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ABSTRACT
In this paper, we propose a system for mixing transactions in pay-

ment networks such as credit networks. Credit networks like Rip-

ple and Stellar are increasingly popular, and can facilitate cross-

currency transactions in a fraction of the time it would take for

banks or other financial institutions to process the same transaction,

and at a fraction of the cost. Unlike for cryptocurrencies, there has

been little work in the area of designing secure and private mixers

for credit networks. Mixers for cryptocurrencies such as Bitcoin

cannot be directly applied to the credit network domain because

credit networks have an inherently different structure and purpose

than cryptocurrencies. We design a system that uses cryptographic

constructs such as ring signatures, commitments, and zero knowl-
edge proofs to provide security/integrity of all transactions, ensures

privacy of the users involved in a transaction, as well as privacy of

the amount transacted. We also provide preliminary experimental

results.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols.
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payment networks; blockchain; anonymity; mixing networks

1 INTRODUCTION
Blockchain technology has enabled cryptocurrencies such as Bit-
coin [22], and platforms providing smart contract functionalities 
such as Ethereum [7]. Credit networks such as Ripple [23] and 
Stellar [29] have been developed as complementary financial ser-
vice systems to cryptocurrencies. Credit networks are peer-to-peer 
systems in which a user extends trust to other users in the net-
work in the form of I Owe You (IOU) credits. The transaction be-
tween the users is enabled by "flowing” t he IOU c redits a long a
trusted path created among them, and writing the transaction in-
formation to a public blockchain. Credit networks enable faster 
transactions than banks, have the capacity to perform same and
cross-currency transactions at a significantly lower cost than tradi-
tional banking solutions, and consequently are gaining popularity 
among users for cross-currency, global transactions. One of the 
major privacy/anonymity issues in this area is that credit networks

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specific permission and/or a 
fee. Request permissions from permissions@acm.org.

IECC ’ 19, July 7–9, 2019, Okinawa, Japan
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7177-3/19/07. . . $15.00
DOI:https://doi.org/10.1145/3343147.3343171

like Ripple post their entire transaction logs to the blockchain for

providing accountability, which make it easy to link/track the users

who are involved in a transaction, and glean other transaction

details.

Mixer networks are a popular solution for providing a degree

of privacy to users in blockchain-enabled cryptocurrencies. Tum-

bleBit [11] enables anonymity in credit networks where payments

are sent off-blockchain, via an entity called as tumbler who can effi-

ciently mix several transactions in the order of seconds. Although,

TumbleBit is efficient and provides unlinkability among the users, it

does not provide for the ability for users to perform micropayments
transactions, since the tumbler allows users to make transactions

worth 1 Bitcoin only. In some applications, being able to transact

only in unit currency might be an inconvenience to users; addition-

ally micropayments transactions allow users to transact in small

denominations (e.g., a $3 coffee costs 0.00073 Bitcoin). Other trusted

third party-based mixing protocols such as Mixcoin [4] were intro-

duced where the mixing servers were susceptible to theft from the

users, and a third party can violate anonymity. Other mixers include

CoinJoin [17], which can be used opportunistically by a set of users,

and can be used to achieve stronger anonymity in smaller groups,

and CoinSwap [18] which can achieve anonymity in larger sets at

the cost of additional transaction fees. All of the above mixers are

proposed for cryptocurrencies, not credit networks.

PathShuffle [20] is a recently presented, path mixing protocol which

is fully compliant with the Ripple credit network. PathShuffle offers

a fully decentralized, yet fast solution for complete anonymity of

Ripple transactions. PathShuffle leverages the Ripple network’s

gateway wallet, which is trusted by other users’ wallets in the net-

work to create and maintain consistent and correct credit links, and

also enables micropayments. In PathShuffle, there need to be several

users available for effectively mixing transactions, and each user

involved in a mixing transaction knows the transaction amounts of

the other users, which could lead of linkability of transactions, and

loss of value (amount) privacy for a single transaction.

Our Contributions. In this paper, we design a system where a set of

users can perform simultaneous transactions in a credit network

while maintaining their anonymity and privacy from all other users

in the network. We have multiple intermediaries in our system that

mix the transactions, and privacy of the users is protected from the

intermediaries too. Additionally the amount transacted by every

user is not known to any other user in the network, nor does a

user need to find several other users in order for the intermedi-

ary to conduct the transaction. Our system is scalable, supports

micropayments and provides fast end-to-end transactions.
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2 RELATEDWORK
In this section we will review literature in payment networks, cryp-

tocurrency mixers and credit networks, and compare our network

design with existing systems.

2.1 Payment channel networks
Fulgor [16] is the first payment protocol for peer-to-peer payment

channel networks that provides provable privacy guarantees, and

Rayo [16] is the first protocol for peer-to-peer payment channel

networks that enforces non-blocking progress. In Fulgor and Rayo:

1) The users among the path between a sender and receiver would

act as intermediaries and need to establish a payment path, and de-

termine the path capacity prior to starting the transaction. 2) Every

user in the path is assumed to be honest, whereas our design with

multiple intermediaries do not assume every user in the path to be

honest providing security against malicious intermediaries and ma-

licious users. 3) During concurrent payments in Fulgor, deadlocks

are possible. Unlike Fulgor, in our model, there will not be any dead-

locks occurring over the transaction path, and users do not have to

make a hard choice between anonymity and concurrency. 4) In Ful-

gor and Rayo, users have at least partial knowledge about network

topology. In our design, none of the users will have knowledge

about any part of the network topology, except for knowing the

intermediaries. Non-Custodial Second Layer Financial Intermediary

(NOCUST) [13] is a payment network with a single intermediary.

The trusted intermediary computes the balance in a public ledger

for every user, not providing anonymity, value and balance pri-

vacy. We provide value privacy by a commitment scheme where a

sender provides commitments to the intermediaries and the com-

mitments are placed on the blockchain through intermediaries for

the receiver.

Teechain [14] uses trusted execution environments (TEEs) that

write entries to a public blockchain to enforce correct operation

against mutually distrusting entities. Although value privacy is

trivially provided in a Teechain network, linkability is a problem,

since any adversary can link the signed entry in the blockchain to

the TEE that made these updates into the blockchain. This system

also places the entirety of trust on the TEEs, thereby allowing the

system to be vulnerable to attacks on the TEEs. One example of

such a case would be the foreshadow attack [5]. We aim to provide

unlinkability providing a commitment scheme that would not reveal

any value transferred from any of the users in the network.

Khalil et al. proposed REVIVE [12], a payment channel network that

allows users to re-balance their share of coins in a channel without

having to communicate with the blockchain. However, the channel

re-balancing process is not transparent and requires an out of band

coordination. Moreover, REVIVE only works in a restricted class

of network topologies that has cyclic structures and it is not clear

that the re-balancing mechanism is feasible in a general topology.

Perun [8] proposed virtual payment networks over Blockchain.

Perun allows two parties to establish a virtual payment network

without interacting with the intermediaries. Although Perun was

the first to introduce the concept of a virtual payment network, they

propose an explicit re-balancing scheme and the sender/receiver

can be linked to the value of the payment done over the payment

network. In our design, we focus primarily on the sender/receiver

and value privacy.

2.2 Cryptocurrencies
TumbleBit [11] provides a backward compatible, centralized mixing

service where several users transfers their funds to an entity called

tumbler, and the tumbler in turn returns them to the users at a

fresh address. In our network, we allow the users to do micro-

transactions, unlike [11], and preserve their privacy using ring

signatures and zero knowledge proofs. Bitcoin tumblers such as

Blindcoin [11] and Mixcoin [4] use a trusted third party to mix

Bitcoin addresses. CoinShuffle [26] and CoinShuffle++ [27] allow

only 538 users per mix, CoinJoin [17] allows just 50 users per mix.

In our network, we support over 800 users.

2.3 Credit Networks
SilentWhispers [15] presents a decentralized credit network (DCN)

architecture which consists of subsets of paths between the sender

and receiver calculated via several trusted entities called landmarks.
At regular time intervals, each landmark starts two instances of

breadth-first-search (BFS) rooted at itself. First one is between the

sender and itself and the second one between the receiver and itself.

These two paths are stitched forming a complete path between the

sender and receiver. [15] provides transaction integrity, account-

ability as well as sender receiver and transaction value privacy. It

does not provide detailed mechanisms for concurrent transactions

(which is essential for scalability). It is also vulnerable to deadlocks,

and requires a user to join the network only at fixed time inter-

vals. Prior to going offline, the user needs to handover the signing

keys and the transaction-related data to the landmarks which will

impersonate the user during her absence. In our paper, we have n
intermediaries out of which k intermediaries form a honest major-

ity and are online all the time, thereby reducing the trust placed on

a single intermediary. Also we do not require path-finding between

a sender and receiver.

The DCN presented by Roos et al [25] used graph embedding for

efficient routing, with support for concurrent transactions overcom-

ing the inefficiencies in [15]. The embedding algorithm constructs

a rooted spanning tree of the network graph. In [25]: a) Senders

choose random amounts to transmit along a path which might lead

to a high rate of transaction failure. b) The user has to go though a

waiting time before joining the network. Unlike [25], in our case,

there is no waiting time imposed on users, and users do not trans-

mit randomly-picked amounts, hence a transaction is guaranteed

to be successful.

Panwar et al. [21] very recently proposed aDCN systemwhere users

can perform path-based transactions in a way that preserves sender,

receiver, and value privacy. In their system, users need to perform a

rather complicated and inefficient path-finding phase. Their system

also has a significantly high number of messages being written to

the blockchain in the course of a normal, successful transaction

(more in the case of rollbacks, and other edge cases), thus resulting

in very high blockchain fees being incurred per transaction. In our

system, we require only a single blockchain-write per transaction.

3 SYSTEM DESIGN
In this section, we describe the structure of our privacy protected

network model, introduce our notations, and describe the crypto-

graphic primitives we employ in our system.
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3.1 Parties
In our system, senders and receivers form a set of users organized

into a ring. We have intermediaries I1, . . . , In who act as facilitators

for transactions between a sender and receiver. The intermediaries’

identities are publicly known to all users in the system, and all users

can contact the intermediaries. In Figure 1 we illustrate our system

model with n intermediaries andm users. All users in the ring will

sign messages using a ring signature scheme [24], to authenticate

each of their transactions. All the signatures produced by senders

and receivers in the ring will be anonymous from the intermediaries’

point of view. The only information an intermediary gleans by

inspecting a signature is that the signature was produced by a valid

user within the ring. We assume that a subset of k intermediaries

such that k < n, are honest and online all the time, hence we allow

for n − k intermediaries to be dishonest. All the intermediaries are

connected to each other and they communicate with each other over

secure and authenticated channels. We assume that the I1, . . . , In
intermediaries are setup with their traditional digital signature

signing and verification keypairs (not ring signatures).

We do not make any trust assumptions on the users in the ring.

Any user can be malicious, will try to lie about their transaction

amounts, and will try to cheat other honest users.

Figure 1. Figure showing system design representing a ring of m 
users and n intermediaries, I1, . . . , In . The dark arrows represent 
direct communication, dotted arrows indicate the communication 
takes place via intermediaries.

3.2 Overview of a transaction
In our system, a sender, Alice picks a value vi that she wants to 
transfer to a receiver, Bob, and creates a commitment to vi : Comi . 
She picks a value ti ← {0, 1}λ 

which will be shared with Bob out-
of-band (λ is security parameter). She encrypts ti and obtains Ci =
EK (ti ), where K is a symmetric key shared with Bob. Next, she signs 
(Comi ,Ci ) using her ring signature signing key. The ring signature

scheme guarantees that her identity will be anonymous to all users

in the system, including the intermediaries. She then sends the tuple

(Comi ,Ci ) and the signature over the tuple to k intermediaries. We

use the commitment scheme to provide value privacy to Alice.

Additionally, since we are modeling a credit network, we have a

party called a gateway, denoted by дw in the system; real-world

credit networks such as Ripple have gateway wallets. A gateway

is a well-known reputed wallet in the Ripple network that several

users can trust to create and maintain a credit link in a correct and

consistent manner.

The k-of-n intermediaries will then verify the signature, sign the

commitment and post their signed commitment and the original

commitment to the blockchain. The receiver Bob, will then do a

zero-knowledge proof (ZKP) with the k intermediaries to prove

that he knows the token ti , thus proving he is the right receiver. If

the ZKP verifies properly, Bob will be able to claim the vi coins in
the commitment. We give our notations in Table 1.

3.3 Cryptographic Primitives
In this section we give a brief description of the cryptographic

primitives that we employ in our system.

Ring signatures: A ring signature scheme [24] provides anonymity

to the users within a set called as a ring. It consists of two functions
RingSign and RingVerify that allows the users to sign and verify

using ring signature keys, respectively. All a verifier can tell looking

at a ring signature scheme is that some user within the ring has pro-

duced the signature. Using ring signatures, we hide the identity of

the sender and receiver involved in the transaction, thus providing

anonymity. Abe, Ohkubo, and Suzuki, in 2002, developed AOS ring

signatures [1] based on the DL assumption, which enabled gaining

significant savings in size and verification time for ring signatures.

Similarly Greg and Maxwell defined an elliptic curve method as a

new way of creating the ring signature which is another efficient

solution to save signature size and reduce verification times [19].

Constant Size Ring Signature Without Random Oracle by Bose et

al [10], presents a generic constant size ring signatures which is

independent of the cardinality of the ring, but uses non-standard

assumptions.

Zero knowledge proofs: A zero knowledge proof [9] is a technique

by which a prover can prove to a verifier that the prover knows

some secret, but without revealing the secret itself. In our system,

a receiver, Bob, proves to an intermediary, that he knows the token

ti contained in a given commitment tuple, (Comi ,Ci ), without con-
veying any information apart from the fact that he knows the value

of ti . Hence using ZKPs, the receivers can validate themselves as

the right receiver.

Pedersen commitment scheme: A Pedersen commitment scheme [30]

allows one to commit to a chosen value, such that the commitments

are perfectly hiding. The commitment will not leak any information

about value (in an information-theoretic sense), while being binding

on the sender, i.e., the sender cannot open the commitment to any

other value. We use commitments to provide privacy of transaction

values from intermediaries.

4 ADVERSARY MODEL
In our system, the adversary can adaptively corrupt a single user or

a set of users in the ring. The corrupted user can be either the sender,

receiver or the intermediary. The adversary can be either from the
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Variable Definition

λ Security parameter

(SKi ,VKi ) Signing/verification keypair for user i

I1, I2, . . . , In Set of n intermediaries

Comi Commitment i

ti Token i

Ci Encryption of ti

K Symmetric key

v Value committed to by sender

(PKi ,DKi ) Encryption/decryption keypair for ith user

σ Signature(
SKдw ,VKдw

)
Signing/verification keypair for gateway дw

(SKIj ,VKIj ) Signing/verification keypair for intermediary Ij

ring, or any outside user influencing honest users in the ring. Each

user i has her own signing and verification key pair (SKi ,VKi ).
By corrupting any sender, the adversary takes full control over

the user’s actions and the user’s signing key is compromised by

the adversary. Any corrupted sender Alice can promise a specific

amount say, vi to Bob, but provide a commitment with a lesser

value in the commitment. In case the adversary corrupts any of the

receivers in the ring, the corrupted receiver may have claimed the

right token from the k out of n intermediaries, but claim that he did

not get the correct value in the commitment. The adversary can

also corrupt a set of (possibly colluding) users not involved in the

transaction who meddle with the commitments.

We assume a honest majority k among the n intermediaries. The

adversary can corrupt up to a maximum of n − k intermediaries.

If an intermediary gets corrupted, it can collude with a sender or

receiver and forge commitments or acknowledgments respectively.

The corrupted intermediary can alsomodify the commitmentsmade

by the sender. We assume that the дw and the set of intermediaries

do not collude with each other.

4.1 Privacy and Security properties
The following are the set of security and privacy properties offered

by our system.

Sender/receiver privacy: The adversary will not know the identity

of the sender or receiver since they cloak their identity among a

ring of users and validate their identity using ring signatures.

Unlinkability: Since the identities of the sender and receiver are

cloaked among a ring of users, any intermediary or adversary will

not be able to link commitments to a sender or receiver in the

payment ring. Additionally, no two commitments can be traced

back to the same user.

Value Privacy: Any adversary in the ring will not know the value

of a given transaction, since the value is secured by a commitment

scheme along with a encrypted token, unless the adversary holds

the token to claim the value.

Lastly, our system offers one other desirable property:

Scalability: Our system allows users to do micro-payments. So users

could transact in fractions of regular cryptocurrency payments (e.g.,

$3 = 0.00073 Bitcoin).

5 OUR CONSTRUCTION
Our construction comprises of five phases: setup, ring signatures,

commitment, verify, and pay phases. In this section, we describe

each of those phases.

5.1 Setup Phase
In this phase, the users in a network and the intermediaries are

setup with their respective secret and verification keys. There are

m users and n intermediaries in our network. We assume thatm
users form a ring. The ring member who produces the signature

is the signer. We assume that each user i in the ring has their own

verification keyVKi and secret key SKi . The general notion of ring

signatures does not require any special properties, but assumes

that the signer uses trapdoor one-way permutations to generate

the ring signatures.

Algorithm 1 shows the steps involved in setting up keys for

all the users in ring and signing/verification keys for the in-

termediaries. In this algorithm, we create ring signature key-

pairs (VK1, SK1), (VK2, SK2), ...., (VKm , SKm ) for all users (Line

2). The signer does not need the knowledge, consent, or assis-

tance of the other ring members to put them in the ring; all she

needs is knowledge of their public verification keys. The next

part in the setup phase involves creating key pairs for the n in-

termediaries in the system. The verification and signing keys

(VKI1 , SKI1 ), (VKI2 , SKI2 ), ..., (VKIn , SKIn ) are setup for each of the

intermediaries (Line 4). The intermediaries’ signing/verification

key-pairs are those of a traditional digital signature scheme (not ring

signatures). Similarly, the gateway дw has a signing/verification

key-pair denoted by

(
VKдw , SKдw

)
(Line 5).

Algorithm 1: Setup phase

Parties :m users and n intermediaries

1 for i ∈ [1..m] do
/* Create users in ring and setup signing and

verifying keys */

2 Each user creates her key-pair (VKi , SKi ).

3 end
4 The intermediaries I1 . . . In create their key-pairs(

SKI1 ,VKI1
)
,

(
SKI2 ,VKI2

)
,.....,

(
SKIn ,VKIn

)
.

5 дw creates signing and verification keys

(
SKдw ,VKдw

)
5.2 Ring Signatures
We now describe Algorithm 2. In our construction we use a ring sig-

nature scheme [24] to provide sender/receiver anonymity. RingSign
denotes the algorithm that a user in the ring invokes to create a

ring signature on a message,msд. A sender, Alice, picks a random

initialization value a or “glue" from {0, 1}λ , and a message,msд to

be signed. Alice picks a random ski for all the other users in the

Table 1. List of notations
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ring. This is not the original secret key of the other users, rather

fake-secret keys created by Alice to cloak her identity among them
users. Alice, then uses her knowledge of trapdoor permutations to

invert дi (ski ) (Line 4) defined in following way. For any λ-bit input
ski which is the message, define non-negative integers qi and ri ,
so that ski = qini + ri and 0 < ri < ni . Then

дi (ski ) =

{
qini + f (ri ) , if (qi + 1)ni ≤ 2

λ

ski , otherwise.
(1)

For λ-bit ski define non-negative integers qi and ri so that

msд = qini + ri and 0 ≤ ri < mi . She creates a signature

RingSign (VK1,VK2, ..VKm ;a; sk1, sk2..., skk ) −→ σi in Line 7 of

this algorithm.

RingVerify describes the verification process by a verifier i . He
hashes themsд which is (Comi ,Ci ) and computes the encryption

key,K = H (msд). Intermediaries then verify the signature by check-

ing the equationCK,a (y1,y2, ..,ya )
?

= a which is a combining func-

tion that takes input K and initialization value a which is used

to verify the signature σi produced by Alice using the RingSign
function. In our system, the intermediaries and the gateway wallet,

дw also run the RingVerify function in Algorithm 6. In a transaction

where Alice is the sender, the intermediary Ii uses the RingVerify
function to verify the ring signature obtained on amsд from Alice

in Line 14 of RingVerify.

5.3 Commitment Phase
We now describe the commitment phase outlined in Algorithm 3.

The commitment phase consists of the sender and the n interme-

diaries. k out of n intermediaries are assumed to be available and

honest. The sender from the ring ofm users creates commitments

for values to be sent to k receivers. We set the number of receivers

to be the same as the number of honest intermediaries for clarity

and ease of presentation, but in practice, they could be different.

Let us consider a scenario where a sender Alice chooses values

(amounts) v1,v2, . . . ,vk (Line 2) to send to k receivers.

The commitments are created using the Pedersen commitment

scheme [30] where Alice chooses randomness x1 . . . xk for all the

k receivers (Line 2). Creating commitments helps to preserve value

privacy in our system. Every transaction value is protected such

that the intermediaries do not get to know any values transacted

between any pair of users. Alice then creates tokens t1, t2, ..., tk
which are sent out-of-band to every receiver, and each ti is unique
to a single receiver (Line 4). Alice then creates tuples containing

(Comi ,Ci ) where Ci is the encrypted ti , and PKi is the public en-
cryption key of the receiver. The main idea behind creating these

tokens is to ensure each valid receiver among the k receivers gets

the right commitment created for them. These tuples are shared to

the k intermediaries using a secret sharing scheme, e.g., Shamir’s

secret sharing scheme [28] (Line 7). In a secret sharing scheme, a

secret is divided among a group of n members, such that any k
out of them can collaboratively re-construct the secret, as given in

Algorithm 4.

Alice generates a signature σA using

RingSign (msдcom ,Vk1,Vk2, ..Vkm ;a; sk1, sk2..., skm ) func-

tion defined in Algorithm 2, where msдcom = (S1 . . . Sn )
(Lines 9, 10). Alice, also creates σv to be sent to

дw , where σv is the signature created on msд using

Algorithm 2: Ring Signatures

/* Ring Signatures */

1 Function
RingSign(msд,VK1,VK2, ..VKm ;a; sk1, sk2..., skk)

Data: msg, the verification keys, fake-secret keys are

the input.

Result: σi
2 for i ∈ [1..m] do
3 User i picks picks a ← {0, 1}λ and computesmsд to

be signed;

4 She picks ski for all the other ring members

1 ≤ i ≤ m, i , p (p denotes sender herself) and

computes yi = дi (ski )
5 She solves yi :CK,a (y1,y2, ..,ya ) = a

6 She computes skp = дp
−1

(
yp

)
7 She creates signature onmsд as:

SiдnSKi (VK1,VK2, ..VKm ;a; sk1, sk2..., skk )

−→ σi
8 end
9 end
/* Verify function */

10 Function RingVerify(msд,σi)
Data: msg, signature is the input to this function

Result: true or f alse
11 for i ∈ [1..m] do
12 Verifier computes yi = дi (ski )

13 He computes K = H (msд)

14 He verifies CK,a (y1,y2, ..,ya )
?

= a and does

Veri f yVKi (σi ,msд)
?

= “true”

15 end
16 end

RingSign (msд,Vk1,Vk2, ..Vkm ;a; sk1, sk2..., skm ),
wheremsд = (vi , ri , ti ) (Line 10). Intermediaries I1 . . . Ik use the

SecRecover() function to retrieve the commitment-tuple pair (Line

14). I1 . . . Ik verifies the (Comi ,Ci ) and the signature, following

which the intermediaries post

(
σComj ,Comj

)
to blockchain, where

σComj is the signature intermediary j creates after verifying Comj
(Lines 15, 16, 17).

5.4 Zero Knowledge Proof Claim for Bob
In our system, we use zero knowledge proofs (ZKPs) to ensure that

a valid receiver authenticates himself to k out of n intermediaries.

Specifically, a receiver proves in zero knowledge that he knows the

value of the token ti contained in the sender’s tuple: (Comi ,Ci =
EPKi (ti )). We illustrate the ZKP in Algorithm 5. A sender Alice and

receiver Bob share a secret ti through out-of-band communication.

The intermediaries then verify if Bob is the valid receiver so that he

can claim his amount (payment) from the intermediaries. The ZKP

depicted in Algorithm 5 is straightforward, and we do not reiterate

the steps here. After confirming that Bob is a valid receiver the

intermediaries then sign a transcript of the proof, τ , and send the

proof along with the signature to the gateway wallet дw .
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Algorithm 3: Commitment phase

Input :Set of senders, Set of receivers, G, д,h ∈ G, q = |G|
Output :σA,σv
Parties :Alice and set of n intermediaries

/* Alice creates commitments to amounts and

tokens, sends to n intermediaries */

1 for i ∈ [1..k] do
2 Alice chooses values vi ∈ Zq and randomness xi ∈ Zq
3 She creates Comi = дvihxi

4 She creates Ci = EPKi (ti ) where ti ∈ {0, 1}
λ

5 She constructs commitment, token tuple (Comi ,Ci )

6 end
7 Alice runs

SecShare ((Com1,C1) , ..., (Comk ,Ck ))

−→ (S1, S2, ..Sn )

/* Alice signs the commitments */

for i ∈ [1..k] do
Alice computesmsдcom as K = (S1, S2, ..Sn )
Alice calls function

RingSign (msдcom ,VK1,VK2, ..VKm ;a; sk1, .., skk )

−→ σA

, and sends σA to intermediaries.

She computesmsд = (vi , ri , ti ), calls
RingSign (msд,VK1,VK2, ..VKm ;a; sk1, sk2..., skk )

−→ σv

Alice sends σv to дw .

end
/* Intermediaries verify the commitments */

8 for i ∈ [1..k] do
9 for j ∈ [1..k] do
10 Ii runs (

Comj ,Cj
)
← SecRecover (S1, S2, ...Sn )

11 Ii calls RingVerify (σA,msд)
?

= “accept”

12 If accept, Ii do Siдn
(
Comj ,Cj

)
→ σComj using SKIi

13

(
σComj ,Comj

)
is posted on blockchain

14 end
15 end

Algorithm 4: Secret sharing scheme

1 for i ∈ [1..k] do
2 SecShare((Com1,C1) . . . (Comk ,Ck )) → (S1, S2, . . . , Sn ):

Splits a secret (Com1,C1) . . . (Comk ,Ck ) into n shares,

with each Si ∈ Zq .

3 SecRecover(S1, S2, . . . , Sn )) →
(Com1,C1) . . . (Comk ,Ck ) : If S1, S2, . . . , Sn are k
different shares produced by the SecShare operation,
then the value (Com1,C1) . . . (Comk ,Ck ) that this
produces is the original secret value.

4 end

Algorithm 5: Zero Knowledge proof for Bob

Parties :Alice,Bob and n intermediaries

1 for i ∈ [1..m] do
2 for j ∈ [1..n] do

/* Prove that Bob is a valid receiver of

token t */

3 begin
4 Bob sends A← дt mod q to Ij
5 Ij picks s ← Zq , sends Com (s) to Bob

6 Bob computes r1 ← Zq ,y1 = д
r1

mod q

7 Bob sends y1 to Ij
8 Ij sends s to Bob

9 Bob verifies Com, does z = (ts + r1) mod q,
sends z to Ij

10 Ij verify д
z ?

= (Asy1) mod q

11 If true, then Ij constructs

SiдnSKIi

(
s,y,A, z,д,q,G,σComj

)
→ τ , sends

to дw
12 end
13 end
14 end

5.5 Pay Phase
Algorithm 6 depicts the pay phase in which the gateway wallet,

дw releases the amount to the receiver, after the receiver has au-

thenticated himself to the k intermediaries. The gateway дw has its

own signing and verification keys

(
SKдw ,VKдw

)
, that were setup

in Algorithm 1. Figure 2 shows the steps involved in дw releasing

an amount vi to a receiver, Bob’s wallet. The numbers in the figure

depict the order in which verification is carried out by дw .

In Algorithm 6, Bob signs (msдB ,VK1,VK2,VKm ;a; sk1, . . . , skk ) →
σB sends σB to дw , where msдB is as defined in Line 2. Then,

the дw verifies if (σv ,msд) provided by Alice to дw in Line 10 of

Algorithm 3 is valid. If yes, the дw verifies the ZKP, τ , and the

signature of each intermediary, σComj ; j ∈ [1..k] on τ (Lines 6, 7,

8). If both are valid, then the дw verifies if the Comi provided by

Bob, matches with the commitment that is present in the proof

in Line 11 of Algorithm 5. If all the verification pass, дw releases

the value vi to Bob’s wallet (Line 10). In a scenario where any of

the verification fail, дw cancels the transaction. It would be a very

interesting idea to explore implementing this transaction using

smart contracts, which we envision as a part of our future work.

6 IMPLEMENTATION AND EVALUATION
We have implemented our system using Solidity [7], and used the

Charm cryptographic library [2] for implementing the Pedersen

commitments and ZKPs
1
. Our experiments were run on a desktop

class computer with Intel(R) Core(TM) i3-7100 CPU @ 3.90GHzx4

and 8GB RAM on ubuntu-16.04 platform. The participants in our

system are instantiated by an Ethereum instance with 100 Ethers

credited by default to each participant. The most efficient mixer

1
https://github.com/sigcrypto/privacy
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Algorithm 6: Pay Phase

Input :G, д ∈ G, q = |G|,Comi ,Ci ,vi
Output :vi
Parties :Alice, Bob, k intermediaries, дw

1 for i ∈ [1..k] do
/* Pay vi amount to Bob */

2 Bob computesmsдB = ((s,y,A, z,д,q,G,σComj ), ti ),
calls

RingSign(msдB ,VK1,VK2,VKm ;a; sk1, .., skk ) → σB
3 Bob sends σB to дw

4 дw calls RingVerify (σv ,msд)
?

= {true, f alse}

5 if true then
6 дw does

Veri f yVKIi

(
τ ,

(
s,y,A, z,д,q,G,σComj

))
?

=

{true, f alse}
7 if true then
8 дw calls

RingVerify (σB ,msдCom )
?

= {true, f alse}
9 if true then
10 дw verifies if Comi = (д

vi ,hri ), then
releases vi to Bob’s wallet

11 end
12 end
13 end
14 else
15 дw cancels transaction.

16 end
17 end

Figure 2. Illustration of final pay phase. The dotted arrows repre-
sent the input to дw . Solid arrow represent flow of credit from дw 
to Bob’s wallet. The numbers represent the sequence in which the 
execution of transaction takes place.

network for Bitcoin supports up to a max. of 800 users [11]. Coin-
Join and Coin shuffle can support upto 50 and 538 users per mix 
respectively, whereas our system can support more users than any 
of them. The size of a ring signature is proportional to the number 
of users in the ring, as shown in Table 2. A ring signature ensures 
a signer can sign any message anonymously on behalf of a group. 
Unfortunately, the size of the signature grows linearly with the 
size of the ring, and becomes inefficient when the ring size is large.

To mitigate this, it would be worthwhile to explore ring signature 
schemes which offer constant-sized s ignatures such as [10]. Al-
though such signature schemes exist, they are proven secure in the 
random oracle model and use non-standard assumptions, whereas 
the schemes we use are based on the well-known RSA and discrete 
logarithm assumptions. Table 3 shows the expenses in terms of

Table 2. Ring signature timings

Number of

users in ring

Time taken

to sign (sec)

Time taken

to verify (sec)

Size of signature

(bytes)

100 4.222 8.940 2980

200 8.464 17.754 5945

400 18.324 34.393 11886

800 33.427 68.505 23757

Gas , ether, and equivalent USD for deploying the cryptographic 
primitives. We used altbn128 elliptic curves in the implementation 
of the ZKP, and implemented AOS ring signatures [19].
We also measured the time taken for creating and verifying a

Table 3. Deployment costs

Functionalities Gas ETH USD

Contract Migration 277398 0.00554796 0.832

altbn128 elliptic curves 74748 0.00149496 0.224

ZKP 74684 0.00149368 0.224

AOS ring signatures 438206 0.00876412 1.315

Total 865036 0.01730072 2.595

ZKP and Pedersen commitment; the timings are given in Table 4. 
The first column shows the average time taken to create a  ZKP 
proof and to create a Pedersen commitment. The second column 
shows the average time taken to verify a ZKP or a commitment. 
We recollect that in our system, we only need a honest majority k , 
of n intermediaries. In our experiments, we set k = 7, and n = 10, 
similar to [15], although one could vary k , with some tradeoffs. 
Choosing a smaller k would require users to place more trust on 
the intermediaries, whereas a higher k value would mae the system 
incur more computational costs.

Table 4. Time for commitments and ZKPs

Time for creation

(sec)

Time for Verifica-

tion (sec)

Zero Knowl-

edge Proof

0.00189 0.05948

Pedersen Com-

mitment

0.0267 0.0267

We calculate the time taken for a transaction to go through in our

system using Equation 2. This equation specifies the total time

taken for cryptographic operations involved. The time taken for
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Time taken for a transaction Number of users in the Ring

4 Seconds [Ripple] 10 users

120 seconds [Ethereum] 400 users

1200 seconds [Bitcoin] 3200 users

ring signatures, ZKP and commitments are specified in Table 2 and

Table 4. δ denotes the overhead time, which includes a standard

sign and verify operation by the intermediaries and other network

latencies in the system, which we assume would be lesser than the

cost of the major cryptographic operations.

Transaction time = k(Time taken for commitment) + 3(Ring Sign)

+3(Ring Verify) + k(Time taken for ZKP) + δ
(2)

Using the timing values provided in Table 3 and Table 4 in Equa-

tion 2, we calculate the number of users in the ring with transaction

confirmation time for Ripple (4 Sec), Ethereum (2+ min) and Bitcoin

(20 min) [23], as reference, and the values are given in Table 5.

It is important to note that the time mentioned for these cryp-

tocurrencies are just transaction confirmation times, and the actual

end-to-end transaction time is a lot more, since it depends on block

creation for each of these transactions [3]. Whereas in our system,

the corresponding number of users in the ring as mentioned in

Table 5 could do an end-to-end transaction in the times given in first

column of Table 5, with total privacy and anonymity.

7 CONCLUSION AND FUTUREWORK
In this paper, we have proposed techniques for providing user and

value privacy, as well as transaction integrity and security, while

mixing transactions in a credit network. Our experiments show that

our system can be deployed on a reasonably large networks, and is

comparable to mixer networks proposed for cryptocurrencies [11].

Although we envision our system to be of use in credit networks,

one can apply it to other payment networks too. In future work, we

plan to analyze the security and privacy properties of our system

in a formal model such as the Universal Composability framework

of Canetti [6], and prove its security. We also plan to study the

interesting problem of constructing virtual payment channels [8]

for credit networks.
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