
2

Verification Methods for the Computationally Complete

Symbolic Attacker Based on Indistinguishability

GERGEI BANA, University of Missouri, USA and University of Luxembourg, Luxembourg

ROHIT CHADHA and AJAY KUMAR EERALLA, University of Missouri, USA

MITSUHIRO OKADA, Keio University, Japan

In recent years, a new approach has been developed for verifying security protocols with the aim of

combining the benefits of symbolic attackers and the benefits of unconditional soundness: the technique of

the computationally complete symbolic attacker of Bana and Comon (BC) [8]. In this article, we argue that

the real breakthrough of this technique is the recent introduction of its version for indistinguishability [9],

because, with the extensions we introduce here, for the first time, there is a computationally sound symbolic

technique that is syntactically strikingly simple, to which translating standard computational security

notions is a straightforward matter, and that can be effectively used for verification of not only equivalence

properties but trace properties of protocols as well. We first fully develop the core elements of this newer

version by introducing several new axioms. We illustrate the power and the diverse use of the introduced

axioms on simple examples first. We introduce an axiom expressing the Decisional Diffie-Hellman property.

We analyze the Diffie-Hellman key exchange, both in its simplest form and an authenticated version as

well. We provide computationally sound verification of real-or-random secrecy of the Diffie-Hellman key

exchange protocol for multiple sessions, without any restrictions on the computational implementation other

than the DDH assumption. We also show authentication for a simplified version of the station-to-station

protocol using UF-CMA assumption for digital signatures. Finally, we axiomatize IND-CPA, IND-CCA1, and

IND-CCA2 security properties and illustrate their usage. We have formalized the axiomatic system in an

interactive theorem prover, Coq, and have machine-checked the proofs of various auxiliary theorems and

security properties of Diffie-Hellman and station-to-station protocol.

CCS Concepts: • Security and privacy → Logic and verification; Formal security models;

Additional Key Words and Phrases: Authentication, secrecy, computational model, Dolev-Yao model, compu-

tational soundness, first-order logic

ACM Reference format:

Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada. 2019. Verification Methods for the

Computationally Complete Symbolic Attacker Based on Indistinguishability. ACM Trans. Comput. Logic 21,

1, Article 2 (October 2019), 44 pages.

https://doi.org/10.1145/3343508

Gergei Bana was partially supported by the ERC Consolidator Grant CIRCUS (683032) and by the National Research Fund

(FNR) of Luxembourg under the Pol-Lux project VoteVerif (POLLUX-IV/1/2016). Rohit Chadha and Ajay Kumar Eeralla

were partially supported by NSF CNS 1314338 and NSF CNS 1553548. Mitsuhiro Okada was partially supported by JSPS

KAKENHI Grants No. 17H02263, No. 17H02265, and No. JSPS-AYAME (2016–2018).

Authors’ addresses: G. Bana, R. Chadha, and A. K. Eeralla, Department of Electrical Engineering and Computer Science, 201

Naka Hall, Columbia, MO 65211, USA; emails: bana@math.upenn.edu, chadhar@missouri.edu, ae266@mail.missouri.edu;

M. Okada, Department of Philosophy, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan; email: mitsu@

abelard.flet.keio.ac.jp.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1529-3785/2019/10-ART2 $15.00

https://doi.org/10.1145/3343508

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

https://doi.org/10.1145/3343508
mailto:permissions@acm.org
https://doi.org/10.1145/3343508
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3343508&domain=pdf&date_stamp=2019-10-04

2:2 G. Bana et al.

1 INTRODUCTION

Security protocols are analyzed with respect to “attacker models,” which formalize the capabili-
ties of the attacker. There are primarily two approaches to rigorously model the capabilities of the
attacker. The first approach, inspired by the theory of computational complexity, essentially says
that a protocol is secure if an attacker, modeled as a polynomially bounded probabilistic Turing
machine, can break the security property only with negligible probability. The second approach,
inspired by the theory of logic and programming languages, assumes perfect black-box cryptogra-
phy and nondeterministic symbolic computation by the attacker. It is common to call the former
model the computational model while the latter the Dolev-Yao model.

The computational model generally provides far stronger security guarantees than the Dolev-
Yao model. However, proofs of security in the computational model tend to be complex and error-
prone. The Dolev-Yao model on the other is simpler and intuitive, and several tools are available
for automatically proving security in the Dolev-Yao model, such as ProVerif [14], Scyther [21],
and Tamarin [28].

Given that proofs in the computational model tend to be long and error-prone, it is desirable to
have machine-assisted proofs. Two main research directions have been considered in the literature
to achieve this goal. The first one is to establish computational soundness results (see References [2,
4], for example), which show that under certain conditions, the Dolev-Yao model is fully abstract
with respect to the computational one and thus it is sufficient to analyze protocols in the Dolev-Yao
model. Another approach is to carry out symbolic proofs of correctness directly in the computa-
tional model with the help of formal provers as is the case with CryptoVerif [15] and EasyCrypt
[12]. Both of these approaches have limitations. Computational soundness results require strong
assumptions on the computational implementation, calling into question their utility. Furthermore,
when considering additional primitives, one has to establish the soundness results for the whole
system again. As the proofs of computational soundness results are rather complex, this imposes
a significant burden. Because of these issues, although once a research direction receiving much
attention, it has largely been abandoned by now. The efforts of most researchers currently go into
developing tools that work directly in the computational model. However, the current state-of-
the-art formal provers are often not able to complete the proofs in computational model, even for
secure protocols. When the provers fail to complete the proof, it is not clear if the failure is due to
a protocol flaw or due to the limitations of the prover.

A third approach advocated by Bana and Comon (BC) in References [8, 9] (and developed in Ref-
erences [5, 9, 10, 26]), uses first-order logic for the verification of complexity-theoretic properties
of protocols and for discovering attacks if verification fails. The notion of symbolic attacker is kept,
but instead of specifying a restricted list of function symbols (with specific interpretation such as
pairing, encryption) the attacker can use as is the case in the Dolev-Yao model, the BC technique
only specifies the facts that the attacker cannot violate. More precisely, attacker computation in
the BC technique for indistinguishability [9] is represented by function symbols f1, f2, which can
satisfy anything that does not violate the aforementioned facts. These facts come from the nature
of probabilistic polynomial time computation and the underlying cryptographic assumptions. The
facts are called axioms and form a recursive set of first-order formulas. Without any axiom, the
symbolic attacker is allowed to do anything (i.e., attacker messages can satisfy any property), and
all protocols are insecure. Adding axioms limits the attacker and makes verification of protocols
possible. Once verification is done with a set of axioms, the protocol is secure with respect to any
implementation that satisfies the axioms. For the rest of the article, we shall call this approach the
BC technique.

When verifying security of protocols with the BC technique, one tries to prove the security goal
expressed as a first-order formula from axioms using first-order inference rules. If one manages to

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:3

build a complete proof tree, then a proof of security in the computational model follows, as long as
the axioms are computationally valid. However, when a proof tree does not exist, a branch of the
incomplete tree that does not reduce to an axiom yields an abstract first-order model—an Herbrand
model—with an abstract domain together with an interpretation of function symbols on this do-
main, including the function symbols representing adversarial messages, which a computational
attacker may perform to launch an attack (e.g., in Reference [5] a new attack on the NSL protocol
found with this technique was presented). Furthermore, all computational attacks are symbolically
accounted for as any computational attack yields a model in which both the axioms and negation
of the security goal are true. It is for the latter reason that Reference [8] coined the term com-

putationally complete symbolic attacker for the symbolic attacker in this approach. Whether the
found attack corresponds to an actual PPT attack—that is, the symbolic interpretation of adver-
sarial function symbols can be PPT executed—depends on how complete the axioms are.

Thus, the BC technique overcomes significant limitations of the Dolev-Yao technique when it
comes to computational soundness, while maintaining its simplicity. As compared to the afore-
mentioned tools working directly in the computational model, if a proof fails in the BC framework,
then a possible attack is constructed. If the proof succeeds, then it provides a set of formulas, with-
out any implicit assumptions, that, if satisfied by the implementation, result in a secure protocol.
Furthermore, this approach is not stricken by the commitment problem (see, e.g., Reference [25]),
an issue with all other symbolic verification techniques.

While the initial papers on the computationally complete symbolic attacker focussed on de-
ducibility properties, Reference [9] extended the approach to indistinguishability properties:
two protocols Π1,Π2 are said to be computationally indistinguishable if for each probabilistic
polynomial-time attacker, the difference in the probability that it outputs 1 when interacting with
Π1 and the probability that it outputs 1 when interacting with Π2 is negligible. Several standard
security properties are modeled as indistinguishability properties. These include strong flavors of
confidentiality, privacy, anonymity, real-or-random secrecy.

Our contributions. While Reference [9] sets up the framework (first-order logic based on a pred-
icate ∼ representing indistinguishability of terms) needed to model the computationally complete
symbolic attacker for indistinguishability properties, the set of axioms introduced therein were
only sufficient to prove one session of a simple protocol they considered. In this article, we intro-
duce several further axioms, grouped in two: core axioms that are independent from the protocols
and primitives and just formalize indistinguishability, random generation etc, and cryptographic

axioms that formalize hardness assumptions (such as the decisional Diffie-Hellman assumption),
and standard security assumptions about cryptographic primitives (such as CPA, CCA, etc.). We
then use the axioms to verify fairly complex protocols by hand, and with Coq.

One of the important contributions of this work is to axiomatize the if _ then _ else _ construc-
tor. We illustrate through a number of perhaps surprising examples in Section 7 the power of the
axioms. They are basic, general axioms, not designed with any particular protocol on our minds.
We present a completeness theorem for the axiomatization of if _ then _ else _. The full set of
core axioms presented is likely not complete, but we do believe that they cover most situations
relevant for protocol equivalence in general. The axioms are independent. They are also modular
and addition of the axioms will not destroy their validity.

The next group of main contributions are the axiomatization of the Decisional Diffie-Hellman
(DDH) assumption, the verification of secrecy of the Diffie-Hellman (DH) protocol for multiple
sessions, the axiomatization of security of digital signatures, and the verification of authentication
of an authenticated DH protocol. The formalization of real-or-random secrecy and authentication
in the BC framework for equivalence properties is also our novel contribution.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:4 G. Bana et al.

We then show how real-or-random secrecy [3] of the exchanged key can be formalized and
verified in the BC framework. This is carried out for the case when each agent can participate in
two sessions (both allowed to play the initiator as well as the responder role). Our proof can be
easily generalized to any bounded number of sessions and more than two parties.

We axiomatize existential unforgeability against chosen message attacks (UF-CMA) [24] of digital
signatures, and show that the technique and our axioms can also be used to verify a trace property:
authentication. Toward this end, we present an authenticated version of the DH protocol, which
is a simplified version of the station-to-station protocol (STS), formalize authentication in the cur-
rent framework and verify authentication from the responder’s view. Generalizations to arbitrary
bounded number of sessions and agents are a straightforward matter in this case as well.

We have formalized the syntax and the axiomatic system in Coq, an interactive theorem-
prover [29], and utilized the axiomatization to obtain machine-checked proofs of various auxiliary
theorems, the derivation of the DDH assumption for three participants from the DDH assump-
tion of two participants, real-or-random secrecy of the DH protocol, and authentication of the STS
protocol in Coq. For the DH and STS protocol, we consider only one session each of responder
and initiator to keep the formula small. All the machine-checked proofs are available at Refer-
ence [22]. While we were able to translate the proofs directly into Coq, a challenge was posed by
the equality predicate = (actually an abbreviation constructed from ∼) defined between terms (see
Section 2), which represents not identity but equality that can fail with negligible probability, and
which serves as a congruence in the logic. The native equality relation of Coq forces two terms of
our syntax to be equal (in the sense of native Coq equality relation) if and only if they are syntac-
tically identical. This assumption would be unsound for our semantics, where syntactic difference
does not necessarily entail inequality. Hence, we define our own equality relation and use mor-
phisms [29] to model the defined relation as a congruence relation. This allowed us to reuse native
Coq tactics such as rewrite and replace seamlessly.

Our final contribution is a common axiomatization of IND-CPA, IND-CCA1, and IND-CCA2
security properties of encryptions. An axiom for IND-CPA was also presented in Reference [9],
the two are equivalent. The IND-CCA1 and IND-CCA2 axioms are new. We also illustrate with an
example how to use the IND-CCA2 axiom.

We would like to highlight that in the BC framework based on indistinguishability, the standard
cryptographic notions seem to translate very smoothly to axioms, such that the axiom is sound
if and only if the computational security property holds. This is indicated by our DDH, UF-CMA,
IND-CPA, IND-CCA1, and IND-CCA2 axioms. Note further that although the authors of [9] de-
signed this technique for indistinguishability properties, it can also be conveniently used for trace
properties such as authentication.

Related Work. There are other attempts in the literature for computationally sound analysis
of Diffie-Hellman-based protocols. Most notably, in Reference [23], the authors explain how in
computational PCL they can only verify Diffie-Hellman-based protocols as long as terms are non-
malleable. For that reason, they need to sign their Diffie-Hellman terms for the verification of se-
crecy. We do not need any such assumption. CryptoVerif [15] has also been used to verify signed
Diffie-Hellman key exchange protocols. AKE protocols have been verified using the EasyCrypt
[12] proof assistant, with Computational DH assumption [11].

CryptoVerif [15] is a fully automated tool that specifies protocols in a process-based notation.
It attempts to carry out proofs of protocols using in-built game transformations. It is, however,
not guaranteed to terminate. Failure of termination does not mean that the protocol is insecure
and in that case the tool does not provide an attack. Strengthening assumptions on cryptographic
primitives and parsing of terms may help in termination.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:5

EasyCrypt [12] is a semi-automated tool, and protocols are specified as programs in WHILE-
style language with random assignments. The reasoning engine in uses EasyCrypt uses Proba-
bilistic Relational Hoare logic as its reasoning engine to relate the distributions induced by two
programs. The security proofs in EasyCrypt are carried out using game transformations. How-
ever, the needed game transformations have to be explicitly specified by the user. One advantage
of EasyCrypt is that it can explicitly manipulate security parameter and probabilities. Thus, it can
give estimates on concrete security. However, like CryptoVerif, it does not find attacks.

Both CryptoVerif and EasyCrypt verify protocols for a polynomial number of sessions (in
the security parameter). BC technique for indistinguishability, however, reasons only for a fixed
number of sessions. However, as opposed to game transformation techniques such as CryptoVerif
and EasyCrypt, BC technique has explicit attacker representation in the form of function symbols
f1, f2, and so on, which are interpreted in the symbolic attacker model when there is no proof
of security, and provide an attack on the protocol. CryptoVerif and EasyCrypt do not have
explicit attacker representation, and a failure of proof does not provide an attack. Furthermore,
the reasoning can be carried out in first-order logic without resorting to probabilities, which often
simplifies the proofs.

Most of the materials in this article (except Section 11 on formalization in Coq) first appeared in
the e-print publication Reference [6], and the axioms motivated later works, such as References [7,
18, 20, 27].

2 SYNTAX

We shall follow closely the notation in Reference [9]. We summarize the salient features of the
syntax and the semantics of the logic below, and the reader is referred to Reference [9] for details.
We shall introduce the additional syntax needed for the Diffie-Hellman key exchange through
running examples.

2.1 Terms

Let S be a finite set of sorts that includes at least the sorts bool and message. X is an infinite set of
variable symbols, each coming with a sort s ∈ S .

The setN of names (for random seeds) is an infinite set of symbols that are treated as functions
symbols of arity 0 and sort message. The set of elements of N shall be interpreted as random bit
strings.

In addition, we assume a (fixed) set of function symbols, F . Each element of F has a type, which
is an element of the set S∗ × S . When type(f) = (s1, . . . , sn , s), we also write f : s1 × · · · × sn → s
and call n the arity of f . We assume that F includes at least the basic symbols such as 0, true,
false, EQ (_, _), and if _ then _ else _ with the typing rules as follows:

• 0 : message represents the empty message.
• Boleans

true : bool false : bool.
• Polymorphic equality test

EQ (_, _) :
message ×message→ bool

bool × bool→ bool.
• Polymorphic conditional branching

if _ then _ else _ :
bool ×message ×message→ message

bool × bool × bool→ bool.

We also use the following abbreviation:

(1) not(b)
def≡ if b then false else true.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:6 G. Bana et al.

Example 2.1. Since in this work we consider the Diffie-Hellman key exchange, we shall need
exponentiation. Although not necessary for the DH protocol, we also include pairing and projec-
tion functions as it shall be useful for combining messages. Accordingly, we shall also include in
F the following function symbols:

exp_ (_, _) : message ×message ×message → message

〈_, _〉 : message ×message → message

π1 (_),π2 (_) : message → message.

The subscript of exp takes G that stands for a cyclic group, the first argument д is for an element

of the group, and the second argument is the exponent. We shall use the abbreviations дa def≡
expG (д,a) and дab def≡ (дa)b . Note that we do not write G explicitly in the abbreviation.

We also need function symbols for the algorithms that generate groups, their generators, and
exponents so that their distributions satisfies the DDH assumption. We introduce

• generate group specification and generator
ggen(_) : message→ message

• generate exponent (the “r” stands for ring)
r(_) : message→ message.

The function symbol ggen is for the algorithm that generates a pair consisting of the description
of a cyclic group G and a generator д of the group. We shall write G(_) for π1 (ggen(_)), and g(_)
for π2 (ggen(_)). r is to denote the algorithm that generates an exponent randomly. We specified
them as being given on message, but honest agents shall only apply them on names in N .

We shall use the variablesд,д1,д2, . . . to abbreviate a term of the form g(x). We shall also use the
variables a, b, c , d , . . . to abbreviate terms of the form r(x) in the exponents of д’s. When ggen(_)
and r(_) are applied correctly on N then they will satisfy the DDH assumption.

Furthermore, as we want to consider multiple sessions as well, we need a way for the attacker
to instruct an agent to start a new session. For this, we shall include

• start new session: new : message

• specify action: act(_) : message→ message

• message body: m(_) : message→ message.

A call by the attacker for starting a new session is then expressed by EQ (act(x), new) = 1 for input
variable x . The main message part, where дa is supposed to come from the other agent is m(x).

Equational theory: We also postulate that the above functions satisfy the following equations:

πk (〈x1,x2〉) = xk fork = 1, 2; дab = дba .

At this point, these are just strings of characters, but they will become axioms as EqTheo in Table 1.

While F contains function symbols necessary for the system and also those representing cryp-
tographic primitives, an additional set of function symbols G represents adversarial computa-
tion. G contains countably many symbols: for every natural number n at least one whose type is
messagen → message. In the BC technique, a message from the adversary always has the form
f (t1, . . . , tn), where f ∈ G and t1, . . . , tn are the messages from honest agents sent earlier. As in
this technique, there is no Dolev-Yao-type pattern matching, the adversarial message is not a term

created from function symbols in F . As we shall see later, f ∈ G is allowed to satisfy any property
that does not contradict the axioms.

We shall also use �f : s1, . . . , sn → s ′1, . . . , s
′
m to denote a vector of functions { fi : s1, . . . , sn →

s ′i }mi=1.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:7

We assume that F , G, N , X are disjoint. Terms are built using F , G, N , X, following the sort
discipline: for each s ∈ S , let Ts (F ,G, N ,X) be the smallest set such that

• if n ∈ N , then n ∈ Tmessage (F ,G, N ,X), and if x ∈ X has sort s , then x ∈ Ts (F ,G, N ,X)
and

• if f : s1 × · · · × sn → s is a symbol of F ∪ G, and t1 ∈ Ts1 (F ,G, N ,X), . . . , tn ∈
Tsn

(F ,G, N ,X), then f (t1, . . . , tn) ∈ Ts (F ,G, N ,X).

We do not have implicit coercion: a term of sort bool cannot be seen (also) as a term of sort
message.

Example 2.2. Given F as defined in Example 2.1, variables д,a, and f ∈ G, then

if EQ (act(f (д)), new) then дa else 0

is a term of sort message. This means that if the message f (д) (computed from the public д)
from the adversary indicates the start of a new session, then a new a is generated and дa is
sent.

Remark 1. To display the formulas more concisely, we use the abbreviations

if b then t
def≡ if b then t else 0,

b1 & b2
def≡ if b1 then b2 else false

b1 ‖ b2
def≡ if b1 then true else b2.

2.2 Formulas

We have for every sequence of sorts s1, . . . , sn a predicate symbol that takes 2 × n arguments of
sort (s1 × · · · × sn)2, which we write as t1, . . . , tn ∼ u1, . . . ,un (overloading the notations for the
predicate symbols with different types). t1, . . . , tn ∼ u1, . . . ,un represents computational indistin-

guishability of the two sequences of terms t1, . . . , tn and u1, . . . ,un .
Our set of formulas, which will be used both for axioms and security properties are first-order

formulas built on the above atomic formulas.
When we do not explicitly quantify variables, we shall mean universal quantification. Further-

more, any first order formula ∀д.θ[д] is an abbreviation for ∀x .θ[g(x)], ∀a.θ[a] is an abbreviation
for ∀x .θ[r(x))] (similarly for b).

Example 2.3. The following is a formula: д,дa ,дb ,дab ∼ д,дa ,дb ,дc .
This is actually almost the form of the Decisional Diffie-Hellman assumption, except that we will

need to make sure that д, a, b and c are independently, correctly generated. This shall be discussed
when we state our DDH axiom.

We shall use the following abbreviation:

• x = y
def≡ EQ (x ,y) ∼ true. This represents computational equality of terms. The choice

of the equality symbol for this abbreviation is motivated by the fact that this functions
as equality: it is a congruence relation with respect to our syntax (see Remark 3 and
Section 5).

Remark 2. We extend the abbreviation = to sequences of terms as follows:

t1, . . . , tn = u1, . . . ,un if and only if ∀i . ti = ui .

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:8 G. Bana et al.

3 SEMANTICS

In the BC technique, two semantics are considered for the first-order formulas. The first is compu-
tational semantics: For the formulas to be interpreted computationally and to be able to consider
their computational validity, computational semantics is needed. The other is abstract first-order
semantics. In this technique, a symbolic attack means consistency of the axioms with the nega-
tion of the security property, which is equivalent to the existence of an abstract first-order model
satisfying the axioms and the negation of the security property. We follow closely the definitions
given in Reference [9].

3.1 Abstract First-order Interpretation

As usual in first-order logic: The domain D of the interpretation can be anything (and in our case it
has subsets of bools and messages). Function symbols can be freely interpreted as some functions
over this domain, predicates again freely interpreted as relations over this domain. Interpretation
of logical constants, namely, negation, entailment, conjunction, disjunction, and quantification are
fixed to be the usual Tarskian interpretation.

3.2 Computational Interpretation

A computational model Mc is a particular first-order model in which the domain consists of
probabilistic polynomial-time algorithms. The interpretation of function symbols is limited to
polynomial-time algorithms such that the outputs of the machines interpreting the domain el-
ements are inputs to these algorithms. The interpretation of the predicate ∼ is fixed to be compu-
tational indistinguishability of probability distributions. More precisely, it is defined the following
way:

1. The domain of sort message (denoted by Dmessage or Dm in short) is the set of deterministic
Turing machinesA equipped with an input (and working) tape and two extra tapes (that are used
for the random inputs). All tapes carry bit strings only, the additional tapes contain infinitely long
randomly generated bit strings. We require that the computation time of A is polynomial in the
worst case w.r.t the input (not the content of the extra tapes). One of the extra tapes is shared by
honest agents for drawing random values, while the other is used by the attacker when it draws
random values. We writeA (w ; ρ1; ρ2) for the output of the machineA on inputw with extra tape
contents ρ1, ρ2.

The domain of sort bool is the set of such machines whose output is in {0, 1}. We denote this by
Dbool (or Db in short).

2. A function symbol f ∈ F ∪ G, f : s1 × · · · × sn → s is interpreted as a mapping [[f]] :
Ds1 × · · · × Dsn

→ Ds defined by some polynomial time (deterministic) Turing machine Af such
that for (d1, . . . ,dn) ∈ Ds1 × · · · × Dsn

:

• If f ∈ F , then [[f]](d1, . . . ,dn) is the machine that on inputw and extra tapes ρ1, ρ2, outputs

[[f]](d1, . . . ,dn) (w ; ρ1; ρ2) := Af (d1 (w ; ρ1; ρ2), . . . ,dn (w ; ρ1; ρ2))

In other words, the way [[f]] acts on (d1, . . . ,dn) is that we compose the machineAf with
the machines d1, . . . ,dn . Note that the machine Af cannot use directly the tapes ρ1, ρ2.

• If д ∈ G, then [[д]](d1, . . . ,dn) is the machine such that, on input w and extra tapes ρ1, ρ2,
it outputs

[[д]](d1, . . . ,dn) (w ; ρ1; ρ2) := Aд (d1 (w ; ρ1; ρ2), . . . ,dn (w ; ρ1; ρ2); ρ2).

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:9

Note that the machine Aд cannot use directly the tape ρ1: the interpretations of function
symbols in G are chosen by the attackers who cannot use directly the possibly secret values
generated from ρ1, but may use extra randomness from ρ2.

• For all computational models, we require fixed interpretations of the following function
symbols:
—[[true]] is the algorithm in Db outputting 1 on all inputs.
—[[false]] is the algorithm in Db outputing 0 on all inputs.
—[[0]] is the algorithm in Dm terminating with no output.
— if _ then _ else _ is interpreted as a function [[if _ then _ else _]] : Db × Dm × Dm → Dm

such that on the triple (d,d1,d2) ∈ Db × Dm × Dm, it gives the algorithm
[[if _ then _ else _]](d,d1,d2) with

[[if _ then _ else _]](d,d1,d2) (w ; ρ1; ρ2) :=

{
d1 (w ; ρ1; ρ2) if d (w ; ρ1; ρ2) = 1
d2 (w ; ρ1; ρ2) if d (w ; ρ1; ρ2) = 0

If d1,d2 ∈ Db, then [[if _ then _ else _]](d,d1,d2) ∈ Db.
—EQ (_, _) is interpreted as the function [[EQ (_, _)]] : Dm × Dm → Db such that

[[EQ (_, _)]](d1,d2) is the algorithm with

[[EQ (_, _)]](d1,d2) (w ; ρ1; ρ2) :=

{
1 if d1 (w ; ρ1; ρ2) = d2 (w ; ρ1; ρ2)
0 if d1 (w ; ρ1; ρ2) � d2 (w ; ρ1; ρ2)

3. A name n ∈ N is interpreted as the machine [[n]] = An that, given a word of length η, extracts
a word of length p (η) from ρ1 for some non-constant polynomial p. This machine does not use ρ2.
Different names extract disjoint parts of ρ1, hence they are independently generated. We assume
that p is the same for all names, that is the semantics is parametrized by this p. This way, all names

are drawn independently, uniformly at random from {0, 1}p (η) .

4. Given a term t , an assignment σ of the free variables of t , taking values in the corresponding
domains Ds , a security parameter η and a sample ρ (ρ is a pair ρ1; ρ2), [[t]]σ

η,ρ is defined recursively
as:

• for a variable x , [[x]]σ
η,ρ := (xσ) (1η ; ρ) (the output of the algorithm xσ on 1η ; ρ, or, equiva-

lently, the output of the machine interpreting x on the input 1η , with random tapes ρ),
• for a name n, [[n]]σ

η,ρ is the output of the machine An on 1η and tape ρ,

• for a function symbol f ∈ F , [[f (t1, . . . , tn)]]σ
η,ρ := [[f]]([[t1]]σ

η,ρ , . . . , [[tn]]σ
η,ρ),

• for a function symbol д ∈ G, [[д(t1, . . . , tn)]]σ
η,ρ := [[д]]([[t1]]σ

η,ρ , . . . , [[tn]]σ
η,ρ , ρ2).

5. The indistinguishability predicate ∼ is interpreted as computational indistinguishability ≈ of se-
quences of elements in D of the same length. That is: d1, . . . ,dn ≈ d ′1, . . . ,d ′n iff for any polynomial
time Turing machine A,

|Prob{ρ : A (d1 (1η ; ρ), . . . ,dn (1η ; ρ); ρ2) = 1} − Prob{ρ : A (d ′1 (1η ; ρ), . . . ,d ′n (1η ; ρ); ρ2) = 1}|

is negligible in η. In particular, given an assignment σ of free variables in Ds , and an interpretation
[[·]] of the function symbols as above, ∼ is interpreted as the relation ≈ between sequences of the
same length, which is defined as follows: [[t1, . . . , tn]] ≈ [[u1, . . . ,un]] iff for any polynomial time
Turing machine A,

|Prob{ρ : A ([[t1]]σ
η,ρ , . . . , [[tn]]σ

η,ρ ; ρ2) = 1} − Prob{ρ : A ([[u1]]σ
η,ρ , . . . , [[un]]σ

η,ρ ; ρ2) = 1}|

is negligible in η. We write Mc ,σ |= t1 . . . tn ∼ u1 . . .un , and say that Mc ,σ satisfies t1 . . . tn ∼
u1 . . .un . Satisfaction of compound formulas is defined from satisfaction of atomic formulas as
usual in first-order logic. We writeMc ,σ |= θ ifMc ,σ satisfies the first-order formula θ in the
above sense. If �x is the list of free variables in θ , thenMc |= θ stands forMc |= ∀�x .θ . A formula
is computationally valid if it is satisfied in all computational models.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:10 G. Bana et al.

Remark 3. It is easy to see that with these definitions, satisfaction of the equality abbreviation
t1, . . . , tn = u1, . . . ,un byMc ,σ turns out to hold if and only if

Prob{ρ : [[t1]]σ
η,ρ = [[u1]]σ

η,ρ , . . . , [[tn]]σ
η,ρ = [[un]]σ

η,ρ }
is overwhelming (that is, it is negligibly different from 1). In other words, the interpretations of
t1, . . . , tn and ofu1, . . . ,un may only differ by negligible probability. Note that this is much stronger
than indistinguishability, which requires only the distributions of the interpretations of t1, . . . , tn
and of u1, . . . ,un to be indistinguishable, not the random variables themselves. As we require
function symbols to be interpreted as PPT algorithms, nothing in our semantics can distinguish
terms that are equal except for negligible probability and hence = serves as a congruence relation.

Example 3.1. We have introduced a number of function symbols in Example 2.1, which we shall
use for analyzing the Diffie-Hellman key exchange protocol. We do not fix the computational
implementations of these function symbols, but we assume that whatever the interpretations are,
they operate on bit strings, and they satisfy the equations we assumed about them. It is notable
that the DDH assumption is for randomly generated groups (group schemes, see Reference [16]),
and group generators of those groups. Moreover, the exponents must also be randomly generated.
For that reason, the function symbols ggen and r act on names, the interpretation of which are
random. We are going to assume that these random groups are such that they satisfy the DDH
assumption.

4 PROTOCOLS

The authors of Reference [9] treated protocols as abstract transition systems without committing
to any particular way of specifying protocols. They could be specified for instance in the applied pi-
calculus [1] or any other process calculus. The authors of Reference [9] also assumed a bounded
number of sessions: each protocol comes with an arbitrary but fixed bound on the number of
steps in its execution. It would be possible to define the protocols without such a bound, but the
general soundness result (Theorem 1 of Reference [9]) holds only for computational adversaries
that exploit bounded number of sessions in the security parameter. Therefore, without loss of
generality, we can just as well put the bound in the protocol for simplifying the formulation.

4.1 The Transition System

We shall now introduce the abstract transitions systems used in Reference [9]. Observe that in our
transition systems, we shall also decorate the states with the names generated in the transition. A
protocol is an abstract transition system defined by:

• A finite set of control states Q with a strict partial ordering >, an initial state q0 and a set
Qf ⊆ Q of final states.

• For each state q ∈ Q , a linearly ordered (finite) set T (q) of transition rules

q, (N0,N1, . . . ,Nn), (�x)
θ−→ q′, (N0,N1, . . . ,Nn ,N), s, (�x ,x)

—�x ≡ x1, . . . ,xn and x are variables.
—N0,N1, . . . ,Nn ,N are lists of names.
—θ is a term of sort bool with variables in x1, . . . ,xn ,x
—q,q′ ∈ Q are such that q > q′.
—s is a term with variables in x1, . . . ,xn ,x .
T (q) is empty if and only if q ∈ Qf . Otherwise, T (q) contains a maximal transition, whose
guard θ is true.

• An initial knowledge ϕ0.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:11

Intuitively, a transition q, (N0,N1, . . . ,Nn), (�x)
θ−→ q′, (N0, N1, . . . , Nn , N), s, (�x ,x) is a guarded

transition that changes the state from q to q′ upon receiving the message x ; the variables x1, . . . xn

store the messages sent by the attacker so far, Ni is the list of names generated upon the receipt
of xi , and the Boolean condition θ specifies the condition under which the transition can be fired
(namely, the conditions under which a participating agent moves forward). The term s specifies
the message being sent out in the transition, that is, the message sent by the agent with new names
in N . The partial ordering on states ensures progress and hence termination. The linear ordering
on transitions specifies in which order the guards have to be tried. The ordering on the states thus
rules out any non-determinism in the protocol itself.

Example 4.1. The Diffie-Hellman key exchange protocol is the following (see, e.g., Refer-
ence [16]):

• A group description G and a group generator element д are generated honestly, according
to a randomized algorithm, and made public.

• The Initiator generates a random a in Z |д | and sends дa .

• The Responder receives дa , generates a random b in Z |д | and sends дb , and computes (дa)b .

• The Initiator receives дb , and computes (дb)a .

Here, we shall consider two honest parties running two parallel sessions, each of which may be
initiator and responder. More sessions can be analyzed similarly: the terms would be much bigger,
but there would not be any qualitative difference. As mentioned earlier, the protocol formulation
of Reference [9] rules out any non-determinism. The above protocol, however, is not necessarily
determinate for the following reason: For example, when agent A has initiated two sessions of
the protocol and he receives a response, then it is not clear to which session he will accept the
incoming message. For this, we assume that the message coming from the adversary specifies
which session the agent should assign it to. Note, the adversary can, of course, direct messages to
incorrect sessions thereby creating confusion.

Accordingly, since we want to consider two sessions for each participant, we introduce four
session identifiers (message constants in F): two for agent A: id1, id2, and two for agent B: id3

and id4. We further introduce a function symbol to : message→ message, which extracts from
an incoming message the session. As for their semantics, the session identifiers can be any fixed,
distinct bit strings and to is a function that extracts from a bit string a part that is agreed to be the
position for the session identifier. On a bit string that is of the wrong form, the interpretation of to
can give an error. We also assume that the session identifiers are distinct: EQ (idα , idβ) ∼ false

for sessions α � β . Here, we use α , β to denote any of 1, 2, 3, 4. Finally, to ensure that the Initiator
also responds something at the end of its role so that execution of other sessions can continue, we
introduce an accept message acc : message.

Then the initiator role of A for session idα is the following:

• A receives a message into x1.
• If to(x1) = idα , and x1 instructs A to start a new session, then A generates an a in Z |д | , and

sends дa .
• A receives message into x2.
• If to(x2) = idα , then A computes m(x2)a and sends acc.

The responder role of A is the following:

• A receives a message into y1.
• If to(y1) = idα , then A generates an a in Z |д | , computes m(y1)a , and sends дa .

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:12 G. Bana et al.

We can translate this to a transition system the following way. The set of states Q are given by

{qk1k2k3k4

�1�2�3�4
|k1,k2,k3,k4 ∈ {0, 1, 2}, �1�2�3�4 ∈ {0, 1}} ∪ {q̄}.

Here, kα numbers the rounds of session idα that has been completed if it is an initiator session,
and �α numbers the round of session idα that has been completed if it is a responder session.
Clearly, both kα and lα cannot be nonzero at the same time for a state. q0000

0000 is the initial state q0.

The state q̄ is the final state where the system jumps if all tests fail. Those qk1k2k3k4

�1�2�3�4
states where

for each α , either kα or lα is maximal are also final.
The transition system is then such that there is a transition corresponding to each pair

(qk1k2k3k4

�1�2�3�4
,q

k ′1k ′2k ′3k ′4
�′1�
′
2�
′
3�
′
4

) where the primed indices are the same as the unprimed ones except for one

where the primed is 1 greater than the unprimed. Moreover, for each non-final qk1k2k3k4

�1�2�3�4
, there is

a transition to q̄ guarded by true when all tests fail, which is the last according to the ordering >.
We do not list all transition rules here as they are rather straightforward but long. We only give
some examples:

Consider, for example, the transitions from q1002
0100. The only possibilities are to q2002

0100, to q1012
0100, to

q1002
0110 and to q̄. The transitions are with this ordering:

q1002
0100, (

�N), (�x)
EQ (to(x5),id1)
−−−−−−−−−−→ q2002

0100, (
�N , ()), acc, (�x ,x5),

q1002
0100, (

�N), (�x)
EQ (to(x5),id3)&EQ (act(x5),new)
−−−−−−−−−−−−−−−−−−−−−−−−→ q1012

0100, (
�N , (n5)), g(n0)r(n5), (�x ,x5),

q1002
0100, (

�N), (�x)
EQ (to(x5),id3)
−−−−−−−−−−→ q1002

0110, (
�N , (n5)), g(n0)r(n5), (�x ,x5),

q1002
0100, (

�N), (�x)
true−−→ q̄, (�N , ()), 0, (�x ,x5),

where �x = x1,x2,x3,x4, and �N = N0,N1,N2,N3,N4 with each Nα either a fresh name or an empty
list. Note here that n0 is the name used to generate the Diffie-Hellman group description.

Clearly, from q0000
0000 there are 8 possible transitions by increasing any of the 0’s to 1, and there is

an additional transition to q̄. They are the following as α = 1, 2, 3, 4 :

q0000
0000, ((n0)), ()

EQ (to(x1),idα)&EQ (act(x1),new)
−−−−−−−−−−−−−−−−−−−−−−−−→ qkα=1

0000 , ((n0), (n1)), g(n0)r(n1), (x1),

q0000
0000, ((n0)), ()

EQ (to(x1),idα)
−−−−−−−−−−−→q0000

�α=1
,((n0), (n1)), g(n0)r(n1), (x1),

q0000
0000, ((n0)), ()

true−−→ q̄, (n0, ()), 0, (x1).

That is, if the adversary calls for a new session idα , then a new initiator session is started. If
the adversary sends to sessions idα but does not call for a new session, then the agent starts a
responder session, and assumes the incoming message is from the initiator.

To make notation more accessible, we present a transition diagram that represents the DH key
exchange protocol for two honest agents A and B with two sessions id1 and id2 in Figure 1. As

expected, a state qk1,k2

�1, �2
will represent the state of each agent A and B. If A (B, respectively) is

an initiator, then k1 (k2, respectively) will be 1 if waiting for a response and 2, otherwise. If A
(B, respectively) is a responder then �1 (�2, respectively) will be 1. The diagram illustrates three
possible branches of the DH protocol. The right-most branch of q00

00 simulates the situation where
A acts as an initiator and B plays the responder role whereas the left-most branch simulates the
other scenario where B plays the initiator role and A plays the responder role. The middle branch
illustrates the scenario when all the initiator moves of A happen before the responder moves of
B. At the initial state, the honestly generated description of a cyclic group G(n) and a generator of

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:13

Fig. 1. Diffie-Hellman key exchange protocol with an initiator session id1 and a responder session id2.

the group g(n) are generated honestly and made available to the attacker. This initial knowledge
of the attacker is represented by the frame Φ0. θi j s represent the conditions that the agent checks
if he was instructed to start a new session upon receiving the message xi in the session idj while
θ ′i j s are the conditions that the agent checks if the message xi is for the session idj . The output

term t[y] represents the group exponent computed by an agent y in the protocol. Of course, at the
end of the protocol, the initiator also sends out the message acc to indicate that the protocol has
been completed.

4.2 Execution and Indistinguishability

Computational and symbolic executions were defined precisely in Reference [9]. Instead of repeat-
ing the abstract definitions here, we appeal to the reader’s intuition, and only illustrate through
examples how the executions work symbolically as we carry out the proof there.

We recall first that in case of the symbolic execution, to treat protocol indistinguishability of
protocols Π and Π′, the Dolev-Yao way would be to match the branches of the execution of Π
and that of Π′ such that the matched branches are statically equivalent (see, e.g., Reference [19]).
However, as the authors discussed in Reference [9], obtaining computational soundness through
such matching seems infeasible. Instead, the authors in Reference [9] folded the protocol execution
into a single trace, such that the tests of the participating agents at each round on the incom-
ing message were included in the terms that were sent out with the help of the function symbol
if _ then _ else _ . We illustrate this in the following example.

Example 4.2. The folded symbolic execution of two sessions of the DH protocol between A
initiator and B responder has the following trace:

• ϕ0 ≡ G,д,
• ϕ1 ≡ ϕ0, t1,

where t1 ≡ if EQ (to(f0 (ϕ0)), id1) & EQ (act(f0 (ϕ0)), new)

then дa1

else if EQ (to(f0 (ϕ0)), id1)

then дa1

else if EQ (to(f0 (ϕ0)), id2) & EQ (act(f0 (ϕ0)), new)

then дa2

else if EQ (to(f0 (ϕ0)), id2)

then дa2

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:14 G. Bana et al.

else if EQ (to(f0 (ϕ0)), id3) & . . .

...

else if EQ (to(f0 (ϕ0)), id4)

then дa4

else 0

• etc.,

where G ≡ π1 (ggen(n0)) and д ≡ π2 (ggen(n0)) and aα ≡ r(nm (α)) for α = 1, 2, 3, 4 and some in-
creasing functionm : N → N . Again remember, if the adversary calls for a new session idα , then
a new initiator session is started. If the adversary sends to sessions idα but does not call for a new
session, then the agent starts a responder session, and assumes the incoming message is from the
initiator. To obtain ϕ2, one proceeds the following way. First, create a term that lists all conditions
to reach all possible states after the first step:

if EQ (to(f1 (ϕ1)), id1) & EQ (act(f1 (ϕ1)), new)

then q1000
0000

else if EQ (to(f1 (ϕ1)), id1)

then q0000
1000

else if EQ (to(f1 (ϕ1)), id2) & EQ (act(f1 (ϕ1)), new)

then q0100
0000

else if EQ (to(f1 (ϕ1)), id2)

then q0000
0100

else if EQ (to(f1 (ϕ1)), id3) & . . .

...

else if EQ (to(f1 (ϕ1)), id4)

then q0000
0001

else 0

Then, the states have to be replaced with the terms that describe the transitions out of the state.
For example, in Example 4.1, we also listed the transitions from q1002

0100. The term that corresponds

to these transitions from q1002
0100 is

if EQ (to(f4 (ϕ4)), id1)

then acc

else if EQ (to(f4 (ϕ4)), id3) & EQ (act(f4 (ϕ4)), new)

then дb1

else if EQ (to(f4 (ϕ4)), id4)then дb1 else 0.

This way, the indistinguishability of two protocols Π and Π′ can be reduced to the indistin-
guishability of the lists of the sent messages. Let fold(Π) denote the folded execution of protocol
Π, and let Φ(fold(Π)) denote the sequenceϕ0,ϕ1, . . . of folded messages sent on the single symbolic
trace. Then the following general soundness theorem was proved in Reference [9]:

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:15

Table 1. Core Axioms

Axioms for indistinguishability.
Refl: �x ∼ �x
Sym: �x ∼ �y −→ �y ∼ �x
Trans: �x ∼ �y ∧ �y ∼ �z −→ �x ∼ �z
Restr: If p projects and permutes onto a sublist, then �x ∼ �y −→ p (�x) ∼ p (�y)

FuncApp: for any �f : s1, . . . , sn → s ′1, . . . , s
′
m ,

�f ∈ F ∪ G, �x ∼ �y −→ �x , �f (�x) ∼ �y, �f (�y)
TFDist: ¬ (true ∼ false)

Axioms for equality.
EqCong: = is a congruence relation with respect to the current syntax.
EqTheo: = satisfies the equations given by the equational theory.

Axioms for if _ then _ else _ .
IfSame: if b then x else x = x
IfEval: for any t1, t2 terms, if b then t1[b] else t2[b] = if b then t1[true] else t2[false]
IfTrue: if true then x else y = x
IfFalse: if false then x else y = y
IfBranch: �z,b,x1, . . . xn ∼ �z ′,b ′,x ′1, . . . ,x ′n ∧ �z,b,y1, . . . ,yn ∼ �z ′,b ′,y ′1, . . . ,y ′n −→

�z,b,x1, . . . xn ∼ �z ′,b ′,x ′1, . . . ,x ′n ∧ �z,b,y1, . . . ,yn ∼ �z ′,b ′,y ′1, . . . ,y ′n −→

�z,b,
if b then x1

else y1
, . . . ,

if b then xn

else yn
∼ �z ′,b ′,

if b ′ then x ′1
else y ′1

, . . . ,
if b ′ then x ′n

else y ′n

Axioms for names.
FreshInd: for any names n1, n2 and lists of closed terms �v , �w , such that fresh(n1; �v, �w)

and fresh(n2; �v, �w) holds, �v ∼ �w −→ n1, �v ∼ n2, �w .
FreshNEq: for any name n and a closed term v such that fresh(n;v) holds,

we have EQ (n,v) ∼ false.

Theorem 4.3. Let Π,Π′ be two protocols. Let A be any set of formulas (axioms). If A and

Φ(fold(Π)) � Φ(fold(Π′)) are inconsistent, then the protocols Π and Π′ are computationally indis-

tinguishable in any computational modelMc for whichMc |= A.

5 CORE AXIOMS

In this section, we present the core axioms for our technique. In Reference [9] a few axioms were
presented that were sufficient to prove the protocol they considered for one session. In general,
though, those axioms for if _ then _ else _ are certainly not sufficient to compare the branching of
two protocols. In this section, we present further axioms for if _ then _ else _ , and for = as well.
As usual, the free variables in axioms are assumed to be universally quantified.

The core axioms are listed in Table 1 and explained below. There are broadly four categories
of our axioms. The first category of axioms, axioms for indistinguishability, are useful to reason
about the indistinguishability predicate ∼. The second category of axioms, axioms for equality, are
useful to reason about the abbreviation =. Collectively, they justify the use of the equality symbol
for the abbreviation. The third category of axioms, axioms for if _ then _ else lie at the heart of
reasoning about different branches of protocol execution. The last category of axioms, axioms for

names, are useful to reason about fresh names. These axioms (more precisely, axiom schemas) use

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:16 G. Bana et al.

the notion of freshness [9]: For a list of pairwise distinct names N , and a (possibly empty) list of
closed terms �v , fresh(N ; �v) is the constraint that none of names in N occur in �v .

Some of these axioms were proven computationally sound in Reference [9]. The others are
proven similarly; we omit their proofs here as they are rather straightforward. Their novelty lies
not in the difficulty of their soundness proofs but in their applicability in protocol proofs. The
axioms are independent:

Proposition 5.1. The core axioms are independent.

The proof goes as usual: For each axiom θ an abstract first-order model is constructed that
satisfies all other axioms and the negation of θ .

Note that all axioms we introduce are modular, that is, expanding the logic will not invalidate
the current axioms. Observe also the general nature of the axioms; they are in no way special to
the DH protocol. They are basic properties that allow us to manipulate if _ then _ else _ branching,
equality, and equivalence, and they should be useful in the verification of any protocol. In Section 7,
we illustrate their use on simple examples.

Note that the axioms are not necessarily complete. A complete axiomatization would be useful
to ensure that a symbolic attack is also a computational attack (realizable with a PPT algorithm).
To achieve, however, a complete axiomatization might be very difficult, and it is not an immediate
priority from the verification point of view in the sense that soundness is sufficient to ensure that
if there is no symbolic attack then there is no computational either. Completeness in restricted
cases can be shown though. For example, the following theorem is true (from now on, we use � to
denote first-order provability):

Theorem 5.2. Suppose the only function symbols in t1 and t2 are if _ then _ else _ , true and

false. Then t1 = t2 is computationally valid, if and only if

EqRefl, EqCong, IfSame, IfEval, IfTrue, IfFalse � t1 = t2.

Proof.

(1) Suppose first t1 = t2 is computationally valid. We prove that the listed axioms imply t1 =
t2 by induction on the number of bool variables in the first arguments of instances of
if _ then _ else _ in the formula t1 = t2.
(a) Suppose first that there are zero number of such variables. Thanks to IfTrue, IfFalse,

we can assume that t1 and t2 have no if _ then _ else _ terms at all. Thus, our for-
mula is x = y, where x and y are either variables or true or false. Clearly, if x and y
are syntactically different (that is, x � y), then x = y is not valid as the variables can
just be interpreted as two constant bit strings, different from 1 and 0. When they are
syntactically equal, x = x , then this is just EqRefl.

(b) Suppose now that we have shown the statement forn different bool variables in t1 = t2.
Consider the case n + 1. So either t1 or t2 has at least one instance of if _ then _ else _ ,
suppose w.l.o.g. it is t1. That means t1 = if b then t1

1 else t2
1 for some b, t1

1 , t2
1 , where by

axiom IfEval, we can assume that neither t1
1 , nor t2

1 containsb, and by axioms IfTrue
and IfFalse, we can assume that there is no true and false in the first argument of
if _ then _ else _ . If t2 hasb in the first argument of if _ then _ else _ , then we can move
it out to the front so that t2 = if b then t1

2 else t2
2 for some t1

2 , t2
2 , where we can again

assume that neither t1
2 , nor t2

2 contains b, and true and false are removed from the
conditions of if _ then _ else _ . If t2 does not have b, then by IfSame, we can still write
it as t2 = if b then t1

2 else t2
2 with t1

2 = t2
2 = t2. So, we can assume w.l.o.g. that t2 also

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:17

has this form. We claim that t1
1 = t1

2 ∧ t2
1 = t2

2 is computationally valid. Suppose not,

breaking say, t1
1 = t1

2 . Then there is a modelMc and the variables in t1
1 , t2

1 , t1
2 , t2

2 have

an interpretation σ such thatMc ,σ � |= t1
1 = t1

2 . This means that [[t1
1]]σ and [[t1

2]]σ are

not equal up to negligible probability: Prob{ρ : [[t1
1]]σ

η,ρ � [[t1
2]]σ

η,ρ } is non-negligible.

Remember, t1
1 , t2

1 , t1
2 , t2

2 do not contain b. Let us define the interpretation of b (extend
σ to b) such that it is a single bit, generated randomly and independently of all the
interpretations of other variables in t1

1 , t2
1 , t1

2 , t2
2 . By the definition of the semantics of

if _ then _ else _ , {ρ : [[b]]σ
η,ρ = 1 ∧ [[t1

1]]σ
η,ρ � [[t1

2]]σ
η,ρ } ⊆ {ρ : [[t1]]σ

η,ρ � [[t2]]σ
η,ρ }.

Hence, 1
2 Prob{ρ : [[t1

1]]σ
η,ρ � [[t1

2]]σ
η,ρ } ≤ Prob{ρ : [[t1]]σ

η,ρ � [[t2]]σ
η,ρ }, and since the

left-hand side of this inequality is non-negligible, the right-hand side is also non-
negligible. But that meansMc ,σ |= t1 � t2, contradicting our assumption. The proof
is analogous when t2

1 = t2
2 is not valid. So, we have that t1

1 = t1
2 and t2

1 = t2
2 are

both computationally valid. As t1
1 = t1

2 and t2
1 = t2

2 do not contain b any more, by

the induction hypothesis, both t1
1 = t1

2 and t2
1 = t2

2 are derivable from the axioms.
Then,

t1 = if b then t1
1 else t2

1
EqCong
= if b then t1

2 else t2
2 = t2.

(2) The converse follows immediately from the computational soundness of EqRefl, EqCong,
IfSame, IfEval, IfTrue, IfFalse. �

Observe that as an immediate consequence of EqTheo, we get:

Example 5.3. For the function symbols in Example 2.1, πk 〈x1,x2〉 = xk and дab = дba are axioms
by EqTheo.

We could also have defined the axioms differently. The following example indicates that the
very intuitive axiom schema IfEval and IfSame can be replaced by three axioms IfTF, IfIdemp,
IfMorph below. Later, we shall use all of IfSame, IfEval, IfTF, IfIdemp, IfMorph, whichever is
more convenient to apply.

Lemma 5.4. Let us define the following three axioms:

IfIdemp : if b then (if b then x1 else y1) else (if b then x2 else y2) = if b then x1 else y2 ,

IfMorph : f (z1, . . . , if b then x else y , . . . , zn) =
if b then f (z1, . . . ,x , . . . , zn)

else f (z1, . . . ,y, . . . , zn),

IfTF : if b then true else false = b .

It is easy to see thatIfTF, IfIdemp, IfMorph, EqRefl, EqCong � IfSame, IfEval and IfEval,
IfSame, IfTrue, IfFalse, EqRefl, EqCong � IfTF, IfIdemp, IfMorph. To see the first, we need the

transitivity of equality with

if b then t1[b] else t2[b]
IfTF
=

if b then t1[if b then true else false]
else t2[if b then true else false]

IfMorph
=

if b then if b then t1[true] else t1[false]
else if b then t2[true] else t2[false]

IfIdemp
= if b then t1[true] else t2[false]

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:18 G. Bana et al.

and1

x
IfTrue
= if true then x else if b then y else z

IfMorph
= if b then (if true then x else y) else (if true then x else z)

IfTrue
= if b then x else x

To see the second,

b
IfSame
= if b then b else b

IfEval
= if b then true else false

f (z1, . . . , if b then x else y , . . . , zn)
IfSame
=

if b then f (z1, . . . , if b then x else y , . . . , zn)
else f (z1, . . . , if b then x else y , . . . , zn)

IfEval
=

if b then f (z1, . . . , if true then x else y , . . . , zn)
else f (z1, . . . , if false then x else y , . . . , zn)

IfTrue
IfFalse
= if b then f (z1, . . . ,x , . . . , zn) else f (z1, . . . ,y, . . . , zn)

if b then

(
if b then x1

else y1

)
else

(
if b then x2

else y2

)
IfEval
=

if b then

(
if true then x1

else y1

)

else

(
if false then x2

else y2

)
IfTrue
IfFalse
= if b then x1 else y2 .

5.1 Soundness of the Axioms

The soundness of the axioms for indistinguishability were proven in Reference [9] except for
TFDist. But that is trivial: the interpretation of true is identically 1, the interpretation of false

is identically 0, which can be distinguished by the algorithm that outputs its input.

Proposition 5.5. Axioms EqRefl, EqCong, and EqTheo are computationally sound.

Proof. x = x is trivial by the semantics of EQ and true.
To see EqCong, note that by the definition of the semantics of EQ and true,Mc |= EQ (x ,y) ∼

true means that [[x]] and [[y]] are equal on all inputs except possibly some inputs that have neg-
ligible probability. As any change that affects the outputs only with negligible probability does
not affect the satisfaction of formulas expressed by the current syntax (∼ ignores any change with
negligible probability), congruence indeed holds.

Finally, for EqTheo, if the computational semantics satisfies the equations bitwise, then for any
given equation (of the equational theory), the interpretations of the two terms on the two sides
agree on each input. Hence, they are equal up to negligible probability as well. �

Proposition 5.6. The If axioms are computationally sound.

Proof. IfSame, IfEval, IfTrue, IfFalse: These axioms are all of the form t1 = t2 with t1 and
t2 terms varying from axiom to axiom. Assume that σ is an assignment of the variables of t1 and t2
to algorithms taking values in the corresponding domains. Let η be a security parameter. In each

case, by the definition of [[if _ then _ else _]], it is a trivial matter to verify that [[t1]]σ
η,ρ = [[t2]]σ

η,ρ .

1This observation is due to Adrien Koutsos.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:19

Then, by the definition of [[EQ (_, _)]] and [[true]], we have that EQ (t1, t2) ∼ true is satisfied and
that completes the proof.

IfBranch: �z,b,x1, . . . xn ∼ �z ′,b ′,x ′1, . . . ,x ′n ∧ �z,b,y1, . . . ,yn ∼ �z ′,b ′,y ′1, . . . ,y ′n −→

�z,b,
if b then x1

else y1
, . . . ,

if b then xn

else yn
∼ �z ′,b ′,

if b ′ then x ′1
else y ′1

, . . . ,
if b ′ then x ′n

else y ′n

Assume an assignment σ of the free variables �z,�z ′,b,b ′,x1, . . . ,xn ,x
′
1, . . . ,x

′
n ,y1, . . . ,yn ,y

′
1, . . . ,

y ′n , taking values in the corresponding domains and a security parameter η. Assume further that
�z,b,x1, . . . xn ∼ �z ′,b ′,x ′1, . . . ,x ′n and �z,b,y1, . . . ,yn ∼ �z ′,b ′,y ′1, . . . ,y ′n . Fix an adversary A. Let
pl ,pr ,px ,px ′,py , and py′ be defined as follows:

pl = Prob{ρ : A ([[�z,b, if b then x1 else y1 , . . . , if b then xn else yn]]σ
ρ,η ; ρ2) = 1},

pr = Prob{ρ : A ([[�z ′,b ′, if b ′ then x ′1 else y ′1 , . . . , if b
′ then x ′n else y ′n]]σ

ρ,η ; ρ2) = 1},
px = Prob{ρ : A ([[�z,b,x1, . . . ,xn]]σ

ρ,η ; ρ2) = 1 & [[b]]σ
ρ,η = 1},

px ′ = Prob{ρ : A ([[�z ′,b ′,x ′1, . . . ,x
′
n]]σ

ρ,η ; ρ2) = 1 & [[b ′]]σ
ρ,η = 1},

py = Prob{ρ : A ([[�z,b,y1, . . . ,yn]]σ
ρ,η ; ρ2) = 1 & [[b]]σ

ρ,η = 0},
py′ = Prob{ρ : A ([[�z ′,b ′,y ′1, . . . ,y

′
n]]σ

ρ,η ; ρ2) = 1 & [[b ′]]σ
ρ,η = 0}.

It is easy to see that pl = px + py and that pr = px ′ + py′ . Therefore, |pl − pr | ≤ |px − px ′ | + |py −
py′ |. To prove the soundness of the axiom, we need to show that |pl − pr | is negligible in η. To
prove this, it suffices to show that both |px − px ′ | are |py − py′ | are negligible in η.

We now show that |px − px ′ | is negligible in η. Let the sequence �m1 have the same number of
elements as �z. Consider the adversary B that on input �m1,b1,m1, . . . ,mn and random tape ρ2 runs
A (�m1,b1,m1, . . . ,mn) when b1 is 1 and outputs 0, otherwise. Now, it is easy to see that

Prob{ρ : B ([[�z,b,x1, . . . ,xn]]σ
ρ,η ; ρ2) = 1} = px

and

Prob{ρ : B ([[�z ′,b ′,x ′1, . . . ,x
′
n]]σ

ρ,η ; ρ2) = 1} = px ′ .

Thus,

|px − px ′ | = |Prob{ρ : B ([[�z,b,x1, . . . ,xn]]σ
ρ,η ; ρ2) = 1} −

Prob{ρ : B ([[�z ′,b ′,x ′1, . . . ,x
′
n]]σ

ρ,η ; ρ2) = 1}|.

Now, the latter is negligible in η as �z,b,x1, . . . ,xn ∼ �z ′,b ′,x ′1, . . . ,x ′n . Hence, |px − px ′ | is also neg-
ligible in η. Similarly, we can show that |py − py′ | is negligible in η and the result follows. �

Proposition 5.7. Axioms FreshInd and FreshNEq are computationally sound.

Proof. For FreshInd, note that fresh(n1,n2; �v, �w) implies that [[n1]] and [[n2]] are independent
of [[�v, �w]], because all names are assumed to use different parts of the random tape ρ1, and functions
can only use randomness from ρ2. This means that [[n2, �w]] and [[n1, �w]] have identical probability
distributions. Hence, if an algorithm A can differentiate [[n1, �v]] from [[n2, �w]], then A can also
differentiate [[n1, �v]] from [[n1, �w]]. If there is such anA, then there is also a B differentiating [[�v]]
and [[�w]], namely, the one that generates a random bit string s that has identical distribution with
the interpretation of names, and then gives (s, [[�v]]) or (s, [[�w]]) to A.

To see soundness of FreshNEq, note again that [[n]] and [[v]] are independent. As [[n]] has uni-

form distribution on {0, 1}p (η) , there is at most negligible probability for [[n]] to agree with [[v]],

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:20 G. Bana et al.

and hence there is only negligible probability for [[EQ (n,v)]] to be nonzero, from which soundness
follows. �

6 DDH ASSUMPTION

The BC formalism for indistinguishability properties is very convenient for axiomatizing crypto-
graphic assumptions. Our Decisional Diffie-Hellman (DDH) axiom is a straightforward translation
of the usual DDH assumption to this formalism:

• DDH assumption:

fresh(n,n1,n2,n3) −→ (G(n), g(n), g(n)r(n1), g(n)r(n2), g(n)r(n1)r(n2)) ∼ (G(n), g(n), g(n)r(n1),
g(n)r(n2), g(n)r(n3)).

That is, this property postulates that an adversary cannot distinguish g(n)r(n1)r(n2) from g(n)r(n3)

even if the items G(n), g(n), g(n)r(n1), g(n)r(n2) are disclosed.

Proposition 6.1. The above axiom is sound if and only if the interpretation of (ggen(_), r(_))
satisfies the Decisional Diffie-Hellman assumption (see, for example, Reference [16]).

Proof. The proof is almost trivial. According to the semantics of ∼ in Section 3.2, violation of
the DDH axiom means there is anA algorithm for which the advantage is non-negligible when it

is fed with the interpretation of (G(n), g(n), g(n)r(n1), g(n)r(n2), g(n)r(n1)r(n2)) and the interpretation

of (G(n), g(n), g(n)r(n1), g(n)r(n2), g(n)r(n3)). That is exactly the violation of the DDH assumption
in Reference [16], Definition 2.1. �

7 SHORT EXAMPLES

In this section, we illustrate with a few short examples how the axioms we introduced work.

Example 7.1. In the formula below, IfMorph lets us pull out if _ then _ else _ from under t1, t2,
and IfIdemp lets us get rid of several instances of b. And, as EqRefl and EqCong imply transitivity
of =, we have

IfIdemp, IfMorph, EqRefl, EqCong � if b then t1[if b then x1 else y1]
else t2[if b then x2 else y2]

=
if b then t1[x1]

else t2[y2].

Example 7.2. We have that for any constant f ∈ F ∪ G,

Trans, Restr, FuncApp, EqRefl � x ∼ f −→ x = f .

To see this, consider x ∼ f . By FuncApp, x , f ∼ f , f , and again by FuncApp, x , f , EQ (x , f) ∼
f , f , EQ (f , f). By Restr, EQ (x , f) ∼ EQ (f , f). By EqRefl, f = f , which is a shorthand for
EQ (f , f) ∼ true. Then by Trans, EQ (x , f) ∼ true, which is x = f . Note that in particular, x = y
iff EQ (x ,y) = true.

Example 7.3. We have

Trans, Restr, FuncApp, IfSame, IfIdemp, IfMorph, IfTF, EqRefl, EqCong �
if EQ (x1,x2) then x1 else y = if EQ (x1,x2) then x2 else y.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:21

This is because

EQ

(
if EQ(x1,x2) then x1 else y ,
if EQ(x1,x2) then x2 else y

)
IfMorph
=

if EQ(x1,x2)

then EQ

(
x1,
if EQ(x1,x2) then x2 else y

)

else EQ

(
y,
if EQ(x1,x2) then x2 else y

)

Example 7.1
= if EQ(x1,x2) then EQ (x1,x2) else EQ (y,y)

Example 7.2
= if EQ(x1,x2) then EQ (x1,x2) else true

IfEval
= if EQ(x1,x2) then true else true

IfSame
= true,

where EqCong is also used, but we omitted its indication.

Example 7.4. We prove the following:

IfIdemp, IfMorph, EqRefl, EqCong � if b then x1 else y1 = if b then x2 else y2

−→ if b then t[x1] else t ′[y1] = if b then t[x2] else t ′[y2].

The statement can be proven using Example 7.1 and congruence of the equality:

if b then t[x1] else t ′[y1] = if b then t[if b then x1 else y1] else t ′[if b then x1 else y1]

= if b then t[if b then x2 else y2] else t ′[if b then x2 else y2]

= if b then t[x2] else t ′[y2].

Putting this together with Example 7.3, we have in particular that2

EqBranch ≡ if EQ (x1,x2) then t[x1] else t ′ = if EQ (x1,x2) then t[x2] else t ′.

These two previous examples mean that equality is not only a congruence, but if x1 and x2 are
equal on a branch, they are interchangeable on that particular branch.

Example 7.5. By the previous examples, we have EQ (true, false) = false as follows:

EQ (true, false)
IfTF
= if EQ (true, false) then true else false

EqBranch
= if EQ (true, false) then false else false

IfSame
= false.

Example 7.6. By the previous examples, we also have EQ (x ,y) = EQ (y,x).
The proof is the following:

EQ(x ,y)
IfTF
= if EQ(x ,y) then true else false

IfEval
= if EQ(x ,y) then EQ(x ,y) else false

EqBranch
= if EQ(x ,y) then EQ(y,x) else false

IfTF
= if EQ(x ,y) then (if EQ(y,x) then true else false) else false

IfMorph
=

if EQ(y,x) then (if EQ(x ,y) then true else false)
else (if EQ(x ,y) then false else false)

2This property was first formulated by Adrien Koutsos as one that is particularly useful in proofs.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:22 G. Bana et al.

IfSame
= if EQ(y,x) then (if EQ(x ,y) then true else false) else false

IfTF
= if EQ(y,x) then EQ(x ,y) else false

EqBranch
= if EQ(y,x) then EQ(y,x) else false

IfEval
= if EQ(y,x) then true else false

IfTF
= EQ(y,x)

Example 7.7. By the invertibility of pairing, we can also show that for two distinct names n1 and
n2, EQ (n1, 〈n1,n2〉) = false.

To see this, note that from the equational theory of the pairing, π2 (〈n1,n2〉) = n2, which, by
Axiom EqTheo, the meaning of= as an abbreviation, and Example 7.2, means EQ (n2,π2 (〈n1,n2〉)) =
true. Then,

EQ (n1, 〈n1,n2〉)
IfTF
= if EQ (n1, 〈n1,n2〉) then true else false

EqTheo
Example 7.2
= if EQ (n1, 〈n1,n2〉) then EQ (n2,π2 (〈n1,n2〉)) else false

EqBranch
= if EQ (n1, 〈n1,n2〉) then EQ (n2,π2 (n1)) else false

FreshNEq
Example 7.2
= if EQ (n1, 〈n1,n2〉) then false else false

IfSame
= false

Example 7.8. It is easy to see from the definition of not that

EqRefl, EqCong, IfMorph, IfTrue, IfFalse � if not(b) then x else y = if b then y else x .

Example 7.9. Axioms IfIdemp and IfMorph reduce terms in the frame significantly for the fol-
lowing reason. Consider the simple situation when the frame ϕ2 is defined as follows:

ϕ1 ≡ ϕ0, if b1[f1 (ϕ0)] then t1
1 [f1 (ϕ0)] else t2

1 [f1 (ϕ0)],

ϕ2 ≡ ϕ1,
if b1[f1 (ϕ0)] then

(
if b1

2[f2 (ϕ1)] then t11
2 [f2 (ϕ1)] else t12

2 [f2 (ϕ1)]
)

else
(
if b2

2[f2 (ϕ1)] then t01
2 [f2 (ϕ1)] else t00

2 [f2 (ϕ1)]
)
.

Inside f2, the ϕ1 also has branching, but by axiom IfIdemp and IfMorph, that branching can be
removed. So the last term in ϕ2 is equal to

if b1[f1 (ϕ0)] then
(
if b1

2[f2 (ϕ0, t
1
1 [f1 (ϕ0)])] then t11

2 [f2 (ϕ0, t
1
1 [f1 (ϕ0)])] else t12

2 [f2 (ϕ0, t
1
1 [f1 (ϕ0)])]

)
else

(
if b2

2[f2 (ϕ0, t
2
1 [f1 (ϕ0)])] then t01

2 [f2 (ϕ0, t
2
1 [f1 (ϕ0)])] else t00

2 [f2 (ϕ0, t
2
1 [f1 (ϕ0)])]

)
.

Similarly, even in later terms of the frame, all the branching in the adversary messages (as in the t ’s
above) can be removed. Note that because of the way terms were folded in the protocol execution,
the branching is always kept as we go to higher elements of the frame, they only get extended:
Just as above, there is an initial branching by b1, then there is a second by b2, then b3, and they
all show up in all later terms as well. That is, ϕn+1 will have the same branching as ϕn plus an
additional layer of branching, and these branchings can all be pulled out to the front of the terms.

Example 7.10. In this example, we show that a three-party version of the DDH assumption can
be derived from the usual DDH assumption. In this case,G, д, дa , дb , дc , дab , дac , дbc , are all public,

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:23

and дabc is secret. We show that with all this public information, дabc is indistinguishable from дe

where e is a freshly generated exponent. More precisely, we show the following:

fresh(G,д,a,b, c, e) →
(
G,д, дa , дb , дc ,

дab , дac , дbc , дabc

)
∼

(
G,д, дa , дb , дc ,

дab , дac , дbc , дe

)

(1) Take a d with fresh(G,д,a,b, c, e,d).
(2) Thanks to DDH axiom, we have that G,д,дa ,дb ,дab ∼ G,д,дa ,дb ,дd .
(3) From line 2 and axiom FreshInd, we get that c,G,д,дa ,дb ,дab ∼ c,G,д,дa ,дb ,дd .
(4) From line 3 and repeated use of axiom FuncApp (for exponentiation with c), we get that

c,G, д, дa , дb , дab , дc , дac , дbc , дabc ∼ c,G,д,дa ,дb ,дd ,дc ,дac ,дbc ,дdc

(5) From line 4 and axiom Restr, we get thatG, д, дa , дb , дab , дc ,дac ,дbc ,дabc∼ G,д,дa ,дb ,
дd ,дc ,дac ,дbc ,дdc

(6) By DDH, we get that G,д,дd ,дc ,дdc ∼ G,д,дd ,дc ,дe

(7) From line 6 and axiom FreshInd, we get that a,b,G,д,дd ,дc ,дdc ∼ a,b,G,д,дd ,дc ,дe

(8) From line 7 and repeated use of axiom FuncApp, we get that a,b,G,д,дd ,дc ,
дdcдa ,дb ,дca ,дcb ∼ a,b, G,д, дd ,дc ,дeдa ,дb ,дca ,дcb

(9) Since we have postulated that дca = дac and that дcb = дbc , we get thanks to Line 8 and
axiom Restr that G,д,дa ,дb , дd , дc , дac , дbc , дdc ∼G,д, дa ,дb , дd ,дc , дac , дbc , дe

(10) Thanks to axiom Trans, lines 5 and 9, we get that G,д, дa , дb , дab , дc , дac , дbc , дabc ∼
G,д,дa ,дb ,дd ,дc ,дac ,дbc ,дe

(11) Now, thanks to line 2 and axiom FreshInd, c, e,G,д,дa ,дb ,дab ∼ c, e,G,д,дa ,дb ,дd

(12) Thanks to line 11 and repeated use of axiom FuncApp, we get that c, e,G,д,дa ,
дb ,дab ,дc ,дe ,дac ,дbc ∼ c, e,G,д,дa ,дb ,дd ,дc ,дe ,дac ,дbc

(13) Thanks to line 12, axiom Restr and Sym, we get thatG, д, дa , дb , дd , дc , дac , дbc , дe ∼ G,
д,дa,дb,дab,дc ,дac ,дbc ,дe

(14) Now, thanks to lines 10, 13 and axiom Trans, we get that G,д,дa ,дb ,дab ,
дc ,дac ,дbc ,дabc ∼ G,д,дa ,дb ,дab ,дc ,дac ,дbc ,дe

The result follows.

Example 7.11. The Diffie-Hellman assumption does not imply that for fresh(G,д,a,b, c,d, e), the
equivalence G, д, дa , дb , дc , дab , дbc ∼ G,д, дa , дb , дc , дd , дe holds. However, we do have that for
β closed bool term on д,дa ,дb ,дc and function symbols, if fresh(G,д,a,b, c,d) holds, then

G,д,дa ,дb ,дc , if β then дab else дbc ∼ G,д,дa ,дb ,дc ,дd .

This can be derived the following way: from the DDH assumption, G,д,дa ,дb ,дab ∼ G,д,дa ,
дb ,дd . By FreshInd, we also have that c,G,д,дa ,дb ,дab ∼ c,G,д,дa ,дb ,дd , and by FuncApp
and Restr, G,д,дa ,дb ,дc ,дab ∼ G,д,дa ,дb ,дc ,дd . As β is a closed term on д,дa ,дb ,дc , by
FuncApp and Restr again, we haveG,д,дa ,дb ,дc , β,дab ∼ G,д,дa ,дb ,дc , β,дd . Similarly,G,д,дa ,
дb ,дc , β,дbc ∼ G,д,дa ,дb ,дc , β,дd . Then, by IfBranch, we obtain G,д,дa ,дb ,дc , if β then

дab else дbc ∼ G,д,дa ,дb ,дc , if β then дd else дd , and finally by IfSame, we get what we wanted
to prove.

8 DIFFIE-HELLMAN KEY EXCHANGE

Let us come back now to our running example of the Diffie-Hellman key exchange protocol. In
this section, we show that if the group scheme used for the key exchange protocol satisfies the
DDH assumption, then the shared key satisfies real-or-random secrecy. More precisely, we show
that two protocols, one in which the real shared key дab is published at the end and one in which

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:24 G. Bana et al.

дd is published with a freshly generated d , are indistinguishable. Real-or-random secrecy was
introduced in Reference [3]. According to their definition, the adversary can request an oracle to
reveal the shared key of the honest agents. The oracle either reveals the true shared key, or it
reveals a newly generated random key, and the adversary has to guess whether the real or the
freshly generated random key was revealed. Real-or-random secrecy holds if the attacker guesses
correctly with a probability at most negligibly exceeding 1/2.

Note, the basic DH protocol does not ensure authentication: agents A and B have no way to
know if they really communicate with each other. For example, if the adversary sends some bit
string s to A, the key that A generates, sa will not be secret. Accordingly, the oracle has to choose
those keys between A and B that were indeed honestly computed and shared. Only those keys
have a chance to remain secret. Hence, the oracle takes a session (specifying the agent as well) as
an input and checks if there is a matching session. If there is no matching session, then it outputs
the key computed by the agent. If, however, there is a matching session, then the oracle outputs
either the real key, or generates a new дc and outputs that. To formalize the oracles, we need a
new function symbol, reveal(_) : message→ message, and we add a few transitions to those in
Example 4.1 as described below.

• Protocol Π1 is defined such that the oracle always reveals the actual computed key of the

requested session, if there is any: to a state qk1k2k3k4

...�α=1...
, we add the following transitions:

qk1k2k3k4

...�α=1...
, (�N), (�x)

θi−→ qk1k2k3k4

...�α=2...
, (�N , ()), m(xi)r(ni), (�x ,x),

where i runs through indices of �x ≡ x1, . . . ,xm s.t. Ni � () and

θi ≡ EQ (reveal(x), idα) & EQ (to(xi), idα).

We order the transitions so that they are all applied after those in Example 4.1. The order

of the transitions labeled with θi decreases with increasing i . If qk1k2k3k4

...�α=1...
= qk1k2k3k4

...�β=1...
, then

the transition corresponding to smaller of α and β has higher order. Moreover, to a state

q ...kα=2...
�1�2�3�4

, we add the following transitions:

q ...kα=2...
�1�2�3�4

, (�N), (�x)
θih−→ q ...kα=3...

�1�2�3�4
, (�N , ()), m(xi)r(nh), (�x ,x),

where i andh run through all indices of �x ≡ x1, . . . ,xm such thatNh � () with the restriction
h < i , and

θih ≡ EQ (reveal(x), idα) & EQ (to(xi), idα) & EQ (to(xh), idα)
¬(EQ (act(xi), new)) & EQ (act(xh), new).

We order the transitions so that they are all of higher order than those in Example 4.1, they
decrease by α , and a transition labeled with θih is higher for smaller i , and, within i , θih is
higher for smaller h. We also add

qk1k2k3k4

�1�2�3�4
, (�N), (�x)

θα−→ q̄, (�N , ()), 0, (�x ,x),

if kα < 2 and �α < 1 with θα ≡ EQ (reveal(x), idα), again with higher order than those
transitions in Example 4.1.

In other words, in protocol Π1, in each round, first it is checked if there was a reveal(x) request,
and the oracle always reveals the key computed in session reveal(x) if such a key was computed.
If there is no reveal(x) request, then Π1 continues executing the DH protocol. The reason for the
high number of transitions is that the oracle has to find the point where the key was computed.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:25

• Protocol Π2 is defined such that if the oracle request concerns a key that was computed in
some session idα , and there was another session idβ in which the same key was computed,
then a дc is revealed with a freshly generated random n. Otherwise, the computed key

is revealed if there is any: to a state q ...kα=2...
...�β=1...

, besides the transitions of Π1, we add the

following transitions:

q ...kα=2...
...�β=1...

, (�N), (�x)
θ i

γ δ ϵ

−−→ q ...kα=3...
...�β=2...

, (�N , (n)), g(n0)r(n), (�x ,x),

θ 1
γ δ ϵ
≡ EQ (reveal(x), idα) & EQ (to(xγ), idα) & EQ (to(xδ), idβ)

&EQ (to(xϵ), idα) & not(EQ (act(xγ), new)) & EQ (act(xϵ), new)
&EQ (m(xδ), g(n0)r(nϵ)) & EQ (m(xγ), g(n0)r(nδ)),

θ 2
γ δ ϵ
≡ EQ (reveal(x), idβ) & EQ (to(xγ), idα) & EQ (to(xδ), idβ)

&EQ (to(xϵ), idα) & not(EQ (act(xγ), new)) & EQ (act(xϵ), new)
&EQ (m(xδ), g(n0)r(nϵ)) & EQ (m(xγ), g(n0)r(nδ)),

and γ > δ > ϵ .The new transitions are ordered so that they have a higher order than the
transitions in Π1. Amongst the new transitions of Π2, the transitions are ordered by de-
creasing α , then decreasing β , then decreasing i , then decreasing γ , then decreasing δ and
decreasing ϵ . These checks ensure that if there is a session where they computed the match-

ing keys, then a newly generated random key g(n0)r(n) is revealed.

Note, the oracle requests do not interfere with the protocol. Their sole purpose is to model
secrecy of some of the computed keys, namely, those for which there is a session with a matching
key. The next theorem states that such keys satisfy real-or-random secrecy.

Proposition 8.1. The above two protocols, Π1 and Π2, allowing two parallel sessions for the DH

key exchange protocol, are computationally indistinguishable as long as the group scheme satisfies

the DDH assumption.

Proof. Consider first Π1, and let us make the following observation. When the protocol
is folded, there are if then else branchings for each conjunct in the conditions θ , including
for those that appear in the oracle requests. However, in θi above in the oracle move, only
EQ (reveal(x), idα) is a new condition, the condition EQ (to(xi), idα) already appeared earlier
in the execution, so there is already a branching according to the latter. By IfMorph and IfIdemp,

just as in Example 7.9, such additional branching can be removed while the output m(xi)r(ni) ,

takes the value of the form m(fi (ϕi))r(ni) where EQ (to(fi (ϕi)), idα) is satisfied. Only the branch-
ing according to EQ (reveal(x), idα) remains in the oracle step. When idα is a Responder session,

m(fi (ϕi))r(ni) is the key computed in this session and revealed by the oracle. The same is true for

θih , but there idα is an Initiator session and the oracle output is accordingly m(fi (ϕi))r(nh) , where
r(nh) is computed initially in this session, and fi (ϕi) is the message that is supposed to be coming

from the responder. In Π2, conditions EQ (m(xδ), g(n0)r(nϵ)) and EQ (m(xγ), g(n0)r(nδ)) are also new

in the oracle step, so these branchings cannot be removed. As m(xγ)r(nϵ) is the key computed in the

Initiator session idα , while m(xδ)r(nδ) is the key computed in Responder session idβ , conditions

EQ (m(xδ), g(n0)r(nϵ)) and EQ (m(xγ), g(n0)r(nδ)) make sure that both are g(n0)r(nδ)r(nϵ) .
With this understanding in mind, consider a protocol Π′′2 , which is like Π2, but in the transition,

we replace the output g(n0)r(n) by m(xδ)r(nδ) for i = 2, and by m(xγ)r(nϵ) for i = 1. This means
that Π′′2 outputs the same exact messages as Π1, ignoring the additional branching. Considering
the frames, that means that Φ(fold(Π1)) ∼ Φ(fold(Π′′2)) by several applications of axiom IfSame.

Then, consider the protocol Π′2, which we obtain from Π2 by replacing the output g(n0)r(n) by

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:26 G. Bana et al.

g(n0)r(nδ)r(nϵ) . Then, according to the previous paragraph, using the results of Examples 7.3 and
7.4, we have Φ(fold(Π′′2)) ∼ Φ(fold(Π′2)).

The only thing left to prove is Φ(fold(Π′2)) ∼ Φ(fold(Π2)). This relies mainly on the DDH ax-
iom and the IfBranch axiom: The only difference between Φ(fold(Π′2)) and Φ(fold(Π2)) is that

some of the final sent messages are g(n0)r(nδ)r(nϵ) in the first, while g(n0)r(n) in the second. We
cannot immediately use the DDH axiom, because the values of δ and ϵ may vary from branch to
branch. Considering just a single branch of Π′2, the complete list of messages that have been sent

looks like G(r(n0)), g(r(n0)), g(n0)r(n1), . . . ,дr(n4), g(n0)r(nδ)r(nϵ) . Because of the DDH assumption,
FreshInd, FuncApp, we have

G(r(n0)), g(r(n0)), g(n0)r(n1), . . . , g(n0)r(n4), g(n0)r(nδ)r(nϵ)

∼ G(r(n0)), g(r(n0)), g(n0)r(n1), . . . , g(n0)r(n4), g(n0)r(n) .

All tests θ in the protocol definition are applied only on messages sent by the adversary (which are

functions applied on public terms) and g(n0)r(n1), . . . , дr(n4) . Hence, for such a test θ , by FuncApp
and Restr, we also have

θ , G(r(n0)), g(r(n0)), g(n0)r(n1), . . . , g(n0)r(n4), g(n0)r(nδ)r(nϵ)

∼ θ , G(r(n0)), g(r(n0)), g(n0)r(n1), . . . , g(n0)r(n4), g(n0)r(n) .

We can add all the tests along the branch, and we can do the same for all branches, with different
δ and ϵ . Using axiom IfBranch numerous times, all the equivalent branches can be folded into
branching terms, giving us Φ(fold(Π′2)) ∼ Φ(fold(Π2)). This completes the proof. �

Remark 4. Of course, an automated proof would work directly transforming the frames, not
through transforming the protocols. Extension to proofs for higher (but bounded) number of ses-
sions is a straightforward matter; only the formulas would be longer. The proof for the key ex-
change with more than two parties is also entirely analogous once the DDH property for more
parties is derived. We did this for three parties in Example 7.10, and for more parties the deriva-
tion is similar.

9 DIGITAL SIGNATURES

To continue to demonstrate the usability of our technique, we also consider authentication that
signatures can deliver. In this section, we introduce an axiom that formalizes UF-CMA secure
digital signatures (see Section 12.2 of Reference [24]). In the next section, we demonstrate how to
use it together with the core axioms to verify an authenticated DH key exchange. Accordingly, we
shall also include in F the following function symbols:

k(_) : message → message,
rs (_) : message → message,
sign(_, _, _) : message ×message ×message → message,
ver(_, _, _) : message ×message ×message → bool.

Here, k(_) denotes the public-key secret-key pair generation algorithm. An honest key looks like

k(n), where n is a name and pk(x)
def≡ π1 (k(x)) and sk(x)

def≡ π2 (k(x)) are the public verification
key and secret signing key parts of k(x), respectively. To allow for randomized signatures, we
introduce a symbol rs (_) for random seed generation. sign(y, z, r) is the message z signed with
secret key y and a random seed r . ver(y, z,u) is the verification of signature u on the message
z with the public key y. The co-domain of the function symbol ver is bool as the computational
interpretation of ver outputs a value in {0, 1}.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:27

The signature scheme must satisfy two conditions:

• Correctness: If a message signed with sk(x) is verified with the corresponding pk(x), then
the verification algorithm outputs 1. This is captured by the axiom schema:

ver(pk(x), t , sign(sk(x), t , rs (y))) = true.

• Existential unforgeability under adaptively chosen message attacks (UF-CMA secure): Infor-
mally, this is the security requirement for digital signatures and says that a PPT attacker
should not be able to forge a signature on any message chosen by the attacker, even af-
ter requesting an oracle to show the signatures of at most polynomial number of mes-
sages adaptively chosen by him. The interested reader can find the precise definition in
Section 12.2 of Reference [24].

We now state an axiom schema that captures UF-CMA security. Let n be a name and
let t ,u be closed terms such that all occurrences of sk(n) in t ,u can be enumerated as
sign(sk(n), t1, rs (n1)), sign(sk(n), t2, rs (n2)), . . . , sign(sk(n), t�, rs (n�)). The term sk(n) does
not occur in any other form in t ,u, and all other occurrences ofn in t ,u are of the form pk(n).
Let b0

t,u ,b
1
t,u , . . .b

�
t,u be defined recursively as

b0
t,u

def≡ false,

b j
t,u

def≡ if EQ (t , tj) then ver(pk(n), t ,u) else b j−1
t,u .

Then, the axiom schema is ver(pk(n), t ,u) = b�t,u . That is, if t is one of tj , the signature of
which appears in t or u, then the right-hand side outputs ver(pk(n), t ,u). If t is neither of
tj , then the right-hand side outputs false, expressing the idea that no signature of a new t
can be created. We shall henceforth refer to this axiom schema UF-CMA.

Proposition 9.1. If the interpretation of (k, ver, sign,π1,π2) satisfies the UF-CMA property, then

the UF-CMA axiom is sound. Conversely, if there is a constant � ∈ N and an UF-CMA attackA against

the interpretation of (k, ver, sign) such that the number of oracle queries A makes does not exceed �
for any η, then UF-CMA axiom is violated in some computational model (with the given interpretation

of (k, ver, sign,π1,π2)).

Proof. We proceed by contradiction. Assume that there are closed terms t ,u and a computa-
tional modelMc such thatMc � |= EQ (ver(pk(n), t ,u),b�t,u) ∼ true where b�t,u is defined as in the
axiom UF-CMA. This means that there is a Turing machine A that runs in polynomial time in the
security parameter η such that

AdvA (η) =|Prob{ρ : A ([[true]]ρ,η ; ρ2) = 1} −
Prob{ρ : A ([[EQ (ver(pk(n), t ,u),b�t,u)]]ρ,η ; ρ2) = 1}|

is a non-negligible function in η.
By definition, [[true]]ρ,η = 1 and [[EQ (ver(pk(n), t ,u),b�t,u)]]ρ,η = 1 whenever [[ver(pk(n),

t ,u)]]ρ,η = [[b�t,u]]ρ,η . Thus, AdvA (η) ≤ Prob{ρ : [[ver(pk(n), t ,u)]]ρ,η � [[b�t,u]]ρ,η }.
Thanks to the semantics of if _ then _ else _ , we have that the set {ρ : [[ver(pk(n), t ,u)]]ρ,η �

[[b�t,u]]ρ,η } is exactly the set

F (η) =
⎧⎪⎨⎪⎩ρ : [[ver(pk(n), t ,u)]]ρ,η = 1,

�∧
i=1

[[t]]ρ,η � [[tj]]ρ,η

⎫⎪⎬⎪⎭ .
Since AdvA (η) is a non-negligible function in η, Prob{F (η)} is a non-negligible function in η.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:28 G. Bana et al.

Then an adversary B can win the UF-CMA game against pk(n) as follows. On the security
parameter η, B is given [[pk(n)]]ρ,η by the oracle. B generates an interpretation of names that
occur in t ,u according toMc . Then B computes [[t]]ρ′,η , [[u]]ρ′,η using its interpretation for the
names; whenever it needs to compute a signature sign(sk(n), ti , rs (ni)), it consults the oracle. It
is easy to see that the probability B wins the UF-CMA game is exactly Prob{F (η)}, which is a
non-negligible function in η.

Proving the converse is equally easy. Let us consider an UF-CMA attacker A on the given in-
terpretation of k, sign, ver,π1,π2 that succeeds with non-negligible probability and makes at most
� oracle queries. Let [[k]], [[sign]], [[ver]], [[π1]], [[π2]] be the interpretation of k, sign, ver,π1,π2.

Fix a name n and function symbols f0, f1, . . . , f�+1, f
′
�+1
∈ G. Let t1, t2, . . . , t�+1, t ,u be defined

as follows:

t1
def≡ f0 (pk(n))

ti+1
def≡ fi+1 (pk(n), sign(sk(n), ti , rs (ni)), . . . , sign(sk(n), t1, rs (n1)))

t
def≡ t�+1

u
def≡ f ′

�+1
(pk(n), sign(sk(n), t�, rs (n�)), . . . , sign(sk(n), t1, rs (n1)).

Fix the interpretation of f0, f1, . . . , f�+1, f
′
�+1

as follows. [[f0]] is the Turing Machine that on input
m and tapes ρ1; ρ2 simulates the attacker A until it prepares the message query to be submitted
to the signing oracle. At that point [[f0]] outputs the actual query and stops. For 0 < j ≤ �, [[fj]] is
the Turing Machine that on input m, s1, s2, sj−1 simulates the attacker A until it prepares the j-th
query to be submitted to the signing oracle with one minor modification: wheneverA submits the
ith query to the oracle for i < j and gets the signature on the query; [[fj]] does not query the oracle
and uses si instead of the signature. [[fj]] outputs the jth query to be submitted to the oracle and
stops. In a similar fashion, [[f�+1]] simulatesA untilA is ready to output a message and a claimed

signature on the message. [[f�+1]] outputs just the message and stops. Likewise, [[f ′
�+1

]] simulates
A until A is ready to output a message and a claimed signature on the message, outputs just the
signature part and stops. It is easy to see that the computational modelMc with this interpretation
of k, sign, ver,π1,π2, f0, f1, . . . f�+1, f

′
�+1

violates the axiom schema: Let F (η) be again defined as

F (η) =
⎧⎪⎨⎪⎩ρ : [[ver(pk(n), t ,u)]]ρ,η = 1,

�∧
i=1

[[t]]ρ,η � [[tj]]ρ,η

⎫⎪⎬⎪⎭ .
Since A is assumed to break the UF-CMA security, the set F (η) is non-negligible. But, it is again
easy to see that

F (η) = {ρ : [[ver(pk(n), t ,u)]]ρ,η � [[b�t,u]]ρ,η }.

Hence, if we define B to be the algorithm that outputs its input, then we have that

AdvB (η) =|Prob{ρ : B ([[true]]ρ,η ; ρ2) = 1} −
Prob{ρ : B ([[EQ (ver(pk(n), t ,u),b�t,u)]]ρ,η ; ρ2) = 1}|

is non-negligible. Hence, the converse follows. �

The converse of this proposition means that our axiom is as tight as possible as the technique
works only for bounded number of sessions and hence bounded number of signatures.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:29

10 AUTHENTICATED DIFFIE-HELLMAN KEY EXCHANGE

We apply our core axioms to rather different purpose: authentication. We consider an authenti-
cated Diffie-Hellman key exchange protocol, which is a simplified version of the station-to-station
protocol. Note that the original station-to-station protocol contains key-confirmation as well using
encryption; we omit that now to keep syntax simple. Our version of the protocol is the following:

• A group descriptionG and a group generator elementд are generated honestly, according to
a randomized algorithm, and made public. Public verification key, secret signing key pairs
are generated honestly for honest agents and the verifification keys are made public.

• The Initiator, A, selects a responder B, generates a random a in Z |д | and sends 〈A,B,дa〉.
• The Responder, B, receives дa , generates a random b in Z |д | and sends

〈дb , sign(skB , 〈A,дb ,дa〉, r)〉, and computes (дa)b .
• The Initiator receives 〈дb , sign(skB , 〈A,дb ,дa〉, r)〉, verifies the signature, computes (дb)a ,

and sends sign(skA, 〈B,дa ,дb 〉, r ′).
• The Responder receives sign(skA, 〈B,дa ,дb 〉, r ′), verifies the signature, and outputs acc.

Here, we can think of triples being constructed from pairs: 〈x ,y, z〉 := 〈x , 〈y, z〉〉, and for pro-
jecting on the components, let τ1 := π1, τ2 := π1 ◦ π2, τ3 := π2 ◦ π2.

Real-or-random secrecy for the shared keys can be verified the same way as for the DH protocol,
no new axioms are needed.

We shall show that with the help of the UF-CMA axiom, we can also prove authentication of
the authenticated key exchange. We concentrate on the responder’s non-injective authentication
of the initiator, and the initiator’s authentication of the responder can be handled similarly. We
assume that there are two honest agentsA and B. Public key, secret key pairs (pk(nA), sk(nA)) and
(pk(nB), sk(nB)) are generated honestly for A and B, respectively. For simplicity, we assume that
all sessions of A are initiator sessions and all sessions of B are responder sessions. We also assume
that there are no other agents (this is actually not really a restriction, because the adversary can
simulate other agents), but there can be other agent id’s and associated public keys. We assume
that finite number of agent id—public key pairs (A, pk(nA)), (B, pk(nB)) (for honest agents) and
(Q1, pk(c1)), (Q2, pk(c2)), . . . (for dishonest agents) are publicly available to associate agent id’s
with public keys. The function symbols c1, c2, etc are adversarial constants. We assume that the
agent ids A,B,Q1,Q2, . . . are pairwise distinct.

WhenA is instructed to start an initiator session then it is given the agent id of the responder.A
checks that the agent name is in the list of available agent ids and can then extract the correspond-
ing public keys. To simplify presentation, we assume the following abbreviations to accomplish
the above:

check (Q) = EQ (Q,A) ‖ EQ (Q,B) ‖ EQ (Q,Q1) ‖ · · ·

and

pkey (Q) = if EQ (Q,A)then pk(nA)
else if EQ (Q,B) then pk(nB)

else if EQ (Q,Q1) then pk(c1)
...

else 0.

The responder similarly checks if the initiator in the first message is in the list of available
agent ids.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:30 G. Bana et al.

Fig. 2. Authenticated Diffie-Hellman key exchange protocol with two agents A and B.

We present a transition diagram that represents the authenticated DH protocol with two par-
ticipants, an initiator A and a responder B, in Figure 2. For simplicity, we illustrate the case when
there is only one initiator session id1 and one responder session id2. The diagram illustrates three
possible branches of the protocol. The right-most branch simulates the situation where the initia-
tor A moves first and then the responder B moves next, whereas the left-most branch simulates the
other scenario that B moves first followed by A. The middle branch illustrates the scenario when
all the moves of A happen before the moves of B. The frame Φ0 represents the initial knowledge of
the attacker, which includes a description of a cyclic group G(n), a generator of the group g(n), the
honest agent-ids,A,B, and their respective public keys pk(nA) and pk(nB). The initial frame also in-
cludes finite number of ids of dishonest agents,Q1,Q2, . . . and their public keys pk(c1), pk(c2), . . . ,
respectively. On the input message xi , the conditions θ 1

i checks if the input message xi is forA and
he has instructed to start a new session with agent m(xi). This transition also checks that if the
received agent id m(xi) is valid. If the checks succeeded, then A extracts the public key pkey (m(xi))
of the agent m(xi). t1

i represents the A’s initial message, i.e., the triple consisting of the initiator

agent-id A, the received agent-id m(xi), and the computed group element дa in the protocol. θ 1
i j

checks that the received message xi is for A and verifies that it is a valid response by checking
the signature using the public key pkey (m(x j)), which he has computed in the previous round
of the protocol. t1

i j represents the final message for A in the protocol, i.e., the signed message

sign(sk(nA), 〈m(x j),д
a ,π1 (m(xi))〉, rs (n3)) of A using his own secret key sk(nA) and a random seed

rs (n3). Similarly, in θ 2
i , we check that the message xi is for B, τ1 (m(xi)) is a valid agent, and that

B is the intended responder. If these checks succeeded, then the responder B extracts the public
key pkey (τ1 (m(xi))) of the agent τ1 (m(xi)). t2

i is the initial response by B, i.e., the pair that consists

of the group element дb and the signed message sign(sk(nB), 〈τ1 (m(xi)),b,τ3 (m(xi))〉, rs (n4)). θ 2
i j

checks that if the message xi is for B and checks that the received message is the expected final
message of the protocol by verifying the signature on the message using public key of the initiator
pkey (τ1 (m(x j))). Of course, at the end of the protocol, the responder B also sends out the message
acc to indicate that the protocol has been completed. We skip other branches for lack of space.

Now, we explain how authentication can be modeled in our framework. Please note that we
are considering two initiator sessions forA and two responder sessions for B in the following. Our
methods can be easily extended to any fixed number of sessions. Responder’s authentication of the
initiator means that if B received and verified a message that looked like sign(sk(nA), 〈B,y,дb 〉, r ′)

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:31

for some input y, then A has a matching initiator session: A has a session in which he sent
sign(sk(nA), 〈Q,дa ,x〉, r ′) for some x message and agent Q (and as implied by A’s role also sent
〈A,Q,дa〉 before that) before B received it on the same branch, which is the same branch thatA re-
ceived a message that looked like 〈x , z〉, the verification ver(pkey (Q), 〈A,x ,дa〉, z) succeeded, and
EQ (x ,дb) & EQ (y,дa) & EQ (Q,B) is satisfied on this branch.

There are various possibilities to express responder’s authentication of the initiator in our lan-
guage, we present one. Namely, similarly to our modeling of secrecy, we can define an oracle
query that takes a session idα as input, and if idα is a completed responder session and there is
no matching initiator session in the above sense then the oracle outputs 1 (that is, true symbol-
ically), meaning there is an attack against authentication. Otherwise, it outputs 0 (that is, false

symbolically). Let the protocol that ends with such an oracle query be called Πauth
1 . We can also

define Πauth
2 such that the oracle always outputs 0. These oracles can be formalized as in the case

of secrecy. Then, the authentication property can be formalized as

Φ
(
fold

(
Πauth

1

))
= Φ

(
fold

(
Πauth

2

))
.

Observe that we used equality and not indistinguishability. This means that Πauth
1 cannot output

1 with non-negligible probability.

Proposition 10.1. Let Πauth
1 and Πauth

2 be the two protocols as defined above. Assuming the sig-

nature scheme satisfies the UF-CMA assumption, Φ(fold(Πauth
1)) = Φ(fold(Πauth

2)).

Proof (Sketch). If on a branch of Φ(fold(Πauth
1)) there is a true as the final output, then by

the definition of the oracle this branch lies on the true side of the branching where the condition
EQ (τ1 (m(fi (ϕi))),A) and the condition ver(pkey (τ1 (m(fi (ϕi)))), 〈B,τ3 (m(fi (ϕi))),дb 〉, m(fj (ϕ j))) at
the last move of the responder are true. Here, fi (ϕi) is the message that B is supposed to have
received from A earlier and whose body is supposed to be 〈A,B,дa〉, while the message fj (ϕ j) is

supposed to be from A with body sign(sk(nA), 〈B,дa ,дb 〉, r ′). Since EQ (τ1 (m(fi (ϕi))),A) is true
on this branch, we can always replace τ1 (m(fi (ϕi))) by A and pkey (τ1 (m(fi (ϕi))) by pk(nA) on
this branch. According to UF-CMA and EqCong, ver(pk(nA), 〈B,τ3 (m(fi (ϕi))),дb 〉, m(fj (ϕ j)) can be
rewritten as a branching term, which gives false (and hence the final output is also false by axioms
IfMorph and IfIdemp and the definition of the oracle) unless ϕ j (and hence the earlier ϕi) con-

tains a term sign(sk(nA), t , r ′) for some t such that EQ (〈B,τ3 (m(fi (ϕi))),дb 〉, t) evaluates to true. By
the role of A, sign(sk(nA), t , r ′) must be of the form sign(sk(nA), 〈m(f� (ϕ�)),дa ,τ1 (m(fh (ϕh)))〉, r ′)
for an a that A generated at the beginning of the role in response to the message f� (ϕ�). Here,
fh (ϕh) is supposed to be the initial response received by A. In the subsequent proof, we abbreviate
m(f� (ϕ�)) byQ .Now, we are on the true side of the EQ (〈B,τ3 (m(fi (ϕi))),дb 〉, 〈Q,дa ,τ1 (m(fh (ϕh)))〉)
branching. In the final oracle step, there is a branching according to EQ (τ3 (m(fi (ϕi))),дa) &
EQ (τ1 (m(fh (ϕh))),дb) & EQ (Q,B), which must fail for the oracle to output true, because other-
wise there is a matching session. In the rest of the argument, we show that if we are on the true
side of EQ (〈B,τ3 (m(fi (ϕi))),дb 〉, 〈Q,дa ,τ1 (m(fh (ϕh)))〉), then in the final oracle step the branching
EQ (τ3 (m(fi (ϕi))),дa) & EQ (τ1 (m(fh (ϕh))),дb) & EQ (Q,B) can be replaced with true, and hence
the final output is always false. By the equational theory of pairs, and congruence of equality, the
term EQ (τ3 (m(fi (ϕi))),дa) &EQ (τ1 (m(fh (ϕh))),дb) & EQ (Q,B) can be rewritten as

EQ (τ1 (〈Q,дa ,τ1 (m(fh (ϕh)))〉),τ1 (〈B,τ3 (m(fi (ϕi))),дb 〉)) &

EQ (τ2 (〈B,τ3 (m(fi (ϕi))),дb 〉),τ2 (〈Q,дa ,τ1 (m(fh (ϕh)))〉)) &

EQ (τ3 (〈Q,дa ,τ1 (m(fh (ϕh)))〉),τ3 (〈B,τ3 (m(fi (ϕi)),дb 〉))).

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:32 G. Bana et al.

As we are on the true side of EQ (〈B,τ3 (m(fi (ϕi))),дb 〉, 〈Q,дa ,τ1 (m(fh (ϕh)))〉), using Example 7.3
and Example 7.4 the above checks can be replaced by

EQ (τ1 (〈Q,дa ,τ1 (m(fh (ϕh)))〉),τ1 (〈Q,дa ,τ1 (m(fh (ϕh)))〉)) &
EQ (τ2 (〈Q,дa ,τ1 (m(fh (ϕh)))〉),τ2 (〈Q,дa ,τ1 (m(fh (ϕh)))〉)) &
EQ (τ3 (〈Q,дa ,τ1 (m(fh (ϕh)))〉),τ3 (〈Q,дa ,τ1 (m(fh (ϕh)))〉)),

which in turn can be replaced by true by EqRefl and EqCong. This means Φ(fold(Πauth
1)) is equal

to a frame where all final outputs are false. Then, by axiom IfSame and congruence, all branchings
of the final oracle step can be collapsed, and thus we obtain Φ(fold(Πauth

2)), and that is what we
needed. �

Secrecy. We note that secrecy of the exchanged key for STS should have a different formalization
than the secrecy of the DH discussed in Section 8. In particular, we are interested in formalizing
the property that if an honest agent completes a session ostensibly with another honest agent,
then the shared key computed by the agent must be secret. This can again be modeled as an
indistinguishability of two protocols Πsec

1 and Πsec
2 . In both protocols, we enhance the transition

system for the STS protocol with an oracle query for revealing a shared key. In Πsec
1 , if the oracle

query is to reveal the key in a completed session idα forA (B, respectively), then the oracle replies
with the key computed byA (B, respectively) in that session. In Πsec

2 , if the oracle query is to reveal
the key in a completed session idα forA (B, respectively), then the oracle checks ifA (respectively)
completed this session ostensibly with B (A, respectively): If it indeed is the case, then the oracle
generated reveals a random key дc ; otherwise, it outputs the computed key. Πsec

1 and Πsec
2 can be

easily shown to be indistinguishable as follows.
First, Πsec

1 can be easily transformed into a protocol, in which the oracle query before revealing
A’s (B’s, respectively) computed secret in a completed session idα for A (B, respectively) checks
if the other agent is ostensibly B (A, respectively). Whether the check succeeds or not, the oracle
query still reveals the computed key. Now, in the branch when the aforementioned check passes,
we can show in a manner similar to the proof of Proposition 10.1 that A (B, respectively) must
be exchanging the secret with one of the two sessions of B (A, respectively) and the secret must
be of the form (дb)a ((дa)b , respectively), where a and b are the exponents in the corresponding
sessions of A and B. Thus, the folded term representing the protocol Πsec

1 can be transformed into
one in which the oracle query results in five different possible conditional outputs, four for the
keys exchanged between the honest agents and one for all other cases. Similarly, the folded term
representing the protocol Πsec

2 can also be transformed into one in which the oracle query results
in five different possible conditional outputs, four of them being дc when the two honest agents
are involved in the exchange and one for all other cases. Now, these two terms can be proved to
be indistinguishable using the computational DDH assumption along the same lines as the proof
of Φ(fold(Π′2)) ∼ Φ(fold(Π2)) in the proof of Proposition 8.1.

11 FORMALIZING THE PROOFS IN COQ

We formalized the machine-checked proofs of the theorems, real-or-random secrecy of the Diffie-
Hellman (DH) protocol, and authentication of the Station-to-Station (STS) protocol in Coq, an
interactive theorem-prover [29]. In particular, we formalized the real-or-random secrecy of the
DH protocol and for authentication of the STS protocol for one session each of responder and
initiator. We did only one session to keep the size of the formulas small, but the idea for any fixed
number of sessions is similar.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:33

We also formalized the auxiliary theorems, for example, the derivation of the DDH assumption
for three participants, and hence for any number of participants, using the assumption for two
participants. All the machine-checked proofs are available at Reference [22].

There are three kinds of specifications that Coq supports, abstract types, mathematical collec-
tions, and logical propositions. These specifications are represented by sorts, Type, Set, and Prop,
respectively.

11.1 Types

As presented in Section 2, the set of sorts S has at least two sorts message and bool. Using the
feature of mutually inductive types [17] in Coq, we define message and bool types. The syntax is
as follows:

As described in Reference [17], ilist is a type that takes length of the list as an argument and
produces a length-indexed list. They define polymorphic length-indexed lists. Following Refer-
ence [17], we formalize the polymorphic length-indexed list below.

Where the arguments A and nat represent type and length of the ilist, respectively. As described in
Section 2, lists contain message, bool, or both. We needed a type that refers to either of the types.
We call it oursum, and it is defined inductively on message and bool.

A frame is modeled as a length-indexed list of type oursum. This is declared as type mylist n,
where n is length of the list.

11.2 Formalizing Indistinguishability Relation

A binary relation on a type A is formalized in Coq as

3To avoid a clash with built-in type in Coq, bool is represented as Bool.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:34 G. Bana et al.

To increase the readability, we introduce few notations as follows:

Definition 11.1 (Copied Verbatim from Reference [29]). A parametric relation R is any term of type
∀(x1 : T1) . . . (xn : Tn), relation A. The expression A, which depends on x1 . . . xn , is called the car-
rier of the relation and R is said to be a relation over A; the list x1, . . . ,xn is the (possibly empty)
list of parameters of the relation.

We model indistinguishability as a parametric relation on length-indexed lists of type oursum,
mylist n, where the length n is a parameter of the relation. We write the indistinguishability
relation as EQI, denoted as ∼. The formalization of EQI is achieved using the following command.

An instance of a parametric relation EQI with a parameter is a term (EQI n) where n is a natu-
ral number, and models indistinguishabilty relation amongst frames of length n. The equivalence
property of EQI is formalized as below.

The axiom EQI_equiv states the fact that EQI is an equivalence relation. The properties reflexivity,
symmetry, and transitivity of equivalence relation EQI are formalized in the theorems EQI_ref,
EQI_sym, and EQI_trans, respectively. For example, the theorem EQI_ref is formalized as below.

Similarly, other theorems are formalized. The parametric equivalence relation EQI can be declared
with the following command.

Where the name EQI_rel uniquely identifies the relation and is used to generate fresh names,
EQI_rel_Reflexive, EQI_rel_Symmetric, for automatically provided lemmas.

11.2.1 Formalization of=. Recall the abbreviation= defined in Section 2, which serves as a con-
gruence. If we use the built-in equality of Coq to model this abbreviation together with its built-in
axiomatic system, then we end up with an unsound extension of the Coq logic. This is because the
Coq inequality forces two syntactically unequal terms of our logic to be unequal, which will contra-
dict our axioms (for example, IfTrue). Instead, we model = as a pair of equivalence relations: EQm
for modeling= amongst terms of type message and EQb for modeling= amongst terms of type bool.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:35

The formalization of EQm and EQb is achieved with the following commands:

For the rest of the article, we write EQm as # and EQb as ##.
Even if we do not use the native =, we still would like to use native Coq tactics, which exploit

the fact that Leibniz equality is a congruence. Thus, we declare EQm and EQb as morphisms, which
allows us to exploit their congruence properties.

Definition 11.2 (Morphism (Copied Verbatim from Reference [29])). A parametric unary function
f of type forall (x1 : T1) . . . (xn : Tn), A1 → A2 covariantly respects two parametric relation in-
stances R1 and R2 if, whenever x ,y satisfy R1 x y, their images (f x) and (f y) satisfy R2 (f x) (f y).
An f that respects its input and output relations is called a unary covariant morphism. The se-
quence x1, . . . ,xn represents the parameters of the morphism.

Example 11.3. The constructor pair takes two terms of type message and gives a term of type
message. We have the following axiom:

We add a morphism pair_mor of the function pair that respects the relation EQm as follows. The
morphism pair_mor is declared using the following commands.

The command declares pair as a morphism of the signature EQm⇒ EQm⇒ EQm. The identifier
app_mor gives a unique name to the morphism. The command also requires us to prove that
the function pair respects the relations identified by the signature. The proof uses the axiom
pair_Cong. Similarly morphisms for other functions are formalized.

11.3 Axioms, Theorems, and Verification

We present the details of the formalization of the axioms that are required to prove the real-or-
random secrecy of the DH protocol.

We formalize the axioms presented in the Table 1 and the DDH axiom. For example, we formalize
the axiom IfSame as follows:

Two axioms are used to distinguish the cases when x is a message and a bool. All other axioms in
the Table 1 are similarly formalized.

The DDH axiom states that, for given messages дna and дnb , where na , nb , and nc are freshly
generated random numbers, the termsдnanb andдnc are indistinguishable. We formalize the axiom
as the following:

where we have leveraged the following the notation:

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:36 G. Bana et al.

The function Fresh captures the notion of freshly generated random numbers and each number
in the list [n; na; nb; nc] is freshly generated. We also introduced a notation to compact the t.

Example 11.4. Using the axiom IFSAME_B, we proved the following theorem.

where beq_nat_refl is a lemma that states, for any natural number n, true = (beq_nat n n).

As described in Section 8, real-or-random secrecy is modeled as indistinguishability of two pro-
tocols, Π1, in which the real shared key is revealed, and Π2, in which a randomly generated number
is revealed. The formalization of this is achieved by proving that the two frames Φ(fold(Π1)) and
Φ(fold(Π2)) are indistinguishable. The formalization of the frame Φ(fold(Π1)) is the following:

We use phi15 to represent the frame Φ(fold(Π1)) and it contains the list of messages available
to attacker at the end of the protocol. The frame phi10 represents the initial knowledge of the
attacker where as the frames phi11, phi12, and phi13 represent the attacker knowledge during
the protocol execution. Of course, the symbol ++ stands for concatenation of two lists. Similarly
the frame phi25 that represents Φ(fold(Π2)) is formalized. The following theorem illustrates the
real-or-random secrecy of one matching session of the DH protocol.

We also formalized the authentication of the STS protocol using the axiom schema, existential
unforgeability against chosen message attacks (UF-CMA), and the correctness axiom of digital
signatures. The axioms UF-CMA and correctness are formalized below:

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:37

The authentication property of the STS protocol is modeled as proving the two frames
Φ(fold(Πauth

1)) and Φ(fold(Πauth
2)) are equal. The frame Φ(fold(Πauth

1)) is formalized as below:

The frame sphi15 represents the frame Φ(fold(Πauth
1)) and it contains the messages that are avail-

able to the attacker at the end of the protocol. sphi10 represents the initial frame, sphi11, sphi12,
sphi13, and sphi14 represent the attacker knowledge during execution of the protocol. Similarly,
the frame sphi25 that represents Φ(fold(Πauth

2)) is formalized.
The authentication property of STS protocol is illustrated by the following theorem.

Where the symbol = represents the equality of the two frames sphi15 and sphi25.

12 SECURITY OF ENCRYPTIONS AND FURTHER VERIFICATION RESULTS

We shall now show that the standard IND-CPA, IND-CCA1 and IND-CCA2 security notions for
encryption (see, e.g., Reference [13]) can be easily translated to the BC framework, illustrating the
convenience of the BC framework. We assume the function symbol k and abbreviations sk, pk are
as in Section 9.

12.1 Encryptions

Let {_}__ : message ×message ×message→ message and dec(_, _) : message ×message→
message and r(_) : message→ message be function symbols for encryption, decryption and
random seed generation satisfying dec({x }z

pk(y)
, sk(y)) = x . (r is not to be confused with r we used

for group exponentiation.) Let L : message→ message be a function symbol for length such that

[[L]](d) (w ; ρ1; ρ2) := 1 |d (w ;ρ1;ρ2) | , where for a bit string s , |s | denotes its length. Let �t [x] be a list of
terms with a single variable x . For a closed term v , let �t [v] denote the term that we obtain from
�t [x] by replacing all occurrences of x by v . Let u, u ′, u ′′ be closed terms. Consider the formula

�t
[
if EQ (L(u), L(u ′)) then {u}r(n2)

pk(n1)
else u ′′

]
∼ �t

[
if EQ (L(u), L(u ′)) then {u ′}r(n3)

pk(n1)
else u ′′

]
,

in which n1 ∈ N occurs only as k(n1), sk(n1) only occurs in decryption position (that is, as in
dec(_, sk(n1))), and n2, n3 do not occur anywhere else. We call the above formula

• EncCPA if sk(n1) does not occur anywhere,
• EncCCA1 if for any t ′[x] subterm of �t [x] with x explicitly occurring in t ′[x], the term

dec(t ′[x], sk(n1)) is not a subterm of �t [x], and

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:38 G. Bana et al.

• EncCCA2 if for any t ′[x] term with x explicitly occurring in t ′[x], the term dec(t ′[x], sk(n1))
occurs only as

if EQ (t ′[x],x) ∧ EQ (L(u), L(u ′)) then t ′′[x] else dec(t ′[x], sk(n1)).

Formally, the formula above is EncCCA2 if each component term ti [x] of the vector �t[x] is
(n1,u,u

′) − EncCCA2 compliant as defined (recursively) below. We say that a term t[x] is
(n,u,u ′) − EncCCA2 compliant if one of the following holds:
—t[x] is a ground term, not equal n.
—t[x] ≡ pk(n).
—t[x] is the variable x .
—There is a function symbol f ∈ F ∪ G and terms t1[x], . . . , tr [x] such that t[x] ≡
f (t1[x], t2[x], . . . , tr [x]) and for any t ′[x] term containing x , t[x] � dec(t ′[x], sk(n)) and
t i [x] is (n,u,u ′) − EncCCA2 compliant for each i = 1, . . . , r .

—There are (n,u,u ′) − EncCCA2 compliant terms t ′[x], t ′′[x], such that t[x] is

if EQ (t ′[x],x) ∧ EQ (L(u), L(u ′)) then t ′′[x] else dec(t ′[x], sk(n)).

Intuitively, x represents the place for the left-right encryption oracle response in the security game
for encryption. Terms that can be computed before using the left-right encryption oracle are those
that do not contain x . As CPA security does not allow decryption oracle, we allow no decryption.
CCA1 allows decryption request before the encryption request, hence decryption can be applied
to terms without x . In CCA2, we have to make sure that if decryption is applied on t ′[x] term
containing x , then t ′[x] is not the encryption oracle response, namely, x , and if it is, then the
decryption returns 0, and some t ′′[x] � dec(t ′[x], sk(n1)) is used. In fact, this definition of EncCCA1

is equivalent with the one in Reference [9].

Theorem 12.1. If [[k(_), {_}__, dec(_, _)]] is CPA secure, then EncCPA is computationally sound.

If it is CCA1 secure, then EncCCA1 is computationally sound. If it is CCA2 secure, then EncCCA2 is

computationally sound. Conversely, if there is a constant � ∈ N and a CPA (or CCA1 or CCA2, re-

spectively) attackA against [[k(_), {_}__, dec(_, _)]] such that the number of oracle queriesA makes

does not exceed � for any η, then EncCPA (or EncCCA1 or EncCCA2, respectively) axiom is violated in

some computational model with the given interpretation [[k(_), {_}__, dec(_, _)]].

Proof. We prove the validity of EncCCA2, the others are analogous but simpler. We proceed by
contradiction. Assume that there is a list of terms �t[x] with a single variable x , and closed terms
u, u ′, u ′′ as well as names n1, n2, n3, and a computational modelMc such that

Mc � |= �t
⎡⎢⎢⎢⎢⎣

if EQ (L(u), L(u ′)) then {u}r(n2)
pk(n1)

else u ′′

⎤⎥⎥⎥⎥⎦ ∼ �t
⎡⎢⎢⎢⎢⎣

if EQ (L(u), L(u ′)) then {u ′}r(n3)
pk(n1)

else u ′′

⎤⎥⎥⎥⎥⎦ .
This means that there is a Turing machine A that runs in polynomial time in the security pa-

rameter η such that

AdvA (η) = |Prob{ρ : A ([[�t [if EQ (L(u), L(u ′)) then {u}r(n2)
pk(n1)

else u ′′]]]ρ,η ; ρ2) = 1}−
Prob{ρ : A ([[�t [if EQ (L(u), L(u ′)) then {u ′}r(n3)

pk(n1)
else u ′′]]]ρ,η ; ρ2) = 1}|

is a non-negligible function in η. Then an adversary B can win the IND-CCA2 game against k(n1)
as follows. As usual in the IND-CCA2 security definition, on the input 1η , the encryption oracle
first generates an internal bit b randomly, and a public-key secret-key pair (pk, sk). B is given
pk by the oracle. B generates bit strings for the names that occur in �t[x],u,u ′,u ′′ (except for
n1, n2, n3) according to the way names are generated inMc . Using these, B then computes the
interpretations of u, u ′, u ′′, and subterms of �t[x] that do not contain x : the only thing B does not

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:39

have access to in these terms is the interpretation sk of sk(n1), but according to our assumption,
that only occurs in decryption positions. So those interpretations are computed by submitting the
interpretation in the cyphertext position to the decryption oracle. (The case of EncCCA1 is the same,
while the EncCPA axiom does not allow sk(n1) to occur at all.) Once all these terms are computed,
if the interpretation of u and the interpretation of u ′ have the same length, then B submits the
two interpretations to the encryption oracle, which then returns the encryption of one of them, c .
The oracle generates the interpretation of n2 or n3 depending on which plaintext it encrypts. If the
two lengths disagree, then let us call c the interpretation of u ′′. Then B continues computing all
of the interpretation of �t[x] by substituting c for x . This computation in the EncCCA2 axiom may
again contain decryptions by sk(n1), but as they are assumed to be guarded by the assumptions
that those decrypted terms are not equal to the value returned by the encryption oracle, again
submission to the decryption oracle is possible. (In EncCCA1 and EncCPA cases here sk(n1) is not
allowed to occur any more.) When B finishes the computation of the interpretation of �t (x), it
hands the result over to A. When A finishes, B outputs the output of A. By the construction of
B,

Prob{B (1η ,pk) = 1 ∧ b = 0} = Prob{ρ : A ([[�t

⎡⎢⎢⎢⎢⎢⎢⎣
if EQ (L(u), L(u ′))

then {u}r(n2)
pk(n1)

else u ′′

⎤⎥⎥⎥⎥⎥⎥⎦
]]ρ,η ; ρ2) = 1} and

Prob{B (1η ,pk) = 1 ∧ b = 1} = Prob{ρ : A ([[�t

⎡⎢⎢⎢⎢⎢⎢⎣
if EQ (L(u), L(u ′))

then {u ′}r(n2)
pk(n1)

else u ′′

⎤⎥⎥⎥⎥⎥⎥⎦
]]ρ,η ; ρ2) = 1}.

Thus, the quantity |Prob{B (1η ,pk) = 1 ∧ b = 1} − Prob{B (1η ,pk) = 1 ∧ b = 0}) | is non-
negligible by our assumption. Now,

|Prob{B (1η ,pk) = b} − 1
2 | = |Prob{B (1η ,pk) = 1 ∧ b = 1} + Prob{B (1η ,pk) = 0 ∧ b = 0} − 1

2 |
= |Prob{B (1η ,pk) = 1 ∧ b = 1} + (1

2 − Prob{B (1η ,pk) = 1 ∧ b = 0}) − 1
2 |

= |Prob{B (1η ,pk) = 1 ∧ b = 1} − Prob{B (1η ,pk) = 1 ∧ b = 0}) |.

As the quantity |Prob{B (1η ,pk) = 1 ∧ b = 1} − Prob{B (1η ,pk) = 1 ∧ b = 0}) | is non-negligible,
IND-CCA2 security is broken by B.

The proof of the converse is the following. Let us consider an IND-CCA2 attackerA on the given
interpretation of k(_), {_}__, dec(_, _) that succeeds with non-negligible probability and makes at
most � oracle queries. Note that the actual number of oracle requests may vary by η and ρ, but
we can always add requests the answers of which are ignored, so without loss of generality, we
can assume that there are uniformly � submissions, of which the mth is the submission to the
encryption oracle.

Fix a name n and function symbols f0, f1, . . . , fm−1, fm , f ′m , f ′′m , fm+1, . . . , f� ∈ G. Let
t1, t2, . . . , tm−1,u,u

′,u ′′, tm+1[x], . . . , t�[x] be defined as follows:

t1
def≡ f0 (pk(n))

ti+1
def≡ fi+1 (pk(n), dec(t1, sk(n)), . . . , dec(ti , sk(n)))

u
def≡ fm (pk(n), dec(t1, sk(n)), . . . , dec(tm−1, sk(n)))

u ′
def≡ f ′m (pk(n), dec(t1, sk(n)), . . . , dec(tm−1, sk(n)))

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:40 G. Bana et al.

u ′′
def≡ f ′′m (pk(n), dec(t1, sk(n)), . . . , dec(tm−1, sk(n)))

tj+1[x]
def≡ fj+1 (pk(n), dec(t1, sk(n)), . . . ,x , . . . , c j)

�t[x]
def≡ t�[x],

where for j =m, . . . , � − 1,

c j = if EQ (tj [x],x) ∧ EQ (L(u), L(u ′)) then 0 else dec(tj [x], sk(n1)).

LetMc be a model with the following the interpretations of the function symbols f0, . . . , f� .
[[f0]] is the Turing Machine that on input s0 and tapes ρ1; ρ2 simulates the attacker A until it

prepares a message query to be submitted to the decryption oracle. At that point [[f0]] outputs
the actual query and stops. For 0 < i < m, [[fi]] is the Turing Machine that on input s0, s1, s2, si−1

simulates the attacker A until it prepares the ith query to be submitted to the decryption oracle.
Let si be the response of the decryption oracle. [[fm]], [[f ′m]], and [[f ′′m]] simulateA untilA is ready
to output the pair of messages to the encryption oracle. [[fm]] outputs the first, [[f ′m]] outputs the
second of the pair to be submitted to the encryption oracle if they have the same length, while
the output of [[f ′′m]] is used in further computations if their lengths differ. [[fj]] for j > m is similar,
[[fj]] is the Turing Machine that on input s0, s1, s2, sm−1, c, sm+1, . . . , sj−1 simulates the attacker A
until it prepares the jth query sj to be submitted to the decryption oracle. Here, c is what the
encryption oracle returns, while s’s are what the decryption oracle returned. We claim that with
these definitions,

Mc � |= �t
⎡⎢⎢⎢⎢⎣

if EQ (L(u), L(u ′)) then {u}r(n2)
pk(n1)

else u ′′

⎤⎥⎥⎥⎥⎦ ∼ �t
⎡⎢⎢⎢⎢⎣

if EQ (L(u), L(u ′)) then {u ′}r(n3)
pk(n1)

else u ′′

⎤⎥⎥⎥⎥⎦ .
Let B be the algorithm that simply outputs its first input. Then,

Prob{ρ : B ([[�t

⎡⎢⎢⎢⎢⎢⎢⎣
if EQ (L(u), L(u ′))

then {u}r(n2)
pk(n1)

else u ′′

⎤⎥⎥⎥⎥⎥⎥⎦
]]ρ,η ; ρ2) = 1} = Prob{A (1η ,pk) = 1 ∧ b = 0} and

Prob{ρ : B ([[�t

⎡⎢⎢⎢⎢⎢⎢⎣
if EQ (L(u), L(u ′))

then {u ′}r(n2)
pk(n1)

else u ′′

⎤⎥⎥⎥⎥⎥⎥⎦
]]ρ,η ; ρ2) = 1} = Prob{A (1η ,pk) = 1 ∧ b = 1}.

But just as before,

|Prob{A (1η ,pk) = 1 ∧ b = 1} − Prob{A (1η ,pk) = 1 ∧ b = 0}) | = |Prob{A (1η ,pk) = b} − 1
2 |.

According to our assumption, A violates IND-CCA2 security, hence |Prob{A (1η ,pk) = b} − 1
2 | is

non-negligible, hence so is

|Prob{ρ : B ([[�t [if EQ (L(u), L(u ′)) then {u}r(n2)
pk(n1)

else u ′′]]]ρ,η ; ρ2) = 1}−

Prob{ρ : B ([[�t [if EQ (L(u), L(u ′)) then {u ′}r(n2)
pk(n1)

else u ′′]]]ρ,η ; ρ2) = 1}|,

and that completes the proof. �

Example 12.2. Suppose that nonce and key generation are such that there are 0-ary function
symbols �nonce and �skey such that L(n) = �nonce and L(sk(n)) = �skey, and suppose also that pairing
is length regular, that is, L(x1) = L(x2) ∧ L(y1) = L(y2) → L(〈x1,x2〉) = L(〈y1,y2〉). Note also that

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:41

from the definition of the interpretation of L, the formula L(L(x)) = L(x) is sound. Consider real-
or-random secrecy of n (let ki ≡ k(ni), ri ≡ r(ni+2)):

{sk1,n5}r1

pk2
,
{
π2

(
dec

(
f ({sk1,n5}r1

pk2
), sk2

))
,n

}r2

pk1

,n

∼ {sk1,n5}r1

pk2
,
{
π2

(
dec

(
f ({sk1,n5}r1

pk2
), sk2

))
,n

}r2

pk1

,n′,
(1)

with f ∈ G. It is easy to show that the core axioms together with EncCCA2 and the above properties
of L, and the equations for pairing–projections, encryption–decryption imply this formula. The
intuition of course is that sk1 is hidden by the encryption with pk2, the decrypted message in
the second encryption is n5, hence no key cycle occurs encrypting with pk1, and so the second
encryption does not reveal information about n. The key point of the proof is to transform first
the terms so that EncCCA2 can be applied. For example, since dec acts on f (. . .), we have to make
sure that there is a conditioning as we required in the definition of EncCCA2. So, we start the proof
by rewriting f ({sk1,n5}r1

pk2
) according to

f ({sk1,n5}r1

pk2
) = if EQ (f ({sk1,n5}r1

pk2
), {sk1,n5}r1

pk2
) then f ({sk1,n5}r1

pk2
) else f ({sk1,n5}r1

pk2
)

by IfSame, and then applying IfMorph and the equations for encryption and pairing, we obtain

π2 (dec(f ({sk1,n5}r1

pk2
), sk2))

EqCong
=

π2

(
dec

(
if EQ (f ({sk1,n5}r1

pk2
), {sk1,n5}r1

pk2
) then f ({sk1,n5}r1

pk2
) else f ({sk1,n5}r1

pk2
), sk2

))
Ex. 7.3
=

π2

(
dec

(
if EQ (f ({sk1,n5}r1

pk2
), {sk1,n5}r1

pk2
) then {sk1,n5}r1

pk2
else f ({sk1,n5}r1

pk2
), sk2

))
IfMorph
=

if EQ (f ({sk1,n5}r1

pk2
), {sk1,n5}r1

pk2
)

then π2 (dec({sk1,n5}r1

pk2
, sk2))

else π2 (dec(f ({sk1,n5}r1

pk2
), sk2))

=

if EQ (f ({sk1,n5}r1

pk2
), {sk1,n5}r1

pk2
)

then n5

else π2 (dec(f ({sk1,n5}r1

pk2
), sk2)).

Let us define �t[x] := x ,
{
if EQ (f (x),x) then n5 else π2 (dec(f (x), sk2)),n

}r2

pk1
,n. Note that �t for k2

satisfies the conditions for EncCCA2, because the only decryption term (with the decryption key
sk2) containing x is dec(f (x), sk2)), but this term occurs only under

if EQ (f (x),x) then n5 else π2 (dec(f (x), sk2)),

f (x) corresponding to t ′[x] in the definition of EncCCA2 and n5 corresponding to t ′′. Now let �u be
the same list of terms as �t except that it ends with n′ instead of n. Hence, �u similarly satisfies the
conditions of EncCCA2. Note then that the Equation (1) is the same as

�t
[
{sk1,n5}r1

pk2

]
∼ �u

[
{sk1,n5}r1

pk2

]
.

Note also that because of our assumptions on the length (at the beginning of this example), for a
fresh n6,

L(〈sk1,n5〉) = L(〈sk(n6),n5〉).
By the definition of = and Example 7.2,

EQ (L(〈sk1,n5〉), L(〈sk(n6),n5〉)) = true,

and so by IfTrue,

{sk1,n5}r1

pk2
= if EQ (L(〈sk1,n5〉), L(〈sk(n6),n5〉)) then {sk1,n5}r1

pk2
else 0

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

2:42 G. Bana et al.

and

{sk(n6),n5}r1

pk2
= if EQ (L(〈sk1,n5〉), L(〈sk(n6),n5〉)) then {sk(n6),n5}r1

pk2
else 0.

Using this, EqCong and EncCCA2, we get that

�t
[
{sk1,n5}r1

pk2

]
∼ �t

[
{sk(n6),n5}r1

pk2

]
(2)

and

�u
[
{sk1,n5}r1

pk2

]
∼ �u

[
{sk(n6),n5}r1

pk2

]
. (3)

With these moves, we have removed sk1 from under the encryptions in Equation (1). Now,

�t
[
{sk(n6),n5}r1

pk2

]
= {sk(n6),n5}r1

pk2
,
{
π2

(
dec

(
f ({sk(n6),n5}r1

pk2
), sk2

))
,n

}r2

pk1

,n. (4)

And, again, by the length assumptions, for a fresh nonce n7,

L

(〈
π2

(
dec

(
f
(
{sk(n6),n5}r1

pk2

)
, sk2

))
,n

〉)
= L

(〈
π2

(
dec

(
f
(
{sk(n6),n5}r1

pk2

)
, sk2

))
,n7

〉)
.

Hence, applying EncCCA2 for a second time just as before, but now for k1, we obtain that

{sk(n6),n5}r1

pk2
,
{
π2

(
dec

(
f
(
{sk(n6),n5}r1

pk2

)
, sk2

))
,n

}r2

pk1

,n,

∼
{sk(n6),n5}r1

pk2
,
{
π2

(
dec

(
f
(
{sk(n6),n5}r1

pk2

)
, sk2

))
,n7

}r2

pk1

,n.

(5)

Putting together Equations (2), (4), and (5), with Trans and EqCong, we have that

�t
[
{sk1,n5}r1

pk2

]
∼ {sk(n6),n5}r1

pk2
,
{
π2

(
dec

(
f
(
{sk(n6),n5}r1

pk2

)
, sk2

))
,n7

}r2

pk1

,n. (6)

The same way we can derive that

�u
[
{sk1,n5}r1

pk2

]
∼ {sk(n6),n5}r1

pk2
,
{
π2

(
dec

(
f
(
{sk(n6),n5}r1

pk2

)
, sk2

))
,n7

}r2

pk1

,n′. (7)

But the right-hand sides of Equations (6) and (7) are equivalent as an immediate consequence of
axioms FreshInd and Restr. Finally, again transitivity delivers

�t
[
{sk1,n5}r1

pk2

]
∼ �u

[
{sk1,n5}r1

pk2

]
,

which is what we wanted to show.

The axioms for IND-CPA, IND-CCA1, IND-CCA2 and the proof of the above example have also
been mechanized in Coq.

Remark 5. Example 12.2 illustrates the advantage of the BC technique for indistinguishability
over the BC technique for reachability [8] for CCA2 encryption. In the BC technique for reach-
ability, the proof that n cannot be computed from the two encrypted messages can be only done
with the complicated key-usability notion in Reference [10]. Here, we could simply use EncCCA2

and no new predicate was needed.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

Verification Methods for the CCSA Attacker 2:43

13 CONCLUSIONS

We have introduced key extensions to the core of computationally complete symbolic attacker
based on indistinguishability first introduced in Reference [9] that are necessary to apply the tech-
nique to analyze protocols allowing multiple sessions. Toward this end, we introduced a number
of new axioms for the if _ then _ else _ function symbol, a core element of the technique. We
have illustrated how these axioms work through several small examples. We also introduced ax-
ioms expressing DDH assumption, UF-CMA unforgeability of signatures, IND-CPA, IND-CCA1,
and IND-CCA2 security of encryptions that are immediate translations of the corresponding com-
putational properties to the framework. Through the verification of real-or-random secrecy of the
DH key exchange protocol and the verification of authentication of a simplified version of the
STS protocol, we showed how the model can be used to tackle multiple sessions, algebraic prop-
erties, real-or-random secrecy, and even trace properties. The axiomatic system and the proofs of
auxiliary theorems and security properties of protocols have been mechanized in Coq.

One direction that we plan to investigate is to extend the Computationally Complete Symbolic
Attacker technique to deal with an arbitrary fixed number of sessions. For this, we intend to for-
malize induction in the Computationally Complete Symbolic Attacker technique. Other directions
of future work are decidability results and automation. We believe that our logic is undecidable in
general, but tractable for verification of interesting class of protocols. The latter belief is based on
the procedures and techniques designed in Reference [26] for verification of reachability proper-
ties in the BC framework. For reachability, verification for a large classes of protocols turns out to
be decidable in co-NP [26]. Finally, we also plan to investigate extending the technique to reason
about a polynomial number of sessions.

ACKNOWLEDGMENTS

We are indebted to Hubert Comon-Lundh and Adrien Koutsos for the invaluable discussions. We
also thank anonymous reviewers who have provided useful comments. Part of the research was
carried out while Gergei Bana was at INRIA Paris and then at the University of Luxembourg.

REFERENCES

[1] M. Abadi and C. Fournet. 2001. Mobile values, new names, and secure communication. In Proceedings of the 28th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’01). ACM, 104–115.

[2] M. Abadi and P. Rogaway. 2002. Reconciling two views of cryptography (the computational soundness of formal

encryption). J. Cryptol. 15, 2, 103–127.

[3] M. Abdalla, P.-A. Fouque, and D. Pointcheval. 2005. Password-based authenticated key exchange in the three-party

setting. In Proceedings of the 8th International Conference on Theory and Practice in Public Key Cryptography (PKC’05).

Springer, 65–84.

[4] M. Backes, B. Pfitzmann, and M. Waidner. 2003. A composable cryptographic library with nested operations. In

Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS’03). ACM, 220–230.

[5] G. Bana, P. Adão, and H. Sakurada. 2012. Computationally complete symbolic attacker in action. In Proceedings of

the IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’12)

(LIPIcs). Schloss Dagstuhl, 546–560.

[6] G. Bana and R. Chadha. 2016. Verification Methods for the Computationally Complete Symbolic Attacker Based on

Indistinguishability. Retrieved from http://eprint.iacr.org/2016/069.

[7] G. Bana, R. Chadha, and A. K. Eeralla. 2018. Formal analysis of vote privacy using computationally complete symbolic

attacker. In Proceedings of the 23rd European Symposium on Research in Computer Security (ESORICS’18). Springer,

350–372.

[8] G. Bana and H. Comon-Lundh. 2012. Towards unconditional soundness: Computationally complete symbolic attacker.

In Proceedings of the 1st International Conference on Principles of Security and Trust (POST’12). Springer, 189–208.

[9] G. Bana and H. Comon-Lundh. 2014. A computationally complete symbolic attacker for equivalence properties. In

Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS’14). ACM, 609–620.

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

http://eprint.iacr.org/2016/069

2:44 G. Bana et al.

[10] G. Bana, K. Hasebe, and M. Okada. 2013. Computationally complete symbolic attacker and key exchange. In Proceed-

ings of the ACM SIGSAC Conference on Computer and Communications Security (CCS’13). ACM, 1231–1246.

[11] G. Barthe, J. M. Crespo, Y. Lakhnech, and B. Schmidt. 2015. Mind the Gap: Modular Machine-checked Proofs of One-

Round Key Exchange Protocols. Retrieved from http://eprint.iacr.org/.

[12] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella-Béguelin. 2011. Computer-aided security proofs for the working

cryptographer. In Proceedings of the 31st Annual Conference on Advances in Cryptology (CRYPTO’11). Springer, 71–90.

[13] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. 1998. Relations among notions of security for public-key en-

cryption schemes. In Proceedings of the 18th Annual International Cryptology Conference on Advances in Cryptology

(CRYPTO’98). Springer, 26–45.

[14] B. Blanchet. 2005. An automatic security protocol verifier based on resolution theorem proving (invited tutorial). In

Proceedings of the 20th International Conference on Automated Deduction (CADE’05). Springer.

[15] B. Blanchet. 2008. A computationally sound mechanized prover for security protocols. IEEE Trans. Depend. Secure

Comput. 5, 4 (2008), 193–207.

[16] D. Boneh. 1998. The decision diffie-hellman problem. In Proceedings of the Conference on Algorithmic Number Theory

(ANTS’98). Springer, 48–63.

[17] Adam Chlipala. 2013. Certified Programming with Dependent Types—A Pragmatic Introduction to the Coq Proof

Assistant. MIT Press. I–XII, 1–424 pages. Retrieved from http://mitpress.mit.edu/books/certified-programming-

dependent-types.

[18] H. Comon and A. Koutsos. 2017. Formal computational unlinkability proofs of RFID protocols. In Proceedings of the

IEEE 30th Computer Security Foundations Symposium (CSF’17). 100–114.

[19] H. Comon-Lundh and V. Cortier. 2008. Computational soundness of observational equivalence. In Proceedings of the

15th ACM Conference on Computer and Communications Security (CCS’08). ACM, 109–118.

[20] V. Cortier, C. C. Dragan, F. Dupressoir, B. Schmidt, P. Strub, and B. Warinschi. 2017. Machine-checked proofs of

privacy for electronic voting protocols. In Proceedings of the IEEE Symposium on Security and Privacy. 993–1008.

[21] C. Cremers. 2008. The scyther tool: Verification, falsification, and analysis of security protocols. In Proceedings of the

20th International Conference on Computer Aided Verification (CAV’08), Vol. 5123. Springer, 414–418.

[22] Ajay Kumar Eeralla. 2019. Coq formalization of Computationally Complete Symbolic Attacker. Retrieved from https:

//bitbucket.org/ajayeeralla/machine-checked-proofs/src/master/.

[23] P. Gupta and V. Shmatikov. 2005. Towards computationally sound symbolic analysis of key exchange protocols. In

Proceedings of the ACM Workshop on Formal Methods in Security Engineering (FMSE’05). ACM, 23–32.

[24] J. Katz and Y. Lindell. 2007. Introduction to Modern Cryptography. Chapman & Hall/CRC Press.

[25] R. Küsters and M. Tuengerthal. 2009. Computational soundness for key exchange protocols with symmetric encryp-

tion. In Proceedings of the ACM Conference on Computer and Communications Security (CCS’09). ACM, 91–100.

[26] Guillaume Scerri. 2015. Proofs of security protocols revisited. Thèse de doctorat. Laboratoire Spécification et Vérifica-

tion, ENS Cachan, France. Retrieved from http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/scerri-phd15.pdf.

[27] G. Scerri and S.-O. Ryan. 2016. Analysis of key wrapping APIs: Generic policies, computational security. In Proceedings

of the IEEE 29th Computer Security Foundations Symposium (CSF’16). IEEE Computer Society, 281–295.

[28] B. Schmidt, S. Meier, C. J. F. Cremers, and D. A. Basin. 2012. Automated analysis of diffie-hellman protocols and

advanced security properties. In Proceedings of the 25th IEEE Computer Security Foundations Symposium (CSF’12).

78–94.

[29] Yves Bertot and Pierre Castéran. 2004. A brief overview. In Interactive Theorem Proving and Program Develop-

ment: Coq’Art: The Calculus of Inductive Constructions. Springer Berlin Heidelberg, 1–11. https://doi.org/10.1007/

978-3-662-07964-5_1

Received September 2017; revised May 2019; accepted July 2019

ACM Transactions on Computational Logic, Vol. 21, No. 1, Article 2. Publication date: October 2019.

http://eprint.iacr.org/
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
https://bitbucket.org/ajayeeralla/machine-checked-proofs/src/master/
https://bitbucket.org/ajayeeralla/machine-checked-proofs/src/master/
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/scerri-phd15.pdf
https://doi.org/10.1007/978-3-662-07964-5_1
https://doi.org/10.1007/978-3-662-07964-5_1

