(i)s and evaluate its caption
quality with the proposed reward functions. Then we utilize the
greedy search algorithm to generate a sentence s

(i)
b to provide

baseline reward for the stability of reinforcement training.
Therefore, the joint optimization loss function to train the image

captioning model consists of three parts:

L = αLcap + βLf lc + γLr lv (2)

where Lf lc and Lr lv are the reinforcement learning objectives in
fluency and relevancy aspects respectively; α , β and γ are hyper-
parameters, which are chosen according to the scale of these loss
values and caption performance on the validation set. Figure 2
illustrates the overall framework of our proposed model.

3.2 Self-supervised Fluency Rewards
In order to improve the fluency quality of generated captions, we
employ self-supervision from mono-lingual corpus in the target
language ST = {s(i)T }Ni=1 to provide the fluency reward. We pre-
train a language model on the mono-lingual corpus to evaluate
the sentence fluency quality. We utilize the LSTM as our language
model which is trained to maximize the probability of generating
target sentence s(i)T . Its loss function is expressed as:

Llm = −
N∑
i=1

n∑
j=1

log P(w(i)
s, j |w

(i)
s,0:j−1;θlm ), (3)

where s(i)T = {w(i)
s,1, · · · ,w

(i)
s,n }, n is the length of s(i)T , and θlm is the

parameter of the language model.



Figure 2: Illustration of the proposed SSR model framework, which consists of three components: a) the image captioning
model trained on pseudo image-caption pairs; b) the language model to provide self-supervised fluency reward for the cap-
tioning model; c) the visual semantic matching model to provide self-supervised multi-level relevancy rewards. We add the
English translation below the sampled Chinese caption in brackets for better understanding.

For a sampled sentence s(i) = {w(i)
1 , · · · ,w

(i)
n } where n is the

sentence length, we take the log probability of generating s(i) by
the language model as its fluency reward as follows:

rf lc (s(i)) =
1
n

n∑
j=1

log P(w(i)
j |w(i)

0:j−1;θlm ). (4)

So the self-critical reinforcement loss function for fluency re-
warding is formulated as:

Lf lc = −
N∑
i=1

(rf lc (s
(i)
s )−rf lc (s

(i)
b ))

n∑
j=1

log P(w(i)
j |w(i)

0:j−1,v
(i);θcap ).

(5)

3.3 Self-supervised Relevancy Rewards
Through the supervision from fluency reward, the caption model is
“taught” to generate fluent captions in the target language. However,
it cannot guarantee the generated captions are relevant to the given
image, especially when the guidance from Lcap is wrong due to
the semantically inconsistent translation errors. Therefore, extra
relevancy reward is highly required to let the captioning model
know what is relevant to the image content and what is not.

We propose to learn a visual semantic matching model to eval-
uate the relevancy of the generated captions to the image based
on the pseudo image-target caption pairs DT = {(I (i),d(i)T )}Ni=1.
Although such pairs are noisy which might contain disfluent and
visually irrelevant translation errors, there are also many content
similar images whose descriptions are correctly translated, which
enables accurate visual semantic matching. we call this relevancy
reward computed by the visual semantic matching model as “self-
supervised” reward as no annotated image-target caption pairs are
used.

In order to further mitigate noises in the translated sentences,
we propose a multi-level visual semantic matching model (ML-VSE)
which includes the image-sentence matching at the coarse level
and the image-concept matching at the fine-grained level. We use
nouns and verbs in the caption sentence as the concepts, which
play important roles to deliver semantic information of the sen-
tence. The concepts in the pseudo pairs can be more accurate than
sentences since concepts don’t suffer from disfluency errors and are
easy to translate. We describe the sentence-level and concept-level
relevancy rewards computed by the two visual semantic matching
models in details below.
Sentence-Level Relevancy Reward. We provide the sentence-
level relevancy reward via image-sentence matching. The image
is encoded by Ei which consists of a pre-trained CNN and a fully
connected embedding layer to generate the image embedding vector
vI . The caption sentence is encoded by Ec which is a bi-directional
GRU to generate the caption embedding vector vc . In order to
project vI and vc in a common embedding space, we utilize the
contrastive ranking loss with hard negative mining [8] for training:

L(I , c) = max
c ′

[∆ + s(vI ,vc ′) − s(vI ,vc )]+

+max
I ′

[∆ + s(vI ′ ,vc ) − s(vI ,vc )]+,
(6)

where ∆ severs as a margin hyper-parameter, [x]+ ≡ max(x , 0),
(I , c) is a pseudo image-caption pair, c ′ is the negative caption
given image I , and I ′ is the negative image given caption c in the
mini-batch. The s(·) means the similarity function between two
embedded vectors, which is the cosine similarity in our experiments.

After training, the image-sentence matching model is able to
give captions that are relevant to the image higher similarity scores
than irrelevant ones. Therefore, our sentence-level visual relevancy
reward for the generated caption s of image I is:

rsr lv (s) = s(Ei (I ),Ec (s)). (7)



Concept-LevelRelevancyReward. Similarly to the image-sentence
matching model, we utilize Ei to encode the image to vector vI and
encode the concept into the semantic vector vw with concept em-
bedding matrix Ew . The similar contrastive ranking loss is adopted
to the joint image concept embedding space:

L(I ,w) = max
w ′

[∆ + s(vI ,vw ′) − s(vI ,vw )]+

+max
I ′

[∆ + s(vI ′ ,vw ) − s(vI ,vw )]+.
(8)

The trained image-concept matching model can be used to measure
the relevancy of the visual concept and the image. However, the
learned similarity score can be greatly influenced by the frequency
statistics of concepts. The frequent concepts in pseudo pairs are
more likely to obtain high scores than infrequent ones, which biases
the captioning model towards frequent concepts. Hence, we nor-
malize the similarity score by the prior probability of the concept
in the dataset, so that the concept-level visual relevancy reward is
computed as:

rcr lv (w) = δ (w)(s(Ei (I ),Ew (w)) − λp(w)) (9)

where (I ,w) is the image-concept pair extracted from the pseudo
image-caption pairs, p(w) is the prior probability ofw which is its
occurrence frequency, δ (w) denotes whether the wordw is a visual
concept, and λ is a hyper-parameter.

Therefore, our multi-level self-critical loss to improve the visual
relevancy of generated captions is as follows:

Lr lv = −
N∑
i=1

n∑
j=1

(rsr lv (s
(i)
s ) − rsr lv (s

(i)
b ) + rcr lv (w

(i)
j ))

· log P(w(i)
j |w(i)

0:j−1,v
(i);θcap ).

(10)

The overall training process of the proposed self-supervised
rewarding model is presented in Algorithm 1.

Algorithm 1 Training algorithm of the proposed self-supervised
rewarding model for unpaired cross-lingual image captioning.
Require: pivot image caption dataset DP ; pivot-to-target machine

translation model fP→T ; target language sentence corpus ST ;
1: Generate pseudo image-target caption pairs DT based on DP

and fP→T ;
2: Pre-train the target language model θlm based on ST with Eq

(3);
3: Pre-train Ei ,Ec ,Ew in ML-VSE model based on DT with Eq (6)

and Eq (8) respectively;
4: Initialize θcap based on DT with Eq (1);
5: repeat
6: select mini-batch (I (i),d(i)T ) ∈ DT ;
7: generate s(i)s for I (i) via Monte-Carlo sampling;
8: generate s(i)b for I (i) via greedy search;

9: compute fluency self-critic loss for s(i)s by Eq (5);
10: compute relevancy self-critic loss for s(i)s by Eq (10);
11: update θcap with Eq (2);
12: until θcap converges

4 EXPERIMENTS
We evaluate the unpaired cross-lingual image captioning models in
both English and Chinese languages. For unpaired English image
captioning, we utilize Chinese as pivot; while for unpaired Chinese
image captioning, we utilize English as pivot.

4.1 Evaluation Setting
Datasets.We conduct experiments on the MSCOCO [21] and AIC-
ICC [29] image caption datasets in this work. The MSCOCO dataset
is annotated in English, which consists of 123,287 images and 5
manually labeled English captions for each image. We follow the
public split [21] which utilizes 113,287 images for training, 5,000
images for validation and 5,000 images for testing. The AIC-ICC
(Image Chinese Captioning from AI Challenge) dataset contains
238,354 images and 5 manually annotated Chinese captions for each
image. There are 208,354 and 30,000 images in the official training
and validation set in AI challenge. Since annotations of the testing
set are unavailable in the AIC-ICC dataset, we randomly sample
5,000 images from its validation set as our testing set. We use “Jieba”
2 to tokenize Chinese captions. The words with frequency more
than 4 are added to our vocabulary. We truncate English captions
longer than 20 and Chinese captions longer than 16. The statistics
of the two datasets are presented in Table 1.

Table 1: Statistics of the datasets used in our experiments.

Dataset Lang. # Images # Captions # Vocabulary

AIC-ICC zh 240K 1200K 7,654
MSCOCO en 123K 615K 10,368

For unpaired English image captioning, the task is to generate
captions in English for images from MSCOCO dataset while no
English image-caption pairs are used. In this setting, we use Chi-
nese as the pivot language and utilize the AIC-ICC Chinese image
caption dataset. For unpaired Chinese image captioning, the task is
to generate captions in Chinese for images from AIC-ICC dataset
while no Chinese image-caption pairs are used. In this setting, we
use English as the pivot language and utilize the MSCOCO English
image caption dataset.
Compared Methods.We compare our proposed model with the
following four baseline models:

• Baseline: The vanilla captioningmodel [28] trained on pseudo
pairs DT with cross-entropy in Eq (1) without any rewards.

• Baseline+: The vanilla captioning model trained on pseudo
pairsDT with CIDEr as reward in the reinforcement learning
framework [25].

• 2-Stage pivot Googlemodel [11]: It utilizes a two-stage pipeline
for unpaired cross-lingual image captioning. The image-to-
pivot captioning model is the vanilla caption model [28] and
the pivot-to-target MT model is the online Google translator.

• 2-Stage pivot joint model [11]: It utilizes a two-stage pipeline,
including a image-to-pivot captioning model and pivot-to-
target MT model. The two models share the same word
embedding and are jointly trained to alleviate translation
errors on the image caption domain.

2https://github.com/fxsjy/jieba



Metrics.We utilize the standard caption evaluation metrics to as-
sess the quality of caption sentences, including BLEU [24], METEOR
[7] and CIDEr [27]. As an image tells a thousand words, above objec-
tive evaluation metrics may not be able to fully measure the caption
quality from different aspects. We therefore carry out human eval-
uation to further assess the caption quality from the fluency and
visual relevancy aspects.

4.2 Implementation Details
Image Captioning Model. We extract activations from the last
pooling layer of ResNet-101 [13] which is pre-trained on Ima-
geNet as our image features. We encode the image feature to a
512-dimensional vector to initialize the hidden state of LSTM de-
coder. The LSTM decoder contains 1 layer with 512 hidden units.
The dimensionality of the word embedding is set as 512. We use
the special token <BOS> and <EOS> to represent the beginning
and ending of sentences. At test time, a beam-search decoding with
beam size of 10 is used to generate captions. We use the state-of-
the-art Baidu translation API 3 as our translation model fP→T .
Language Model for Fluency Rewards. For unpaired English
image captioning, we use texts in the MSCOCO training set to
train the English language model. For unpaired Chinese image
captioning, we use texts in the AIC-ICC training set to train the
Chinese language model. However, the mono-lingual corpus is not
subject to these datasets. We do an ablation study in Section 4.4
to compare the performance of our SSR model with the language
model trained on different corpus. The language model is a one-
layer LSTM with 512 hidden units. After training, the language
model is fixed to evaluate the fluency of target captions.
ML-VSE for Relevancy Rewards. For the image-sentence match-
ing model, we use ResNet-101 [13] pre-trained on ImageNet as
the CNN image encoder and one-layer bi-directional GRU with
512 hidden units as the sentence encoder. The dimensionality of
image-sentence joint space is set to be 1024. For the image-concept
matchingmodel, we extract nouns and verbs as visual concepts from
the translated captions via stanford parsing tools 4. In total, there
are 3,231 visual concepts for unpaired English image captioning
and 9,107 visual concepts for unpaired Chinese image captioning.
The dimensionality of image-concept joint space is set as 512.
Training Details.We pre-train the image captioning model, lan-
guage model and ML-VSE model using Adam optimizer [18] with
a batch size of 128. For the image captioning model, the initial
learning rate is 4e-4, while for the language and ML-VSE model,
the initial learning rate is 2e-4. In the self-critical reinforcement
training, we set the learning rate as 4e-5 and batch size of 256. We
set hyper-parameters α , β , γ and λ to 0.05, 0.15, 1.0 and 0.5 respec-
tively. A dropout of 0.3 is applied to all models during training to
prevent over-fitting.

4.3 Comparison with the State-of-the-arts
Table 2 presents the unpaired cross-lingual image captioning per-
formance in English and Chinese languages from our proposed ap-
proach and the compared baselines. The proposed self-supervised
rewarding (SSR) model achieves the best performance among all

3http://api.fanyi.baidu.com
4http://nlp.stanford.edu:8080/parser/index.jsp

methods across different languages and evaluation metrics. The
“Baseline” method trained with imperfect pseudo pairs is inferior to
all other methods. It demonstrates that translation errors in pseudo
pairs can significantly deteriorate the captioning performance even
if we have utilized the state-of-the-art translation model. In the
“Baseline+” method, although self-critical reinforcement learning
algorithm is employed to train the model, the improvements over
“Baseline” method is marginal since it directly utilizes the noisy
translated captions to provide rewards. Our model instead is en-
hanced with fluency rewards and both coarse- and fine-grained
visual relevancy rewards in the reinforcement learning framework.
The comparison of our model with “Baseline+” proves that the con-
tribution mainly comes from the proposed self-supervised rewards
rather than the “self-critical” reinforcement training.

Our approach also outperforms the 2-stage models in Gu et al.
[11]. The 2-Stage pivot Google model takes the advantage of the
state-of-the-art translation model but ignores the translation errors
for unpaired image caption generation. The 2-Stage pivot joint
model addresses the translation domain mismatch by joint training
but cannot generalize to using the state-of-the-art translationmodel.
To be noted, our model is also more efficient than the 2-stage models
in the testing phase since we do not depend on the 2-stage pipeline
for caption generation in the target language.

4.4 Ablation Studies
Contributions of different rewards. In Table 3, we ablate the un-
paired captioning performance on different self-supervised rewards.
The fluency reward alone improves the baseline method on both un-
paired English and Chinese image captioning, which demonstrates
that the proposed fluency reward can effectively improve the quality
of generated caption sentences. However, the fluency reward only
promotes the fluency of sentence without considering the visual
relevancy. Combining the fluency reward with both sentence- and
concept-level visual relevancy rewards achieves additional perfor-
mance gains on both languages. We notice that the improvements
of visual relevancy rewards are larger on unpaired English image
captioning than the unpaired Chinese image captioning. Since the
diversity of images in the Chinese pivot language AIC-ICC dataset
is smaller than that in the MSCOCO dataset, the unpaired English
image captioning trained on pseudo image-caption pairs on the
AIC-ICC dataset is more likely to suffer from visual irrelevancy
problems. Therefore, our proposed visual relevancy rewards can
benefit more for unpaired English image captioning.
Multi-level visual-semantic matching performance. We em-
pirically evaluate the performance of ML-VSE model to demon-
strate the reliability of the self-supervised relevancy rewards at the
sentence- and concept-level. We take the ML-VSE model trained
for English captioning as an example. We randomly select 1K im-
ages from the AIC-ICC validation set and MSCOCO testing set
respectively to evaluate the performance of sentence-level seman-
tic matching model, which is shown in Table 4. We notice that
there exists a large performance gap between the MSCOCO testing
set and AIC-ICC validation set, which can result from noises in
pseudo pairs and image domain mismatch. Therefore, additional
fine-grained relevancy reward is requisite. For the image-concept
matching model, we visualize the top-10 predicted visual concepts



Table 2: Performance comparison with baseline methods for unpaired English image captioning evaluated on the MSCOCO
dataset and unpaired Chinese image captioning evaluated on the AIC-ICC dataset.

Task Method Bleu@1 Bleu@2 Bleu@3 Bleu@4 Meteor CIDEr

Unpaired English
Image Captioning

Baseline 42.7 21.4 10.2 5.2 13.5 14.5
Baseline+ 44.0 22.0 10.5 5.3 13.0 14.6

2-Stage pivot Google model [11] 42.2 21.8 10.7 5.3 14.5 17.0
2-Stage pivot joint model [11] 46.2 24.0 11.2 5.4 13.2 17.7

Our SSR 52.0 30.0 17.9 11.1 14.2 28.2

Unpaired Chinese
Image Captioning

Baseline 41.1 23.9 13.0 7.1 21.1 11.5
Baseline+ 41.6 24.4 13.3 7.3 21.1 11.6

Our SSR 46.0 30.9 19.3 12.3 22.8 18.3

Table 3: The contribution of different rewards for unpaired cross-lingual image captioning onMSCOCO and AIC-ICC datasets.

Task Rewards Bleu@1 Bleu@2 Bleu@3 Bleu@4 Meteor CIDEr

Unpaired English
Image Captioning

No Reward 42.7 21.4 10.2 5.2 13.5 14.5
rf lc 45.9 23.4 11.4 5.8 13.4 16.1

rf lc + rsr lv 50.6 28.7 17.1 10.6 13.8 26.7
rf lc + rsr lv + rcr lv 52.0 30.0 17.9 11.1 14.2 28.2

Unpaired Chinese
Image Captioning

No Reward 41.1 23.9 13.0 7.1 21.1 11.5
rf lc 45.8 30.3 18.6 11.6 22.5 18.0

rf lc + rsr lv 46.1 30.7 19.1 12.1 22.6 18.5
rf lc + rsr lv + rcr lv 46.0 30.9 19.3 12.3 22.8 18.3

Table 4: Cross-modal retrieval performance using the pro-
posed sentence-level semantic matching model trained on
the self-supervised pseudo English pairs on the AIC-ICC
training set. R@k represents recall in top k for the cross-
modal retrieval.

Image-to-Sentence Sentence-to-Image
R@1 R@10 R@1 R@10

AIC-ICC val 52.8 85.9 37.7 81.2
MSCOCO test 22.7 58.7 12.8 48.7

Figure 3: Top-10 predicted concepts for examples in
MSCOCO test set.

for some images in the MSCOCO testing set in Figure 3. As we
can see, the predicted visual concepts are highly relevant to the
image content, which cover diverse aspects such as object, action
and scene. Both results demonstrate the validity of our proposed
relevancy guidance.

Table 5: English Image Captioning performance with lan-
guage model trained on different mono-lingual corpus.

Corpus # Sents B@3 B@4 Meteor CIDEr

MSCOCO 565K 17.9 11.1 14.2 28.2
AIC-MT 483K 14.4 8.2 13.6 25.6

Language model trained on different mono-lingual corpus.
Although we utilize in-domain target corpus to train the language
model in Table 2, our SSR model can also benefit from other out-of-
domain mono-lingual corpora which are easier to obtain in reality.
In Table 5, we present the unpaired English captioning performance
with the language model trained on an out-of-domain corpus from
AIC-MT 5. Though using the out-of-domain mono-lingual corpus is
not as effective as using in-domain data, it still achieves significant
improvements over baseline models in Table 2, which demonstrates
the generalization ability of the proposed model to exploit different
mono-lingual target corpora.
Comparisonwith paired target image captioning.Table 6 com-
pares our proposed model with supervised mono-lingual image
captioning models with different number of training pairs. We can
see that the number of paired image-caption data is critical for the
supervised image captioning model. Without sufficient pairs, the
captioning performance drops significantly. Ourmodel, however, re-
lies on no supervised image-caption pairs, but achieves performance
comparable to the supervised mono-lingual captioning model with
4,000 pairs.
5https://challenger.ai/competition/ect2018



Figure 4: Examples of the English image captioning from the MSCOCO testing set, and Chinese image captioning from the
AIC-ICC testing test. The errors in generated captions are marked in red.

Table 6: Comparison between unpaired English image cap-
tioning and supervised English image captioning with dif-
ferent number of training pairs from MSCOCO dataset.

Approach # Imgs # Caps B@4 Meteor CIDEr

Baseline [28] 82,783 414,113 27.7 23.3 83.9
40,000 40,000 24.2 21.8 71.0
10,000 10,000 20.6 18.8 54.6
4,000 4,000 14.0 14.2 28.5
3,000 3,000 10.7 12.6 19.1

Our SSR 0 0 11.1 14.2 28.2

4.5 Human Evaluation and Qualitative Results
Besides the quantitative evaluations in section 4.3, we also conduct
human evaluation to verify the effectiveness of the proposed SSR
model. We take the unpaired English image captioning as an exam-
ple. We randomly select 1,000 images from the MSCOCO testing set,
and recruit 10 workers who have sufficient English skills to evalu-
ate the quality of generated captions from the “Baseline+” model
and our SSR model. Particularly, we measure the caption quality
in the fluency and relevancy aspects. The fluency levels consist of
1-very poor, 2-poor, 3-barely fluent, 4-fluent, and 5-human like, and
the relevancy levels consist of 1-irrelevant, 2-basically irrelevant,
3-partial relevant, 4-relevant, and 5-completely relevant. Results in
Table 7 demonstrate that our approach can generate more fluent
and visually relevant captions than the baseline model with the
guidance of self-supervised rewards. The example visualization

results in Figure 4 for both English and Chinese image captioning
also confirm this.

Table 7: Human evaluation results on the MSCOCO 1K test.

Measure Baseline+ model Our SSR model

Fluency 4.1 4.8

Relevancy 3.3 3.8

5 CONCLUSIONS
In this paper, we propose a novel language-pivoted approach for un-
paired cross-lingual image captioning. Previous language-pivoted
methods mainly suffer from translation errors brought about by the
pivot-to-target translation model, such as disfluency and visually
irrelevancy errors. We propose to alleviate negative effects from
such errors by providing fluency and visual relevancy rewards as
guidance in the reinforcement learning framework. We employ
self-supervisions from mono-lingual sentence corpus and machine
translated image-caption pairs to obtain the reward functions. Ex-
tensive experiments with both objective and human evaluations on
both unpaired English and Chinese image captioning tasks demon-
strate the effectiveness of the proposed approach.
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