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Given a connected graph G = (V,E), the closeness centrality of a vertex v is defined as n−1∑
w∈V d(v,w)

. This
measure is widely used in the analysis of real-world complex networks, and the problem of selecting the k
most central vertices has been deeply analysed in the last decade. However, this problem is computationally
not easy, especially for large networks: in the first part of the paper, we prove that it is not solvable
in time O(|E|2−ε) on directed graphs, for any constant ε > 0, under reasonable complexity assumptions.
Furthermore, we propose a new algorithm for selecting the kmost central nodes in a graph: we experimentally
show that this algorithm improves significantly both the textbook algorithm, which is based on computing
the distance between all pairs of vertices, and the state of the art. For example, we are able to compute the
top k nodes in few dozens of seconds in real-world networks with millions of nodes and edges. Finally, as a
case study, we compute the 10 most central actors in the IMDB collaboration network, where two actors are
linked if they played together in a movie, and in the Wikipedia citation network, which contains a directed
edge from a page p to a page q if p contains a link to q.

CCS Concepts: rHuman-centered computing → Social network analysis; rMathematics of com-
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1. INTRODUCTION
The problem of identifying the most central nodes in a network is a fundamental question
that has been asked many times in a plethora of research areas, such as biology, computer
science, sociology, and psychology. Because of the importance of this question, dozens of
centrality measures have been introduced in the literature (for a recent survey, see [Boldi
and Vigna 2014]). Among these measures, closeness centrality is certainly one of the oldest
and of the most widely used [Bavelas 1950]: almost all books dealing with network analysis
discuss it (for example, [Newman 2010]), and almost all existing network analysis libraries
implement algorithms to compute it.

In a connected graph, the closeness centrality of a node v is defined as c(v) = n−1∑
w∈V d(v,w) .

The idea behind this definition is that a central node should be very efficient in spreading
information to all other nodes: for this reason, a node is central if the average number of links
needed to reach another node is small. If the graph is not (strongly) connected, researchers
have proposed various ways to extend this definition: for the sake of simplicity, we focus on
Lin’s index, because it coincides with closeness centrality in the connected case and because
it is quite established in the literature [Lin 1976; Wasserman and Faust 1994; Boldi and
Vigna 2013; 2014; Olsen et al. 2014]. However, our algorithms can be adapted very easily to
compute other possible generalizations, such as harmonic centrality [Marchiori and Latora
2000] and exponential centrality [Wang and Tang 2014] (see Sect. 2 for more details).

In order to compute the k vertices with largest closeness, the textbook algorithm computes
c(v) for each v and returns the k largest found values. The main bottleneck of this approach
is the computation of d(v, w) for each pair of vertices v and w (that is, solving the All
Pairs Shortest Paths or APSP problem). This can be done in two ways: either by using fast
matrix multiplication, in time O(n2.373 log n) [Zwick 2002; Williams 2012], or by performing
a breadth-first search (in short, BFS) from each vertex v ∈ V , in time O(mn), where n = |V |
and m = |E|. Usually, the BFS approach is preferred because the other approach contains
big constants hidden in the O notation, and because real-world networks are usually sparse,
that is, m is not much bigger than n. However, also this approach is too time-consuming if
the input graph is very big (with millions of nodes and hundreds of millions of edges).

Our first result proves that, in the worst case, the BFS-based approach cannot be im-
proved, under reasonable complexity assumptions. Indeed, we construct a reduction from
the problem of computing the most central vertex (the case k = 1) to the Orthogonal Vec-
tor problem [Abboud et al. 2016]. This reduction implies that we cannot compute the most
central vertex in O(m2−ε) for any ε > 0, unless the Orthogonal Vector conjecture [Abboud
et al. 2016] is false. Note that the Orthogonal Vector conjecture is implied by the well-
known Strong Exponential Time Hypothesis (SETH, [Impagliazzo et al. 2001]), and hence
all our results hold also if we assume SETH. This hypothesis is heavily used in the context of
polynomial-time reductions, and, informally, it says that the Satisfiability problem is not
solvable in time O((2− ε)N ) for any ε > 0, where N is the number of variables. Our result
still holds if we assume the input graph to be sparse, that is, if we assume that m = O(n)
(the general non-sparse case follows immediately; of course, if the input graph is not sparse,
then the BFS-based approach can be improved using fast matrix multiplication). The proof
is provided in Sect. 3.

Knowing that the BFS-based algorithm cannot be improved in the worst case, in the
second part of the paper we provide a new exact algorithm that performs much better on
real-world networks, making it possible to compute the k most central vertices in networks
with millions of nodes and hundreds of millions of edges. The new approach combines
the BFS-based algorithm with a pruning technique: during the algorithm, we compute
and update upper bounds on the closeness of all the nodes, and we exclude a node v
from the computation as soon as its upper bound is “small enough”, that is, we are sure
that v does not belong to the top k nodes. We propose two different strategies to set the
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initial bounds, and two different strategies to update the bounds during the computation:
this means that our algorithm comes in four different variations. The experimental results
show that different variations perform well on different kinds of networks, and the best
variation of our algorithm drastically outperforms both a probabilistic approach [Okamoto
et al. 2008], and the best exact algorithm available until now [Olsen et al. 2014]. We have
computed for the first time the 10 most central nodes in networks with millions of nodes
and hundreds of millions of edges, and do so in very little time. A significant example is
the wiki-Talk network, which was also used in [Sariyüce et al. 2013], where the authors
propose an algorithm to update closeness centralities after edge additions or deletions. Our
performance is about 30 000 times better than the performance of the textbook algorithm:
if only the most central node is needed, we can recompute it from scratch more than 150
times faster than the geometric average update time in [Sariyüce et al. 2013]. Moreover, our
approach is not only very efficient, but it is also very easy to code, making it a very good
candidate to be implemented in existing graph libraries. We provide an implementation
of it in NetworKit [Staudt et al. 2014] and of one of its variations in Sagemath [Csárdi
and Nepusz 2006]. We sketch the main ideas of the algorithm in Sect. 4, and we provide
all details in Sect. 5-8. We experimentally evaluate the efficiency of the new algorithm in
Sect. 9.

Also, our approach can be easily extended to any centrality measure in the form c(v) =∑
w 6=v f(d(v, w)), where f is a decreasing function. Apart from Lin’s index, almost all the

approaches that try to generalize closeness centrality to disconnected graphs fall under this
category. The most popular among these measures is harmonic centrality [Marchiori and
Latora 2000], defined as h(v) =

∑
w 6=v

1
d(v,w) . For the sake of completeness, in Sect. 9 we

show that our algorithm performs well also for this measure.
In the last part of the paper (Sect. 10, 11), we consider two case studies: the actor collab-

oration network (1 797 446 vertices, 72 880 156 edges) and the Wikipedia citation network
(4 229 697 vertices, 102 165 832 edges). In the actor collaboration network, we analyze the
evolution of the 10 most central vertices, considering snapshots taken every 5 years between
1940 and 2014. The computation was performed in little more than 45 minutes. In the
Wikipedia case study, we consider both the standard citation network, that contains a di-
rected edge (p, q) if p contains a link to q, and the reversed network, that contains a directed
edge (p, q) if q contains a link to p. For most of these graphs, we are able to compute the
10 most central pages in a few minutes, making them available for further analyses.

1.1. Related Work
Closeness is a “traditional” definition of centrality, and consequently it was not “designed
with scalability in mind”, as stated in [Kang et al. 2011]. Also in [Chen et al. 2012], it is said
that closeness centrality can “identify influential nodes”, but it is “incapable to be applied in
large-scale networks due to the computational complexity”. The simplest solution considered
was to define different measures that might be related to closeness centrality [Kang et al.
2011].

Hardness results. A different line of research has tried to develop more efficient algo-
rithms, or lower bounds for the complexity of this problem. In particular, in [Borassi et al.
2015] it is proved that finding the least closeness-central vertex is not subquadratic-time
solvable, unless SETH is false. In the same line, it is proved in [Abboud et al. 2016] that
finding the most central vertex is not solvable in O(m2−ε), assuming the Hitting Set conjec-
ture. This conjecture is very recent, and there are not strong evidences that it holds, apart
from its similarity to the Orthogonal Vector conjecture. Conversely, the Orthogonal Vector
conjecture is more established: it is implied both by the Hitting Set conjecture [Abboud
et al. 2016], and by SETH [Williams 2005], a widely used assumption in the context of
polynomial-time reductions [Impagliazzo et al. 2001; Williams 2005; Williams and Williams
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2010; Pǎtraşcu and Williams 2010; Roditty and Williams 2013; Abboud et al. 2014; Abboud
and Williams 2014; Abboud et al. 2015; Borassi et al. 2015; Abboud et al. 2016; Borassi
2016]. Similar hardness results were also proved in the dense weighted context [Abboud et al.
2015], by linking the complexity of centrality measures to the complexity of computing the
All Pairs Shortest Paths.

Approximation algorithms. In order to deal with the above hardness results, it is
possible to design approximation algorithms: the simplest approach samples the distance
between a node v and l other nodes w, and returns the average of all values d(v, w) found
[Eppstein and Wang 2004]. The time complexity is O(lm), to obtain an approximation c̃(v)

of the centrality of each node v such that P
(∣∣∣ 1
c̃(v) −

1
c(v)

∣∣∣ ≥ εD) ≤ 2e−Ω(lε2), where D is the
diameter of the graph (the diameter is the maximum distance between any two connected
nodes). A more refined approximation algorithm is provided in [Cohen et al. 2014], which
combines the sampling approach with a 3-approximation algorithm: this algorithm has
running time O(lm), and it provides an estimate c̃(v) of the centrality of each node v such
that P

(∣∣∣ 1
c̃(v) −

1
c(v)

∣∣∣ ≥ ε
c(v)

)
≤ 2e−Ω(lε3) (note that, differently from the previous algorithm,

this algorithm provides a guarantee on the relative error). The most recent result by Chechik
et al. [Chechik et al. 2015] allows to approximate closeness centrality with a coefficient of
variation of ε using O(ε−2) single-source shortest path (SSSP) computations. Alternatively,
one can make the probability that the maximum relative error exceeds ε polynomially small
by using O(ε−2 log n) SSSP computations.

However, these approximation algorithms have not been specifically designed for ranking
nodes according to their closeness centrality, and turning them into a trustable top-k al-
gorithm can be a challenging problem. Indeed, observe that, in many real-world cases, we
work with so-called small-world networks, having a low diameter. Hence, in a typical graph,
the average distance between v and a random node w is between 1 and 10. This implies that
most of the n values 1

c(v) lie in this range, and that, in order to obtain a reliable ranking,
we need the error to be close to ε = 10

n , which might be very small in the case of the vast
majority of real-word networks. As an example, performing O(ε−2) SSSPs as in [Chechik
et al. 2015] would then require O(mε2 ) = O(mn2) time in the unweighted case, which is im-
practical for large graphs. In the absence of theoretical results, it is, however, worth noting
that, as a side effect of our new algorithm, we can now quickly certify in practice, even
in the case of very large graphs, how good the ranking produced by these approximation
algorithms is. For example, if we run this algorithm on our dataset with the same number of
iterations as our algorithm, the relative error guaranteed on the centrality of all the nodes
is large (usually, above 50% for k = 100), because the algorithm is not tailored to the top-k
computation. However, with our algorithm one can show that the ranking obtained is very
close to the correct one (usually, more than 95 of the 100 most central nodes according
to [Chechik et al. 2015] are actually in the top-100).1 A theoretical justification of this
behavior is, in our opinion, a very interesting open problem.

Finally, an approximation algorithm was proposed in [Okamoto et al. 2008], where the
sampling technique developed in [Eppstein and Wang 2004] was used to actually compute
the top k vertices: the result is not exact, but it is exact with high probability. The authors
proved that the time complexity of their algorithm is O(mn

2
3 log n), under the rather strong

assumption that closeness centralities are uniformly distributed between 0 and the diameter
D (in the worst case, the time complexity of this algorithm is O(mn)).

1Indeed, we obtained a similar experimental result while dealing with the simpler heuristics consisting in
choosing as the sample a set of highest degree nodes slightly larger than the sample chosen by the algorithm
in [Chechik et al. 2015].
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Heuristics. Other approaches have tried to develop incremental algorithms that might
be more suited to real-world networks. For instance, in [Lim et al. 2011], the authors develop
heuristics to determine the k most central vertices in a varying environment. Furthermore, in
[Sariyüce et al. 2013], the authors consider the problem of updating the closeness centrality
of all nodes after edge insertions or deletions: in some cases, the time needed for the update
could be orders of magnitude smaller than the time needed to recompute all centralities
from scratch.

Finally, some works have tried to exploit properties of real-world networks in order to
find more efficient algorithms. In [Le Merrer et al. 2014], the authors develop a heuristic
to compute the k most central vertices according to different measures. The basic idea is
to identify central nodes according to a simple centrality measure (for instance, degree of
nodes), and then to inspect a small set of central nodes according to this measure, hoping
it contains the top k vertices according to the “complex” measure. The last approach [Olsen
et al. 2014], proposed by Olsen et al., tries to exploit the properties of real-world networks
in order to develop exact algorithms with worst case complexity O(mn), but performing
much better in practice. As far as we know, this is the only exact algorithm that is able
to efficiently compute the k most central vertices in networks with up to 1 million nodes,
before this work.

Software libraries. Despite this huge amount of research, graph libraries still use the
textbook algorithm: among them, Boost Graph Library [Hagberg et al. 2008], igraph [Stein
and Joyner 2005] and NetworkX [Siek et al. 2001]. This is due to the fact that efficient
available exact algorithms for top-k closeness centrality, like [Olsen et al. 2014], are relatively
recent and make use of several other non-trivial routines. We provide an implementation of
the algorithm presented in this paper for Sagemath [Csárdi and Nepusz 2006] and NetworKit
[Staudt et al. 2014].

2. PRELIMINARIES
We assume the reader to be familiar with the basic notions of graph theory (see, for exam-
ple, [Cormen et al. 2009]). Our algorithmic results apply both to undirected and directed
graphs. We will make clear in the respective context where results apply to only one of the
two. For example, the hardness results in Section 3 apply to directed graphs only. All the
notations and definitions used throughout this paper are summarised in Table I (in any
case, all notations are also defined in the text). Here, let us only define precisely the close-
ness centrality of a vertex v. As already said, in a connected graph, the farness of a node
v in a graph G = (V,E) is f(v) =

∑
w∈V d(v,w)

n−1 , and the closeness centrality of v is 1
f(v) . In

the disconnected case, the most natural generalization would be f(v) =
∑
w∈R(v) d(v,w)

r(v)−1 , and
c(v) = 1

f(v) , where R(v) is the set of vertices reachable from v, and r(v) = |R(v)|. However,
this definition does not capture our intuitive notion of centrality: indeed, if v has only one
neighbor w at distance 1, and w has out-degree 0, then v becomes very central according to
this measure, even if v is intuitively peripheral. For this reason, we consider the following
generalization, which is quite established in the literature [Lin 1976; Wasserman and Faust
1994; Boldi and Vigna 2013; 2014; Olsen et al. 2014]:

f(v) =

∑
w∈R(v) d(v, w)

r(v)− 1
· n− 1

r(v)− 1
c(v) =

1

f(v)
(1)

If a vertex v has (out)degree 0, the previous fraction becomes 0
0 : in this case, the closeness

of v is set to 0.
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Table I. Notations used throughout the paper.

Symbol Definition
Graphs

G = (V,E) Graph with node/vertex set V and edge/arc set E
n, m |V |, |E|
G = (V, E, w) Weighted directed acyclic graph of strongly connected compo-

nents (see Sect. 8.4)
deg(v) Degree of a node in an undirected graph
outdeg(v) Out-degree of a node in a directed graph
d(v, w) Number of edges in a shortest path from v to w

Reachability set function
R(v) Set of nodes reachable from v (by definition, v ∈ R(v))
r(v) |R(v)|
α(v) Lower bound on r(v), that is, α(v) ≤ r(v) (see Sect. 8.4)
ω(v) Upper bound on r(v), that is, r(v) ≤ ω(v) (see Sect. 8.4)

Neighborhood functions
Γd(v) Set of nodes at distance d from v: {w ∈ V : d(v, w) = d}
Γ(v) Set of neighbors of v, that is Γ1(v)
γd(v) Number of nodes at distance d from v, that is, |Γd(v)|
γ̃d(v) Upper bound on γd(v) computed using the neighborhood-

based lower bound (see Sect. 5)
γ̃d+1(v) Upper bound on γd+1(v), defined as

∑
u∈Γd(v) deg(u) − 1 if

the graph is undirected,
∑
u∈Γd(v) outdeg(u) otherwise

Nd(v) Set of nodes at distance at most d from v, that is, {w ∈ V :
d(v, w) ≤ d}

nd(v) Number of nodes at distance at most d from v, that is, |Nd(v)|
Closeness functions

c(v) Closeness of node v, that is, (r(v)−1)2

(n−1)
∑
w∈R(v) d(v,w)

Distance sum functions
S(v) Total distance of node v, that is

∑
w∈R(v) d(v, w)

SNB(v, r) Lower bound on S(v) if r(v) = r, used in the computeBoundsNB
function (see Prop. 5.1)

SCUT
d (v, r) Lower bound on S(v) if r(v) = r, used in the

updateBoundsBFSCut function (see Lemma 6.1)
SLB
s (v, r) Lower bound on S(v) if r(v) = r, used in the updateBoundsLB

function (see Eq. 4, 5)
Farness functions

f(v) Farness of node v, that is, (n−1)S(v)

(|R(v)|−1)2

L(v, r) Generic lower bound on f(v), if r(v) = r

LNB(v, r) Lower bound on f(v), if r(v) = r, defined as (n− 1)
SNB(v,r)

(r−1)2

LCUT
d (v, r) Lower bound on f(v), if r(v) = r, defined as (n−1)

SCUT
d (v,r)

(r−1)2

LLB
s (v, r) Lower bound on f(v), if r(v) = r, defined as (n− 1)

SLB
s (v,r)

(r−1)2

Another possibility is to consider a slightly different definition:

c(v) =
∑
w∈V

f(d(v, w)),

for some decreasing function f .2 One of the most common choices of f is f(d) = 1
d : this

way, we obtain the harmonic centrality [Marchiori and Latora 2000].

2Usually, it is also assumed without loss of generality that f(+∞) = 0, that is, we consider only reachable
vertices: if this is not the case, it is enough to use a new function defined by g(d) = f(d)− f(+∞).
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In this paper, we focus on Lin’s index, because it is quite established in the literature,
because the previously best exact top-k closeness centrality algorithm uses this defini-
tion [Olsen et al. 2014], and because, when restricted to the connected case, this definition
coincides with closeness centrality (from now on, in a disconnected context, we use closeness
centrality to indicate Lin’s index). However, all our algorithms can be easily adapted to any
centrality measure of the form c(v) =

∑
w∈V f(d(v, w)): indeed, in Sect. 9, we show that

our algorithm performs very well also with harmonic centrality.

3. COMPLEXITY OF COMPUTING THE MOST CENTRAL VERTEX
In this section, we show that, even in the computation of the most central vertex, the
textbook algorithm is almost optimal in the worst case, assuming the Orthogonal Vector
conjecture [Williams 2005; Abboud et al. 2016], or the well-known Strong Exponential Time
Hypothesis (SETH) [Impagliazzo et al. 2001]. The Orthogonal Vector conjecture says that,
given N vectors in {0, 1}d, where d = O(logkN) for some k, it is impossible to decide if
there are two orthogonal vectors in O(N2−ε), for any ε > 0 not depending on k. The SETH
says that the k-Satisfiablility problem cannot be solved in time O((2 − ε)N ), where N
is the number of variables and ε is a positive constant not depending on k. Our reduction
is summarized by the following theorem.

Theorem 3.1. On directed graphs, in the worst case, an algorithm computing the most
closeness central vertex in time O(m2−ε) for some ε > 0 would falsify the Orthogonal
Vector conjecture. The same result holds even if we restrict the input to sparse graphs,
where m = O(n).

It is worth mentioning that this result still holds if we restrict our analysis to graphs
with small diameter. Indeed, the diameter of the graph obtained from the reduction is
9. Moreover, it is well known that the Orthogonal Vector conjecture is implied by SETH
[Williams 2005; Borassi et al. 2015; Abboud et al. 2016]: consequently, the following corollary
holds.

Corollary 3.2. On directed graphs, in the worst case, an algorithm computing the
most closeness central vertex in time O(m2−ε) for some ε > 0 would falsify SETH. The
same result holds even if we restrict the input to sparse graphs, where m = O(n).

The remainder of this section is devoted to the proof of Theorem 3.1. We construct
a reduction from the l-TwoDisjointSet problem, that is, finding two disjoint sets in a
collection C of subsets of a given ground set X, where |X| = O(logl(|C|)). For example, X
could be the set of numbers between 0 and h, and C could be the collection of subsets of even
numbers between 0 and h (in this case, the answer is True, since there are two disjoint sets
in the collection). It is simple to prove that this problem is equivalent to the Orthogonal
Vector problem, by replacing a set X with its characteristic vector in {0, 1}|X| [Borassi
et al. 2015]: consequently, an algorithm solving this problem in O(|C|2−ε) would falsify
the Orthogonal Vector conjecture. For a direct reduction between the l-TwoDisjointSet
problem and SETH, we refer to [Williams 2005] (where the TwoDisjointSet problem is
named CooperativeSubsetQuery).

Given an instance (X, C) of the l-TwoDisjointSet problem, and given a set C ∈ C, let
RC be |{C ′ ∈ C : C ∩C ′ 6= ∅}|. The TwoDisjointSet problem has no solutions if and only
if RC = |C| for all C ∈ C; indeed, RC = |C| means that C intersects all the sets in C. We
construct a directed graph G = (V,E), where |V |, |E| = O(|C||X|) = O(|C| logl |C|), such
that:

(1) V contains a set of vertices C0 representing the sets in C (from now on, if C ∈ C, we
denote by C0 the corresponding vertex in C0);
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Fig. 1. Reducing the TwoDisjointSet problem to the problem of finding the most closeness central vertex.

(2) the centrality of C0 is a function c(RC), depending only on RC (that is, if RC = RC′
then c(C0) = c(C ′0));

(3) the function c(RC) is decreasing with respect to RC ;
(4) the most central vertex is in C0.

In such a graph, the vertex with maximum closeness corresponds to the set S minimizing
RS : indeed, it is in C0 by Condition 4, and it minimizes RS by Condition 2-3. Hence,
assuming we can find S0 in time O(n2−ε), we can easily check if the closeness of S0 is c(|C|):
if it is not, it means that the corresponding TwoDisjointSet instance has a solution
of the form (S, S1) because RS 6= C. Otherwise, for each C, RC ≥ RS = |C|, because
c(C0) ≤ c(S0) = c(|C|), and c is decreasing with respect to RC . This means that RC = |C| for
each C, and there are no two disjoints sets. This way, we can solve the l-TwoDisjointSet
problem in O(n2−ε) = O((|C| logl |C|)2−ε) = O(|C|2− ε2 ), against the Orthogonal Vector
conjecture, and SETH. If we also want the graph to be sparse, we can add O(|C| logl |C|)
nodes with no outgoing edge.

To construct this graph (see Figure 1), we start by adding to V the copy C0 of C, another
copy C1 of C and a copy X1 of X. These vertices are connected as follows: for each element
x ∈ X and set C ∈ C, we add an edge (C0, x) and (x,C1), where C0 is the copy of C in C0,
and C1 is the copy of C in C1. Moreover, we add a copy X2 of X and we connect all pairs
(C0, x) with C ∈ C, x ∈ X and x /∈ C. This way, the closeness centrality of a vertex C0 ∈ C0
is (|X|+RC)2

(n−1)(|X|+2RC) (which only depends on RC). To enforce Conditions 3-4, we add a path of
length p leaving each vertex in C1, and q vertices linked to each vertex in C0, each of which
has out-degree |C|: we show that by setting p = 7 and q = 36, all required conditions are
satisfied.

More formally, we have constructed the following graph G = (V,E):

— V = Z ∪ Y ∪ C0 ∪X1 ∪X2 ∪ C1 ∪ · · · ∪ Cp, where Z is a set of cardinality q|C|, Y a set of
cardinality q, the Cis are copies of C and the Xis are copies of X;

— each vertex in Y has |C| neighbors in Z, and these neighbors are disjoint;
— for each x ∈ C, there are edges from C0 ∈ C0 to x ∈ X1, and from x ∈ X1 to C1 ∈ C1;
— for each x /∈ C, there is an edge from C0 ∈ C0 to x ∈ X2;
— each Ci ∈ Ci, 1 ≤ i ≤ p, is connected to the same set Ci+1 ∈ Ci+1;
— no other edge is present in the graph.

Note that the number of edges in this graph is O(|C||X|) = O(|C| logl(|C|)), because |X| <
logl(|C|),
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Lemma 3.3. Assuming |C| > 1, all vertices outside C0 have closeness centrality at most
2|C|
n−1 , where n is the number of vertices.

Proof. If a vertex is in Z,X2, or Cp, its closeness centrality is not defined, because it
has out-degree 0.

A vertex y ∈ Y reaches |C| vertices in 1 step, and hence its closeness centrality is |C|2
|C|(n−1) =

|C|
n−1 .
A vertex in Ci reaches p− i other vertices, and their distance is 1, . . . , p− i: consequently,

its closeness centrality is (p−i)2
(p−i)(p−i+1)

2 (n−1)
= 2(p−i)

(n−1)(p−i+1) ≤
2

n−1 .
Finally, for a vertex x ∈ X1 contained in Nx sets, for each 1 ≤ i ≤ p, x reaches Nx vertices

in Ci, and these vertices are at distance i. Hence, the closeness of x is (pNx)2

p(p+1)
2 Nx(n−1)

=

2pNx
(n−1)(p+1) ≤

2Nx
n−1 ≤

2|C|
n−1 . This concludes the proof.

Let us now compute the closeness centrality of a vertex C ∈ C0. The reachable vertices
are:

— all q vertices in Y , at distance 1;
— all |C|q vertices in Z, at distance 2;
— |X| vertices in X1 or X2, at distance 1;
— RC vertices in Ci for each i, at distance i+ 1 (the sum of the distances of these vertices

is
∑p
i=1 i+ 1 = −1 +

∑p+1
i=1 i = (p+2)(p+1)

2 − 1).

Hence, the closeness centrality of C is:

c(RC) =
(q(1 + |C|) + |X|+ pRC)2(

q(1 + 2|C|) + |X|+
(

(p+1)(p+2)
2 − 1

)
RC

)
(n− 1)

=
(q(1 + |C|) + |X|+ pRC)2

(q(1 + 2|C|) + |X|+ g(p)RC) (n− 1)

where g(p) = (p+1)(p+2)
2 − 1. We want to choose p and q verifying:

a. the closeness of vertices in C0 is bigger than 2|C|
n−1 (and hence bigger than the closeness of

all other vertices);
b. c(RC) is a decreasing function of RC for 0 ≤ RC ≤ |C|.

In order to satisfy Condition b., the derivative c′(RC) of c is (q(1 + |C|) + |X| +
pRC)

[pg(p)Rc+2p(q(1+2|C|)+|X|)−g(p)(q(1+|C|)+|X|)]
(q(1+2|C|)+|X|+g(p)RC)2(n−1)

.

This latter value is negative if and only if pg(p)Rc + 2p (q(1 + 2|C|) + |X|) − g(p)(q(1 +
|C|) + |X|) < 0. Assuming g(p) ≥ 5p and RC < |C|, this value is:

pg(p)RC + 2p (q(1 + 2|C|) + |X|)− g(p)(q(1 + |C|) + |X|)
≤ pg(p)|C|+ 2pq + 4pq|C|+ 2p|X| − g(p)(q − |C| − |X|)
≤ pg(p)|C|+ 4pq|C| − g(p)q|C|
≤ pg(p)|C| − pq|C|.

Assuming q > g(p), we conclude that c′(RC) < 0 for 0 ≤ RC ≤ |C|, and we verify Condi-
tion b.. In order to verify Condition a., we want c(RC) ≥ 2|C|

n+1 (since c(RC) is decreasing,
it is enough c(|C|) ≥ 2|C|

n+1 ). Under the assumptions q > g(p), 0 < |X| ≤ |C| (which trivially
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holds for |C| big enough, because |X| ≤ logp |C|),

c(|C|) =
(q(1 + |C|) + |X|+ pRC)2

(q(1 + 2|C|) + |X|+ g(p)RC) (n− 1)

≥ q2|C|2

(q(3|C|) + |C|+ |C|)(n− 1)

≥ q|C|
5(n− 1)

>
2|C|
n− 1

if q > 10.
To fulfill all required conditions, it is enough to choose p = 7, g(p) = 35, and q = 36.

4. OVERVIEW OF THE ALGORITHM
In this section, we describe our new approach for computing the k nodes with maximum
closeness (equivalently, the k nodes with minimum farness, where the farness f(v) of a
vertex v is 1

c(v) =
(n−1)

∑
w∈R(v) d(v,w)

(r(v)−1)2 , as in Table I). If we have more than one node with
the same score, we output all nodes having a centrality bigger than or equal to the centrality
of the k-th node.

In the previous section, we have shown that the trivial algorithm cannot be improved in
the worst case: here, we describe an algorithm that is much more efficient when tested on
real-world graphs. The basic idea is to keep track of a lower bound on the farness of each
node, and to skip the analysis of a vertex v if this lower bound implies that v is not in the
top k.

More formally, let us assume that we know the farness of some vertices v1, . . . , vl, and
a lower bound L(w) on the farness of any other vertex w. Furthermore, assume that there
are k vertices among v1, . . . , vl verifying f(vi) > L(w) ∀w ∈ V − {v1, . . . , vl}, and hence
f(w) ≤ L(w) < f(w) ∀w ∈ V −{v1, . . . , vl}. Then, we can safely skip the exact computation
of f(w) for all remaining nodes w, because the k vertices with smallest farness are among
v1, . . . , vl.

This idea is implemented in Algorithm 1: we use a list Top containing all “analysed”
vertices v1, . . . , vl in increasing order of farness, and a priority queue Q containing all vertices
“not analysed, yet”, in increasing order of lower bound L (this way, the head of Q always
has the smallest value of L among all vertices in Q). At the beginning, using the function
computeBounds(), we compute a first bound L(v) for each vertex v, and we fill the queue Q
according to this bound. Then, at each step, we extract the first element v of Q: if L(v) is
smaller than the k-th biggest farness computed until now (that is, the farness of the k-th
vertex in variable Top), we can safely stop, because for each x ∈ Q, f(x) ≤ L(x) ≤ L(v) <
f(Top[k]), and x is not in the top k. Otherwise, we run the function updateBounds(v),
which performs a BFS from v, returns the farness of v, and improves the bounds L of all
other vertices. Finally, we insert v into Top in the right position, and we update Q if the
lower bounds have changed.

The crucial point of the algorithm is the definition of the lower bounds, that is, the
definition of the functions computeBounds and updateBounds. We propose two alternative
strategies for each of these these two functions: in both cases, one strategy is conservative,
that is, it tries to perform as few operations as possible, while the other strategy is aggressive,
that is, it needs many operations, but at the same time it improves many lower bounds.

Let us analyze the possible choices of the function computeBounds. The conservative
strategy computeBoundsDeg needs time O(n): it simply sets L(v) = 0 for each v, and it fills
Q by inserting nodes in decreasing order of degree (the idea is that vertices with high degree
have small farness, and they should be analysed as early as possible, so that the values in

9



ALGORITHM 1: Pseudocode of our algorithm for top-k closeness centralities.
Input : A graph G = (V,E)
Output: Top k nodes with highest closeness and their closeness values c(v)

1 global L,Q← computeBounds(G);
2 global Top← [ ];
3 global Farn;
4 for v ∈ V do Farn[v] = +∞;
5 while Q is not empty do
6 v ← Q.extractMin();
7 if |Top| ≥ k and L[v] > Top[k] then return Top;
8 Farn[v]← updateBounds(v); // This function might also modify L
9 add v to Top, and sort Top according to Farn;

10 update Q according to the new bounds;

Top are correct as soon as possible). Note that the vertices can be sorted in time O(n) using
counting sort.

The aggressive strategy computeBoundsNB needs time O(mD), where D is the diameter
of the graph: it computes the neighborhood-based lower bound LNB(v) for each vertex v (we
will explain shortly afterwards how it works), it sets L(v) = LNB(v), and it fills Q by adding
vertices in decreasing order of L. The idea behind the neighborhood-based lower bound is
to count the number of paths of length l starting from a given vertex v, which is also an
upper bound Ul on the number of vertices at distance l from v. From Ul, it is possible to
define a lower bound on

∑
x∈V d(v, x) by “summing Ul times the distance l”, until we have

summed n distances: this bound yields the desired lower bound on the farness of v. The
detailed explanation of this function is provided in Sect. 5.

For the function updateBounds(w), the conservative strategy updateBoundsBFSCut(w)
does not improve L, and it cuts the BFS as soon as it is sure that the farness of w is smaller
than the k-th biggest farness found until now, that is, Farn[Top[k]]. If the BFS is cut, the
function returns +∞, otherwise, at the end of the BFS we have computed the farness of v,
and we can return it. The running time of this procedure is O(m) in the worst case, but
it can be much better in practice. It remains to define how the procedure can be sure that
the farness of v is at least x: to this purpose, during the BFS, we update a lower bound on
the farness of v. The idea behind this bound is that, if we have already visited all nodes up
to distance d, we can upper bound the closeness centrality of v by setting distance d+ 1 to
a number of vertices equal to the number of edges “leaving” level d, and distance d + 2 to
all the remaining vertices. The details of this procedure are provided in Sect. 6.

The aggressive strategy updateBoundsLB(v) performs a complete BFS from v, and it
bounds the farness of each node w using the level-based lower bound. The running time
is O(m) for the BFS, and O(n) to compute the bounds. The idea behind the level-
based lower bound is that d(w, x) ≥ |d(v, w) − d(v, x)|, and consequently

∑
x∈V d(w, x) ≥∑

x∈V |d(v, w)−d(v, x)|. The latter sum can be computed in time O(n) for each w, because
it depends only on the level d of w in the BFS tree, and because it is possible to compute
in O(1) the sum for a vertex at level d+ 1, if we know the sum for a vertex at level d. The
details are provided in Sect. 7.

Finally, in order to transform these lower bounds on
∑
x∈V d(v, x) into bounds on f(v),

we need to know the number of vertices reachable from a given vertex v. In Sect. 5, 6,
7, we assume that these values are known: this assumption is true in undirected graphs,
where we can compute the number of reachable vertices in linear time at the beginning of
the algorithm, and in strongly connected directed graphs, where the number of reachable
vertices is n. The only remaining case is when the graph is directed and not strongly
connected: in this case, we need some additional machinery, which are presented in Sect. 8.
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5. NEIGHBORHOOD-BASED LOWER BOUND
In this section, we propose a lower bound SNB(v, r(v)) on the total sum S(v) =∑
w∈R(v) d(v, w) of an undirected or strongly-connected graph. If we know the number

r(v) of vertices reachable from v, this bound translates into a lower bound on the farness
of v, simply multiplying by (n − 1)/(r(v) − 1)2. The basic idea is to find an upper bound
γ̃i(v) on the number of nodes γi(v) at distance i from v. Then, intuitively, if we assume that
the number of nodes at distance i is greater than its actual value and “stop counting” when
we have r(v) nodes, we get something that is smaller than the actual total distance. This
is because we are assuming that the distances of some nodes are smaller than their actual
values. This argument is formalized in Prop. 5.1.

Proposition 5.1. If γ̃i(v) is an upper bound on γi(v), for i =

0, ...,diam(G) and ecc(v) := maxw∈r(v) d(v, w), then SNB(v, r(v)) :=
∑ecc(v)
k=1 k ·

min
{
γ̃k(v), max

{
r(v)−

∑k−1
i=0 γ̃i(v), 0

}}
is a lower bound on S(v).

Proof. First, we notice that S(v) =
∑ecc(v)
k=0 k · γk(v) and r(v) =

∑ecc(v)
k=0 γk(v).

Let us assume that γ̃0(v) < r(v). In fact, if γ̃0(v) ≥ r(v), the statement is trivially
satisfied. Then, there must be a number ecc′ > 0 such that for k < ecc′ the quantity
min

{
γ̃k(v), max

{
r(v)−

∑k−1
i=0 γ̃i(v), 0

}}
is equal to γ̃k(v), for k = ecc′, the quantity is

equal to α := r(v)−
∑ecc′−1
k=0 γ̃k(v) > 0 and, for k > ecc′, it is equal to 0. Therefore we can

write SNB(v, r(v)) as
∑ecc′−1
k=1 k · γ̃k(v) + ecc′ ·α.

We show that ecc′ ≤ ecc(v). In fact, we know that
∑ecc′−1
k=0 γ̃k(v) < r(v) =

∑ecc(v)
k=0 γk(v) ≤∑ecc(v)

k=0 γ̃k(v). Therefore ecc′−1 < ecc(v), which implies ecc′ ≤ ecc(v).
For each i, we can write γ̃i(v) = γi(v) + εi, εi ≥ 0. Therefore, we can write∑ecc′−1
k=0 εi + α = r(v) −

∑ecc′−1
k=0 γk(v) =

∑ecc(v)
k=ecc′ γk(v). Then, SNB(v, r(v)) =

∑ecc′−1
k=0 k ·

γk(v)+
∑ecc′−1
k=0 k ·εi+ecc′ ·α ≤

∑ecc′−1
k=0 k ·γk(v)+ecc′(α+

∑ecc′−1
k=0 εi) =

∑ecc′−1
k=0 k ·γk(v)+

ecc′(
∑ecc(v)
k=ecc′ γk(v)) ≤

∑ecc(v)
k=0 k · γk(v) = S(v).

In the following paragraphs, we propose upper bounds γ̃i(v) for trees, undirected graphs
and directed strongly-connected graphs. In case of trees, the bound γ̃i(v) is actually equal
to γi(v), which means that the algorithm can be used to compute closeness of all nodes in
a tree exactly.

Computing closeness on trees. Let us consider a node s for which we want to compute
the total distance S(s) (notice that in a tree c(s) = (n− 1)/S(s)). The number of nodes at
distance 1 in the BFS tree from s is clearly the degree of s. What about distance 2? Since
there are no cycles, all the neighbors of the nodes in Γ1(s) are nodes at distance 2 from s,
with the only exception of s itself. Therefore, naming Γk(s) the set of nodes at distance k
from s and γk(s) the number of these nodes, we can write γ2(s) =

∑
w∈Γ1(s) γ1(w)−deg(s).

In general, we can always relate the number of nodes at each distance k of s to the number
of nodes at distance k − 1 in the BFS trees of the neighbors of s. Let us now consider
γk(s), for k > 2. Figure 2 shows an example where s has three neighbors w1, w2 and
w3. Suppose we want to compute Γ4(s) using information from w1, w2 and w3. Clearly,
Γ4(s) ⊂ Γ3(w1)∪Γ3(w2)∪Γ3(w3); however, there are also other nodes in the union that are
not in Γ4(s). Furthermore, the nodes in Γ3(w1) (red nodes in the leftmost tree) are of two
types: nodes in Γ4(s) (the ones in the subtree of w1) and nodes in Γ2(s) (the ones in the
subtrees of w2 and w3). An analogous behavior can be observed for w2 and w3 (central and
rightmost trees). If we simply sum all the nodes in γ3(w1), γ3(w2) and γ3(w3), we would be
counting each node at level 2 twice, i. e. once for each node in Γ1(s) minus one. Hence, for
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Fig. 2. Relation between nodes at distance 4 for s and the neighbors of s. The red nodes represent the
nodes at distance 3 for w1 (left), for w2 (center) and for w3 (right).

each k > 2, we can write

γk(s) =
∑

w∈Γ1(s)

γk−1(w)− γk−2(s) · (deg(s)− 1). (2)

ALGORITHM 2: Closeness centrality in trees
Input : A tree T = (V,E)
Output: Closeness centralities c(v) of each node v ∈ V

1 foreach s ∈ V do
2 γk−1(s)← deg(s);
3 S(s)← deg(s);

4 k← 2;
5 nFinished← 0;
6 while nFinished < n do
7 foreach s ∈ V do
8 if k = 2 then
9 γk(s)←

∑
w∈N(s) γk−1(w)− deg(s);

10 else
11 γk(s)←

∑
w∈N(s) γk−1(w)− γk−2(s)(deg(s)− 1);

12 foreach s ∈ V do
13 γk−2(s)← γk−1(s);
14 γk−1(s)← γk(s);
15 if γk−1(s) > 0 then
16 S(s)← S(s) + k · γk−1(s);

17 else
18 nFinished← nFinished + 1;

19 k← k + 1;

20 foreach s ∈ V do
21 c(v)← (n− 1)/S(v);

22 return c

From this observation, we define a new method to compute the total distance of all nodes,
described in Algorithm 2. Instead of computing the BFS tree of each node one by one, at
each step we compute the number γk(v) of nodes at level k for all nodes v. First (Lines 1 -
3), we compute γ1(v) for each node (and add that to S(v)). Then (Lines 6 - 19), we consider
all the other levels k one by one. For each k, we use γk−1(w) of the neighbors w of v and
γk−2(v) to compute γk(v) (Line 9 and 11). If, for some k, γk(v) = 0, all the nodes have been
added to S(v). Therefore, we can stop the algorithm when γk(v) = 0 ∀v ∈ V .
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Proposition 5.2. Algorithm 2 requires O(D · n) operations to compute the closeness
centrality of all nodes in a tree T .

Proof. The for loop in Lines 1 - 3 of Algorithm 2 clearly takes O(n) time. For each
level of the while loop of Lines 6 - 19, each node scans its neighbors in Line 9 or Line 11. In
total, this leads to O(n) operations per level since m = O(n). Since the maximum number
of levels that a node can have is equal to the diameter of the tree, the algorithm requires
O(D · n) operations.

Note that closeness centrality on trees could even be computed in time O(n) in a different
manner [Brandes and Fleischer 2005]. We choose to include Algorithm 2 here nonetheless
since it paves the way for an algorithm computing a lower bound in general undirected
graphs, described next.

Lower bound for undirected graphs. For general undirected graphs, Eq. (2) is not true
anymore – but a related upper bound γ̃k(·) on γk(·) is still useful. Let γ̃k(s) be defined
recursively as in Eq. (2): in a tree, γ̃k(s) = γk(s), while in this case we prove that γ̃k(s)
is an upper bound on Γk(s). Indeed, there could be nodes x for which there are multiple
paths between s and x and that are therefore contained in the subtrees of more than one
neighbor of s. This means that we would count x multiple times when considering γ̃k(s),
overestimating the number of nodes at distance k. However, we know for sure that at level k
there cannot be more nodes than in Eq. (2). If, for each node v, we assume that the number
γ̃k(v) of nodes at distance k is that of Eq. (2), we can apply Prop. 5.1 and get a lower
bound SNB(v, r(v)) on the total sum for undirected graphs. The procedure is described in
Algorithm 3. The computation of SNB(v, r(v)) works basically like Algorithm 2, with the
difference that here we keep track of the number of the nodes found in all the levels up to
k (nVisited) and stop the computation when nVisited becomes equal to r(v) (if it becomes
larger, in the last level we consider only r(v)−nVisited nodes, as in Prop. 5.1 (Lines 22 - 25).

Proposition 5.3. For an undirected graph G, computing the lower bound SNB(v, r(v))
described in Algorithm 3 takes O(D ·m) time.

Proof. Like in Algorithm 2, the number of operations performed by Algorithm 3 at each
level of the while loop is O(m). At each level i, all the nodes at distance i are accounted for
(possibly multiple times) in Lines 11 and 13. Therefore, at each level, the variable nVisited
is always greater than or equal to the the number of nodes v at distance d(v) ≤ i. Since
d(v) ≤ D for all nodes v, the maximum number of levels scanned in the while loop cannot
be larger than D, therefore the total complexity is O(D ·m).

Lower bound on directed graphs. In directed graphs, we can simply consider the out-
neighbors, without subtracting the number of nodes discovered in the subtrees of the other
neighbors in Eq. (2). The lower bound (which we still refer to as SNB(v, r(v))) is obtained
by replacing Eq. (2) with the following in Lines 11 and 13 of Algorithm 3:

γ̃k(s) =
∑

w∈Γ(s)

γ̃k−1(w) (3)

6. THE UPDATEBOUNDSBFSCUT FUNCTION
The updateBoundsBFSCut function is based on a simple idea: if the k-th biggest farness
found until now is x, and if we are performing a BFS from vertex v to compute its farness
f(v), we can stop as soon as we can guarantee that f(v) ≥ x.

Informally, assume that we have already visited all nodes up to distance d: we can lower
bound S(v) =

∑
w∈V d(v, w) by setting distance d+ 1 to a number of vertices equal to the

number of edges “leaving” level d, and distance d+2 to all the remaining reachable vertices.
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ALGORITHM 3: Neighborhood-based lower bound for undirected graphs
Input : A graph G = (V,E)
Output: Lower bounds LNB(v, r(v)) of each node v ∈ V

1 foreach s ∈ V do
2 γk−1(s)← deg(s);
3 S̃(un)(s)← deg(s);
4 nVisited[s]← deg(s) + 1;
5 finished[s]← false;

6 k ← 2;
7 nFinished← 0;
8 while nFinished < n do
9 foreach s ∈ V do

10 if k = 2 then
11 γk(s)←

∑
w∈N(s) γk−1(w)− deg(s);

12 else
13 γk(s)←

∑
w∈N(s) γk−1(w)− γk−2(s)(deg(s)− 1);

14 foreach s ∈ V do
15 if finished[v] then
16 continue;
17 γk−2(s)← γk−1(s);
18 γk−1(s)← γk(s);
19 nVisited[s]← nVisited[s] + γk−1(s);
20 if nVisited[s] < r(v) then
21 S̃(un)(s)← S̃(un)(s) + k · γk−1(s);

22 else
23 S̃(un)(s)← S̃(un)(s) + k(r(v)− (nVisited[s]− γk−1(s)));
24 nFinished← nFinished + 1;
25 finished[s]← true;

26 k ← k + 1;

27 foreach v ∈ v do
28 LNB(v, r(v))← (n−1)S̃(un)

(r(v)−1)2
;

29 return LNB(·, r(·))

Then, this bound yields a lower bound on the farness of v. As soon as this lower bound is
bigger than x, the updateBoundsBFSCut function may stop; if this condition never occurs,
at the end of the BFS we have exactly computed the farness of x.

More formally, the following lemma defines a lower bound SCUT
d (v, r(v)) on S(v), which

is computable after we have performed a BFS from v up to level d, assuming we know the
number r(v) of vertices reachable from v (this assumption is lifted in Sect. 8).

Lemma 6.1. Given a graph G = (V,E), a vertex v ∈ V , and an integer d ≥ 0, let Nd(v)
be the set of vertices at distance at most d from v, nd(v) = |Nd(v)|, and let γ̃d+1(v) be an
upper bound on the number of vertices at distance d+ 1 from v (see Table I). Then,

S(v) ≥ SCUT
d (v, r(v)) :=

∑
w∈Nd(v)

d(v, w)− γ̃d+1(v) + (d+ 2)(r(v)− nd(v)).

Proof. The sum of all the distances from v is lower bounded by setting the correct
distance to all vertices at distance at most d from v, by setting distance d+ 1 to all vertices
at distance d + 1 (there are γd+1(v) such vertices), and by setting distance d + 2 to all
other vertices (there are r(v)− nd+1(v) such vertices, where r(v) is the number of vertices
reachable from v and nd+1(v) is the number of vertices at distance at most d + 1). More
formally, f(v) ≥

∑
w∈Nd(v) d(v, w) + (d+ 1)γd+1(v) + (d+ 2)(r(v)− nd+1(v)).
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Since nd+1(v) = γd+1(v) + nd(v), we obtain that f(v) ≥
∑
w∈Nd(v) d(v, w) − γd+1(v) +

(d+ 2)(r(v)− nd(v)). We conclude because, by assumption, γ̃d+1(v) is an upper bound on
γd+1(v).

Corollary 6.2. For each vertex v and for each d ≥ 0,

f(v) ≥ LCUT
d (v, r(v)) :=

(n− 1)SCUT
d (v, r(v))

(r(v)− 1)2
.

It remains to define the upper bound γ̃d+1(v): in the directed case, this bound is simply
the sum of the out-degrees of vertices at distance d from v. In the undirected case, since
at least an edge from each vertex v ∈ Γd(v) is directed towards Γd−1(v), we may define
γ̃d+1(v) =

∑
w∈Γd(v) deg(w)− 1 (the only exception is d = 0: in this case, γ̃1(v) = γ1(v) =

deg(v)).

Remark 6.3. When we are processing vertices at level d, if we process an edge (x, y)
where y is already in the BFS tree, we can decrease γ̃d+1(v) by one, obtaining a better
bound.

Assuming we know r(v), all quantities necessary to compute LCUT
d (v, r(v)) are available

as soon as all vertices in Nd(v) are visited by a BFS. This function performs a BFS starting
from v, continuously updating the upper bound LCUT

d (v, r(v)) ≤ f(v) (the update is done
whenever all nodes in Γd(v) have been reached, or Remark 6.3 can be used). As soon as
LCUT
d (v, r(v)) ≥ x, we know that f(v) ≥ LCUT

d (v, r(v)) ≥ x, and we return +∞.
Algorithm 4 is the pseudocode of the function updateBoundsBFSCut when implemented

for directed graphs, assuming we know the number r(v) of vertices reachable from each v
(for example, if the graph is strongly connected). This code can be easily adapted to all the
other cases.

7. THE UPDATEBOUNDSLB FUNCTION
Differently from updateBoundsBFSCut function, updateBoundsLB computes a complete BFS
traversal, but uses information acquired during the traversal to update the bounds on the
other nodes. Let us first consider an undirected graph G and let s be the source node from
which we are computing the BFS. We can see the distances d(s, v) between s and all the
nodes v reachable from s as levels: node v is at level i if and only if the distance between
s and v is i, and we write v ∈ Γi(s) (or simply v ∈ Γi if s is clear from the context).
Let i and j be two levels, i ≤ j. Then, the distance between any two nodes v at level
i and w at level j must be at least j − i. Indeed, if d(v, w) was smaller than j − i, w
would be at level i+ d(v, w) < j, which contradicts our assumption. It follows directly that∑
w∈V |d(s, w)− d(s, v)| is a lower bound on S(v), for all v ∈ R(s):

Lemma 7.1.
∑
w∈R(s) |d(s, w)− d(s, v)| ≤ S(v) ∀v ∈ R(s).

To improve the approximation, we notice that the number of nodes at distance 1 from v is
exactly the degree of v. Therefore, all the other nodes w such that |d(s, v) − d(s, w)| ≤ 1
must be at least at distance 2 (with the only exception of v itself, whose distance is of course
0). This way we can define the following lower bound on S(v):

2(#{w ∈ R(s) : |d(s, w)− d(s, v)| ≤ 1} − deg(v)− 1)+

+ deg(v) +
∑

w∈R(s)
|d(s,w)−d(s,v)|>1

|d(s, w)− d(s, v)|,
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ALGORITHM 4: The updateBoundsBFSCut(v) function in the case of directed graphs, if r(v) is
known for each v.

1 x← Farn(Top[k]); // Farn and Top are global variables, as in Algorithm 1.
2 Create queue Q;
3 Q.enqueue(v);
4 Mark v as visited;
5 d← 0; S ← 0; γ̃ ← outdeg(v); nd← 1;
6 while Q is not empty do
7 u← Q.dequeue();
8 if d(v, u) > d then
9 d← d+ 1;

10 LCUT
d (v, r(v))← (n−1)(S−γ̃+(d+2)(r(v)−nd))

(r(v)−1)2
;

11 if LCUT
d (v, r(v)) ≥ x then return +∞;

12 γ̃ ← 0

13 for w in adjacency list of u do
14 if w is not visited then
15 S ← S + d(v, w);
16 γ̃ ← γ̃ + outdeg(w);
17 nd← nd+ 1;
18 Q.enqueue(w);
19 Mark w as visited
20 else
21 // we use Remark 6.3
22 LCUT

d (v, r(v))← LCUT
d (v, r(v)) + (n−1)

(r(v)−1)2
;

23 if LCUT
d (v, r(v)) ≥ x then return x;

24 return S(n−1)

(r(v)−1)2
;

that is:

2 ·
∑

|j−d(s,v)|≤1

γj +
∑

|j−d(s,v)|>1

γj · |j − d(s, v)| − deg(v)− 2, (4)

where γj = |Γj |.
Multiplying the bound of Eq. (4) by (n−1)

(r(v)−1)2 , we obtain a lower bound on the farness
f(v) of node v, named LLB

s (v, r(v)). A straightforward way to compute LLB
s (v, r(v)) would

be to first run the BFS from s and then, for each node v, to consider the level difference
between v and all the other nodes. This would require O(n2) operations, which is clearly too
expensive. However, we can notice two things: First, the bounds of two nodes at the same
level differ only by their degree. Therefore, for each level i, we can compute 2 ·

∑
|j−i|≤1 γj +∑

|j−i|>1 γj · |j − i| − 2 only once and then subtract deg(v) for each node at level i. We call
the quantity 2 ·

∑
|j−i|≤1 γj +

∑
|j−i|>1 γj · |j− i| − 2 the level-bound L(i) of level i. Second,

we can prove that L(i) can actually be written as a function of L(i− 1).

Lemma 7.2. Let L(i) := 2 ·
∑
|j−i|≤1 γj +

∑
|j−i|>1 γj · |j − i| − 2. Also, let γj = 0 for

j ≤ 0 and j > maxD, where maxD = maxv∈R(s) d(s, v). Then L(i)− L(i− 1) =
∑
j<i−2 γj −∑

j>i+1 γj, ∀i ∈ {1, ...,maxD}.

Proof. Since γj = 0 for j ≤ 0 and j > maxD, we can write L(i) as 2 · (γi−1 + γi +
γi+1) +

∑
|j−i|>1 γj · |j− i| − 2, ∀i ∈ {1, ...,maxD}. The difference between L(i) and L(i− 1)

is: 2 · (γi−1 + γi + γi+1) +
∑
|j−i|>1 |j − i| · γj − 2 · (γi−2 + γi−1 + γi) +

∑
|j−i+1|>1 |j − i+

16



1| · γj = 2 · (γi+1 − γi−2) + 2 · γi−2 − 2 · γi+1 +
∑
j<i−2∪j>i+1(|j − i| − |j − i + 1|) · γj =∑

j<i−2 γj −
∑
j>i+1 γj .

ALGORITHM 5: The updateBoundsLB function for undirected graphs
Input : A graph G = (V,E), a source node s
Output: Lower bounds LLB

s (v, r(v)) of each node v ∈ R(s)
1 d← BFSfrom(s);
2 maxD← maxv∈V d(s, v);
3 sumΓ≤0 ← 0; sumΓ≤−1 ← 0; sumΓ>maxD+1 ← 0;
4 for i = 1, 2, ...,maxD do
5 Γi ← {w ∈ V : d(s, w) = i};
6 γi ← #Γi;
7 sumΓ≤i ← sumΓ≤i−1 + γi;
8 sumΓ>i ← |V | − sumΓ≤i;

9 L(1)← γ1 + γ2 + sumΓ>2 − 2;
10 for i = 2, ...,maxD do
11 L(i)← L(i− 1) + sumΓ≤i−3 − sumΓ>i+1;

12 for i = 1, ...,maxD do
13 foreach v ∈ Γi do
14 LLB

s (v, r(v))← (L(i)− deg(v)) · (n−1)

(r(v)−1)2
;

15 return LLB
s (v, r(v)) ∀v ∈ V

Algorithm 5 describes the computation of LLB
s (v, r(v)). First, we compute all the distances

between s and the nodes in R(s) with a BFS, storing the number of nodes in each level and
the number of nodes in levels j ≤ i and j > i respectively (Lines 1 - 8). Then we compute
the level bound L(1) of level 1 according to its definition (Line 9) and those of the other level
according to Lemma 7.2 (Line 11). The lower bound LLB

s (v, r(v)) is then computed for each
node v by subtracting its degree to L(d(s, v)) and normalizing (Line 14). The complexity
of Lines 1 - 8 is that of running a BFS, i. e. O(n + m). Line 11 is repeated once for each
level (which cannot be more than n) and Line 14 is repeated once for each node in R(s).
Therefore, the following proposition holds.

Proposition 7.3. Computing the lower bound LLB
s (v, r(v)) takes O(n+m) time.

For directed strongly-connected graphs, the result does not hold for nodes w whose level
is smaller than l(v), since there might be a directed edge or a shortcut from v to w. Yet,
for nodes w such that d(s, w) > d(s, v), it is still true that d(v, w) ≥ d(s, w) − d(s, v). For
the remaining nodes (apart from the outgoing neighbors of v), we can only say that the
distance must be at least 2. The upper bound LLB

s (v, r(v)) for directed graphs can therefore
be defined as:

2 ·#{w ∈ R(s) : d(s, w)− d(s, v) ≤ 1}

+
∑

w∈R(s)
d(s,w)−d(s,v)>1

(d(s, w)− d(s, v))− deg(v)− 2. (5)

The computation of LLB
s (v, r(v)) for directed strongly-connected graphs is analogous to

the one described in Algorithm 5.

8. THE DIRECTED DISCONNECTED CASE
In the directed disconnected case, even if the time complexity of computing strongly con-
nected components is linear in the input size, the time complexity of computing the number
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of reachable vertices is much bigger (assuming SETH, it cannot be O(m2−ε) [Borassi 2016]).
For this reason, when computing our upper bounds, we cannot rely on the exact value of
r(v): for now, let us assume that we know a lower bound α(v) ≤ r(v) and an upper bound
ω(v) ≥ r(v). The definition of these bounds is postponed to Sect. 8.4.

Furthermore, let us assume that we have a lower bound L(v, r(v)) on the farness of v,
depending on the number r(v) of vertices reachable from v: in order to obtain a bound
not depending on r(v), the simplest approach is f(v) ≥ L(v, r(v)) ≥ minα(v)≤r≤ω(v) L(v, r).
However, during the algorithm, computing the minimum among all these values might be
quite expensive, if ω(v) − α(v) is big. In order to solve this issue, we find a small set
X ⊆ [α(v), ω(v)] such that minα(v)≤r≤ω(v) L(v, r) = minr∈X L(v, r).

More specifically, we find a condition that is verified by “many” values of r, and that
implies L(v, r) ≥ min (L(v, r − 1), L(v, r + 1)): this way, we may define X as the set of
values of r that either do not verify this condition, or that are extremal points of the interval
[α(v), ω(v)] (indeed, all other values cannot be minima of L(v, r)). Since all our bounds
are of the form L(v, r) = (n−1)S(v,r)

(r−1)2 , where S(v, r) is a lower bound on
∑
w∈R(v) d(v, w),

we state our condition in terms of the function S(v, r). For instance, in the case of the
updateBoundsBFSCut function, SCUT

d (v, r) =
∑
w∈Nd(v) d(v, w)−γ̃d+1(v)+(d+2)(r−nd(v)),

as in Lemma 6.1.

Lemma 8.1. Let v be a vertex, and let S(v, r) be a positive function such that
S(v, r(v))) ≤

∑
w∈R(v) d(v, w) (where r(v) is the number of vertices reachable from v).

Assume that S(v, r + 1) − S(v, r) ≤ S(v, r) − S(v, r − 1). Then, if L(v, r) := (n−1)S(v,r)
(r−1)2 is

the corresponding bound on the farness of v, min (L(v, r + 1), L(v, r − 1)) ≤ L(v, r).

Proof. Let us define d = S(v, r+ 1)−S(v, r). Then, L(v, r+ 1) ≤ L(v, r) if and only if
(n−1)S(v,r+1)

r2 ≤ (n−1)S(v,r)
(r−1)2 if and only if S(v,r)+d

r2 ≤ S(v,r)
(r−1)2 if and only if (r−1)2(S(v, r)+d) ≤

r2S(v, r) if and only if S(v, r)(r2−(r−1)2) ≥ (r−1)2d if and only if S(v, r)(2r−1) ≥ (r−1)2d.
Similarly, if d′ = S(v, r)− S(v, r − 1), L(v, r − 1) ≤ L(v, r) if and only if (n−1)S(v,r−1)

(r−2)2 ≤
(n−1)S(v,r)

(r−1)2 if and only if S(v,r)−d′
(r−2)2 ≤ S(v,r)

(r−1)2 if and only if (r−1)2(S(v, r)−d′) ≤ (r−2)2S(v, r)

if and only if S(v, r)((r−1)2−(r−2)2) ≤ (r−1)2d′ if and only if S(v, r)(2r−3) ≤ (r−1)2d′

if and only if S(v, r)(2r − 1) ≤ (r − 1)2d′ + 2S(v, r).
We conclude that, assuming d ≤ d′, (r− 1)2d ≤ (r− 1)2d′ ≤ (r− 1)2d+ 2S(v, r), and one

of the two previous conditions is always satisfied.

8.1. The Neighborhood-Based Lower Bound
In the neighborhood-based lower bound, we computed upper bounds γ̃k(v) on Γk(v), and
we defined the lower bound SNB(v, r(v)) ≤

∑
w∈R(v) d(v, w), by

SNB(v, r(v)) :=

diam(G)∑
k=1

k ·min

{
γ̃k(v), r(v)−

k−1∑
i=0

γ̃i(v), 0

}
.

The corresponding bound on f(v) is LNB(v, r(v)) := (n−1)SNB(v,r(v))
(r(v)−1)2 : let us apply

Lemma 8.1 with S(v, r) = SNB(v, r) and L(v, r) = LNB(v, r). We obtain that the local
minima of LNB(v, r(v)) are obtained on values r such that SNB(v, r + 1) − SNB(v, r) >

SNB(v, r)− SNB(v, r − 1), that is, when r =
∑l
i=0 γ̃i(v) for some l. Hence, our final bound

LNB(v) becomes:

min

(
LNB(v, α(v)), LNB(v, ω(v)),min

{
LNB(v, r) : α(v) < r < ω(v), r =

l∑
i=0

γ̃i(v)

})
. (6)
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This bound can be computed with no overhead, by modifying Lines 20 - 25 in Algorithm 3.
Indeed, when r(v) is known, we have two cases: either nVisited[s] < r(v), and we continue,
or nVisited[s] ≥ r(v), and SNB(v, r(v)) is computed. In the disconnected case, we need
to distinguish three cases:

— if nVisited[v] < α(v), we simply continue the computation;
— if α(v) ≤ nVisited[v] < ω(v), we compute LNB(v, nVisited[v]), and we update the

minimum in Eq. 6 (if this is the first occurrence of this situation, we also have to compute
LNB(v, α(v)));

— if nVisited[v] ≥ ω(v), we compute LNB(v, ω(v)), and we update the minimum in Eq. 6.

Since this procedure needs time O(1), it has no impact on the running time of the com-
putation of the neighborhood-based lower bound.

8.2. The updateBoundsBFSCut Function
Let us apply Lemma 8.1 to the bound used in the updateBoundsBFSCut function. In this
case, by Lemma 6.1, SCUT

d (v, r) =
∑
w∈Nd(v) d(v, w) − γ̃d+1(v) + (d + 2)(r − nd(v)), and

SCUT
d (v, r + 1)− SCUT

d (v, r) = d+ 2, which does not depend on r. Hence, the condition in
Lemma 8.1 is always verified, and the only values we have to analyze are α(v) and ω(v).
Hence, the lower bound becomes f(v) ≥ LCUT

d (v, r(v)) ≥ minα(v)≤r≤ω(v) L
CUT
d (v, r) =

min(LCUT
d (v, α(v)), LCUT

d (v, ω(v))) (which does not depend on r(v)).
This means that, in order to adapt the updateBoundsBFSCut function (Algorithm 4), it is

enough to replace Lines 10, 22 in order to compute both LCUT
d (v, α(v)) and LCUT

d (v, ω(v))),
and to replace Lines 11, 23 in order to stop if min(LCUT

d (v, α(v)), LCUT
d (v, ω(v))) ≥ x.

8.3. The updateBoundsLB Function
In this case, we do not apply Lemma 8.1 to obtain simpler bounds. Indeed, the
updateBoundsLB function improves the bounds of vertices that are quite close to the source
of the BFS, and hence are likely to be in the same component as this vertex. Consequently,
if we perform a BFS from a vertex s, we can simply compute LLB

s (v, r(v)) for all vertices
in the same strongly connected component as s, and for these vertices we know the value
r(v) = r(s). The computation of better bounds for other vertices is left as an open problem.

8.4. Computing α(v) and ω(v)
It now remains to compute α(v) and ω(v). This can be done during the preprocessing
phase of our algorithm, in linear time. To this purpose, let us precisely define the node-
weighted directed acyclic graph G = (V, E) of strongly connected components (in short,
SCCs) corresponding to a directed graph G = (V,E). In this graph, V is the set of SCCs of
G, and, for any two SCCs C,D ∈ V, (C,D) ∈ E if and only if there is an arc in E from a
node in C to the a node in D. For each SCC C ∈ V, the weight w(C) of C is equal to |C|,
that is, the number of nodes in the SCC C. Note that the graph G is computable in linear
time.

For each node v ∈ C, r(v) =
∑
D∈R(C) w(D), where R(C) denotes the set of SCCs that

are reachable from C in G. This means that we simply need to compute a lower (respectively,
upper) bound αSCC(C) (respectively, ωSCC(C)) on

∑
D∈R(C) w(D), for every SCC C. To

this aim, we first compute a topological sort {C1, . . . , Cl} of V (that is, if (Ci, Cj) ∈ E , then
i < j). Successively, we use a dynamic programming approach, and, by starting from Cl,
we process the SCCs in reverse topological order, and we set:

αSCC(C) = w(C) + max
(C,D)∈E

αSCC(D) ωSCC(C) = w(C) +
∑

(C,D)∈E

ωSCC(D).
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Note that processing the SCCs in reverse topological ordering ensures that the values α(D)
and ω(D) on the right hand side of these equalities are available when we process the SCC
C. Clearly, the complexity of computing α(C) and ω(C), for each SCC C, is linear in the
size of G, which in turn is smaller than G.

Observe that the bounds obtained through this simple approach can be improved by
using some “tricks”. First of all, when the biggest SCC C̃ is processed, we do not use the
dynamic programming approach and we exactly compute

∑
D∈R(C̃) w(D) by performing a

BFS starting from any node in C̃. This way, not only α(C̃) and ω(C̃) are exact, but also
αSCC(C) and ωSCC(C) are improved for each SCC C from which it is possible to reach C̃.
Finally, in order to compute the upper bounds for the SCCs that are able to reach C̃, we
can run the dynamic programming algorithm on the graph obtained from G by removing
all components reachable from C̃, and we can then add

∑
D∈R(C̃) w(D).

The pseudocode is available in Algorithm 6.

ALGORITHM 6: Estimating the number of reachable vertices in directed disconnected graphs.
Input : A graph G = (V,E)
Output: Lower and upper bounds α(v), ω(v) on the number of vertices reachable from v

1 (V, E, w)← computeSCCGraph(G);
2 C̃ ← the biggest SCC;
3 αSCC(C̃), ωSCC(C̃)← the number of vertices reachable from C̃;
4 for X ∈ V in reverse topological order do
5 if X == C̃ then continue;
6 αSCC(X), ωSCC(X), ω′SCC(X)← 0 for Y neighbor of X in G do
7 αSCC(X)← max(αSCC(X), αSCC(Y ));
8 ωSCC(X)← ωSCC(X) + ωSCC(Y );
9 if W not reachable from C̃ then ω′SCC(X)← ω′SCC(X) + ωSCC(Y );

10 if X reaches C̃ then ωSCC(X)← ω′SCC(X) + ωSCC(C̃);
11 αSCC(X)← αSCC(X) + w(X);
12 ωSCC(X)← ωSCC(X) + w(X);

13 for v ∈ V do
14 α(v) = αSCC(the component of v);
15 ω(v) = ωSCC(the component of v);

16 return α, ω

9. EXPERIMENTAL RESULTS
In this section, we test the four variations of our algorithm on several real-world networks,
in order to evaluate their performances. All the networks used in our experiments come
from the datasets SNAP (snap.stanford.edu/), NEXUS (nexus.igraph.org), LASAGNE
(piluc.dsi.unifi.it/lasagne), LAW (law.di.unimi.it), KONECT (http://konect.uni-koblenz.
de/networks/, and IMDB (www.imdb.com). The platform for our tests is a shared-memory
server with 256 GB RAM and 2x8 Intel(R) Xeon(R) E5-2680 cores (32 threads due to
hyperthreading) at 2.7 GHz. The algorithms are implemented in C++, building on the
open-source NetworKit framework [Staudt et al. 2014].

9.1. Comparison with the State of the Art
In order to compare the performance of our algorithm with state-of-the-art approaches,
we select 19 directed complex networks, 17 undirected complex networks, 6 directed road
networks, and 6 undirected road networks (the undirected versions of the previous ones).
The number of nodes of most of these networks ranges between 5 000 and 100 000. We
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test four different variations of our algorithm, that provide different implementations of the
functions computeBounds and updateBounds (for more information, we refer to Sect. 4):

DegCut. uses the conservative strategies computeBoundsDeg and updateBoundsBFSCut;
DegBound. uses the conservative strategy computeBoundsDeg and the aggressive strategy

updateBoundsLB;
NBCut. uses the aggressive strategy computeBoundsNB and the conservative strategy

updateBoundsBFSCut;
NBBound. uses the aggressive strategies computeBoundsNB and updateBoundsLB.

We compare these algorithms with our implementations of the best existing algorithms for
top-k closeness centrality.3 The first one [Olsen et al. 2014] is based on a pruning technique
and on ∆-BFS, a method to reuse information collected during a BFS from a node to speed
up a BFS from one of its in-neighbors; we denote this algorithm as Olh. The second one,
Ocl, provides top-k closeness centralities with high probability [Okamoto et al. 2008]. It
performs some BFSes from a random sample of nodes to estimate the closeness centrality of
all the other nodes, then it computes the exact centrality of all the nodes whose estimate is
big enough. Note that this algorithm requires the input graph to be (strongly) connected:
for this reason, differently from the other algorithms, we have run this algorithm on the
largest (strongly) connected component of the input graph. Furthermore, this algorithm
offers different tradeoffs between the time needed by the sampling phase and the second
phase: in our tests, we try all possible tradeoffs, and we choose the best alternative in
each input graph (hence, our results are upper bounds on the real performance of the Ocl
algorithm).

In order to perform a fair comparison, we consider the improvement factor, which is
defined as mn

mvis
in directed graphs, 2mn

mvis
in undirected graphs, where mvis is the number

of arcs visited during the algorithm, and mn (resp., 2mn) is an estimate of the number of
arcs visited by the textbook algorithm in directed (resp., undirected) graphs (this estimate
is correct whenever the graph is connected). Note that the improvement factor does not
depend on the implementation, nor on the machine used for the algorithm, and it does not
consider parts of the code that need subquadratic time in the worst case. These parts are
negligible in our algorithm, because their worst case running time is O(n log n) or O(mD)
where D is the diameter of the graph, but they can be significant when considering the
competitors. For instance, in the particular case of Olh, we have just counted the arcs
visited in BFS and ∆-BFS, ignoring all the operations done in the pruning phases (see
[Olsen et al. 2014]).

We consider the geometric mean of the improvement factors over all graphs in the dataset.
In our opinion, this quantity is more informative than the arithmetic mean, which is highly
influenced by the maximum value: for instance, in a dataset of 20 networks, if all improve-
ment factors are 1 apart from one, which is 10 000, the arithmetic mean is more than 500,
which makes little sense, while the geometric mean is about 1.58. Our choice is further
confirmed by the geometric standard deviation, which is always quite small.

The results are summarised in Table II for complex networks and Table III for street
networks. For the improvement factors of each graph, we refer to Appendix A.

On complex networks, the best algorithm is NBCut: when k = 1, the improvement fac-
tors are always bigger than 100, up to 258, when k = 10 they are close to 60, and when
k = 100 they are close to 20. Another good option is DegCut, which achieves results
similar to NBCut, but it has almost no overhead at the beginning (while NBCut needs a
preprocessing phase with cost O(mD)). Furthermore, DegCut is very easy to implement,
becoming a very good candidate for state-of-the-art graph libraries. The improvement fac-

3Note that the source code of our competitors is not available.
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Table II. Complex networks: geometric mean and standard deviation of the improvement factors of the
algorithm in [Olsen et al. 2014] (Olh), the algorithm in [Okamoto et al. 2008] (Ocl), and the four
variations of the new algorithm (DegCut, DegBound, NBCut, NBBound).

Directed Undirected Both
k Algorithm GMean GStdDev GMean GStdDev GMean GStdDev
1 Olh 21.24 5.68 11.11 2.91 15.64 4.46

Ocl 1.71 1.54 2.71 1.50 2.12 1.61
DegCut 104.20 6.36 171.77 6.17 131.94 6.38
DegBound 3.61 3.50 5.83 8.09 4.53 5.57
NBCut 123.46 7.94 257.81 8.54 174.79 8.49
NBBound 17.95 10.73 56.16 9.39 30.76 10.81

10 Olh 21.06 5.65 11.11 2.90 15.57 4.44
Ocl 1.31 1.31 1.47 1.11 1.38 1.24
DegCut 56.47 5.10 60.25 4.88 58.22 5.00
DegBound 2.87 3.45 2.04 1.45 2.44 2.59
NBCut 58.81 5.65 62.93 5.01 60.72 5.34
NBBound 9.28 6.29 10.95 3.76 10.03 5.05

100 Olh 20.94 5.63 11.11 2.90 15.52 4.43
Ocl 1.30 1.31 1.46 1.11 1.37 1.24
DegCut 22.88 4.70 15.13 3.74 18.82 4.30
DegBound 2.56 3.44 1.67 1.36 2.09 2.57
NBCut 23.93 4.83 15.98 3.89 19.78 4.44
NBBound 4.87 4.01 4.18 2.46 4.53 3.28

Table III. Street networks: geometric mean and standard deviation of the improvement factors of the
algorithm in [Olsen et al. 2014] (Olh), the algorithm in [Okamoto et al. 2008] (Ocl), and the four
variations of the new algorithm (DegCut, DegBound, NBCut, NBBound).

Directed Undirected Both
k Algorithm GMean GStdDev GMean GStdDev GMean GStdDev
1 Olh 4.11 1.83 4.36 2.18 4.23 2.01

Ocl 3.39 1.28 3.23 1.28 3.31 1.28
DegCut 4.14 2.07 4.06 2.06 4.10 2.07
DegBound 187.10 1.65 272.22 1.67 225.69 1.72
NBCut 4.12 2.07 4.00 2.07 4.06 2.07
NBBound 250.66 1.71 382.47 1.63 309.63 1.74

10 Olh 4.04 1.83 4.28 2.18 4.16 2.01
Ocl 2.93 1.24 2.81 1.24 2.87 1.24
DegCut 4.09 2.07 4.01 2.06 4.05 2.07
DegBound 172.06 1.65 245.96 1.68 205.72 1.72
NBCut 4.08 2.07 3.96 2.07 4.02 2.07
NBBound 225.26 1.71 336.47 1.68 275.31 1.76

100 Olh 4.03 1.82 4.27 2.18 4.15 2.01
Ocl 2.90 1.24 2.79 1.24 2.85 1.24
DegCut 3.91 2.07 3.84 2.07 3.87 2.07
DegBound 123.91 1.56 164.65 1.67 142.84 1.65
NBCut 3.92 2.08 3.80 2.09 3.86 2.08
NBBound 149.02 1.59 201.42 1.69 173.25 1.67

tors of the competitors are smaller: Olh has improvement factors between 10 and 20, and
Ocl provides almost no improvement with respect to the textbook algorithm.

We also test our algorithm on the three complex unweighted networks analysed in [Olsen
et al. 2014], respectively called web-Google (Web in [Olsen et al. 2014]), wiki-Talk (Wiki
in [Olsen et al. 2014]), and com-dblp (DBLP in [Olsen et al. 2014]). In the com-dblp graph
(resp. web-Google), our algorithm NBCut computed the top 10 nodes in about 17 seconds
(resp., less than 2 minutes) on the whole graph, having 1 305 444 nodes (resp., 875 713),
while Olh needed about 25 minutes (resp. 4 hours) on a subgraph of 400 000 nodes. In the
graph wiki-Talk, NBCut needed 8 seconds for the whole graph having 2 394 385 nodes,
instead of about 15 minutes on a subgraph with 1 million nodes. These results are available
in Table IX in the Appendix.
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On street networks, the best option is NBBound: for k = 1, the average improvement
is about 250 in the directed case and about 382 in the undirected case, and it always
remains bigger than 150, even for k = 100. It is worth noting that also the performance
of DegBound are quite good, being at least 70% of NBBound. Even in this case, the
DegBound algorithm offers some advantages: it is very easy to be implemented, and there
is no overhead in the first part of the computation. All the competitors perform relatively
poorly on street networks, since their improvement is always smaller than 5.

Overall, we conclude that the preprocessing function computeBoundsNB always leads to
better results (in terms of visited edges) than computeBoundsDeg, but the difference is
quite small: hence, in some cases, computeBoundsDeg could be even preferred, because of
its simplicity. Conversely, the performance of updateBoundsBFSCut is very different from
the performance of updateBoundsLB: the former works much better on complex networks,
while the latter works much better on street networks. Currently, these two approaches
exclude each other: an open problem left by this work is the design of a “combination” of the
two, that works both in complex networks and in street networks. Finally, the experiments
show that the best variation of our algorithm outperforms all competitors in all frameworks
considered: both in complex and in street networks, both in directed and undirected graphs.

Harmonic Centrality. As mentioned in the introduction, all our methods can be easily
generalized to any centrality measure in the form c(v) =

∑
w 6=v f(d(v, w)), where f is a

decreasing function such that f(+∞) = 0. We also implemented a version of DegCut,
DegBound, NBCut and NBBound for harmonic centrality, which is defined as h(v) =∑
w 6=v

1
d(v,w) . Also for harmonic centrality, we compute the improvement factors on the

textbook algorithm.
For the complex networks used in our experiments, finding the k nodes with highest

harmonic centrality is always faster than finding the k nodes with highest closeness, for
all four methods and k values in {1, 10, 100}. For example, for NBCut and k = 1, the
geometric mean4 of the improvement factors is 486.07, whereas for closeness it is 174.79 (as
reported in Table II).

For street networks, the version of harmonic centrality is faster than the version for
closeness for DegCut and NBCut, but it is slower for DegBound and NBBound. In
particular, the average (geometric mean) improvement factor of NBBound for harmonic
centrality is 103.58 for k = 1, 93.49 for k = 10 and 62.22 for k = 100, which is about a
factor 3 smaller than the improvement factor of NBBound for closeness (see Table III).
Nevertheless, this is significantly faster than the textbook algorithm.

9.2. Real-World Large Networks
In this section, we run our algorithm on bigger inputs, by considering a dataset containing
23 directed networks, 15 undirected networks, and 5 road networks, with up to 3 774 768
nodes and 117 185 083 edges. On this dataset, we run the fastest variant of our algorithm
(DegBound in complex networks, NBBound in street networks), using 64 threads (how-
ever, the server used has only 16 cores and runs 32 threads with hyperthreading; we account
for memory latency in graph computations by oversubscribing slightly).

Once again, we consider the improvement factor, which is defined as mn
mvis

in directed
graphs, 2mn

mvis
in undirected graphs. It is worth observing that we are able to compute for

the first time the k most central nodes of networks with millions of nodes and hundreds of
millions of arcs, with k = 1, k = 10, and k = 100. The detailed results are shown in Table IX
in the Appendix, where for each network we report the running time and the improvement

4We report the geometric mean over both directed and undirected networks.
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Table IV. Big networks: geometric mean and standard deviation of the improvement factors of the best
variation of the new algorithm (DegBound in complex networks, NBBound in street networks).

Directed Undirected Both
Input k GMean GStdDev GMean GStdDev GMean GStdDev

1 742.42 2.60 1681.93 2.88 1117.46 2.97
Street 10 724.72 2.67 1673.41 2.92 1101.25 3.03

100 686.32 2.76 1566.72 3.04 1036.95 3.13
1 247.65 11.92 551.51 10.68 339.70 11.78

Complex 10 117.45 9.72 115.30 4.87 116.59 7.62
100 59.96 8.13 49.01 2.93 55.37 5.86

factor. A summary of these results is available in Table IV, which contains the geometric
means of the improvement factors, with the corresponding standard deviations.

For k = 1, the geometric mean of the improvement factors is always above 200 in complex
networks, and above 700 in street networks. In undirected graphs, the improvement factors
are even bigger: close to 500 in complex networks and close to 1 600 in street networks. For
bigger values of k, the performance does not decrease significantly: on complex networks,
the improvement factors are bigger than or very close to 50, even for k = 100. In street
networks, the performance loss is even smaller, always below 10% for k = 100.

Regarding the robustness of the algorithm, we outline that the algorithm always achieves
performance improvements bigger than

√
n in street networks, and that in complex net-

works, with k = 1, 64% of the networks have improvement factors above 100, and 33%
of the networks above 1 000. In some cases, the improvement factor is even bigger: in the
com-Orkut network, our algorithm for k = 1 is almost 35 000 times faster than the textbook
algorithm.

In our experiments, we also report the running time of our algorithm. Even for k = 100,
a few minutes are sufficient to conclude the computation on most networks, and, in all
but two cases, the total time is smaller than 3 hours. For k = 1, the computation always
terminates in at most 1 hour and a half, apart from two street networks where it needs less
than 2 hours and a half. Overall, the total time needed to compute the most central vertex
in all the networks is smaller than 1 day. In contrast to this, if we extrapolate the results
in Tables II and III, it seems plausible that the fastest competitor OLH would require a
month or so.

10. IMDB CASE STUDY
In this section, we apply the new algorithm NBBound to analyze the IMDB graph, where
nodes are actors, and two actors are connected if they played together in a movie (TV-series
are ignored). The data collected comes from the website http://www.imdb.com: in line with
http://oracleofbacon.org, we decide to exclude some genres from our database: awards-
shows, documentaries, game-shows, news, realities and talk-shows. We analyse snapshots of
the actor graph, taken every 5 years from 1940 to 2010, and 2014. The results are reported
in Table X and Table XI in the Appendix.

The Algorithm. Thanks to this experiment, we can evaluate the performance of our algo-
rithm on increasing snapshots of the same graph. This way, we can have an informal idea
on the asymptotic behavior of its complexity. In Figure 3, we have plotted the improvement
factor with respect to the number of nodes: if the improvement factor is I, the running
time is O(mnI ). Hence, assuming that I = cn for some constant c (which is approximately
verified in the actor graph, as shown by Figure 3), the running time is linear in the input
size. The total time needed to perform the computation on all snapshots is little more than
30 minutes for k = 1, and little more than 45 minutes for k = 10.

The Results. In 2014, the most central actor is Michael Madsen, whose career spans 25
years and more than 170 films. Among his most famous appearances, he played as Jimmy

24



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

1 000

2 000

3 000

Millions of nodes

Im
pr
ov
em

en
t
fa
ct
or

Fig. 3. Growth of performance ratio with respect to the number of nodes (k = 1).

Lennox in Thelma & Louise (Ridley Scott, 1991), as Glen Greenwood in Free Willy (Simon
Wincer, 1993), as Bob in Sin City (Frank Miller, Robert Rodriguez, Quentin Tarantino),
and as Deadly Viper Budd in Kill Bill (Quentin Tarantino, 2003-2004). The second is
Danny Trejo, whose most famous movies are Heat (Michael Mann, 1995), where he played
as Trejo, Machete (Ethan Maniquis, Robert Rodriguez, 2010) and Machete Kills (Robert
Rodriguez, 2013), where he played as Machete. The third “actor” is not really an actor: he is
the German dictator Adolf Hitler: he was also the most central actor in 2005 and 2010, and
he was in the top 10 since 1990. This a consequence of his appearances in several archive
footages, that were re-used in several movies (he counts 775 credits, even if most of them
are in documentaries or TV shows, which were eliminated). Among the movies where Adolf
Hitler is credited, we find Zelig (Woody Allen, 1983), and The Imitation Game (Morten
Tyldum, 2014). Among the other most central actors, we find many people who played a
lot of movies, and most of them are quite important actors. However, this ranking does
not discriminate between important roles and marginal roles: for instance, the actress Bess
Flowers is not widely known, because she rarely played significant roles, but she appeared
in over 700 movies in her 41 years career, and for this reason she was the most central
for 30 years, between 1950 and 1980. Finally, it is worth noting that we never find Kevin
Bacon in the top 10, even if he became famous for the “Six Degrees of Kevin Bacon” game
(http://oracleofbacon.org). In this game the player receives an actor x and has to find a
path of length at most 6 from x to Kevin Bacon in the actor graph. Kevin Bacon was
chosen as the goal because he played in several movies, and he was thought to be one of
the most central actors: this work shows that, actually, he is quite far from the top. Indeed,
his closeness centrality is 0.336, while the most central actor has centrality 0.354, the 10th
actor has centrality 0.350, and the 100th actor has centrality 0.341.

11. WIKIPEDIA CASE STUDY
In this section, we apply the new algorithm NBBound to analyze the Wikipedia graph,
where nodes are pages, and there is a directed edge from page p to page q if p contains a link
to q. The data collected comes from DBPedia 3.7 (http://wiki.dbpedia.org/). We analyse
both the standard graph and the reverse graph, which contains an edge from page p to page
q if q contains a link to p. The 10 most central pages are available in Table V.

The Algorithm. In the standard graph, the improvement factor is 1 784 for k = 1, 1 509
for k = 10, and 870 for k = 100. The total running time is about 39 minutes for k = 1, 45
minutes for k = 10, and less than 1 hour and 20 minutes for k = 100. In the reversed graph,
the algorithm performs even better: the improvement factor is 87 918 for k = 1, 71 923 for
k = 10, and 21 989 for k = 100. The total running times are less than 3 minutes for both
k = 1 and k = 10, and less than 10 minutes for k = 100.
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Table V. Top 10 pages in Wikipedia directed graph, both
in the standard graph and in the reversed graph.

Position Standard Graph Reversed Graph
1st 1989 United States
2nd 1967 World War II
3rd 1979 United Kingdom
4th 1990 France
5th 1970 Germany
6th 1991 English language
7th 1971 Association football
8th 1976 China
9th 1945 World War I

10th 1965 Latin

The Results. If we consider the standard graph, the results are quite unexpected: indeed,
all the most central pages are years (the first is 1989 ). However, this is less surprising if we
consider that these pages contain a lot of links to events that happened in that year: for
instance, the out-degree of 1989 is 1 560, and the links contain pages from very different
topics: historical events, like the fall of Berlin wall, days of the year, different countries
where particular events happened, and so on. A similar argument also works for other
years: indeed, the second page is 1967 (with out-degree 1 438), and the third is 1979 (with
out-degree 1 452). Furthermore, all the 10 most central pages have out-degree at least 1 269.
Overall, we conclude that the central page in the Wikipedia standard graph are not the
“intuitively important” pages, but they are the pages that have a biggest number of links
to pages with different topics, and this maximum is achieved by pages related to years.

Conversely, if we consider the reversed graph, the most central page is United States,
confirming a common conjecture. Indeed, in http://wikirank.di.unimi.it/, it is shown that
the United States are the center according to harmonic centrality, and many other mea-
sures (however, in that work, the ranking is only approximated). A further evidence for
this conjecture comes from the Six Degree of Wikipedia game (http://thewikigame.com/
6-degrees-of-wikipedia), where a player is asked to go from one page to the other following
the smallest possible number of link: a hard variant of this game forces the player not to pass
the United States page, which is considered to be central. In this work, we show that this
conjecture is true. The second page is World War II, and the third is United Kingdom, in line
with the results obtained by other centrality measures (see http://wikirank.di.unimi.it/),
especially for the first two pages.

Overall, we conclude that most of the central pages in the reversed graph are nations, and
that the results capture our intuitive notion of “important” pages in Wikipedia. Thanks to
this new algorithm, we can compute these pages in a bit more than 1 hour for the original
graph, and less than 10 minutes for the reversed one.

12. CONCLUSIONS
In this paper we have presented a hardness result on the computation of the most central
vertex in a graph, according to closeness centrality. Then, we have presented a very sim-
ple algorithm for the exact computation of the k most central vertices. Even if the time
complexity of the new algorithm is equal to the time complexity of the textbook algorithm
(which, in any case, cannot be improved in general), we have shown that in practice the
former improves the latter by several orders of magnitude. We have also shown that the
new algorithm outperforms the state of the art (whose time complexity is still equal to the
complexity of the textbook algorithm), and we have computed for the first time the most
central nodes in networks with millions of nodes and hundreds of millions of edges. Finally,
we have considered as a case study several snapshots of the IMDB actor network, and the
Wikipedia graph.
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Appendix
A. COMPARISON WITH THE STATE OF THE ART: DETAILED RESULTS

Table VI. Detailed comparison of the improvement factors, with k = 1.

Directed Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 4.080 3.742 4.125 338.011 4.086 437.986
liechtenstein 2.318 2.075 2.114 130.575 2.115 137.087
isle-of-man 2.623 3.740 2.781 224.566 2.769 314.856
malta 5.332 4.351 4.147 73.836 4.141 110.665
belize 2.691 3.969 2.606 253.866 2.595 444.849
azores 13.559 3.038 19.183 230.939 19.164 266.488

Undirected Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 4.126 3.276 4.118 361.593 3.918 444.243
liechtenstein 2.318 2.027 2.107 171.252 2.122 183.240
isle-of-man 2.613 3.661 2.767 266.734 2.676 370.194
malta 4.770 4.164 3.977 122.729 3.958 232.622
belize 2.565 3.945 2.510 340.270 2.481 613.778
azores 22.406 2.824 18.654 589.985 18.810 727.528

Directed Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
polblogs 3.201 1.131 31.776 1.852 31.974 5.165
out.opsahl-openflights 13.739 1.431 73.190 2.660 73.888 18.255
ca-GrQc 9.863 1.792 36.673 3.630 38.544 6.307
out.subelj_jung-j_jung-j 125.219 1.203 79.559 1.024 79.882 1.897
p2p-Gnutella08 5.696 1.121 66.011 4.583 81.731 6.849
out.subelj_jdk_jdk 116.601 1.167 74.300 1.023 74.527 1.740
wiki-Vote 9.817 2.760 261.242 1.479 749.428 395.278
p2p-Gnutella09 5.534 1.135 41.214 4.650 43.236 6.101
ca-HepTh 7.772 2.121 40.068 3.349 42.988 5.217
freeassoc 33.616 1.099 12.638 2.237 12.700 2.199
ca-HepPh 7.682 2.836 10.497 3.331 10.516 4.387
out.lasagne-spanishbook 13.065 2.553 1871.296 7.598 6786.506 3160.750
out.cfinder-google 16.725 1.782 38.321 2.665 25.856 3.020
ca-CondMat 7.382 3.526 409.772 5.448 517.836 29.282
out.subelj_cora_cora 14.118 1.700 14.098 1.345 14.226 2.299
out.ego-twitter 2824.713 1.000 1870.601 28.995 3269.183 278.214
out.ego-gplus 722.024 1.020 3481.943 236.280 3381.029 875.111
as-caida20071105 20.974 3.211 2615.115 1.737 2837.853 802.273
cit-HepTh 4.294 3.045 16.259 1.514 16.398 3.290

Undirected Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
HC-BIOGRID 5.528 1.581 15.954 3.821 14.908 3.925
facebook_combined 10.456 3.726 56.284 18.786 56.517 98.512
Mus_musculus 18.246 1.743 70.301 3.253 104.008 7.935
Caenorhabditis_elegans 11.446 2.258 86.577 2.140 110.677 9.171
ca-GrQc 6.567 1.904 38.279 3.551 41.046 6.824
as20000102 19.185 2.402 1550.351 3.213 1925.916 498.000
advogato 8.520 2.018 315.024 18.181 323.163 142.654
p2p-Gnutella09 3.744 2.336 90.252 1.708 100.427 13.846
hprd_pp 6.543 2.397 392.853 2.091 407.261 63.953
ca-HepTh 7.655 2.075 42.267 3.308 46.326 5.593
Drosophila_melanogaster 5.573 2.346 69.457 1.822 75.456 6.904
oregon1_010526 20.474 3.723 1603.739 2.703 1798.822 399.071
oregon2_010526 17.330 4.748 1138.475 2.646 1227.105 520.955
Homo_sapiens 6.689 2.700 1475.113 1.898 1696.909 130.381
GoogleNw 15.591 8.389 107.902 15763.000 15763.000 15763.000
dip20090126_MAX 2.883 3.826 5.833 6.590 5.708 7.392
com-amazon.all.cmty 415.286 2.499 5471.982 3.297 8224.693 373.294
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Table VII. Detailed comparison of the improvement factors, with k = 10.

Directed Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 3.713 2.884 4.037 290.626 4.025 361.593
liechtenstein 2.318 2.002 2.104 111.959 2.106 116.713
isle-of-man 2.623 2.933 2.711 209.904 2.720 288.123
malta 5.325 3.861 4.094 70.037 4.086 101.546
belize 2.690 3.638 2.592 244.275 2.580 416.210
azores 13.436 2.644 19.043 222.073 19.045 254.206

Undirected Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 3.702 2.594 4.046 320.588 3.848 388.713
liechtenstein 2.316 1.965 2.097 142.047 2.114 150.608
isle-of-man 2.612 2.889 2.695 241.431 2.636 323.185
malta 4.768 3.615 3.920 115.574 3.910 208.192
belize 2.564 3.634 2.496 323.257 2.469 563.820
azores 22.392 2.559 18.541 539.032 18.712 653.372

Directed Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
polblogs 3.199 1.039 13.518 1.496 13.544 2.928
out.opsahl-openflights 13.739 1.130 32.297 1.984 32.405 6.867
ca-GrQc 9.863 1.356 25.238 3.096 25.786 4.565
out.subelj_jung-j_jung-j 124.575 1.000 79.284 1.024 79.657 1.884
p2p-Gnutella08 5.684 1.064 12.670 3.241 12.763 3.599
out.subelj_jdk_jdk 116.228 1.000 74.106 1.023 74.363 1.730
wiki-Vote 9.812 1.205 166.941 1.453 174.775 25.411
p2p-Gnutella09 5.532 1.084 16.293 3.624 16.265 4.213
ca-HepTh 7.772 1.586 31.314 3.013 32.604 4.356
freeassoc 33.414 1.034 10.612 2.210 10.704 2.178
ca-HepPh 7.682 2.077 10.322 3.042 10.340 4.010
out.lasagne-spanishbook 13.063 1.483 303.044 1.067 351.262 94.351
out.cfinder-google 16.725 1.413 36.364 2.665 24.765 3.017
ca-CondMat 7.382 2.318 91.209 3.507 93.548 7.027
out.subelj_cora_cora 13.699 1.287 12.763 1.334 12.909 2.072
out.ego-twitter 2689.884 1.000 1817.032 28.157 2872.213 218.411
out.ego-gplus 722.024 1.000 951.983 201.949 1085.361 482.204
as-caida20071105 20.974 1.615 997.996 1.371 1266.443 448.729
cit-HepTh 4.030 2.179 11.361 1.486 11.423 2.832

Undirected Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
HC-BIOGRID 5.528 1.240 10.714 3.102 10.036 3.058
facebook_combined 10.456 1.292 9.103 2.236 9.371 2.694
Mus_musculus 18.246 1.316 18.630 2.279 20.720 3.288
Caenorhabditis_elegans 11.445 1.405 58.729 1.904 68.905 7.605
ca-GrQc 6.567 1.340 26.050 3.052 26.769 5.011
as20000102 19.185 1.529 196.538 1.314 209.674 52.210
advogato 8.520 1.405 131.173 2.043 132.207 11.155
p2p-Gnutella09 3.744 1.632 79.093 1.623 87.357 12.941
hprd_pp 6.543 1.436 47.945 1.837 47.866 8.620
ca-HepTh 7.655 1.546 32.612 2.961 34.407 4.677
Drosophila_melanogaster 5.573 1.672 50.840 1.646 54.637 5.743
oregon1_010526 20.474 1.451 418.099 1.282 429.161 109.549
oregon2_010526 17.330 1.560 364.277 1.302 371.929 71.186
Homo_sapiens 6.689 1.599 81.496 1.620 82.250 15.228
GoogleNw 15.591 1.320 23.486 1.252 23.053 2.420
dip20090126_MAX 2.881 1.836 4.055 4.556 4.065 4.498
com-amazon.all.cmty 414.765 1.618 3407.016 3.279 3952.370 199.386
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Table VIII. Detailed comparison of the improvement factors, with k = 100.

Directed Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 3.713 2.823 3.694 150.956 3.691 168.092
liechtenstein 2.318 1.998 2.078 84.184 2.086 86.028
isle-of-man 2.620 2.902 2.551 139.139 2.567 167.808
malta 5.282 3.850 3.933 56.921 3.942 76.372
belize 2.688 3.617 2.526 184.718 2.516 268.634
azores 13.334 2.628 18.380 194.724 18.605 220.013

Undirected Street
Network Olh Ocl DegCut DegBound NBCut NBBound
faroe-islands 3.702 2.548 3.693 159.472 3.523 171.807
liechtenstein 2.311 1.959 2.072 96.782 2.095 99.768
isle-of-man 2.607 2.847 2.533 153.859 2.468 183.982
malta 4.758 3.605 3.745 89.929 3.730 137.538
belize 2.562 3.629 2.428 226.582 2.406 323.257
azores 22.345 2.548 18.092 411.760 18.384 476.253

Directed Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
polblogs 3.198 1.037 3.951 1.245 3.961 1.731
out.opsahl-openflights 13.739 1.124 5.524 1.456 5.553 1.740
ca-GrQc 9.863 1.339 11.147 2.353 10.407 2.926
out.subelj_jung-j_jung-j 123.393 1.000 78.473 1.021 78.798 1.787
p2p-Gnutella08 5.684 1.063 6.611 2.935 7.750 3.278
out.subelj_jdk_jdk 114.210 1.000 73.522 1.020 73.755 1.669
wiki-Vote 9.812 1.186 61.375 1.236 60.475 9.436
p2p-Gnutella09 5.531 1.083 6.370 3.109 7.650 3.508
ca-HepTh 7.772 1.570 16.135 2.477 16.747 3.135
freeassoc 33.266 1.032 6.314 2.154 6.428 2.138
ca-HepPh 7.682 2.032 9.605 2.549 9.619 3.340
out.lasagne-spanishbook 13.063 1.467 56.689 1.043 80.069 33.271
out.cfinder-google 16.725 1.392 13.521 2.655 12.298 2.722
ca-CondMat 7.382 2.288 16.884 2.602 16.950 2.824
out.subelj_cora_cora 13.231 1.280 11.171 1.315 11.350 1.870
out.ego-twitter 2621.659 1.000 1574.836 26.893 1908.731 110.236
out.ego-gplus 722.024 1.000 522.333 181.754 522.576 236.280
as-caida20071105 20.974 1.606 17.971 1.216 18.694 5.479
cit-HepTh 3.969 2.143 8.867 1.466 9.068 2.662

Undirected Complex
Network Olh Ocl DegCut DegBound NBCut NBBound
HC-BIOGRID 5.528 1.236 4.452 2.154 4.345 1.999
facebook_combined 10.456 1.292 3.083 1.470 3.074 1.472
Mus_musculus 18.245 1.305 7.940 1.944 9.518 2.631
Caenorhabditis_elegans 11.445 1.391 11.643 1.463 12.296 3.766
ca-GrQc 6.567 1.331 11.311 2.346 10.389 3.105
as20000102 19.185 1.512 7.318 1.174 7.956 3.593
advogato 8.520 1.398 32.629 1.706 33.166 7.784
p2p-Gnutella09 3.744 1.625 11.378 1.374 11.867 3.695
hprd_pp 6.543 1.422 21.053 1.547 22.191 3.468
ca-HepTh 7.655 1.539 16.406 2.454 17.030 3.301
Drosophila_melanogaster 5.573 1.655 29.115 1.487 30.979 4.614
oregon1_010526 20.474 1.443 13.300 1.163 14.611 6.569
oregon2_010526 17.330 1.530 18.203 1.173 21.758 7.258
Homo_sapiens 6.689 1.577 19.350 1.445 20.182 3.080
GoogleNw 15.591 1.320 16.224 1.172 16.506 2.010
dip20090126_MAX 2.880 1.815 2.789 2.602 2.784 2.546
com-amazon.all.cmty 414.765 1.605 1368.675 3.236 1654.150 97.735
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B. REAL-WORLD LARGE NETWORKS EXPERIMENTS: DETAILED RESULTS
Table IX. Detailed comparison of the improvement factors on big networks.

Directed Street
k = 1 k = 10 k = 100

Input Nodes Edges Impr. Time Impr. Time Impr. Time
egypt 1054242 2123036 144.91 0:03:55 132.86 0:04:25 116.74 0:04:48
new_zealand 2759124 5562944 447.55 0:02:34 443.95 0:02:35 427.31 0:02:38
india 16230072 33355834 1370.32 0:43:42 1369.05 0:44:17 1326.31 0:45:05
california 16905319 34303746 1273.66 0:54:56 1258.12 0:56:00 1225.73 0:56:02
north_am 35236615 70979433 1992.68 2:25:58 1967.87 2:29:25 1877.78 2:37:14

Undirected Street
k = 1 k = 10 k = 100

Input Nodes Edges Impr. Time Impr. Time Impr. Time
egypt 1054242 1159808 344.86 0:01:54 340.30 0:01:54 291.71 0:02:11
new_zealand 2759124 2822257 811.75 0:02:47 786.52 0:03:02 734.20 0:03:02
india 16230072 17004400 2455.38 0:44:21 2484.70 0:44:38 2422.40 0:44:21
california 16905319 17600566 2648.08 0:39:15 2620.17 0:42:04 2504.86 0:44:19
north_am 35236615 36611653 7394.88 1:13:37 7530.80 1:15:01 7263.78 1:10:28

Directed Complex
k = 1 k = 10 k = 100

Input Nodes Edges Impr. Time Impr. Time Impr. Time
cit-HepTh 27769 352768 16.34 0:00:01 11.41 0:00:01 9.06 0:00:02
cit-HepPh 34546 421534 23.68 0:00:01 19.88 0:00:01 14.41 0:00:02
p2p-Gnut31 62586 147892 194.19 0:00:01 44.24 0:00:01 19.34 0:00:04
soc-Eps1 75879 508837 243.14 0:00:01 43.75 0:00:01 33.60 0:00:05
soc-Slash0811 77360 828161 1007.70 0:00:00 187.46 0:00:00 21.09 0:00:18
twitter_comb 81306 2684592 1024.32 0:00:01 692.96 0:00:01 145.68 0:00:05
Slash090221 82140 549202 177.82 0:00:02 162.30 0:00:02 108.53 0:00:03
gplus_comb 107614 24476570 1500.35 0:00:04 235.17 0:00:04 62.54 0:02:19
soc-sign-eps 131828 840799 225.91 0:00:03 161.58 0:00:03 39.26 0:00:16
email-EuAll 265009 418956 4724.80 0:00:00 3699.48 0:00:00 1320.22 0:00:01
web-Stanford 281903 2312497 13.59 0:04:00 8.70 0:04:00 7.47 0:07:15
web-NotreD 325729 1469679 1690.08 0:00:02 132.83 0:00:02 66.88 0:00:49
amazon0601 403394 3387388 10.81 0:14:54 8.87 0:14:54 6.84 0:22:04
web-BerkStan 685230 7600595 3.95 1:36:21 3.67 1:36:21 3.47 1:49:12
web-Google 875713 5105039 228.61 0:01:51 96.63 0:01:51 38.69 0:10:29
youtube-links 1138494 4942297 662.78 0:01:33 200.68 0:01:33 125.72 0:07:02
in-2004 1382870 16539643 43.68 0:41:45 29.89 0:41:45 16.68 1:48:42
trec-wt10g 1601787 8063026 33.86 0:36:01 20.39 0:36:01 16.73 1:10:54
soc-pokec 1632803 22301964 21956.64 0:00:17 2580.43 0:06:14 1106.90 0:12:35
zhishi-hudong 1984484 14682258 30.37 1:25:38 27.71 1:25:38 24.95 1:53:27
zhishi-baidu 2141300 17632190 44.05 1:17:52 38.61 1:17:52 23.17 3:08:05
wiki-Talk 2394385 5021410 34863.42 0:00:08 28905.76 0:00:08 9887.18 0:00:18
cit-Patents 3774768 16518947 9454.04 0:02:07 8756.77 0:02:07 8340.18 0:02:13

Undirected Complex
k = 1 k = 10 k = 100

Input Nodes Edges Impr. Time Impr. Time Impr. Time
ca-HepPh 12008 118489 10.37 0:00:00 10.20 0:00:00 9.57 0:00:01
CA-AstroPh 18772 198050 62.47 0:00:00 28.87 0:00:01 14.54 0:00:01
CA-CondMat 23133 93439 247.35 0:00:00 84.48 0:00:00 17.06 0:00:01
email-Enron 36692 183831 365.92 0:00:00 269.80 0:00:00 41.95 0:00:01
loc-brightkite 58228 214078 308.03 0:00:00 93.85 0:00:01 53.49 0:00:02
flickrEdges 105938 2316948 39.61 0:00:23 17.89 0:00:55 15.39 0:01:16
gowalla 196591 950327 2412.26 0:00:01 33.40 0:01:18 28.13 0:01:33
com-dblp 317080 1049866 500.83 0:00:10 300.61 0:00:17 99.64 0:00:52
com-amazon 334863 925872 37.76 0:02:21 31.33 0:02:43 18.68 0:04:34
com-lj.all 477998 530872 849.57 0:00:07 430.72 0:00:13 135.14 0:00:45
com-youtube 1134890 2987624 2025.32 0:00:32 167.45 0:06:44 110.39 0:09:16
soc-pokec 1632803 30622564 46725.71 0:00:18 8664.33 0:02:16 581.52 0:18:12
as-skitter 1696415 11095298 185.91 0:19:06 164.24 0:21:53 132.38 0:27:06
com-orkut 3072441 117185083 23736.30 0:02:32 255.17 2:54:58 69.23 15:02:06
youtube-u-g 3223585 9375374 11473.14 0:01:07 91.17 2:07:23 66.23 2:54:12
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C. IMDB CASE STUDY: DETAILED RESULTS

Table X. Detailed ranking of the IMDB actor graph.

1940 1945 1950 1955
1 Semels, Harry (I) Corrado, Gino Flowers, Bess Flowers, Bess
2 Corrado, Gino Steers, Larry Steers, Larry Harris, Sam (II)
3 Steers, Larry Flowers, Bess Corrado, Gino Steers, Larry
4 Bracey, Sidney Semels, Harry (I) Harris, Sam (II) Corrado, Gino
5 Lucas, Wilfred White, Leo (I) Semels, Harry (I) Miller, Harold (I)
6 White, Leo (I) Mortimer, Edmund Davis, George (I) Farnum, Franklyn
7 Martell, Alphonse Boteler, Wade Magrill, George Magrill, George
8 Conti, Albert (I) Phelps, Lee (I) Phelps, Lee (I) Conaty, James
9 Flowers, Bess Ring, Cyril Ring, Cyril Davis, George (I)
10 Sedan, Rolfe Bracey, Sidney Moorhouse, Bert Cording, Harry

1960 1965 1970 1975
1 Flowers, Bess Flowers, Bess Flowers, Bess Flowers, Bess
2 Harris, Sam (II) Harris, Sam (II) Harris, Sam (II) Harris, Sam (II)
3 Farnum, Franklyn Farnum, Franklyn Tamiroff, Akim Tamiroff, Akim
4 Miller, Harold (I) Miller, Harold (I) Farnum, Franklyn Welles, Orson
5 Chefe, Jack Holmes, Stuart Miller, Harold (I) Sayre, Jeffrey
6 Holmes, Stuart Sayre, Jeffrey Sayre, Jeffrey Miller, Harold (I)
7 Steers, Larry Chefe, Jack Quinn, Anthony (I) Farnum, Franklyn
8 Parìs, Manuel Parìs, Manuel O’Brien, William H. Kemp, Kenner G.
9 O’Brien, William H. O’Brien, William H. Holmes, Stuart Quinn, Anthony (I)
10 Sayre, Jeffrey Stevens, Bert (I) Stevens, Bert (I) O’Brien, William H.

1980 1985 1990 1995
1 Flowers, Bess Welles, Orson Welles, Orson Lee, Christopher (I)
2 Harris, Sam (II) Flowers, Bess Carradine, John Welles, Orson
3 Welles, Orson Harris, Sam (II) Flowers, Bess Quinn, Anthony (I)
4 Sayre, Jeffrey Quinn, Anthony (I) Lee, Christopher (I) Pleasence, Donald
5 Quinn, Anthony (I) Sayre, Jeffrey Harris, Sam (II) Hitler, Adolf
6 Tamiroff, Akim Carradine, John Quinn, Anthony (I) Carradine, John
7 Miller, Harold (I) Kemp, Kenner G. Pleasence, Donald Flowers, Bess
8 Kemp, Kenner G. Miller, Harold (I) Sayre, Jeffrey Mitchum, Robert
9 Farnum, Franklyn Niven, David (I) Tovey, Arthur Harris, Sam (II)
10 Niven, David (I) Tamiroff, Akim Hitler, Adolf Sayre, Jeffrey

2000 2005 2010 2014
1 Lee, Christopher (I) Hitler, Adolf Hitler, Adolf Madsen, Michael (I)
2 Hitler, Adolf Lee, Christopher (I) Lee, Christopher (I) Trejo, Danny
3 Pleasence, Donald Steiger, Rod Hopper, Dennis Hitler, Adolf
4 Welles, Orson Sutherland, Donald (I) Keitel, Harvey (I) Roberts, Eric (I)
5 Quinn, Anthony (I) Pleasence, Donald Carradine, David De Niro, Robert
6 Steiger, Rod Hopper, Dennis Sutherland, Donald (I) Dafoe, Willem
7 Carradine, John Keitel, Harvey (I) Dafoe, Willem Jackson, Samuel L.
8 Sutherland, Donald (I) von Sydow, Max (I) Caine, Michael (I) Keitel, Harvey (I)
9 Mitchum, Robert Caine, Michael (I) Sheen, Martin Carradine, David
10 Connery, Sean Sheen, Martin Kier, Udo Lee, Christopher (I)
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Table XI. Detailed improvement factors on the IMDB actor graph.

Year 1940 1945 1950 1955
Nodes 69 011 83 068 97 824 120 430
Edges 3 417 144 5 160 584 6 793 184 8 674 159
Impr (k = 1) 51.74 61.46 67.50 91.46
Impr (k = 10) 32.95 40.73 44.72 61.52
Year 1960 1965 1970 1975
Nodes 146 253 174 826 210 527 257 896
Edges 11 197 509 12 649 114 14 209 908 16 080 065
Impr (k = 1) 122.63 162.06 211.05 285.57
Impr (k = 10) 80.50 111.51 159.32 221.07
Year 1980 1985 1990 1995
Nodes 310 278 375 322 463 078 557 373
Edges 18 252 462 20 970 510 24 573 288 28 542 684
Impr (k = 1) 380.52 513.40 719.21 971.11
Impr (k = 10) 296.24 416.27 546.77 694.72
Year 2000 2005 2010 2014
Nodes 681 358 880 032 1 237 879 1 797 446
Edges 33 564 142 41 079 259 53 625 608 72 880 156
Impr (k = 1) 1326.53 1897.31 2869.14 2601.52
Impr (k = 10) 838.53 991.89 976.63 1390.32
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