
1

Density-friendly Graph Decomposition

NIKOLAJ TATTI, HIIT, University of Helsinki, Aalto University

Decomposing a graph into a hierarchical structure via k-core analysis is a standard operation in any modern
graph-mining toolkit. k-core decomposition is a simple and efficient method that allows to analyze a graph
beyond its mere degree distribution. More specifically, it is used to identify areas in the graph of increasing
centrality and connectedness, and it allows to reveal the structural organization of the graph.

Despite the fact that k-core analysis relies on vertex degrees, k-cores do not satisfy a certain, rather
natural, density property. Simply put, the most central k-core is not necessarily the densest subgraph. This
inconsistency between k-cores and graph density provides the basis of our study.

We start by defining what it means for a subgraph to be locally-dense, and we show that our definition
entails a nested chain decomposition of the graph, similar to the one given by k-cores, but in this case the
components are arranged in order of increasing density. We show that such a locally-dense decomposition
for a graph G = (V ,E) can be computed in polynomial time. The running time of the exact decomposition
algorithm is O (|V |2 |E |) but is significantly faster in practice. In addition, we develop a linear-time algorithm
that provides a factor-2 approximation to the optimal locally-dense decomposition. Furthermore, we show
that the k-core decomposition is also a factor-2 approximation, however, as demonstrated by our experimental
evaluation, in practice k-cores have different structure than locally-dense subgraphs, and as predicted by the
theory, k-cores are not always well-aligned with graph density.

ACM Reference format:
Nikolaj Tatti. 2017. Density-friendly Graph Decomposition. ACM Trans. Knowl. Discov. Data. 1, 1, Article 1
(January 2017), 29 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
Finding dense subgraphs and communities is one of the most well-studied problems in graph
mining. Techniques for identifying dense subgraphs are used in a large number of application
domains, from biology, to web mining, to analysis of social and information networks. Among the
many concepts that have been proposed for discovering dense subgraphs, k-cores are particularly
attractive for the simplicity of their definition and the fact that they can be identified in linear time.

The k-core of a graph is defined as a maximal subgraph in which every vertex is connected to at
least k other vertices within that subgraph. A k-core decomposition of a graph consists of finding
the set of all k-cores. A nice property is that the set of all k-cores forms a nested sequence of
subgraphs, one included in the next. This makes the k-core decomposition of a graph a useful tool
in analyzing a graph by identifying areas of increasing centrality and connectedness, and revealing
the structural organization of the graph. As a result, k-core decomposition has been applied to a
number of different applications, such as modeling of random graphs [8], analysis of the internet
topology [12], social-network analysis [26], bioinformatics [6], analysis of connection matrices

The research described in this paper builds upon and extends the work appearing in WWW 2015 by Tatti and Gionis [30].
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2009 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1556-4681/2017/1-ART1 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

ar
X

iv
:1

90
4.

03
46

7v
2

 [
cs

.D
S]

 1
5

Ja
n

20
20

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 Nikolaj Tatti

of the human brain [19], graph visualization [3], as well as influence analysis [22, 33] and team
formation [9].
The fact that the k-core decomposition of a graph gives a chain of subgraphs where vertex

degrees are higher in the inner cores, suggests that we should expect that the inner cores are, in
certain sense, more dense or more connected than the outer cores. As we will show shortly, this
statement is not true. Furthermore, in this paper we show how to obtain a graph decomposition
for which the statement is true, namely, the inner subgraphs of the decomposition are denser
than the outer ones. To quantify density, we adopt a classic notion used in the densest-subgraph
problem [13, 17], where density is defined as the ratio between the edges and the vertices of a
subgraph. This density definition can be also viewed as the average degree divided by 2.
Our motivating observation is that k-cores are not ordered according to this density definition.

The next example demonstrates that the most inner core is not necessarily the densest subgraph,
and in fact, we can increase the density by either adding or removing vertices.

Example 1.1. Consider the graph G1 shown in Figure 1, consisting of 6 vertices and 9 edges. The
density of the whole graph is 9/6 = 1.5. The graph has three k-cores: a 3-core marked as C1, a 2-core
marked as C2, and a 1-core, corresponding the the whole graph and marked as C3. The core C1 has
density 6/4 = 1.5 (it contains 6 edges and 4 vertices), while the core C2 has density 8/5 = 1.6 (it
contains 8 edges and 5 vertices). In other words, C1 has lower density than C2, despite being an inner
core.

Let us now consider G2 shown in Figure 1. This graph has a single core, namely a 2-core, containing
the whole graph. The density of this core is equal to 11/8 = 1.375. However, a subgraph B1 contains 7
edges and 5 vertices, giving us density 7/5 = 1.4, which is higher than the density of the only core.

a b

c d

e f

C1 C2 C3

(a) G1

a

b c

d e

f д

h

B1

(b) G2

Fig. 1. Toy graphs used in Example 1.1.

This example motivates us to define an alternative, more density-friendly, graph decomposition,
which we call locally-dense decomposition. We are interested in a decomposition such that (i) the
density of the inner subgraphs is higher than the density of the outer subgraphs, (ii) the most
inner subgraph corresponds to the densest subgraph, and (iii) we can compute or approximate the
decomposition efficiently.
We achieve our goals by first defining a locally-dense subgraph, essentially a subgraph whose

density cannot be improved by adding and deleting vertices. We show that these subgraphs are
arranged into a hierarchy such that the density decreases as we go towards outer subgraphs and
that the most inner subgraph is in fact the densest subgraph.
We provide two efficient algorithms to discover this hierarchy. The first algorithm extends the

exact algorithm for discovering the densest subgraph given by Goldberg [17]. This algorithm
is based on solving a minimum cut problem on a certain graph that depends on a parameter α .
Goldberg showed that for a certain value α (which can be found by binary search), the minimum

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:3

cut recovers the densest subgraph. One of our contributions is to shed more light into Goldberg’s
algorithm and show that the same construction allows to discover all locally-dense subgraphs by
varying α .

Our second algorithm extends the linear-time algorithm by Charikar [13] for approximating
dense subgraphs. This algorithm first orders vertices by deleting iteratively a vertex with the
smallest degree, and then selects the densest subgraph respecting the order. We extend this idea by
using the same order, and finding first the densest subgraph respecting the order, and then iteratively
finding the second densest subgraph containing the first subgraph, and so on. We show that this
algorithm can be executed in linear time and it achieves a factor-2 approximation guarantee.

Charikar’s algorithm and the algorithm for discovering a k-core decomposition are very similar:
they both order vertices by deleting vertices with the smallest degree. We show that this connection
is profoundly deep and we demonstrate that a k-core decomposition provides a factor-2 approxi-
mation for locally-dense decomposition. On the other hand, our experimental evaluation shows
that in practice k-cores have different structure than locally-dense subgraphs, and as predicted by
the theory, k-cores are not always well-aligned with graph density.

It is possible that the decomposition results a significant amount of subgraphs. In such a case it
may be useful to constraint the number of the subgraphs. We approach this problem by defining an
optimization criterion for a segmentation of k nested subgraphs. The objective function will be
based on a statistical model. We will show that to optimize this particular objective, we need to (i)
find locally-dense subgraphs, and (ii) reduce the number with a dynamic program. We also show
that if we replace the first step with the greedy algorithm, then the resulting algorithm yields a
factor-2 approximation guarantee.
The remainder of paper is organized as follows. We give preliminary notation in Section 2.

We introduce the locally-dense subgraphs in Section 3, present algorithms for discovering the
subgraphs in Section 4, and describe the connection to k-core decomposition in Section 5. We
introduce the constrained version of the problem in Section 6. We present the related work in
Section 7 and present the experiments in Section 8. Finally, we conclude the paper with discussion
in Section 9.

2 PRELIMINARIES

Graph density. Let G = (V ,E) be a graph with |V | = n vertices and |E | =m edges. Given a subset
of vertices X ⊆ V , it is common to define E(X) = {(x ,y) ∈ E | x ,y ∈ X }, that is, the edges ofG that
have both end-points in X . The density of the vertex set X is then defined to be

d(X) = |E(X)||X | ,

that is, half of the average degree of the subgraph induced by X . The set of vertices X ⊆ V that
maximizes the density measure d(X) is the densest subgraph of G.1
The problem of finding the densest subgraph can be solved in polynomial time. A very elegant

solution that involves a mapping to a series of minimum-cut problems was given by Goldberg [17].
As the fastest algorithm to solve the minimum-cut problem runs in O(mn) time, this approach is not
scalable to very large graphs. On the other hand, there exists a linear-time algorithm that provides a
factor-2 approximation to the densest-subgraph problem [4, 13]. This is a greedy algorithm, which
starts with the input graph, and iteratively removes the vertex with the lowest degree, until left
with an empty graph. Among all subgraphs considered during this vertex-removal process, the
algorithm returns the densest.

1We should point out that density is also often defined as |E(X) |/(|X |2
)
. This is not the case for this paper.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 Nikolaj Tatti

Next we will provide graph-density definitions that relate pairs of vertex sets. Given two non-
overlapping sets of vertices X and Y we first define the cross edges between X and Y as

E×(X ,Y) = {(x ,y) ∈ E | x ∈ X ,y ∈ Y } .

We then define the marginal edges from X with respect to Y . Those are the edges that have one
end-point in X and the other end-point in either X or Y , that is,

E∆(X ,Y) = E(X) ∪ E×(X ,Y) .

The set E∆(X ,Y) represents the additional edges that will be included in the induced subgraph of Y
if we expand Y by adding X .

Assume that X and Y are non-overlapping. Then, we define the outer density of X with respect
to Y as

d(X ,Y) = |E∆(X ,Y)|
|X | .

That is, these are the extra edges, on average, that we bring to Y if we expand it by appending X .
Now that we have defined a special case when X and Y are disjoint, we can now consider a more

general case, that is, when X and Y are overlapping. Here we would be interested in the outer
density of vertices in X that are not already included in Y . Hence, we will expand the definition of
outer density to a more general case by defining

d(X ,Y) = d(X \ Y ,Y) = |E∆(X \ Y ,Y)|
|X \ Y | .

k-cores.We briefly review the basic background regarding k-cores. The concept was introduced
by Seidman [26].
Given a graph G = (V ,E), a set of vertices X ⊆ V is a k-core if every vertex in the subgraph

induced by X has degree at least k , and X is maximal with respect to this property. A k-core of G
can be obtained by recursively removing all the vertices of degree less than k , until all vertices in
the remaining graph have degree at least k .
It is not hard to see that if {Ci } is the set of all distinct k-cores of G then {Ci } forms a nested

chain
∅ = C0 ⊊ C1 ⊊ · · · ⊊ Cℓ = V .

Furthermore, the set of vertices Sk that belong in a k-core but not in a (k − 1)-core is called k-shell.
The k-core decomposition ofG is the process of identifying all k-cores (and all k-shells). Therefore,

the k-core decomposition of a graph identifies progressively the internal cores and decomposes
the graph shell by shell. A linear-time algorithm to obtain the k-core decomposition was given
by Matula and Beck [23]. The algorithm starts by provisionally assigning each vertex v to a core
of index deg(v), an upper bound to the correct core of a vertex. It then repeatedly removes the
vertex with the smallest degree, and updates the core index of the neighbors of the removed vertex.
Note the similarity of this algorithm, with the 2-approximation algorithm for the densest-subgraph
problem [13].

3 LOCALLY-DENSE GRAPH DECOMPOSITION
In this section we present the main concept introduced in this paper, the locally-dense decomposition
of a graph. We also discuss the properties of this decomposition. We start by defining the concept
of a locally-dense subgraph.

Definition 3.1. A set of vertices W is locally dense if there are no X ⊆ W and Y satisfying
Y ∩W = ∅ such that

d(X ,W \ X) ≤ d(Y ,W) .

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:5

In other words, forW to be locally dense there should not be an X “inside”W and a Y “outside”
W so that the density that Y brings toW is larger than the density that X brings.

Due to the notational simplicity, we will often refer to these sets of vertices as subgraphs.
Interestingly, the property of being locally dense induces a nested chain of subgraphs in G.

Proposition 3.2. LetU andW be locally-dense subgraphs. Then eitherU ⊆W orW ⊆ U .

Proof. Assume otherwise. DefineX = U \W andY =W \U . BothX andY should be non-empty
sets. Then either d(X ,U ∩W) ≤ d(Y ,U ∩W) or d(X ,U ∩W) > d(Y ,U ∩W). Assume the former.
This implies

d(X ,U \ X) = d(X ,U ∩W) ≤ d(Y ,U ∩W) ≤ d(Y ,U) ,
which contradicts the fact that U is locally dense. For the first equality we used the fact that
U \ X = U ∩W , while for the last inequality we used the fact that E×(Y ,U ∩W) ≤ E×(Y ,U).

The case d(X ,U ∩W) > d(Y ,U ∩W) is similar. □

The proposition implies that the set of locally-dense subgraphs of a graph forms a nested chain,
in the same way that the set of k-cores does.

Corollary 3.3. A set of locally-dense subgraphs can be arranged into a sequence B0 ⊊ B1 ⊊ · · · ⊊
Bk , where k ≤ |V |. Moreover, d(Bi ,Bi−1) > d(Bi+1,Bi) for 1 ≤ i < k .

The chain of locally-dense subgraphs of a graph G, as specified by Corollary 3.3, defines the
locally-dense decomposition of G.

Example 3.4. The locally-dense composition of G1 given in Figure 1 is ∅ ⊊ C2 ⊊ C3 = V , This
is the k-core decomposition without C1. The locally-dense composition ofG2 given in Figure 1 is
∅ ⊊ B1 ⊊ V . Note that both C2 and B1 are the densest subgraphs in their respective graphs.

We proceed to characterize the locally-dense subgraphs of the decomposition with respect to
their global density in the whole graph G. We want to characterize the global density of subgraph
Bi of the decomposition. Bi cannot be denser than the previous subgraph Bi−1 in the decomposition,
however, we want to measure the density that the additional vertices Si = Bi \ Bi−1 bring. This
density involves edges among vertices of Si and edges from Si to the previous subgraph Bi−1. This
is captured precisely by the concept of outer density d(Bi ,Bi−1) defined in the previous section. As
the following proposition shows the outer density of Bi with respect to Bi−1 is maximized over all
subgraphs that contain Bi−1. In other words, Bi is the densest subgraph we can choose after Bi−1,
given the containment constraint.

Proposition 3.5. Let {Bi } be the chain of locally-dense subgraphs. Then B0 = ∅, Bk = V , and Bi
is the densest subgraph properly containing Bi−1,

Bi = arg max
W ⊋Bi−1

d(W ,Bi−1) .

To prove the proposition we will use the following three lemmas.

Lemma 3.6. Let X ⊆ Y be two sets of vertices with Y , ∅. Assume a third non-empty set Z with
Z ∩ Y = ∅. Then one of the following three cases follows:

• d(Z ,Y) > d(Y ∪ Z ,X) > d(Y ,X), or
• d(Z ,Y) < d(Y ∪ Z ,X) < d(Y ,X), or
• d(Z ,Y) = d(Y ∪ Z ,X) = d(Y ,X).

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 Nikolaj Tatti

Proof. Write α = |Y |
|Y |+ |Z | . We can rewrite d(Y ∪ Z ,X) as

d(Y ∪ Z ,X) = |E∆(Y ∪ Z ,X)|
|Y | + |Z | =

|E∆(Y ,X)| + |E∆(Z ,Y)|
|Y | + |Z | = αd(Y ,X) + (1 − α)d(Z ,Y) .

This shows that either d(Z ,Y) ≥ d(Y ∪ Z ,X) ≥ d(Y ,X) or d(Z ,Y) ≤ d(Y ∪ Z ,X) ≤ d(Y ,X). Since
0 < α < 1 it follows that d(Z ,Y) = d(Y ∪ Z ,X) if and only if d(Y ∪ Z ,X) = d(Y ,X). The three
cases follows. □

LetCi be the sequence defined asCi = arg maxW ⊋Ci−1 d(W), in case of a tie, select a larger graph,
and C0 = ∅.

Lemma 3.7. d
(
Cj ,Cj−1

)
> d(Ci ,Ci−1) for j < i .

Proof. We only need to show that the lemma holds j = i − 1. Assume otherwise: d(Ci ,Ci−1) ≥
d(Ci−1,Ci−2).

Write Z = Ci \Ci−1, Y = Ci−1, and X = Ci−2. Since d(Z ,Y) = d(Ci ,Ci−1), Lemma 3.6 implies that

d(Ci ,Ci−2) = d(Y ∪ Z ,X) ≥ d(Y ,X) = d(Ci−1,Ci−2) ,
violating the optimality of Ci−1. □

Lemma 3.8. If Z ⊆ Cj \Cj−1 and Z , ∅, then d
(
Z ,Cj \ Z

) ≥ d
(
Cj ,Cj−1

)
.

Proof. Assume otherwise: d
(
Z ,Cj \ Z

)
< d

(
Cj ,Cj−1

)
. Write X = Cj−1, Y = Cj \ Z . Lemma 3.6

implies that
d
(
Cj ,Cj−1

)
= d(Z ∪ Y ,X) < d(Y ,X) = d

(
Cj \ Z ,Cj−1

)
,

violating the optimality of Cj . □

Proof of Proposition 3.5. We need to show that Ci = Bi . Fix i and assume inductively that
Cj = Bj for all j < i .

We will first show that Ci is locally dense: we argue that there are no sets X and Y with X ⊆ Ci
and Y ∩Ci = ∅ that can serve as certificates for Ci being non locally-dense.
Fix any X ⊆ Ci . Define X j = X ∩ (Cj \Cj−1) andUj = (Ci \ X) ∪Cj−1 for j ≤ i .
We claim that Cj ⊆ Uj ∪ X j . Let x ∈ Cj . If x ∈ Cj−1, then x ∈ Uj . Assume that x ∈ Cj \Cj−1. If

x ∈ X , then x ∈ X j . If x < X , then x ∈ Cj \ X ⊆ Ci \ X ⊆ Uj . Thus, Cj ⊆ Uj ∪ X j , which in turns
implies that Cj \ X j ⊆ Uj \ X j .

This leads to

d
(
X j ,Uj \ X j

) ≥ d
(
X j ,Cj \ X j

) (Cj \ X j ⊆ Uj \ X j)
≥ d

(
Cj ,Cj−1

)
(Lemma 3.8)

> d(Ci ,Ci−1) . (Lemma 3.7)

This inequality leads to

d(X ,Ci \ X) =
i∑

j=1,X j,∅

��X j
��

|X | d
(
X j ,Uj \ X j

)
≥

i∑
j=1

��X j
��

|X | d(Ci ,Ci−1)

= d(Ci ,Ci−1) .

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:7

Consider also any set Y with Y ∩Ci = ∅. Due to the optimality of Ci and Lemma 3.6 we must
have d(Y ,Ci) < d(Ci ,Ci−1).
We conclude that for any X and Y with X ⊆ U and Y ∩ Ci = ∅ it is d(X ,Ci \ X) > d(Y ,Ci),

which shows that Ci is locally dense.
Now, we can safely assume Ci = Bj for some j. We need to show that j = i . By induction we

know that Ci−1 = Bi−1. This guarantees that j ≥ i . Assume j > i . Since Ci is maximal, we have
d
(
Bj \ Bi ,Bi

)
< d(Bi ,Bi−1).

Since Bi is locally-dense, we have d
(
Bj \ Bi ,Bi

)
< d(Bi ,Bi−1). Lemma 3.6 now implies that

d
(
Bj ,Bi−1

)
< d(Bi ,Bi−1)

which contradicts the optimality of Ci = Bj . Thus i = j. □

As a consequence of the previous proposition we can characterize the first subgraph in the
decomposition.

Corollary 3.9. Let {Bi } be a locally-dense decomposition of a graph G. Then B1 is the densest
subgraph of G.

The above discussion motivates the problem of locally-dense graph decomposition, which is the
focus of this paper.

Problem 1. Given a graph G = (V ,E) find a maximal sequence of locally-dense subgraphs

∅ = B0 ⊊ B1 ⊊ · · · ⊊ Bk = V .

4 DECOMPOSITION ALGORITHMS
In this section we propose two algorithms for the problem of locally-dense graph decomposition
(Problem 1). The first algorithm gives an exact solution, and runs in worst-case time O (n2m

)
, but it

is significantly faster in practice. The second algorithm is a linear-time algorithm that provides a
factor-2 approximation guarantee.
Both algorithms are inspired by corresponding algorithms for the densest-subgraph problem.

The first algorithm by the exact algorithm of Goldberg [17], and the second algorithm by the greedy
linear-time algorithm of Charikar [13].

4.1 Exact algorithm
We start our discussion on the exact algorithm for locally-dense graph decomposition by reviewing
Goldberg’s algorithm [17] for the densest-subgraph problem.
Recall that the densest-subgraph problem asks to find the subset of verticesW that maximizes

d(W) = |E(W)|/|W |. Given a graph G = (V ,E) and a positive number α ≥ 0 define a function
f (α) = max

W ⊆V
{|E(W)| − α |W |} ,

and the maximizer
F(α) = arg max

W ⊆V
{|E(W)| − α |W |} ,

where ties are resolved by picking the largestW . Note that f decreases as α increases, and as α
exceeds a certain value, f becomes 0 by takingW = ∅. Goldberg observed that the densest-subgraph
problem is equivalent to the problem of finding the largest value of α∗ for which the maximizer set
F(α∗) =W ∗ is non empty.2 The densest subgraph is precisely this maximizer setW ∗. Furthermore,
Goldberg showed how to find the vertex setW = F(α), for a given value of α . This is done by
mapping the problem to an instance of the min-cut problem, which can be solved in O(nm) time, in
2This observation is an instance of fractional programming [16].

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 Nikolaj Tatti

Algorithm 1: ExactLD(G,X ,Y)
input :Graph G = (V ,E)

locally-dense subgraphs X and Y with X ⊊ Y
1 α ← d(Y ,X) + n−2;
2 Z ← F(α);
3 if Z , X then
4 output Z ;
5 ExactLD(G,X ,Z);
6 ExactLD(G,Z ,Y);

a recent breakthrough by Orlin [25]. We will present an extension of this transformation in the
next section, where we discuss how to speed-up the algorithm.

Thus, Goldberg’s algorithm uses binary search over α and finds the largest value of α∗ for which
the maximizer setW ∗ is non empty. Each iteration of the binary search involves a call to a min-cut
instance for the current value of α .

Our algorithm for finding the locally-dense decomposition of a graph builds on Goldberg’s algo-
rithm [17]. We show that Goldberg’s construction has the following, rather remarkable, property:
there is a sequence of values α∗ = α1 > · · · > αk , for k ≤ n, which gives all the distinct values of
the function f . Furthermore, the corresponding set of subgraphs {F(α1) , . . . , F(αk)} is exactly the
set of all locally-dense subgraphs of G, and thus the solution to our decomposition problem.

Therefore, our algorithm is a simple extension of Goldberg’s algorithm: instead of searching only
for the optimal value α1 = α∗, we find the whole sequence of αi ’s and the corresponding subgraphs.

Next we prove the claimed properties and discuss the algorithm in more detail.
We first show that the distinct maximizers of the function F correspond to the set of locally-dense

subgraphs.

Proposition 4.1. Let {Bi } be the set of locally-dense subgraphs. Then
Bi = F(α) , for d(Bi+1,Bi) < α ≤ d(Bi ,Bi−1) .

Proof. We first show that U = F(β) is a locally-dense subgraph, for any β . Note that for any
X ⊆ U , we must have |E∆(X ,U \ X)| − β |X | ≥ 0, otherwise we can delete X from U and obtain
a better solution which violates the optimality of U = F(β). This implies that d(X ,U \ X) =
E∆(X ,U \ X) /|X | ≥ β . Similarly, for any Y such that Y ∩U = ∅, we have |E∆(Y ,U)| − β |Y | < 0 or,
equivalently, d(Y ,U) < β . Thus,U is locally-dense.
Fix i and select α such that d(Bi+1,Bi) < α ≤ d(Bi ,Bi−1). Let Bj = F(α). If j > i , then, due to

Corollary 3.3, d
(
Bj ,Bj−1

) ≤ d(Bi+1,Bi) < α which we can rephrase as

c =
��E∆

(
Bj \ Bj−1,Bj−1

) �� − α |Bj \ Bj−1 | < 0 .

If we delete Bj \ Bj−1 fromU , then we improve the quality exactly by −c , that is, we obtain a better
solution which violates the optimality ofU . If j < i , then Corollary 3.3 implies that d

(
Bj+1,Bj

) ≥ α ,
so we can add Bj+1 \ Bj to obtain a better solution. It follows that Bi = F(α). □

Next we need to show that it is possible to search efficiently for the sequence of α ’s that give the
set of locally-dense subgraphs. To that end we will show that if we have obtained two subgraphs
Bx ⊊ By of the decomposition (corresponding to values αx > αy), it is possible to pick a new value
α so that computing F(α) allows us to make progress in the search process: we either find a new

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:9

locally-dense subgraph Bx ⊊ Bz ⊊ By or we establish that no such subgraph exists between Bx
and By , in other words, Bx and By are consecutive subgraphs in our decomposition.

Proposition 4.2. Let {Bi } be the set of locally-dense subgraphs. Let Bx ⊊ By be two subgraphs.
Set α = d

(
By ,Bx

)
+ n−2 and let Bz = F(α). If x + 1 < y, then x < z < y. If x + 1 = y, then z = x .

Lemma 4.3. d(Bk ,Bi) ≥ d
(
Bℓ,Bj

)
, for i ≤ j < k ≤ ℓ. The equality holds if and only if i = k and

j = ℓ.

Proof. Corollary 3.3 states that d(Bo ,Bo−1) is monotonically strictly decreasing as a function of
o. Lemma 3.6, applied recusively, states that

d(Bk ,Bi) ≥ d
(
Bk ,Bj

) ≥ d
(
Bℓ,Bj

)
.

The inequality is strict if and only if i , k or j , ℓ. □

Proof of Proposition 4.2. Lemma 4.3 states that d
(
By ,By−1

) ≤ d
(
By ,Bx

)
< α . Proposition 4.1

now implies that z < y.
Assume that x + 1 < y. Lemma 4.3 implies that d

(
By ,Bx

)
< d(Bx+1,Bx). Write

a =
��E∆

(
By \ Bx ,Bx

) ��, b =
��By �� − |Bx |,

c = |E∆(Bx+1 \ Bx ,Bx)|, and d = |Bx+1 | − |Bx | .

Let us now bound the difference between the densities as

d(Bx+1,Bx) − d
(
By ,Bx

)
=

a

b
− c

d
=

ad − bc
bd

≥ 1
bd
>

1
n2 = α − d

(
By ,Bx

)
.

This implies that α ≤ d(Bx+1,Bx). Proposition 4.1 now implies that z ≥ x + 1 > x .
Assume that x+1 = y. Lemma 4.3 implies that d

(
By ,By−1

)
< d(Bx ,Bx−1), and the same argument

as above shows that α ≤ d(B,Bx−1) and, consequently, z ≥ x . This guarantees that x = z. □

The exact decomposition algorithm uses Proposition 4.2 to guide the search process. Starting by
the two extreme subgraphs of the decomposition, ∅ and V , the algorithm maintains a sequence of
locally-dense subgraphs. Recursively, for any two currently-adjacent subgraphs in the sequence, we
use Proposition 4.2 to check whether the two subgraphs are consecutive or not in the decomposition.
If they are consecutive, the recurrence at that branch of the search is terminated. If they are not, a
new subgraph between the two is discovered and it is added in the decomposition. The algorithm
is named ExactLD and it is illustrated as Algorithm 1.

With the next propositions we prove the correctness of the algorithm and we bound its running
time.

Proposition 4.4. The algorithm ExactLD initiated with input (G, ∅,V) visits all non-trivial
locally-dense subgraphs of G.

Proof. Let {Bi } be the set of locally-dense subgraphs. We will prove the proposition by showing
that for i < j , the algorithm ExactLD(G,Bi ,Bj) visits all monotonic subgraphs that are between Bi
and Bj . Wewill prove this by induction over j−i . The first step j = i+1 is trivial. Assume that j > i+1.
Then Proposition 4.2 implies that Bk = F(α), where i < k < j. The inductive assumption now
guarantees that ExactLD(G,Bi ,Bk) and ExactLD(G,Bk ,Bj) will visit all monotonic subgraphs
between Bi and Bj . □

Proposition 4.5. The worst-case running time of algorithm ExactLD is O (n2m
)
.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 Nikolaj Tatti

Proof. We will show that the algorithm ExactLD, initiated with input (G, ∅,V) makes 2k − 3
calls to the function F , where k is the number of locally-dense subgraphs.
Let ki be the number of calls of F when the input parameter Y = Bi . Out of these ki calls one

call will result in F(α) = X . There are k − 1 such calls, since Y = ∅ is never tested. Each of the
remaining calls will discover a new locally-dense subgraph. Since there are k − 2 new subgraphs to
discover, it follows that 2k − 3 calls to F are needed.

Since a call to F corresponds to a min-cut computation, which has running time O(nm) [25], and
since k ∈ O(n), the claimed running-time bound follows. □

4.2 Speeding up the exact algorithm
Our next step is to speed-up ExactLD. This speed-up does not improve the theoretical bound for
the computational time but, in practice, it improves the performance of the algorithm dramatically.
The speed-up is based on the following observation. We know from Proposition 4.2 that

ExactLD(G,X ,Y) visits only subgraphs Z with the propertyX ⊆ Z ⊆ Y . This gives us immediately
the first speed-up: we can safely ignore any vertex outside Y , that is, ExactLD(G(Y),X ,Y) will
yield the same output.

Our second observation is that any subgraphZ visited by ExactLD(G,X ,Y)must contain vertices
X . However, we cannot simply delete them because we need to take into account the edges between
X and Z . To address this let us consider the following maximizer

F(α ;X) = arg max
X ⊆W ⊆V

{|E(W)| − α |W |} .

We can replace the original F(α) in Algorithm 1 with F(α ;X). To compute F(α ;X) we will use
a straightforward extension of the Goldberg’s algorithm [17] and transform this problem into a
problem of finding a minimum cut.
In order to do this, given a graphG = (V ,E), let us define a weighted graph H that consists of

vertices V \ X and edges E(V \ X) with weights of 1. Add two auxiliary vertices s and t into H and
connect these vertices to every vertex in V \ X . Given a vertex y ∈ V \ X , assign a weight of 2α to
the edge (y, t) and a weight of

w(y) = deg(y;V \ X) + 2deg(y;X)

to the edge (s,y), where deg(y;U) stands for the number of neighbors of y in U . We claim that
solving a minimum cut such that s and t are in different cuts will solve F(α ;X). This cut can be
obtained by constructing a maximum flow from s to t .
To prove this claim let C ⊊ V (H) be a subset of vertices containing s and not containing t . Let

Z = C \ {s} and also letW = V \ (Z ∪X). There are three types of cross-edges from C to V (H) \C :
(i) edges from x ∈ Z to t , (ii) edges from s to x ∈W , and (iii) edges from x ∈ Z to y ∈W . The total
cost of C is then

2|Z |α +
∑
y∈W

w(y) + |E×(Z ,W)| .

We claim that the last two terms of the cost are equal to 2|E | − 2|E(X ∪ Z)|. To see this, consider an
edge e = (x ,y) in E \ E(X ∪ Z). This implies that at least one of the end points, assume it is y, has
to be inW . There are three different cases for x : (i) if x ∈W , then e contributes 2 to the cost: 1 to
w(x) and 1 tow(y), (ii) if x ∈ X , then e contributes 2 tow(y), and (iii) if x ∈ Z , then e contributes 1
tow(y) and 1 to the third term. Thus, we can write the cut as

2|Z |α + 2|E | − 2|E(X ∪ Z)| = 2|E | − 2|X |α − 2(|E(X ∪ Z)| − α |Z ∪ X |) .

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:11

Algorithm 2: GreedyLD(G)
input :Graph G = (V ,E)
output :Collection C of approximate locally-dense subgraphs

1 for i = n, . . . , 1 do
2 wi ← the vertex with the smallest degree;
3 deletewi from V ;
4 C ← {∅};
5 j ← 0;
6 while j < n do
7 i ← arg maxi>j d

({w1, . . . ,wi } ,
{
w1, . . . ,w j

})
;

8 add {w1, . . . ,wi } to C;
9 j ← i;

10 return C;

The first two terms in the right-hand side are constant which implies that that finding the minimum
cut is equivalent of maximizing |E(X ∪ Z)| − α |Z ∪ X |. Consequently, if Z ∗ is the min-cut solution,
then F(α) = X ∪ Z ∗.
Note that the graph H does not have vertices included in X . By combining both speed-ups we

are able to reduce the running time of ExactLD(X ,Y) by considering only the vertices that are in
Y \ X .

4.3 Linear approximation algorithm
As we saw in the last section, the exact algorithm can be significantly accelerated, and indeed, our
experimental evaluation shows that it is possible to run the exact algorithm for a graph of millions
of vertices and edges within 2 minutes. Nevertheless, the worst-case complexity of the algorithm is
cubic, and thus, it is not truly scalable for massive graphs.

Here we present a more lightweight algorithm for performing a locally-dense decomposition of
a graph. The algorithm runs in linear time and offers a factor-2 approximation guarantee. As the
exact algorithm builds on Goldberg’s algorithm for the densest-subgraph problem, the linear-time
algorithm builds on Charikar’s approximation algorithm for the same problem [13]. As already
explained in Section 2, Charikar’s approximation algorithm iteratively removes the vertex with the
lowest degree, until left with an empty graph, and returns the densest graph among all subgraphs
considered during this process.

Our extension to this algorithm, called GreedyLD, is illustrated in Algorithm 2, and it operates in
two phases. The first phase is identical to the one in Charikar’s algorithm: all vertices of the graph
are iteratively removed, in increasing order of their degree in the current graph. In the second phase,
the algorithm proceeds to discover approximate locally-dense subgraphs, in an iterative manner,
from B1 to Bk . The first subgraph B1 is the approximate densest subgraph, the same one returned by
Charikar’s algorithm. In the j-th step of the iteration, having discover subgraphs B1, . . . ,Bj−1 the
algorithm selects the subgraph Bj that maximizes the density d

(
Bj ,Bj−1

)
. To select Bj the algorithm

considers subsets of vertices only in the degree-based order that was produced in the first phase.
Discovering C from the ordered vertices takes O (n2) time, if done naively. However, it is possible

to implement this step in O(n) time. In order to do this, sort vertices in the reverse visit order, and
define in(v) to be the number of edges of v from the earlier neighbors. Then, we can we express

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 Nikolaj Tatti

the density as an average,

d
({w1, . . . ,wi } ,

{
w1, . . . ,w j

})
=

1
i − j

i∑
k=j+1

in(vk) .

Consequently, we can see that recovering C is an instance of the following problem,

Problem 2. Given a sequence y1, . . . ,yn , compute the maximal interval

m(j) = arg max
j≤i≤n

1
i − j + 1

i∑
k=j

yk , for every 1 ≤ j ≤ n .

Luckily, Calders et al. [11] demonstrated that we can use the classic PAVA algorithm by Ayer
et al. [5] to solve this problem for every value of j in total O(n) time.

To quantify the approximation guarantee of GreedyLD, note that the sequence of approximate
locally-dense subgraphs produced by the algorithm are not necessarily aligned with the locally-
dense subgraphs of the optimal decomposition. In other words, to assess the quality of the density
of an approximate locally-dense subgraph Bj produced by GreedyLD, there is no direct counterpart
in the optimal decomposition to compare. To overcome this difficulty we develop a scheme of
“vertex-wise” comparison, where for any 1 ≤ i ≤ n, the density of the smallest approximate locally-
dense subgraph of size at least i is compared with the density of the smallest optimal locally-dense
subgraph of size at least i . This is defined below via the concept of profile.

Definition 4.6. Let B = (∅ = B0 ⊊ B1 ⊊ · · · ⊊ Bk = V) be a nested chain of subgraphs, the
first subgraph being the empty graph and the last subgraph being the full graph. For an integer i ,
1 ≤ i ≤ n define

j = min {x | |Bx | ≥ i}
to be the index of the smallest subgraph in B whose size is at least i . We define a profile function
p : {1, . . . ,n} → R to be

p(i; B) = d
(
Bj ,Bj−1

)
.

Our approximation guarantee is now expressed as a guarantee of the profile function of the
approximate decomposition with respect to the optimal decomposition.

Proposition 4.7. LetB = {Bi } be the set of locally-dense subgraphs. Let C = {Ci } be the subgraphs
obtained by GreedyLD. Then

p(i; C) ≥ p(i; B) /2 .

First, we need the following lemma.

Lemma 4.8. d(v,Bi \ {v}) ≥ d(Bi ,Bi−1), for v ∈ Bi \ Bi−1,

Proof. Assume otherwise. Lemma 3.6 now states that d(Bi \ {v} ,Bi−1) < d(Bi ,Bi−1), which
violates the optimality of Bi as indicated by Proposition 3.5. □

Proof of Proposition 4.7. Sort the set of vertices V according to the reverse visiting order of
GreedyLD and let in(v) be the number of edges of v from earlier neighbors.
Fix k to be an integer, 1 ≤ k ≤ n and let Bi be the smallest subgraph such that |Bi | ≥ k . Let vj

be the last vertex occurring in Bi . We must have in
(
vj
) ≥ d

(
vj ,Bi \

{
vj
})
, and, due to Lemma 4.8,

d
(
vj ,Bi \

{
vj
}) ≥ d(Bi ,Bi−1). In summary, we have

p(k ; B) = d(Bi ,Bi−1) ≤ in
(
vj
)
.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:13

Algorithm 3: Core(G)
input :Graph G = (V ,E)
output :Collection C of k-cores

1 C ← {V };
2 k ← minw deg(w);
3 for i = n, . . . , 1 do
4 wi ← the vertex with the smallest degree;
5 if deg(w) > k then
6 add V to C;
7 k ← deg(w);
8 deletewi from V ;
9 return C;

Let Cx be the smallest subgraph such that |Cx | ≥ k . Let vz be the vertex with the smallest index
that is still inCx \Cx−1 and define A =

{
vz , . . . ,vj

}
. Let д(v) be the degree of v ∈ A right before vj

is removed during GreedyLD. Note that, by definition, in
(
vj
) ≤ д(v), and that∑

v ∈A
д(v) = 2|E(A)| + |E×(A,Cx−1)| ≤ 2|E(A)| + 2|E×(A,Cx−1)| = 2

∑
v ∈A

in(v) .

This leads to

p(k ; C) = d(Cx ,Cx−1) ≥ d(A,Cx−1) =
1
|A|

∑
v ∈A

in(v) ≥ 1
2|A|

∑
д(v)∈A

д(v) ≥ in
(
vj
)

2 ,

where the optimality of Cx implies the first inequality. □

We should point out that p(1,B) is equal to the density of the densest subgraph, while p(1,C)
is equal to the density of the subgraph discovered by the Charikar’s algorithm. Consequently,
Proposition 4.7 provides automatically the 2-approximation guarantee of the Charikar’s algorithm.
We should also point out that p(i,C) can be larger than p(i,B). However, if j is the first index,

for which p(j,C) , p(j,B), then Proposition 3.5 guarantees that p(j,C) < p(j,B).

5 LOCALLY-DENSE SUBGRAPHS AND CORE DECOMPOSITION
Here we study the connection of graph cores, obtained with the well-known k-core decomposition
algorithms, with local-density, studied in this paper. We are able to show that from the theory point-
of-view, graph cores are as good approximation to the optimal locally-dense graph decomposition
as the subgraphs obtained by the GreedyLD algorithm. In particular we show a similar result to
Proposition 4.7, namely, a factor-2 approximation on the profile function of the core decomposition.
However, as we will see in our empirical evaluation, the behavior of the two algorithms,

GreedyLD and k-core decomposition are different in practice, with GreedyLD giving in gen-
eral more dense subgraphs and closer to the ones given by exact locally-dense decomposition.
Before stating and proving the result regarding k-cores, recall that a set of vertices X ⊆ V is

a k-core if every vertex in the subgraph induced by X has degree at least k , and X is maximal
with respect to this property. A linear-time algorithm for obtaining all k-cores is illustrated in
Algorithm 3.

It is a well-known fact that the set of all k-cores of a graph forms a nested chain of subgraphs, in
the same way that locally-dense subgraphs do.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 Nikolaj Tatti

Proposition 5.1. Let {Ci } be the set of all k-cores of a graphG = (V ,E). Then {Ci } forms a nested
chain,

∅ = C0 ⊊ C1 ⊊ · · · ⊊ Cl = V .

Similar to Proposition 4.7, k-cores provide a factor-2 approximation with respect to the locally-
dense subgraphs. The proof is in fact quite similar to that of Proposition 4.7.

Proposition 5.2. Let B = {Bi } be the set of locally-dense subgraphs. Let C = {Ci } be the set of
k-cores. Then

p(i; C) ≥ p(i; B) /2 .

Proof. Sort V according to the reverse visiting order of Core and let in(v) be the number of
edges of v from earlier neighbors.
Fix k to be an integer, 1 ≤ k ≤ n and let Bi be the smallest subgraph such that |Bi | ≥ k . Let vj

be the last vertex occurring in Bi . We must have in
(
vj
) ≥ d

(
vj ,Bi \

{
vj
})
, and, due to Lemma 4.8,

d
(
vj ,Bi \

{
vj
}) ≥ d(Bi ,Bi−1). In summary, we have

p(k ; B) = d(Bi ,Bi−1) ≤ in
(
vj
)
.

Let Cx be the smallest core such that |Cx | ≥ k , and write A = Cx \ Cx−1. Let vs be the vertex
with the smallest index that is still in A, and let vl be the vertex with the largest index that is still
in A, that is, {vs , . . . ,vl } = A.

If j > l , then in
(
vj
)
< in(vl), otherwise Cx is not a core. If j < l , then in

(
vj
) ≤ in(vl), otherwise

væ < Cx , and since j ≥ k , then Cx is not the smallest core with at least k vertices, which is a
contradiction. Hence, in

(
vj
) ≤ in(vl).

Let д(v) be the degree of v ∈ A right before vl is removed during Core. We now have
p(k ; C) = d(Cx ,Cx−1)

=
1
|A|

∑
v ∈A

in(v)

≥ 1
2|A|

∑
v ∈A

д(v)

≥ in(vl)
2

≥ in
(
vj
)

2 ,

which proves the proposition. □

6 SEGMENTATION PROBLEM: CONSTRAINING THE NUMBER OF SUBGRAPHS
It is possible that the decomposition yields a significant amount of subgraphs. In such a case it
may be useful to constraint the number of the subgraphs. In order to do so we need to define an
optimization criterion, which will be our first step. We then demonstrate how to solve the problem
exactly, and how to estimate the solution efficiently.

6.1 Problem definition
Our goal is to discover k nested subgraphs that minimize a certain cost. We base the cost on the
degree of a node, relative to the subgraph. A natural approach here is to model the degree, that
is, our goal is to maximize the log-likelihood

∑
v logp(deg(v ;Ci) ; λi), where Ci is the smallest

subgraph containing v and λi is a parameter of the distribution. Unfortunately, this is problematic
due to the following reason: an edge (x ,y), where x ,y ∈ Ci \Ci−1 increases the degrees of both x

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:15

and y, whereas an edge (x ,y), with x ∈ Ci and y ∈ Ci−1 increases the degrees only for x and not
for y. The distribution we will consider favors small degrees, so this leads to a scenario where the
cost function implicitly favors having a lot of cross-edges. To rectify this problem we introduce the
notion of adjusted degree, where we count each cross-edge twice.

Definition 6.1. Assume a sequence of nested subgraphs C = (∅ = C0 ⊊ C1 ⊊ · · · ⊊ Ck = V). Let
v be a vertex and let Ci be the smallest set containing v . Define the adjusted degree as

adg(v ;C) = |{(v,u) | u ∈ Ci \Ci−1}| + 2|{(v,u) | u ∈ Ci−1}| .
To reduce the clutter, we typically omit C from the notation and write adg(v).
Next we give a formal definition of the problem.

Definition 6.2. Assume that we are given a distributionp(·; r) for the adjusted degree. This distribu-
tion has one parameter r ; small values indicate the likelihood of high degrees. Given a graphG and an
integer k , find a k-segmentation, a sequence of nested subgraphs C = (∅ = C0 ⊊ C1 ⊊ · · · ⊊ Ck = V)
and parameters λ1 ≤ · · · ≤ λk , minimizing the negative log-likelihood

cost(C) = −
∑
v ∈V

logp(adg(v) ; λi),

where i is the index of the smallest Ci containing v .

The reason why we write this problem as a minimization problem is because typically the
log-likelihood is negative, and in order to establish approximation guarantees we need to have the
cost function to be positive.
We are specifically interested in geometric and exponential distributions. Both distributions

can be written as p(x ; λ) = exp(−λx − Z (λ)), where Z (λ) is the normalization constant3. Moreover,
smaller values of λ will result in a distribution favoring larger degrees, that is, inner subgraphs
should be denser.

6.2 Exact algorithm
In this section we demonstrate how to find an optimal segmentation using locally-dense subgraphs.
First we prove the key proposition that states that it is enough to use locally-dense subgraphs when
looking for the optimal segmentation.

Proposition 6.3. Assume that p is either exponential or geometric distribution. Then there is an
optimal segmentation C = (∅ = C0 ⊊ C1 ⊊ · · · ⊊ Ck = V) such that each Ci is locally-dense.

To prove the proposition, we need the following technical lemma.

Lemma 6.4. Let C1, . . . ,Ck be the optimal solution, and assume some of the subgraphs are not
locally-dense. Then there isCi that is not locally-dense along with the violating sets X and Y such that
Y ⊆ Ci+1 and X ∩Ci−1 = ∅.

Proof. Let Ci be a set that is not locally-dense, and let X and Y be the violating sets. Next we
argue that we can safely assume that Y ⊆ Ci+1 and X ∩Ci−1 = ∅. We will split the argument in two
cases: Case (i): Y ⊈ Ci+1 and Case (ii): Y ⊆ Ci+1.

Assume Case (i). If d(Ci+1 \Ci ,Ci) ≥ d(X ,Ci \ X), then redefineY asCi+1\Ci . In such case,X and
Y are still violating the local density but now we can use Case (ii). Assume that d(Ci+1 \Ci ,Ci) <
3The geometric distribution is defined over the integers whereas the exponential distribution is defined over the real domain.
This results in different normalization constants.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 Nikolaj Tatti

d(X ,Ci \ X). Define Y1 = Y ∩Ci+1 and Y2 = Y \ Y1. Note that Y2 , ∅. Assume that d(Y2,Ci ∪ Y1) ≥
d(Y ,Ci). Then

d(Y2,Ci+1) ≥ d(Y2,Ci ∪ Y1) ≥ d(Y ,Ci) ≥ d(X ,Ci \ X) > d(Ci+1 \Ci ,Ci) .

Redefine Y as Y2, X as Ci+1 \Ci , and increase i by 1. The previous arguments show that new Y and
X violate the local density of Ci+1, so we repeat our argument with either Case (i) or Case (ii).

Assume now that d(Y2,Ci ∪ Y1) < d(Y ,Ci). This forces Y1 , ∅. Since d(Y ,Ci) is a weighted
average of d(Y2,Ci ∪ Y1) and d(Y1,Ci), we have d(Y ,Ci) ≤ d(Y1,Ci). Redefine Y as Y1, and apply
Case (ii).
Assume Case (ii). Write X1 = X ∩Ci−1 and X2 = X \ X1. If X1 = ∅, then we are done; assume

otherwise. If d(Ci \Ci−1,Ci−1) ≤ d(Y ,Ci), then we can replace X with Ci \Ci−1 to complete the
argument. Assume that d(Ci \Ci−1,Ci−1) > d(Y ,Ci).

Assume X2 , ∅. If d(X2,Ci \ X2) ≤ d(X ,Ci \ X), then we can replace X with X2 to complete the
argument. Assume d(X2,Ci \ X2) > d(X ,Ci \ X). Note that d(X ,Ci \ X) is a weighted average of
d(X2,Ci \ X2) and d(X1,Ci \ X). This implies that d(X1,Ci \ X) < d(X ,Ci \ X).
On the other hand, if X2 = ∅, then X1 = X , and d(X1,Ci \ X) = d(X ,Ci \ X).
Combining everything gives us

d(X1,Ci−1 \ X1) ≤ d(X1,Ci \ X) ≤ d(X ,Ci \ X) ≤ d(Y ,Ci) < d(Ci \Ci−1,Ci−1) .

Redefine X as X1, Y as Ci \Ci−1 and decrease i by one, and repeat Case (ii).
Note that we do first at most k repetitions of Case (i), and then at most k repetitions of Case (ii).

After a finite numer of repetitions we end up with Ci that satisfies the conditions. This completes
the proof. □

Proof of Proposition 6.3. Both geometric and exponential distributions can be written as
p(x ; λ) = exp(−λx − Z), where Z is the normalization constant (depending on λ).

Write Bi = Ci \Ci−1. We can write the optimization function as

cost(C) =
k∑
i=1

∑
v ∈Bi

Zi + λiadg(v ;Ci) =
k∑
i=1
|Bi |(Zi + 2λid(Bi ,Ci−1)),

where Zi is the normalization constant for the parameter λi .
Assume that Ci is not locally-dense, that is, there is X and Y that violate the local density.

Lemma 6.4 states that we can safely assume that Y ⊆ Ci+1 and X ∩ Ci−1 = ∅. This allows us to
either remove X from Ci or add Y to Ci without changing the other sets.

The cost of the ith and the i + 1th segment is equal to

|Bi |Zi + |Bi+1 |Zi+1 + 2λiE∆(Bi ,Ci−1) + 2λi+1E∆(Bi+1,Ci) .

Let us defineW = Bi ∪ Bi+1. Due to the equality

E∆(I ,A) − E∆(J ,A) = E∆(I \ J ,A ∪ J) , for J ⊂ I , (1)

the cost can be rewritten as

|Bi |(Zi − Zi+1) + |W |Zi+1 + 2λiE∆(Bi ,Ci−1) + 2λi+1(E∆(W ,Ci−1) − E∆(Bi ,Ci−1))
by setting I = W , J = Bi and A = Ci−1. We would like to vary Bi while keeping the remaining
variables constant; let us define

д(U) = |U |(Zi − Zi+1) + |W |Zi+1 + 2λiE∆(U ,Ci−1) + 2λi+1(E∆(W ,Ci−1) − E∆(U ,Ci−1))
= |U |(Zi − Zi+1) − 2(λi+1 − λi)E∆(U ,Ci−1) + |W |Zi+1 + 2λi+1E∆(W ,Ci−1) .

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:17

Note that the last two terms do not depend onU . Due to optimality ofCi , we have д(Bi) ≤ д(Bi ∪Y),
or

0 ≤ д(Bi ∪ Y) − д(Bi)
= |Y |(Zi − Zi+1) − 2(λi+1 − λi)(E∆(Bi ∪ Y ,Ci−1) − E∆(Bi ,Ci−1))
= |Y |(Zi − Zi+1) − 2(λi+1 − λi)E∆(Y ,Ci) ,

where the last equality is due to Eq. 1. We can rewrite the inequality as

Zi − Zi+1 ≥ 2(λi+1 − λi)d(Y ,Ci) ≥ 2(λi+1 − λi)d(X ,Ci \ X) ,

where the last inequality follows from the fact that X and Y violate the local density of Ci , and
since λi+1 ≥ λi . We can rewrite the left-hand side and the right-hand side as

0 ≤ |X |(Zi+1 − Zi) − 2(λi+1 − λi)E∆(X ,Ci \ X) = д(Bi) − д(Bi \ X),

or д(Bi \ X) ≤ д(Bi).
We have shown that if there is Ci that is not locally-dense, we can delete some vertices from Ci

without sacrificing the quality. We continue this until allCi are locally-dense; the process must end
because at each step we reduce the size of some Ci . □

The proposition gives us means to compute the optimal segmentation. First we discover locally-
dense decomposition, say, L. If the number of subgraphs is less or equal than k , we are done.
Otherwise, we group subgraphs until we reach k . The optimal grouping can be done with a
dynamic program. Write o[i, j] to be the cost of partial j-segmentation using only L0, . . . ,Li . We
have the identity

o[i, j] = min
ℓ<i

c[ℓ, i] + o[ℓ, j − 1], where c[ℓ, i] = −
∑

v ∈Li \Lℓ

logp(adg(v) ; λ)

and λ is the optimal parameter for modeling Li \ Lℓ . This identity allows us to compute o[n,k]
recursively with a dynamic program. Note that the monotonicity of the segmentation—that is, the
inner subgraphs should be more dense—is automatically guaranteed. We will refer to this algorithm
as Segment(L,k).
Computing c[ℓ, i] can be done in constant time. To see this, let r = |Li \ Lℓ | be the number of

nodes in Li \ Lℓ . Let also
q =

∑
v ∈∈Li \Lℓ

adg(v) = 2E∆(Li \ Lℓ,Lℓ)

be the sum of all adjusted degrees in Li \ Lℓ . Note r and q can be maintained in constant time. Then
the corresponding costs for the geometric and exponential distributions are

cgeo[i, ℓ] = −r log r

r + q
− q log q

r + q
and cexp[i, ℓ] = r + r log q

r
.

Let us consider computational complexity. Discovering locally-dense decomposition can be done
in O (n2m

)
time, whereas the actual segmentation can be done in O (ℓ2k) ⊆ O (n2k

)
time, where ℓ

is the number of subgraphs in locally-dense decomposition. In practice, ℓ ≪ n so the segmentation
step is relatively cheap. However, if ℓ is large, it is possible to achieve (1 + ϵ) approximation for the
segmentation in linear time [18, 28].

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 Nikolaj Tatti

6.3 Approximation algorithm
As pointed out above, the bottleneck of the exact algorithm is the locally-dense decomposition step.
For large graphs we can significantly speed-up this step by using the faster algorithm GreedyLD.
The next proposition shows that this yields 2-approximation guarantee, if we use the geometric
distribution.

Proposition 6.5. Let p be the geometric distribution. Let C be the optimal segmentation, and let
O = Segment(GreedyLD(G),k) be the optimal segmentation using the sets obtained from GreedyLD.
Then cost(O) ≤ 2cost(C).
Before proving the result, we need to introduce some notation. The geometric distribution can

be written as
− logp(x ; λ) = λx + Z (λ),

where Z (λ) ≥ 0 is the normalization constant.
To prove the result let us enumerate the vertices, that is, V = {vi }ni=1, and assume that this order

respects the optimal segmentation {Ci }, vi ∈ Cj implies that vi−1 ∈ Cj . Let {λi } be the optimal
parameters for {Ci }. We write ηi to be the parameter λj that is used to model adg

(
vi ;Cj

)
, whereCj

is the smallest subgraph containingvi . Write Z =
∑
Z (ηi) to be the sum of normalization constants.

Note that Z ≥ 0. Given a sequence X = x1, . . . ,xn , we define

f (X) = Z +
n∑
i=1

xiηi .

Define A with ai = adg(vi). Note that f (A) = cost(C).
Define an order for vertex indices (oi)ni=1, vertices with high degree first, that is, deg

(
voi

) ≥
deg

(
voi+1

)
. Define a sequence T with ti = deg

(
voi

)
.

Lemma 6.6. f (T) ≤ cost(C) .
Proof. Define T ′ as t ′i = deg(vi). We argue first that f (T ′) ≤ cost(C) = f (A). We can rewrite

f (T ′) = Z +
∑

(vi ,vj)∈E
ηi + ηj and f (A) = Z +

∑
(vi ,vj)∈E

2ηmax(i, j) .

Since ηi ≤ ηi+1, we have f (T ′) ≤ f (A). To prove f (T) ≤ f (T ′), note that
xα + yβ ≤ yα + xβ , for α ≤ β, x ≥ y .

That is, let (qi) be any vertex order, and letX be the degree sequence xi = deg
(
vqi

)
. Then sorting the

vertices with bubble sort from (qi) to (oi) will not increase the sum in f at any step. Consequently,
f (T) ≤ f (X). Since this holds for any order, f (T) ≤ f (T ′), which proves the lemma. □

Let (дi)ni=1 be the reverse order of indices in which GreedyLD removes the vertices, and let si be
the degree of vдi during its removal.

Lemma 6.7. si ≤ ti .

Proof. Consider two sets P =
{
vд1 , . . . ,vдi−1

}
and Q =

{
vo1 , . . . ,voi−1

}
. Assume that P , Q

when treated as sets, that is, there are indices j and ℓ with j < i ≤ ℓ such that дj = oℓ . Let h be
the degree of vдj when deleting vдi . Since GreedyLD deletes the vertex with the smallest degree,
si ≤ h. Consequently, si ≤ h ≤ deg

(
vдj

)
= tℓ ≤ ti .

Assume the opposite case: P = Q . Due to pigeonhole principle, there is ℓ ≥ i such that oℓ = дi .
Thus, si ≤ deg

(
vдi

)
= tℓ ≤ ti . □

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:19

Proof of Proposition 6.5. Define B as bi = adg
(
vдi

)
. Note that adg

(
vдi

) ≤ 2si . Thus,

2f (T) = 2Z + 2
∑
vi ∈V

ηiti ≥ 2Z + 2
∑
vi ∈V

ηisi ≥ 2Z +
∑
vi ∈V

ηibi ≥ Z +
∑
vi ∈V

ηibi = f (B) .

Consider a segmentation G respecting the order дi and having the same sizes as C, |Ci | = |Gi |.
The value f (B) corresponds to the log-likelihood of G and the parameters λ1, . . . , λk , and cost(G)
corresponds to the log-likelihood of G and the optimized parameters. Thus, cost(G) ≤ f (B).

We have shown that there is a segmentation respecting the order chosen by GreedyLD that is at
most 2cost(C). Thus, the optimal segmentation respecting the order is also at most 2cost(C). The
argument in the proof of Proposition 6.3 can be now used to show that we can safely assume that
the segmentation uses sets returned by GreedyLD. □

We can show a similar result for the exponential distribution as long as the original graph does
not have any singletons.

Proposition 6.8. Let p be the exponential distribution. Assume that G has no singletons. Let C be
the optimal segmentation, and let O = Segment(GreedyLD(G),k) be the optimal segmentation using
the sets obtained from GreedyLD. Then cost(O) ≤ 2cost(C).
Proof. Similarly to the geometric distribution, exponential distribution can be written as

− logp(x ; λ) = λx + Z (λ) .
Let Z be as defined in proof of Proposition 6.5, that is, it is total sum of the normalization constants.
To prove the result we only need to show that Z ≥ 0, and we can use the proof of Proposition 6.5.
Note that Z (λ) = − log λ, and the optimal λ for a segmentCi is 1/[2d(Ci \Ci−1,Ci−1)]. This leads to

Z =
k∑
i=1
|Ci | log 2d(Ci \Ci−1,Ci−1) .

To prove the result we will show that d(Ci \Ci−1,Ci−1) ≥ 1/2. It is enough to prove the case i = k
as due to Proposition 6.3 the densities are monotonic.

Let X be any subset of vertices. As there are no singletons, deg(v) ≥ 1. This leads to

d(X ,V \ X) ≥ 1
2|X |

∑
v ∈X

deg(v) ≥ 1
2 .

Set X = Ck \Ck−1 to complete the proof. □

We should point out that these results also work if the graph has weights on the edges. However,
in such a case, Proposition 6.8 requires weights to be larger than or equal to 1.

7 RELATEDWORK
This paper is an extension of previouly published work [30], and in this extension we introduce the
segmentation problem, where we constrain the number of subgraphs. Danisch et al. [15] introduced
an alternative iterative technique for computing locally-dense decomposition that scales well in
practice.
Our paper is related to previous work on discovering dense subgraphs, clique-like structures,

and hierarchical communities. We review some representative work on these topics.
Clique relaxations. The densest possible subgraph is a clique. Unfortunately finding large cliques
is computationally intractable [20]. Additionally, the notion of clique does not provide a robust
definition for practical situations, as a few absent edges may completely destroy the clique. To
address these issues, researchers have come up with relaxed clique definitions. A relaxation, k-plex

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 Nikolaj Tatti

was suggested by Seidman and Foster [27]. In a k-plex a vertex can have at most k − 1 absent
edges. Unfortunately, discovering maximal k-plexes is also an NP-hard problem [7]. An alternative
relaxation for a clique is the one of an n-clique, a maximal subgraph where each vertex is connected
to every vertex with a path, possibly outside of the subgraph, of at most n-length [10]. So, according
to this definition a clique is an 1-clique. As maximal n-cliques may produce sparse graphs, the
concept of n-clans was also proposed by limiting the diameter of the subgraph to be at most n [24].
Since 1-clan corresponds to a maximal clique, discovering n-clans is a computationally intractable
problem.

Quasi-cliques. For the definition of graph density we have chosen to work with d(X), the average
degree of the subgraph induced by X . While this is a popular density definition, there are other
alternatives. One such alternative would be to divide the number of edges present in the subgraph
with the total number of possible edges, that is, divide by

(n
2
)
. This would give us a normalized

density score that is between 0 and 1. Subgraphs that maximize this density definition are called
quasi-cliques, and algorithms for enumerating all quasi-cliques, which can be exponentially many,
have been proposed by Abello et al. [1] and Uno [34]. However, the definition of quasi-cliques is
problematic. Note that a single edge already provides maximal density. Consequently additional
objectives are needed. One natural objective is to maximize the size of a graph with density of
1, however, this makes the problem equivalent to finding a maximal clique which, as mentioned
above, is a computationally-intractable problem [20].

Alternative definitions for density. Other definitions of graph density have been proposed.
Recently, Tsourakakis proposed to measure density by counting triangles, instead of counting
edges [31]. Interestingly enough, it is possible to find an approximate densest subgraph under this
definition. An interesting future direction for our work is to study if the decomposition proposed
in this paper can be extended for the triangle-density definition. Density definitions of the form
д(|E |)−αh(|V |), whereд andh are some increasing functions were studied by Tsourakakis et al. [32],
with specific focus on h(x) = (x

2
)
. It not known whether the densest-subgraph problem according

to this definition is polynomially-time solvable or NP-hard. Finally, a variant for d(X) adopted for
directed graph, along with polynomial-time discovery algorithm, was suggested by Khuller and
Saha [21]. Such a definition could serve for defining decompositions of directed graphs, which is
also left for future work.

Hierarchical communities.A classic technique for modelling hierarchical nature of communities
is with a hierarchical blockmodel [14]. Here we are given a tree, where the leaves are the vertices
of the original graph and each vertex in a tree is given a probablility. We then model an edge (u,v)
with a probability given to the lowest common ancestor of u and v . Tatti and Gionis [29] studied
a restricted version of this problem where the tree yields a nested structure; inner communities
being denser. Unfortunately, no exact polynomial-time algorithm is known for the restricted or
general problem. On other hand, in the segmentation problem we based the model on degrees and
not individual edges. This allowed to us to solve the problem exactly.

8 EXPERIMENTAL EVALUATION
Wewill now present our experimental evaluation. We tested the two proposed algorithms, ExactLD
and GreedyLD, for decomposing a graph into locally-dense subgraphs, and we contrast the resulting
decompositions againstk-cores, obtainedwith the Core algorithm.We compare the three algorithms
in terms of running time, decomposition size (number of subgraphs they provide), and relative
density of the subgraphs they return. We also use the Kendall-τ to measure how similar are the
decompositions in terms of the order they induce on the graph vertices.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:21

8.1 Experimental setup
We performed our evaluation on 13 graphs of different sizes and densities. A short description of
the graphs is given below, and their basic characteristics can be found in Table 1.

• dolphins: an undirected social network of frequent associations between dolphins in a
community living off Doubtful Sound in New Zealand.
• karate: the social network of friendships between members of a karate club at a US university
in the 1970.
• lesmis: co-appearance of characters in Les Miserables novel by Victor Hugo.
• astro: a co-authorship network among arXiv Astro Physics publications.
• enron: an e-mail communication network by Enron employees.
• fb1912: an ego-network obtained from Facebook.
• hepph: a co-authorship network among arXiv High Energy Physics publications.
• dblp: a co-authorship network among computer science researchers.
• gowalla: a friendship network of gowalla.com.
• roadnet: a road network of California, where vertices represent intersections and edges
represent road segments.
• skitter: an internet topology graph, obtained from traceroutes run daily in 2005.
• airports: US flight traffic in January 20164, where vertices represent airports and weighted
edges flight routes. The weights represent the number of flights between two airports.
• trains: UK train routes.5 The vertices represent medium or large exchange points (stations),
while the weighted edges represent scheduled routes. The weights represent the number of
routes in a single week.

The first three datasets were obtained from UCIrvine Network Data Repository,6 and the remain-
ing datasets, except for airports and trains, were obtained from Stanford SNAP Repository.7
We applied Core, GreedyLD, and ExactLD to every dataset. We used a computer equipped

with 3GHz Intel Core i7 and 8GB of RAM.8

8.2 Results
We begin by reporting the running times of the three algorithms for all of our datasets. They are
shown in Table 1. As expected, the linear-time algorithms Core and GreedyLD are both very
fast; the largest graph with 11 million edges and 1.7 million vertices is processed in 21 seconds.
However, we are also able to run the exact decomposition for all the graphs in reasonable time,
despite its running-time complexity of O (n2m

)
. It takes less than 2 minutes for ExactLD to process

the largest graph. There are three reasons that contribute to achieving this performance. First, we
need to compute the minimum cut only O(k) times, where k is the number of locally-dense graphs.
In practice, k is much smaller than the number of vertices. Second, computing minimum cut in
practice is faster than the theoretical O(nm) bound. Third, as described in Section 4, most of the
minimum cuts are computed using subgraphs. While in theory these subgraphs can be as large as
the original graph, in practice these subgraphs are significantly smaller.

4http://www.transtats.bts.gov/
5http://data.atoc.org/
6http://networkdata.ics.uci.edu/index.php
7http://snap.stanford.edu/data
8The implementation is available at
https://version.helsinki.fi/dacs

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

gowalla.com
http://www.transtats.bts.gov/
http://data.atoc.org/
http://networkdata.ics.uci.edu/index.php
http://snap.stanford.edu/data
https://version.helsinki.fi/dacs

1:22 Nikolaj Tatti

Table 1. Basic characteristics of the datasets and the running times of the algorithms.

running time
Name n m Core GreedyLD ExactLD
dolphins 62 159 1ms 1ms 2ms
karate 34 78 1ms 1ms 2ms
lesmis 77 254 2ms 2ms 3ms
astro 18 772 396 160 0.4s 0.4s 2s
enron 36 692 183 831 0.3s 0.3s 2s
fb1912 747 30 025 44ms 44ms 0.2s
hepph 12 008 237 010 0.2s 0.2s 0.9s
dblp 317 080 1 049 866 2s 2s 14s
gowalla 196 591 950 327 2s 2s 9s
roadnet 1 965 206 2 766 607 7s 8s 1m6s
skitter 1 696 415 11 095 298 21s 21s 1m46s
airports 294 3 995 11ms 10ms 27ms
trains 363 1 357 7ms 7ms 23ms

Table 2. Smallest ratio of the profile function, and the profile function of the exact solution as defined in

Equation (2), and the ratio of the most inner discovered subgraph versus the actual densest subgraph.

r (C,B) d(C1) /d(B1)
Name Core GreedyLD Core GreedyLD
dolphins 0.94 0.83 0.98 0.98
karate 0.95 0.99 0.95 0.99
lesmis 0.86 0.87 0.96 1.00
astro 0.85 0.85 0.87 0.92
enron 0.83 0.82 0.94 1.00
fb1912 0.69 0.74 0.91 1.00
hepph 0.74 0.75 1.00 1.00
dblp 0.80 0.86 1.00 1.00
gowalla 0.89 0.92 0.87 1.00
roadnet 0.81 0.87 0.84 0.87
skitter 0.73 0.84 0.84 1.00
airports 0.75 0.90 0.93 1.00
trains 0.60 0.84 0.82 0.96

Next, we compare how well Core and GreedyLD approximate the exact locally-dense decompo-
sition. In order to do that we compute the ratio

r (C,B) = min
i

p(i;C)
p(i;B) , (2)

where B is the locally-dense decomposition and C is obtained by either from GreedyLD or Core.
These ratios are shown in Table 2. We also compare p(1;C) /p(1;B), that is, the ratio of density

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:23

0 20 40 60
0

2

4

index i

p(
i)

lesmis

0 200 400 600
0

50

100

index i

fb1912

0 8 000 16 000
0

20

40

index i

astro

0 5 000 10 000
0

50

100

index i

hepph

Core
GreedyLD
ExactLD

Fig. 2. Profile functions for lesmis, fb1912, astro, and hepph.

Table 3. Sizes of the discovered decompositions and Kendall-τ statistics between the decompositions. E stands

for ExactLD, G for GreedyLD, and C for Core.

Name Core GreedyLD ExactLD c-vs-e g-vs-e c-vs-g
dolphins 4 6 7 0.76 0.77 0.99
karate 4 3 4 0.80 0.95 0.78
lesmis 8 8 9 0.94 0.99 0.95
astro 52 83 435 0.93 0.93 0.99
enron 43 162 357 0.92 0.92 0.99
fb1912 87 55 75 0.95 0.98 0.97
hepph 64 63 283 0.93 0.93 0.98
dblp 47 97 1087 0.88 0.89 0.97
gowalla 51 161 899 0.97 0.96 0.98
roadnet 3 43 2710 0.57 0.80 0.68
skitter 111 266 3501 0.98 0.97 0.99
airports 221 200 219 0.99 0.99 0.996
trains 187 59 156 0.87 0.89 0.98

for the inner most subgraph in C against the density of B1, the densest subgraph. Propositions 4.7
and 5.1 guarantee that there ratios are at least 1/2. In practice, the ratios are larger, typically over
0.8. In most cases, but not always, GreedyLD obtains better ratios than Core. When comparing
the ratio for the inner most subgraph, GreedyLD, by design, will always be better or equal than
Core. We see that only in three datasets Core is able to find the same subgraph as GreedyLD.

Let us now compare the different solutions found by the three algorithms. In Table 3 we report
the sizes of discovered communities and their Kendall-τ statistics, which compares the ordering of
the vertices induced by the decompositions. In particular, the Kendall-τ statistic is computed by
assigning each vertex an index based on which subgraph the vertex belongs. To handle ties, we use
the b-version of Kendall-τ , as given by Agresti [2]. If the statistic is 1, the decompositions are equal.
Our first observation is that typically the locally-dense decomposition algorithms return more

subgraphs than the k-core decomposition. As an extreme example, roadnet contains only 3 k-
cores while GreedyLD finds 43 subgraphs and ExactLD finds 2710. This can be explained by
the fact that the vertices in the graph have low degrees, which results in a very coarse k-core
decomposition. On the other hand, ExactLD and GreedyLD exploit density to discover more

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24 Nikolaj Tatti

fine-grained decompositions. This result is similar to what we presented in the Example 1.1 in the
introduction.

The Kendall-τ statistics are typically close to 1, especially for large datasets suggesting that all 3
methods result in similar decompositions. The statistic between Core and GreedyLD is typically
larger than to the exact solution. This is expected since Core and GreedyLD use the exact same
order for vertices—the only difference between these two methods is how they partition the vertex
order. In addition, decompositions produced by GreedyLD are closer to the exact solution than the
decompositions produced by Core, which is also a natural result.
Let us now compare the solutions in terms of profile functions as defined in Definition 4.6. We

illustrate several prototypical examples of such profile functions in Figure 2. We see that GreedyLD
produces similar profiles as the exact locally-dense decomposition. We also see that Core does not
respect the local density constraint. In fb1912, astro, and hepph there exist k-shells that are denser
than their inner shells, that is, joining these shells would increase the density of the inner shell.
GreedyLD does not have this problem since by definition it will have a monotonically decreasing
profile.
In Figure 3 we present the decompositions obtained by the three algorithms for the lesmis

graph. We see that GreedyLD obtains very similar result to the exact solution, the only difference
is the second subgraph and the third subgraph are merged and the 7th subgraph (in ExactLD)
lends vertices to the 8th last subgraph. While GreedyLD has the same first subgraph as the exact
solution, which is the densest subgraph, Core breaks this subgraph into 3 subgraphs. Interestingly
enough, the protagonist of the book, Jean Valjean, is not placed into the first shell by Core.
Next, we present our result with segmentation. First we computed the cost of optimal segmen-

tation as a function of the number of segments k . Here, we used exponential distribution as the
underlying model. The normalized scores are shown in left plot of Figure 4. The scores behave
similarly for all datasets: they improve quickly at the very beginning (for k = 1, . . . , 10), after which
they settle to a relatively stable value. This value depends on the dataset.
Next, we study how well can approximate the segmentation by using GreedyLD instead of

the exact solution. The results are shown in the right plot of Figure 4. Here, we plot the relative
difference between the approximate solution and the optimal solution. Ideally, the difference should
be 0, and Proposition 6.8 states that it is at most 1. We see that in practice the estimates are really
close to each other: all differences are within 0.006. The approximation is better for smaller k . This
is a natural result as there is less room for disagreement in more coarse segmentations.
Finally, let us look on segmentations obtained from trains and airports data. Our goal is to

discover which locations, that is, train stations or airports, are central. Here, by centrality we mean
that a central location is well-connected with others central locations. To quantify this notion we
use locally-dense subgraphs. Note that the number of locally-dense subgraphs is relatively large
in these graphs; this is due to the fact that the graphs are weighted. We were interested to group
the locations in 4 categories. So to reduce the the size of decomposition, we solved segmentation
problem with k = 4 and the exponential model. The results are shown in Figure 5–7.
The discovered trains segmentation shows that the densest segment occurs in the vicinity of

London, as expected. There is also a strong concentration of the second densest segment around
Manchester/Liverpool area while the stations in Scotland, apart from the capital Edinburgh, are in
outer segments. For airports, we see that the inner segments consists of large well-connected
airports, such as JFK, DFW, ATL, or ORD, while the smaller, regional, airports are assigned to the
outer segments.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:25

7 9

77

9

9 9

9

9
9

9

1

7

9
9

9

3
3

3
3

3
3

3

3

1

1

2
1

7

4

7

6

9
7

4
4

4

4

4

7
9

16

6

7

9

9

91

5

7

5

7

9

51

7 1

1

1 11

1 1

1

1 1

9

1
1

1
1

6

88

1
1

6 8

66

8

8 8

8

8
8

8

1

7

8
8

8

2
2

2
2

2
2

2

2

1

1

2
1

6

3

7

5

8
7

3
3

3

3

3

6
8

15

5

7

8

8

81

4

7

4

7

8

41

6 1

1

1 11

1 1

1

1 1

8

1
1

1
1

5

77

1
1

6 8

66

8

8 8

8

8
8

8

2

7

8
8

8

3
3

3
3

3
3

3

3

3

2

4
2

7

4

7

6

8
7

4
4

4

4

4

7
8

26

6

7

8

8

81

5

7

5

7

8

51

7 1

1

1 11

1 1

1

1 1

8

2
2

2
2

6

77

3
3

ExactLD GreedyLD Core

My
Na

MB
MM

Lo

Gb Ch

Cr

Co
OM

La

Va

Ma

MR

Is

Ge

Th

Li

Fm
Bl

Fv
Da

Ze

Fa

MT

Te

Cs
Ja

Fu

Ba

Pe

Si

Sc

W1

Ju

Ca

Br

Ce

Cc

Po

Bo

EpAn

W2

MI

Gr

Jo

MU
Ga

Gi

Mg

MG

MP

MV

LG
Mr

BT
Mb

En

Cm PrFe

Cu
Bh

Bs

Jl Gn

Ml

Gu
Bb

Cl
Mo

To

C1
C2

Bu
MH

An Anzelma Fe Feuilly MR MmeDeR
BT BaronessT Fm Fameuil MT MmeThenardier
Ba Bamatabois Fu Fauchelevent MU MmeBurgon
Bb Babet Fv Favourite MV MlleVaubois
Bh Bahorel Ga Gavroche Ma Marguerite
Bl Blacheville Gb Geborand Mb Mabeuf
Bo Boulatruelle Ge Gervais Mg Magnon
Br Brevet Gi Gillenormand Ml MotherPlutarch
Bs Bossuet Gn Grantaire Mo Montparnasse
Bu Brujon Gr Gribier Mr Marius
C1 Child1 Gu Gueulemer My Myriel
C2 Child2 Is Isabeau Na Napoleon
Ca Champmathieu Ja Javert OM OldMan
Cc Cochepaille Jl Joly Pe Perpetue
Ce Chenildieu Jo Jondrette Po Pontmercy
Ch Champtercier Ju Judge Pr Prouvaire
Cl Claquesous LG LtGillenormand Sc Scaufflaire
Cm Combeferre La Labarre Si Simplice
Co Count Li Listolier Te Thenardier
Cr Cravatte Lo CountessDeLo Th Tholomyes
Cs Cosette MB MlleBaptistine To Toussaint
Cu Courfeyrac MG MlleGillenormand Va Valjean
Da Dahlia MH MmeHucheloup W1 Woman1
En Enjolras MI MotherInnocent W2 Woman2
Ep Eponine MM MmeMagloire Ze Zephine
Fa Fantine MP MmePontmercy

Fig. 3. Decompositions of the lesmis dataset. The upper three graphs show the decompositions of each

method using numbers and colors. The lower graph shows the abbreviated names; the table provides mapping

from abbreviations to full names.

9 CONCLUSIONS
Inspired by k-core analysis and density-based graph mining, we propose density-friendly graph
decomposition, a new tool for analyzing graphs. Like k-core decomposition, our approach decom-
poses a given graph into a nested sequence of subgraphs These subgraphs have the property that
the inner subgraphs are always denser than the outer ones; additionally the most inner subgraph is
the densest one—properties that the k-cores do not satisfy.
We provide two efficient algorithms to discover such a decomposition. The first algorithm is

based on minimum cut and it extends the exact algorithm of Goldberg for the densest-subgraph
problem. The second algorithm extends a linear-time algorithm by Charikar for approximating the

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:26 Nikolaj Tatti

1 10 20 30 40

0.8

0.85

0.9

0.95

1

enron

skitter

hepph

astro

dblp

gowalla

fb1912

roadnet

number of segments, k

cost(O)
cost({V })

1 10 20 30 40
0

2 × 10−3

4 × 10−3

6 × 10−3 enron

skitter

hepph

astro
dblp

gowalla

fb1912

roadnet

number of segments, k

cost(C)−cost(O)
cost(O)

Fig. 4. Ratios of segmentation costs as a function of k the number of segments. Here, O is the optimal solution,

C is the approximate solution using GreedyLD, and cost({V }) is the cost of having just one segment. The left

figure shows the optimal costs normalized by cost({V }). The right figure shows how well we approximate the

exact solution by using GreedyLD, the lower the better, ideally at 0.

DTW

DFW

SEA

JFK

SJC

ORD

PHX
LAX

DCA

TPA
MCO

DEN

MIA

IAH

LAS

SLC

TUS

BOS

STL

SFO

SNA

OKC

PHLIAD

LGA

RDU
RIC

PDX

ATL

AUS

CLT

ELPSAN

MCI

BNA

ONT

SMF

ORF
TUL

FLLRSW

SAT

BWI

JAX

MSY

GUC

EWR

MSP

COS

MKE

RNO

DSM
PIT

PSP

EGE

PBI

DAY

ABQ

IND

SDFFAT

OMA

CMH

BDL

HDN

MTJ

CLE

JAC

MFE

MEM

BOI

OAK

GEG

BUF
SYR

ALB

PVD

PWM

ROC

ILM

BLI

SWF

LGB

HPN

HOU

SRQ

SAVCHS

BTV

ORH

BUR

CVG

BIS

AVL

FAR

MSN

GRRFNT

MYR
BHM

JAN

BIL

EVV

AVP

PNS DAB

AGS

GSP

LEX

DAL

TRI

ATW

MDW

GPT

PHF

MLB

BZN

GSO

CHA

CAK

MSO

CHO

EYW

ICT

MDT

LFT ECP

ROA

VPS

XNA

SGF

HSV

FSD

TLH

FAY

LIT

MHT

CAE

TYS

MEI
PIB

BRO

LAW

SHVTYR

SPI

BTR

TXK

GRK

JLN

BPT

ACT

LRD

PIA

SAF
FSM

MLU

ERI

AEX

LCH
CLL

TVC

AZO

MOB

CRP

AMA

LNK

HRL

CWA
GRB

LBB

MAF

SBNMLI

HOB

GJT

LAN

CRW

ELM

MGM

OAJ

GNV

BMI

VLD

GTR

BQK

DHN

CID

BGR

ABE

CSG
ABY

SCE

EWN

ISN

TTN

UST

ACY

LBE

IAG

YUM

SBA

DRO

ASE

IDA

DLH

FWA

SMX

RAP

PSC

FCA

FLG

HLN

ACV

MRY

MBS

CPR

PBG

BFL

GFK

SBP

RKS

CMX

SGU

TWF

EKO

GCC

SUN

LAR

GTF

MFR

MMH

EUG RDM

MOT

LSE

EAU

JMS

DVL

MKG

PAH

ABR
APN

ESC

ITH

CIU
RHIIMT

BGM

LWS

MQT

BRD

INL

PIH

PLN

HIBBJI

BTM

CDC

COD

HYS

RDD

ISP

RST
OTH

ROW

Group 4

Group 3

Group 2

Group 1

Fig. 5. airports data, 4-segmentation using exponential distribution and ExactLD based on traffic data.

Segments are indicated by color and shapes. Groups with smaller indices consists of central airports that are

connected to other central airports.

same problem. The second algorithm runs in linear time, and thus, in addition to finding subgraphs
that respect better the density structure of the graph, it is as efficient as the k-core decomposition
algorithm.
In addition to offering a new alternative for decomposing a graph into dense subgraphs, we

significantly extend the analysis, the understanding, and the applicability of previous well-known
graph algorithms: Goldberg’s exact algorithm and Charikar’s approximation algorithm for finding
the densest subgraph, as well as the k-core decomposition algorithm itself.
Finally, we considered a constrained version of the problem, where we restrict the number of

subgraphs. We do this by designing a model based on segmentation. The likelihood of this model is

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:27

ABD

AGV

ALD

ALT

ADV

ANG

APP

AFK

AYR

BAN

BNG

BAA

BNY

BSK

BTH

BDM

BRK

BWK

BCS
BIT

BIW

BHI

BMO

BHM

BSW

BLY

BON

BDQ
BDI

BWT

BTN

BPW

BRI

BMV

BUT

CBG

CDF

CAR

CMN

CRS

CLC

CNM

CTR

CHD

CCH

CLY

CBC

COL

COV
CRV

CRE

DAR

DGT

DBY

DID

DIS

DON

DTW DUL

DMF

DEE

EAG

ERL

EBN

ESL

EDB

ELP

ELY

EVE

EXD

FKG

FRM

FLT

FOD

FTN

GIL

GLC

GLQ

GCR

GRA

HFX

HWH

BKQ

HMD

HND

HGS
HAV

HDB

HYM

HBD

HSB

HFD

HHD

HON

HOO

HOV

HUD

HUL

HUN

HNX

HUY

INK

IPS

KEI

KDG

KMK

KIR

LAN

LMS

LDS

LEI

LEN

LWS

LEY

LIC
LTV

LIT

LIV

LLV

LLJ

LOC

LBO

MCN

MCO

MAN

MCV

MNG

MCH

MNC

MIK

MKC

MIR

MRF

MTH

NCT
NNG

NCL

NWP

NTA

NLW

NTR

NMP

NRW

NOT

NUN

OMS

OXF

PGN

PTH

PBO

PTR

PLY

PLG

PMH

PRE

PUL

RET

RBR

RCD

RFY

RUG

RUN

SLD

SAL

SDL

SHF

SHY

SHR

SKI

SOU

SOA

SLQ

STA

SYB

STG

SPT

SOT

SBJ

SMK

SWA
SWI

TAM

TAU

TFC

TTF

WKF

WMN

WBQ
WAC

WSBWSM

WGN

WGW

WML

WIN

WTM

WVH

WLS

WOF
WOS

WRK

WRH

YVJ

YVP

YRK

MHS

MIA

SGB

FIT

PMS

LPY

EMD

LVC

Group 4

Group 3

Group 2

Group 1

Fig. 6. trains data, 4-segmentation using exponential distribution and ExactLD based on traffic data.

Segments are indicated by color and shapes. To avoid clutter, London area is not annotated; see Figure 7 for

the zoom-in. Groups with smaller indices consists of central stations that are connected to other central

stations.

then optimized, and we show that we can do this either exactly or estimate this efficiently by a
factor of 2.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:28 Nikolaj Tatti

AHT

ACT

ASH

AHV

BAL

BNS

BAK

BKJ

BKL

BIW

BIS

BFR

BMN

BMS

BKO

CMD

CST

CSH
CSB

CTF
CFB

CHX

CHM

CLJ

CRW

CRI

CYP

DMK

DKG

DPD

EAL

ECR

EBR

EFF

EPH

EPS

EUS

FNB

FNN

ZFD

FEL

FPK

FLT

GTW

GER
GPO

GRP

GLD

HKC

HWN

HRW

HHE

HNH

HWY

HHY

HIT

HGR

HOR

HRH

IFD

INT

KPA

KGX

KNG

LHD

LBZ

LET

LEW

LST

LBG

LUT

MDB
MDE

MDW

MYB

MEP

NEM

NCM

NWD

NHD

ORP

OTF

PAD

PDW

PMR

PET

PRR

PUR

PUT

QPW

QRB

RAY

RDG

RDW

RDHREI

RMD

RMF

SRS

SVS

SEV

SNF

SRT

SLO
SRU

SAC
SAA

STP

SNS

SVG

SBP

SRA

STE
SRC

SRH

SUR

SUO

SAY

TBD

TON

TOO

TOM

TUH

TBW

TWI

VIC

VIR

WAT

WAE

WFJ

WGC

WMB

WCY

WHD

WHP

WNW

WRU

WYB

WIJ

WIM

WNC
WNR

WTM

WOK

WKM

LTN

SFAMOG

Fig. 7. London area zoom-in of trains data, 4-segmentation using exponential distribution and ExactLD.

Segments are indicated by color and shapes. For the whole map, see Figure 6.

REFERENCES
[1] James Abello, MauricioG.C. Resende, and Sandra Sudarsky. 2002. Massive Quasi-Clique Detection. In LATIN 2002:

Theoretical Informatics. 598–612.
[2] Alan Agresti. 2010. Analysis of Ordinal Categorical Data (2nd ed.). John Wiley & Sons.
[3] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespignani. 2005. k-core decomposition: a

tool for the visualization of large scale networks. CoRR abs/cs/0504107 (2005).
[4] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. 1996. Greedily finding a dense subgraph.

Scandinavian Workshop on Algorithm Theory (SWAT) (1996), 136–148.
[5] M. Ayer, H. Brunk, G. Ewing, and W. Reid. 1955. An empirical distribution function for sampling with incomplete

information. The Annals of Mathematical Statistics 26, 4 (1955), 641–647.
[6] Gary Bader and Christopher Hogue. 2003. An automated method for finding molecular complexes in large protein

interaction networks. BMC Bioinformatics 4, 1 (2003).

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Density-friendly Graph Decomposition 1:29

[7] Balabhaskar Balasundaram, Sergiy Butenko, and Illya V. Hicks. 2011. Clique Relaxations in Social Network Analysis:
The Maximum k-Plex Problem. Operations Research 59, 1 (2011), 133–142.

[8] Béla Bollobás. 1984. The evolution of random graphs. Trans. Amer. Math. Soc. 286, 1 (1984), 257–274.
[9] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich. 2014. Core decomposition of uncertain

graphs. In Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD). 1316–1325.
[10] Coen Bron and Joep Kerbosch. 1973. Algorithm 457: Finding All Cliques of an Undirected Graph. Commun. ACM 16, 9

(1973), 575–577.
[11] Toon Calders, Nele Dexters, Joris J. M. Gillis, and Bart Goethals. 2014. Mining frequent itemsets in a stream. Information

Systems 39 (2014), 233–255.
[12] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. 2007. A model of Internet topology using

k-shell decomposition. Proceedings of the National Academy of Sciences 104, 27 (2007), 11150–11154.
[13] Moses Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. APPROX (2000).
[14] Aaron Clauset, Cristopher Moore, and Mark EJ Newman. 2008. Hierarchical structure and the prediction of missing

links in networks. Nature 453, 7191 (2008), 98–101.
[15] Maximilien Danisch, T-H Hubert Chan, and Mauro Sozio. 2017. Large Scale Density-friendly Graph Decomposition

via Convex Programming. In Proceedings of the 26th International Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 233–242.

[16] Werner Dinkelbach. 1967. On Nonlinear Fractional Programming. Management Science 13, 7 (1967), 492–498.
[17] Andrew V Goldberg. 1984. Finding a maximum density subgraph. University of California Berkeley Technical report

(1984).
[18] Sudipto Guha, Nick Koudas, and Kyuseok Shim. 2006. Approximation and streaming algorithms for histogram

construction problems. ACM Transactions on Database Systems 31, 1 (2006), 396–438.
[19] Patric Hagmann, Leila Cammoun, Xavier Gigandet, Reto Meuli, Christopher J. Honey, Van J. Wedeen, and Olaf Sporns.

2008. Mapping the Structural Core of Human Cerebral Cortex. PLoS, Biology 6, 7 (2008), 888–893.
[20] Johan Håstad. 1996. Clique is Hard to ApproximateWithinn1−ϵ . In Proceedings of the Annual Symposium on Foundations

of Computer Science (FOCS). 627–636.
[21] Samir Khuller and Barna Saha. 2009. On Finding Dense Subgraphs. In Automata, Languages and Programming, Vol. 5555.

597–608.
[22] Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H. Eugene Stanley, and Hernán A.

Makse. 2010. Identification of influential spreaders in complex networks. Nature physics 6, 11 (2010), 888–893.
[23] David Matula and Leland Beck. 1983. Smallest-last Ordering and Clustering and Graph Coloring Algorithms. J. ACM

30, 3 (1983), 417–427.
[24] Robert J. Mokken. 1979. Cliques, clubs and clans. Quality and Quantity 13, 2 (1979), 161–173.
[25] James Orlin. 2013. Max flows in O(nm) time, or better. In Proceedings of the Annual ACM Symposium on Theory of

Computing (STOC). 765–774.
[26] Stephen Seidman. 1983. Network structure and minimum degree. Social Networks 5, 3 (1983), 269–287.
[27] Stephen B. Seidman and Brian L. Foster. 2010. A graph-theoretic generalization of the clique concept. Journal of

Mathematical sociology 6, 1 (2010), 139–154.
[28] Nikolaj Tatti. 2019. Strongly polynomial efficient approximation scheme for segmentation. Inform. Process. Lett. 142

(2019), 1–8.
[29] Nikolaj Tatti and Aristides Gionis. 2013. Discovering Nested Communities. In Machine Learning and Knowledge

Discovery in Databases—European Conference, ECML PKDD 2013. 32–47.
[30] Nikolaj Tatti and Aristides Gionis. 2015. Density-friendly Graph Decomposition. In Proceedings of the 24th International

Conference on World Wide Web (WWW ’15). 1089–1099. https://doi.org/10.1145/2736277.2741119
[31] Charalampos E. Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In Proceedings of the 24th International

Conference on World Wide Web, WWW 2015. 1122–1132.
[32] Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria A. Tsiarli. 2013. Denser

than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2013. 104–112.

[33] Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Kleinberg. 2012. Structural diversity in social contagion.
Proceedings of the National Academy of Sciences 109, 16 (2012), 5962–5966.

[34] Takeaki Uno. 2010. An Efficient Algorithm for Solving Pseudo Clique Enumeration Problem. Algorithmica 56, 1 (2010),
3–16.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/2736277.2741119

	Abstract
	1 Introduction
	2 Preliminaries
	3 Locally-dense graph decomposition
	4 Decomposition algorithms
	4.1 Exact algorithm
	4.2 Speeding up the exact algorithm
	4.3 Linear approximation algorithm

	5 Locally-dense subgraphs and core decomposition
	6 Segmentation problem: constraining the number of subgraphs
	6.1 Problem definition
	6.2 Exact algorithm
	6.3 Approximation algorithm

	7 Related work
	8 Experimental evaluation
	8.1 Experimental setup
	8.2 Results

	9 Conclusions
	References

