
Submitted by
Klaus Peter Brandner,
BSc

Submitted at
Institute for Business
Informatics Software
Engineering

Supervisor
Ass.Prof. Dipl.-Ing. Dr.
Rainer Weinreich

September 2018

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

A Recommender System
for Software Architecture
Decision Making

Master Thesis

to obtain the academic degree of

Master of Science

in the Master’s Program

Business Informatics

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.
This thesis is identical to the electronically transmitted text document.

. .
date

. .
signature

Abstract

The quality and success of a software product highly depends on its software architecture.
Inappropriate decisions during the architectural design of a software system are often hard
to reverse and might lead to costly and time-intensive changes later on. Therefore, soft-
ware architects are required to make proper design decisions early on in the architectural
design process. The goal of this thesis is the development of a recommender system
for software architecture design decisions. The thesis starts by presenting basic concepts
and terms of software architecture, software architecture decision making, and decision
models. It then presents fundamentals of recommender systems including different kinds
of recommender systems. The main part of the thesis is the presentation of the devel-
oped recommender system for software architecture decision making based on decision
models. This includes a presentation of the main requirements of the system, of its
conceptual realization, and of its implementation.

Kurzfassung

Die Qualität und der Erfolg eines Softwareprodukts hängen stark von seiner Softwarear-
chitektur ab. Falsche Entscheidungen bei der Gestaltung der Architektur eines Software-
systems sind oft schwer rückgängig zu machen und können später zu kostspieligen und
zeitintensiven Änderungen führen. Daher sind Softwarearchitekten gefordert, frühzeitig
im Architekturdesign richtige Entwurfsentscheidungen zu treffen. Das Ziel dieser Ar-
beit ist die Entwicklung eines Empfehlungssystems für Entwurfsentscheidungen zur Ge-
staltung der Softwarearchitektur. Die Arbeit beginnt mit der Erklärung grundlegender
Begriffe und Konzepte in den Bereichen Softwarearchitektur, Entwurfsentscheidungen
für Softwarearchitekturen und Entscheidungsmodelle. Anschließend werden grundlegen-
de Aspekte von Empfehlungssystemen vorgestellt, einschließlich verschiedener Arten von
Empfehlungssystemen. Der Hauptteil der Arbeit ist die Präsentation des entwickelten
Empfehlungssystems zur Unterstützung der Entscheidungsfindung im Architekturdesi-
gnprozess auf Basis von Entscheidungsmodellen. Dazu gehört eine Darstellung der we-
sentlichen Anforderungen an das System, seiner konzeptionellen Umsetzung und seiner
Implementierung.

Contents

1 Introduction 3
1.1 Goal of the Thesis . 4
1.2 Structure of the Thesis . 4

2 Terms and Concepts 5
2.1 Software Architecture . 5
2.2 Architecture Profile . 7
2.3 Decision Models . 10

2.3.1 Decision Guidance . 11
2.3.2 Decision-Making and Documentation 14

2.4 Discussion . 16

3 Recommender Systems 19
3.1 Terms and Concepts . 20
3.2 Recommender System Categories . 21
3.3 Collaborative-Filtering Recommender Systems 22

3.3.1 User-based Collaborative-Filtering 24
3.3.2 Item-based Collaborative-Filtering 25
3.3.3 Model-based Methods . 27
3.3.4 Strengths and Weaknesses . 27

3.4 Content-based Recommender Systems 28
3.4.1 Preprocessing Data . 29
3.4.2 Creating a User Profile . 30
3.4.3 Filtering and Recommendation 31
3.4.4 Strengths and Weaknesses . 31

3.5 Knowledge-based Recommender Systems 32
3.5.1 Constraint-based . 33
3.5.2 Case-based . 34
3.5.3 Strengths and Weaknesses . 37

3.6 Hybrid Recommender Systems . 38
3.6.1 Mixed . 39
3.6.2 Ensembles . 39
3.6.3 Monolithic . 41
3.6.4 Recommender Combinations 42

1

CONTENTS

3.6.5 Strengths and Weaknesses . 43
3.7 Summary . 43

4 System Requirements and Concepts 45
4.1 Context . 45

4.1.1 Software Architecture and Technologies 46
4.1.2 Data Model . 46

4.2 Requirements . 48
4.2.1 General Requirements . 48
4.2.2 Recommendation of Decision Models 49
4.2.3 Recommendation of Design Options 51

4.3 Recommendation Strategies . 53
4.3.1 Recommendation of Decision Models 54
4.3.2 Recommendation of Design Options 62

5 User Interface and Imlementation 70
5.1 User Interface . 70

5.1.1 Recommendation of Decision Models 70
5.1.2 Recommendation of Design Options 73

5.2 Architecture and Implementation . 76
5.2.1 Top-Level Software Architecture 76
5.2.2 High-Level Component Interactions 77
5.2.3 Recommender Algorithms . 79
5.2.4 Similarity Measures . 80
5.2.5 Recommender System API . 81

6 Conclusion 84

List of Figures 87

List of Tables 88

Bibliography 89

2

Chapter 1

Introduction

Software architecture is a major research topic in the field of software engineering. The
interest in software architecture increased significantly in the last two decades [1]. The
architecture of a software system mainly refers to the set of design decisions that were
made in the development and later adaptations of the system. A proper software archi-
tecture is essential for high-quality and successful software products [2]. Taylor et al.
[2] highlight the relation between the quality of the architectural design and the quality
of software products. They state that high-quality software products with a poor design
are to a high degree uncommon. Babar et al. [3] state that in the design process of a
software architecture, the software system as a whole gets decomposed to deal with the
complexity of a system and to make it manageable. The decomposed parts of the system
are responsible for solving a user’s problem. However, there does not exist a recipe for
this method which makes the design process of a software architecture a creative one.
Therefore, the quality of the architectural design process highly depends on the people
involved in this process.

Making the right decisions in the architectural design process of a software system early
on is crucial to avoid costly and time-intensive changes later. Babar et al. [3] even state
that changing a design decision at a later stage can not only be costly but may also be
impossible to do. To overcome this issue, this thesis examines the use of a recommender
system in the decision-making process of software architecture design. The idea is to
make recommendations to software architects so that they make decisions that fit best to
the requirements for the software system. It is important to highlight that the accuracy
of the recommender system depends on the documented architectural knowledge like
requirements and already made design decisions. However, the recommender system
should be designed in a way that it provides recommendations even if there is little
known and documented about a software system. Thereby, the recommender system
should provide recommendations early on in the architectural design process and becomes
more accurate when more architectural knowledge is documented.

3

1.1. GOAL OF THE THESIS

1.1 Goal of the Thesis

Software architecture is all about making design decisions that fulfill the requirements
of the customer and other stakeholders. Making the right decisions, however, can be a
challenging task and depends on the qualification and experience of the software architect
[3]. This thesis demonstrates how a recommender system can support software architects
in the decision-making process. The goal of the thesis is the development of a recom-
mender system that uses architectural knowledge like requirements and documented
design decisions to make recommendations for upcoming design decisions. Furthermore,
the recommender system should incorporate the documented architectural knowledge of
other software systems. Using this information, software architects will get recommen-
dations based on how other software architects decided in certain design areas. The
goal of the thesis can be reached by answering two research questions. First, it needs
to be clarified what types of recommender systems exist and how they work. This is
done by conducting a literature analysis on recommender systems. Secondly, this thesis
demonstrates how these recommender systems can be applied in the context of software
architecture. To answer this research question, a recommender system was developed
for a tool for managing architectural knowledge that has been developed by the soft-
ware architecture group (lead R. Weinreich) at the Department of Business Informatics
- Software Engineering at the Johannes Kepler University Linz.

1.2 Structure of the Thesis

This thesis is structured into four chapters. Chapter 2 deals with terms and concepts
that are necessary for the understanding of the following chapters. Next, an overview
of prominent recommender systems is presented in Chapter 3. This chapter analyzes
different kinds of recommender systems and explains how different recommender methods
work. Chapter 4 deals with the requirements of the recommender system and presents
a concept for recommendation strategies to fulfill these requirements in the context
of software architecture. Thereby, this chapter focuses on the data that is used to
make recommendations, the recommender methods that are applied, how the different
recommender methods can be combined, and the results of the recommender system.
Chapter 5 demonstrates how the results of the recommender system are displayed in
the user interface of the application. Thereby, the chapter shows the information that
is presented to the user supporting the decision-making process. Also, this chapter
deals with architecture and implementation aspects. It shows the top-level structure of
the developed recommender system and explains key-components and the interactions
between them.

4

Chapter 2

Terms and Concepts

This chapter explains terms and concepts that are relevant for the understanding of the
following chapters. The first section deals with the term software architecture. Therefore,
this section clarifies the term software architecture by comparing and discussing various
definitions of that term. Furthermore, this section explains what architectural knowledge
is and why it is important to document it. The second section introduces architecture
profiles as a means to document architectural knowledge. Finally, the last section deals
with decision models. This section shows how decision guidance models are used to
support the decision-making process of software architectures. Additionally, it presents a
possibility to document the decisions in terms of a decision documentation using decision
models.

2.1 Software Architecture

In the early 1990, the first definitions of the term software architecture emerged. Ever
since, the definitions evolved as the view on software architecture changed. In 1995,
Shaw et al. [4] defined the term software architecture as follows:

”The architecture of a software system defines that system in terms of
computational components and interactions among those components.” [4]

This definition shows, that the components of a software system and the interactions
between these components refer to its architecture. However, this is a quite narrow
view on software architecture as more aspects play an important role in the design of a
software architecture nowadays. The second definition was made by Bass et al. [5] in
2003:

5

2.1. SOFTWARE ARCHITECTURE

”The software architecture of a program or computing system is the
structure or structures of the system, which comprise software elements, the
externally visible properties of those elements, and the relationships among
them.” [5]

In contrast to the first definition by Shaw et al. [4], this definition shows that a software
system may have multiple structures that are of interest. Therefore, the whole software
architecture can not always be visualized by only one point of view on the system. Fur-
thermore, Bass et al. [5] state that a software architecture also contains the externally
visible properties of software components. However, the result of the software architec-
ture design process is still solution-oriented. Hence, the software architecture shows how
the system looks like. A more recent definition was made by Taylor et al. [2] in 2010.

”A system’s architecture is the set of principal design decisions made
during its development and any subsequent evolution.” [2]

In this definition, the view on software architecture changed from a solution-oriented
view to a decision-oriented view. Therefore, it became more important to see why a
certain software system is the way it is in contrast to how the system looks like [1]. For
this purpose, the software architecture refers to all design decisions made in the lifecycle
of a software system. Also, Bosch [6] had a similar view on software architecture in 2004.

”The key difference from traditional approaches is that we do not view a
software architecture as a set of components and connectors, but rather as
the composition of a set of architectural design decisions.” [6]

The definitions by Taylor et al. [2] and Bosch [6] show that the made design decisions and
the rationale behind these decisions are often more interesting than the actual solution.
Therefore, it is important to document both the design decisions and the rationales
during the architectural design process.

Generally speaking, architectural knowledge is produced during the architectural design
process. According to Babar et al. [3], important parts of the architectural knowledge
are the solutions as well as the design decisions that lead to these solutions. However,
also assumptions, the context, and other factors that lead to the system as it is are
parts of the architectural knowledge. In this regards, Weinreich and Groher [1] include
the requirements, project-generic knowledge like the experience of the people involved,
patterns, and architectural tactics in the architectural knowledge. As mentioned earlier,
the rationales behind the design decisions are also an important part of the architectural
knowledge. Babar et al. [3] state that these rationales serve two purposes. First, they
show the reason for a certain design choice. Second, they show the alternatives that
have been identified and evaluated.

6

2.2. ARCHITECTURE PROFILE

A problem that is present oftentimes in practice is that design decisions are not well
documented or not documented at all. In most cases, the solution may be documented,
but not the rationale behind these solutions [3]. However, as mentioned before, the
design decisions are often more interesting than the actual solutions. This can lead to
the situation in which this architectural knowledge resides only in the head of the software
architect. If the software architect leaves the company or the architectural knowledge is
not accessible due to other reasons, this knowledge can get lost [3]. This has a significant
impact on the subsequent evolution of the software system as design decisions made in
the past are no longer comprehensible. Babar et al. [3] examined the reason behind
the lack of documented architectural knowledge and found three main reasons. First,
a design decision could be obvious to the software architect or the software architect
does not see the design decision as such. For example, based on the experience, a
software architect always follows a certain pattern and sees no need for documentation
in this case. Second, the software architect is aware of a design decision but leaves it
undocumented. Weinreich and Groher [1] identified that time and cost are the main
factors for this behavior. Finally, the software architect does not document a design
decision intentionally. Tactical company reasons or personal reasons of the software
architect are main drivers for this case. For example, the software architect could keep
design decisions undocumented to protect his position in the company or organization.

Since a software system will evolve over time, it might be necessary to replace certain
design decisions. Therefore, it is important to keep the architectural knowledge up-to-
date to make it manageable and maintainable [3]. The need for the management of
architectural knowledge led to the development of architecture knowledge management
approaches. Many different tools have been developed for this purpose. Examples can
be found in [7].

To sum up the term software architecture, nowadays, the term mainly refers to the set of
design decisions made in the architectural design process of a software system. According
to Babar et al. [3], the software architecture serves three purposes. On the one hand,
it is used for communication purposes among stakeholders. On the other hand, the
software architecture captures early design decisions and, therefore, the global structure
of the system. Finally, the software architecture serves as an abstraction of the whole
software system to make it readable by people and to make certain concepts reusable.

2.2 Architecture Profile

As explained in the previous section, the documentation of the architectural knowledge is
a crucial task to avoid vaporization of relevant knowledge over time. However, a complete
documentation of a software system can become long winded and, as a consequence, is
never read [8]. Architecture haikus have been proposed to deal with this issue. Keeling
[8] defines architecture haiku as follows:

7

2.2. ARCHITECTURE PROFILE

”An architecture haiku is a quick-to-build, uber-terse design description
that lets you distill a software-intensive system’s architecture to a single piece
of paper.” [8]

Therefore, architecture haikus restrict the software architecture documentation to the
absolute necessary to include only the most essential design decisions and rationales.
Software architects are forced to aim attention at the most important aspects of a
software system and leave out superfluous details. The aim is to have a software archi-
tecture documentation that fits on one piece of paper. Keeling [8] highlights an example
to shorten the documentation of a software architecture by saying that it can be assumed
that the reader is in possession of certain knowledge which makes it unnecessary to doc-
ument decisions in full detail. For example, it can be assumed that the meaning of the
word ”layer” in software architectures will be known by the reader and does not need to
be explained in more detail. However, keeping the software architecture documentation
short and compact can be challenging since oftentimes it is easier to write a long docu-
mentation instead of a short documentation focusing only on the most relevant aspects.
This can be compared with the prominent saying: ”I write you a long letter because I
did not have time to write you a short one.”. Nevertheless, Fairbanks [9] recommended
that the architecture haiku should include following information:

• a solution description

• trade-offs

• quality attribute priorities

• architectural drivers

• design rationales

• constraints

• architecture styles

• diagrams

Based on the architecture haiku approach, a lean web-based architecture knowledge
management tool has been developed by the software architecture group (lead R. Wein-
reich) at the Department of Business Informatics - Software Engineering at the Johannes
Kepler University Linz. The tool is called Architecture Knowledge Base (AKB) and ex-
tends the basic concept of the architectural haiku. Using this tool, stakeholders can
create, edit, and share architecture descriptions in an architecture haiku manner for their
projects. These architecture descriptions are called architecture profiles. An example of
an architecture profile describing the architecture of eBay is shown in Figure 2.1.

Figure 2.1 shows that architecture profiles are divided into two parts. The left part shows
attributes, constraints and trade-offs and the right part shows design decisions which are
divided into general decisions, styles, patterns, and tactics. Also, a rationale can be

8

2.2. ARCHITECTURE PROFILE

Figure 2.1: Excerpt of an architecture profile for eBay

provided to each design decision. It can be said that the left part shows attributes,
constraints and trade-offs that are influenced by or result from the design decisions on
the right side of the architecture profile. Furthermore, green, red, and gray boxes indicate
relations between elements. The color refers to the kind of impact which can be either
positive, negative, or neutral. As Figure 2.1 shows, the general decision ”No Database
Transactions” has a positive impact on the attribute ”Efficiency” in the case of eBay.

As Keeling [8] explains, for large and complex software systems, it is possible to create
multiple architecture haikus describing subcomponents of the whole system. In this case,
he mentions that it might also be helpful to have a top-level architecture haiku of the
whole system to have a common understanding among stakeholders. The AKB tool
supports this idea by offering the ability to hierarchically organize architecture profiles.
The way in which architecture profiles are hierarchically organized is left to the user.

Furthermore, users can add properties to architecture profiles in form of tags. These
properties can be used to show the application context of the architecture profile, for
example. In case of a microservice architecture, one would add the tag ”Microservice”

9

2.3. DECISION MODELS

to the architecture profile. Properties are especially useful when multiple architecture
profiles are used to describe a software architecture. In this case, properties may deter-
mine which design decisions are documented in this architecture profile. For instance,
a sub-architecture profile describing all design decisions for monitoring will have the tag
”Monitoring”.

2.3 Decision Models

In contrast to architecture profiles which represent project-specific architecture knowl-
edge, decision models provide project-generic architecture knowledge. Decision models
show design options in a specific design space and can be reused for new architecture
profiles. In this context, a design space refers to a specific area of a software architecture
in which decisions can be made, e.g., Monitoring, Caching, Versioning. In other domains,
decision models have been successfully used for decision making and the documentation
of decisions. Furthermore, they have been used for design space exploration. This section
examines the use of decision models in software architecture and presents a meta-model
developed by Haselböck et al. [10] to create decision models for microservice architec-
tures. These decision models have been incorporated into the Architecture Knowledge
Base (AKB) tool presented in the previous section. Thus, they can be used to create
architecture profiles.

One of the first approaches for decision models for human-computer interaction was
developed by MacLean et al. [11, 12]. They created the semiformal notation QOC.
QOC stands for questions, options, and criteria. The aim of the QOC approach is the
analysis and representation of a design space. Thereby, the analysis of a design space
is conducted by defining questions which refer to main design issues, possible options
to answer these questions, and criteria to make the options assessable and comparable.
Nowadays, the QOC approach by MacLean et al. [11, 12] serves as a basis for decision
models in software architecture [10].

Zimmermann and Miksovic [13] introduce decision models in the context of service-
oriented architecture. They focused on creating models that should serve as guidance
when making decisions by showing possible issues and solutions. These guidance models
can be reused for design decisions in multiple projects since they provide project-generic
knowledge. Therefore, Zimmermann and Miksovic describe guidance models as ”reusable
assets” [13]. Similarly, Lewis et al. [14] presented decision models in the context of cyber-
foraging systems. They also aimed to create guidance for the architectural design process
and the subsequent evolution of these systems. The decision models by Lewis et al. [14]
can be compared to the guidance models by Zimmermann and Miksovic [13]. Both
concepts include the distinction between problem-space and solution-space modeling.
The problem-space comprises the requirements for the system and the solution-space
the possible design options.

10

2.3. DECISION MODELS

Haselböck et al. [10, 15, 16] examined decision models for microservice architectures.
They developed a meta-model as a basis to create decision models. The meta-model
can be compared to those of Zimmermann and Miksovic [13] and Lewis et al. [14]. As
mentioned before, the decision models were incorporated into the Architecture Knowl-
edge Base (AKB) tool that has been developed by the software architecture group (lead
R. Weinreich) at the Department of Business Informatics - Software Engineering at the
Johannes Kepler University Linz. Similar to architecture profiles presented in the previ-
ous section, decision models can be created, edited, and shared. Decision models can
be used in the architectural design process as guidance and for documentation in mul-
tiple architecture profiles. Hence, they are project-generic assets that can be used by
stakeholders when making decisions for a software architecture.

2.3.1 Decision Guidance

This section focuses on the use of decision models for decision guidance. For this pur-
pose, decision models include concerns, aspects, design options, components, technology
options, and any relationships between these elements. Concerns refer to questions in
the QOC approach by MacLean et al. [12] and to requirements in other decision mod-
els, e.g., the decision models by Lewis et al. [14]. Therefore, concerns represent issues
that have been identified in a specific design space and that are addressed by possible
design options. A design option refers to an option in the QOC approach and can be
either a general decision, an architectural style, a pattern, or a tactic. Design options
can be extended by showing required components, on the one hand, and technology
options that can be used to implement them, on the other hand. Finally, aspects refer
to the criteria in the QOC approach. Design options can have positive, negative, or both
positive and negative influences on aspects. This information is used to make design
options assessable and comparable. An example of a decision model for service discovery
in microservice architectures is shown in Figure 2.2.

Here, the decision model is presented as a graph and shows the two design options
server-side discovery and client-side discovery. The concerns that have been identified
are displayed on the left side and show which design option addresses these concerns. At
each design option, there is a list of aspects and the influence the design option has on this
aspect. Aspects that are positively influenced have a + symbol in front of it, aspects that
are negatively influenced a − symbol, and aspects that are both positively and negatively
influenced by the design option have a +− symbol in front of it. For example, server-side
discovery has a positive influence on reusability, but a negative influence on performance.
Client-side discovery, on the other hand, has a negative influence on reusability, but a
positive influence on performance. In a simple assumption, based on this information,
one would select the design option server-side discovery if reusability is more important
than performance. Additionally, components that are required by the design options
and technology options that implement these components are shown on the right side.
Components and technology options may have an impact on the decision making since

11

2.3. DECISION MODELS

Figure 2.2: Decision Guidance Model for Service Discovery

decisions could be made based on the components and technologies already in use in the
software system. Decision models also provide the possibility to display dependencies to
other decision models. For this purpose, it can be defined if a design option of another
decision model excludes or requires a specific design option in this decision model. The
design options of other decision models refer to external design options and are also
visualized in the graph.

As mentioned before, decision models can be created and edited in the AKB tool. Besides
the representation of a decision model as a graph, decision models are represented in a
textual form similar to architecture profiles. An example of the decision model for service
discovery is shown in Figure 2.3.

Just like in architecture profiles, decision models are also separated into two parts. The
left part containing concerns and aspects represents the problem-space, and the right part
containing design options, components, and technology options represents the solution-
space. Also, like in architecture profiles, relationships between elements are shown as
boxes and the color indicating the impact on the element. Decision models can also
be hierarchically organized to provide a better understanding of the design space. In
addition, properties of a decision model can be added to the model in the form of tags.
These properties are used to classify decision models. For example, properties can refer
to the application context of decision models. Thereby, a decision model that can be
used to make a decision in the context of monitoring may get the tag ”Monitoring”.

In a decision model hierarchy, it might be recommended to use decision models in a

12

2.3. DECISION MODELS

Figure 2.3: Decision Guidance Model for Service Discovery

specific order to make design decisions. For example, for microservice API management,
it will make sense to make design decisions in API specification before API support.
Design processes have been introduced to show the order in which decision models
in a hierarchy should be used. An example of a design process for microservice API
management is shown in Figure 2.4.

The design process shows the start- and end-node of the process as well as decision
models of the hierarchy which are also displayed as nodes. The design process can be
modeled by displaying decision models in parallel and sequentially. The purpose of the
design process can be summarized as a guidance for the sequence in which decision
models should be used in a hierarchy.

13

2.3. DECISION MODELS

Figure 2.4: Design Process for Microservice API Management

2.3.2 Decision-Making and Documentation

As mentioned before, decision models are successfully used for documentation in other
domains. This section presents the decision-making and documentation process using
the decision models by Haselböck et al. [10] introduced in the previous section. It is
important to highlight that decisions and the documentation of these decisions are always
for a specific architecture profile. Therefore, the corresponding architecture profile needs
to be selected before documentation.

Decision-Making

The decision-making process mainly consists of evaluating and comparing different op-
tions and selecting the most promising options. Decision models in the AKB tool show
which concerns are addressed by a design option and what impact a design option has
on certain aspects, e.g., performance, scalability. Using this information, stakeholders
can evaluate and compare the different design options in the decision model. To support
this process even further, the tool provides functionality to preselect design options to
highlight the elements affected by the design option. An example is shown in Figure 2.5.

The figure shows that the design option server-side discovery was selected. Each element
that has no relationship to the design option is greyed out, like the aspect deployment
and the component client library. Alternatively, any other element can be selected to
show their impact on elements. An example is shown in Figure 2.6 where the concern
”Implementation technology independent” was selected.

Here, the decision model highlights which design options address the selected concern.
In this case, the concern is addressed by server-side discovery. Instead of concerns,
also aspects, components, and technology options can be selected to see which design
options affect these elements. This functionality should help to make design options
better comparable and consequently support the decision making.

14

2.3. DECISION MODELS

Figure 2.5: Preselection of a Design Option

Decision Documentation

After the user experimented with the decision model by preselecting and comparing
design options and other elements, the tool provides functionality for documentation
once a decision was made. First, the user selects the architecture profile for which
the documentation should be created. During the documentation, the user selects the
chosen design options if they were not already selected in the experimentation phase.
As discussed in Section 2.1, the rationales behind the decisions play an important role in
the documentation. Therefore, the user can provide a rationale for each design option
to describe why it was chosen or not chosen. In the tool, this is done by providing a
textbox at each design option as shown in Figure 2.7a.

Besides, concerns and aspects can be rated during the documentation process to show
their importance for the decision. Therefore, a rating scale from one to five is displayed
at each aspect and concern as shown in Figure 2.7b.

The figure shows that reusability has been rated with four stars and performance only
with two stars. In order to justify the rating, the user can provide a rationale at each
element.

15

2.4. DISCUSSION

Figure 2.6: Preselection of a Concern

To provide a better overview of which decision models have already been used for decision
making, the design process of a hierarchy shows additional information as soon as an
architecture profile gets selected. For this purpose, the nodes in the design process
representing decision models are colored regarding their status. Decision models that
were already used for documentation in an architecture profile are colored green and
decision models where the documentation is still unfinished are colored yellow. Unused
decision models maintain the gray color. Figure 2.8 demonstrates the design process of
an architecture profile regarding the Microservice API Management design space.

The figure shows that the first decision model in the design process was already used
for documentation. The decision documentation in the second decision model is still
unfinished and, hence, is colored yellow. The remaining decision models were not used
for documentation in an architecture profile yet and, therefore, are colored in gray.

2.4 Discussion

The last sections of this chapter presented the AKB application with architecture pro-
files and decision models in particular. An architecture profile utilizes the architectural

16

2.4. DISCUSSION

(a) Design Options (b) Rating of Aspects

Figure 2.7: Decision Documentation

Figure 2.8: Design Process for Microservice API Management Documentation

haiku approach for software architecture documentation. Therefore, architecture profiles
describe project-specific architectural knowledge and show the most important design
decisions as well as rationales for these decisions.

Decision models, on the other hand, represent project-generic architectural knowledge in
various design spaces, e.g., monitoring, service discovery, and fault tolerance. Decision
models can be used for decision guidance and decision documentation. For decision
guidance, decision models show design options in a design space, concerns that are
addressed by these design options, the influences a design option has on certain aspects,
and components and technology options that can be used to implement the design
options. This way, software architects can evaluate the design options to make the
best decision for a software system. Decision models can also be used for decision
documentation. Thereby, a software architect may select an architecture profile in which
the design decision should be documented. After that, the software architect selects the
chosen design options and saves them into the architecture profile. The selected design
options will be displayed as a design decision in the architecture profile. Additionally, the
software architect can provide rationales and can assess the importance of aspects and
concerns for this decision.

The next chapter focuses on answering the first research question of this thesis. For this
purpose, the chapter serves as an introduction to recommender systems. The chapter

17

2.4. DISCUSSION

presents various types of recommender systems and describes how they work. This
introduction forms the basis for the development of a recommendation system within
the context of software architecture.

18

Chapter 3

Recommender Systems

Most internet users stumbled upon a recommender system even without them consciously
noticing it. Just take for example Amazon, where a user gets recommendations based
on the products that the user bought or viewed in the past. Another example would be
Netflix, where a user receives movie recommendations based on the movies that the user
watched in the past. All of these web applications use recommender systems with the
goal to recommend items that might be interesting to a user.

Recommender systems are a relatively new research area in information systems compared
to other fields like databases or search engines. In the mid-1990, recommender systems
established itself as an autonomous research area [17]. Ever since they emerged in the
early 1990’s, these systems provide personalized recommendations and, thus, changed
the marketing sector and helped web services to make better content available to their
customers [18]. The main cause for the development of recommender systems was
the rapid growth of information that became available through the internet. Regarding
Amazon, for example, it would be impossible for a user to go through the whole product
catalog to find the desired product. Therefore, besides search engines, recommender
systems are used to narrow down relevant products and recommend them to a particular
user [19].

Before discussing the use of a recommender system to support software architecture deci-
sions, this chapter provides a general overview of different categories of recommender sys-
tems from a theoretical point of view. First, this chapter presents terms and concepts for
a better understanding of the following sections. After that, the chapter deals with pos-
sibilities to categorize recommender systems. This is followed by the four main categories
of recommender systems, namely collaborative-filtering, content-based, knowledge-based
and hybrid recommender systems. Collaborative-filtering systems use the opinion and be-
havior of existing users to recommend items to the active user. The active user refers to
the person for whom the system makes recommendations. For instance, the user-based
collaborative-filtering method aims to find users that have a similar opinion or behavior

19

3.1. TERMS AND CONCEPTS

as the active user and then recommends items they liked in the past. Content-based rec-
ommender systems, on the other hand, use information about the items that the active
user liked in the past to recommend items. If a user always liked action movies, it is most
likely that the user will be interested in other action movies he or she has not seen yet.
Knowledge-based recommender systems use explicitly provided information about the
preferences of a user to make recommendations. For example, when buying a computer,
a user could specify the desired amount of RAM, storage and the display size and the
recommender system tries to find items that match these requirements the best. Finally,
hybrid recommender systems are a combination of multiple recommender systems with
the goal to produce better results than single recommender systems.

3.1 Terms and Concepts

Before introducing different categories of recommender systems, some basic terms and
concepts need to be clarified. First of which is the term recommender system. Jannach
et al. [20, p. 1] state that a recommender system is a software system that determines
which items or products to present to a particular user. Ricci et al., on the other hand,
define recommender systems as ”software tools and techniques providing suggestions for
items to be of use to a user.” [17, p. 1]. The term item refers to the artifacts that
the recommender system presents to the user, such as books, movies or articles [17,
p. 1]. In general, there are two main use cases for recommender systems according to
Jannach et al. [20, p. 3]. On the one hand, recommender systems are used to lead the
user to certain actions like buying a particular product or watching a particular movie.
For example, if a user bought a camera on a web-shop, the recommender system could
present memory cards to lead the user to another transaction. On the other hand,
recommender systems can serve as a filter function since only a certain number of items
that might be interesting to the user are presented instead of the whole dataset. In
other words, recommender systems can be used to deal with information overload [20,
p. 3]. For example, a web-shop usually does not display all products but rather only
the products that are most relevant to a particular user. Zhou and Luo [21] also state
that recommender systems are an effective method to deal with information overload.
In their view, internet applications like search engines or professional document indexing
are important tools to filter information. However, unlike recommender systems, they
lack personalized considerations.

In general, recommender systems can be distinguished into personalized and imper-
sonalized recommender systems [20, p. 1]. Personalized recommender systems present
recommendations that are tailored to a particular user based on the taste or past be-
havior [20, p. 1]. This means that every user sees a different list of recommendations.
In contrast to personalized recommender systems, impersonalized recommender systems
provide recommendations independently of any particular user. According to Jannach
et. al [20, p. 1], impersonalized recommender systems provide recommendations that

20

3.2. RECOMMENDER SYSTEM CATEGORIES

many users are interested in, for example, top-selling products of a web-shop. The focus
in the following sections lies on personalized recommender systems. Since the aim of
this thesis is the development of a tool to support users when they make decisions for
particular software architectures, it will not make sense to recommend decision models
regardless of the type of software architecture. In case of a microservice architecture,
the recommender system should only present items that are relevant in a microservice
context. Thus, impersonalized recommender systems are not useful for this purpose.

3.2 Recommender System Categories

The number of categories differs significantly in the literature when it comes to recom-
mender systems. The main criterion to assign a recommender system to a category are
the knowledge sources that are used in the respective algorithms [22]. Some examples
of knowledge sources are product databases, user rating databases or user demographic
databases according to Burke [22]. In contrast, Tarus et al. state that ”Recommender
systems are classified according to the technique used in the recommendation.” [23]. This
means that not the types of knowledge sources determine the category of a recommender
system, but rather how the knowledge sources are used in the respective algorithms. This
shows that different criteria can be used to classify recommender systems.

Jannach et al. [20] classify recommender systems into collaborative-filtering, content-
based, knowledge-based and hybrid recommender systems. They chose the types of
knowledge sources that are used in the algorithms to classify recommender systems. As
mentioned earlier, hybrid recommender systems are a combination of multiple recom-
mender systems and, thus, are handled as a separate category. The knowledge source for
collaborative-filtering recommender systems are the opinions and behaviors of a group
of users to make recommendations to a particular user [20, p. 13]. Content-based rec-
ommender systems, on the other hand, use item descriptions and characteristics as well
as user ratings as knowledge sources [20, p. 51]. Finally, knowledge-based recommender
systems use the user’s requirements and item descriptions to make recommendations
[20, p. 82].

In addition to the four aforementioned categories, Burke [24] and Aggarwal [25] see
demographic recommender systems as an additional category. These recommender sys-
tems use the demographic data of users to make recommendations. However, Jannach
et. al [20, p. 125-126] see demographic recommender systems as a sub-category of
collaborative-filtering recommender systems. This can be justified by the fact that de-
mographic data is used as additional knowledge to identify similar users which is another
variant of the collaborative-filtering approach [20, p. 126]. Additionally, Burke [24] de-
fines utility-based recommender systems as a separate category. This category, however,
can be seen as a sub-category of knowledge-based recommender systems according to
Jannach et al. [20, p. 125]. Also Aggarwal [25, p. 18] states that utility-based ap-
proaches can be subordinated to knowledge-based recommender systems. According to

21

3.3. COLLABORATIVE-FILTERING RECOMMENDER SYSTEMS

Tarus [23], many other more advanced recommender system approaches exist. For ex-
ample, context-aware, trust-aware, fuzzy-based, social network-based, group-based, and
ontology-based techniques. However, all of these approaches can be subordinated to one
of the main categories of recommender systems.

It can be concluded that all of the different categorizations can be summarized into
four main categories, namely, collaborative-filtering, content-based, knowledge-based,
and hybrid recommender systems. In the next sections, these categories are explained in
more detail. Furthermore, different algorithms are presented for each category. As for
hybrid recommender systems, different techniques will be covered to show possibilities
to combine multiple recommender systems to deliver better results.

3.3 Collaborative-Filtering Recommender Systems

Collaborative-filtering algorithms were the first recommender systems and are still the
most popular and most used methods nowadays [26]. Especially in the field of on-
line retail sites, collaborative-filtering recommender systems became prominent to pro-
mote products that might be of interest to a particular user to boost sales. In general,
collaborative-filtering methods can be used to either calculate how much a user will like
a particular item or to provide a list of items that the user might be interested in [20,
p. 13]. The original idea of these recommender systems was to find users with similar
behavior or opinions in the past as the active user and recommend items that they liked
in the past [17, 20]. This idea has evolved over the last decades and lead to different
variations of collaborative-filtering. However, all collaborative-filtering methods use the
opinions or behavior that existing users had in the past to make recommendations [20,
p. 13]. In the context of recommender systems, ratings are a means to express opinions
or behavior of users. A commonly used method to get information about the opinion
of a user for a particular item is to let the user explicitly rate the item [20, p. 22]. For
example, by providing a rating scale from one to five stars for each item. Aggarwal
[25, p. 10] declares that 5-point, 7-point, and 10-point rating scales are most common.
Jannach et al. [20, p. 22] also state that the past behavior of a user can be used to
implicitly determine the opinion of a user for a particular item. For example, if a user
bought an item in the past, it is most likely that the user likes the item. Additionally,
to implicitly determine the rating of a user for an item the system could also use the
browsing behavior. In this case, the rating for an item would be positive if the user tried
to get more details about the item.

To make recommendations collaborative-filtering methods only use the ratings that are
either explicitly provided by the users or implicitly determined by the system [22]. There-
fore, collaborative-filtering methods do not need any information about the users or
products. The only input that these recommender algorithms need is the so-called rating
matrix [20, p. 13]. Table 3.1 shows an example of a rating matrix.

22

3.3. COLLABORATIVE-FILTERING RECOMMENDER SYSTEMS

User/Item Item 1 Item 2 Item 3 Item 4

Active User 3 2 4 ?

User 2 4 3 4 4

User 3 2 5 2 2

User 4 1 2 4 2

Table 3.1: Rating Matrix

In this example, a five-star rating was used to determine the opinion of users for items
explicitly. Table 3.1 shows that the active user rated item 1 with three stars and item 2
with two stars. Item 4 has a question mark instead of a rating for the active user which
indicates that the active user has not rated the item yet. The recommender system
should calculate a forecast value for Item 4 for the active user using collaborative-filtering
methods to determine if the user will like the item or not.

As mentioned earlier, different variants of collaborative-filtering emerged over the last
decades. The classic and earliest method is user-based collaborative-filtering [20, p. 13].
The user-based method represents the original idea to find users with similar tastes in
the past as the active user and recommend items that they liked. However, user-based
collaborative-filtering has its drawbacks when it comes to large databases since the ratings
of all users and items need to be taken into account when the system determines the
items to recommend to the active user [20, p. 18]. This lead to another variant of
collaborative-filtering, namely, the item-based method. According to Jannach et al. [20,
p. 18], the idea of this method is to find similar items and not similar users. The
recommender system then calculates a prediction for a particular item based on how the
active user rated the similar items. The reason why item-based collaborative-filtering is
more suitable for large databases is that the system can calculate the similarity between
items offline. In general, calculating the similarity between users is also possible offline.
However, Sarwar et al. argue that ”a few additional ratings may quickly influence the
similarity value between users.” [27], but the similarity between items is more stable.
Model-based methods are the third approach and deal with the scalability problem even
further [20, p. 26]. Model-based methods process the rating matrix offline to create
models using machine learning methods [25, p. 9]. At the time when the system makes
recommendations, only the model is used instead of the rating database which leads to
a significant benefit regarding the performance [25, p. 71]. The next sections examine
the user-based, item-based and model-based method in more detail.

23

3.3. COLLABORATIVE-FILTERING RECOMMENDER SYSTEMS

3.3.1 User-based Collaborative-Filtering

As explained before, the user-based method aims to identify similar users and uses their
ratings to calculate predictions for items the active user has not rated, yet [25, p. 34].
First, the system needs to calculate the similarity between the active user and other
users. Similarity measures are a means of computing the similarity between users [28].
Sureka and Mirajkar [29] explain that a similarity measure is a function whose result
expresses the similarity between two elements. Since the quality of the recommendations
depends on the selection of the right users, a suitable similarity measure is crucial for the
user-based method [26]. Herlocker et al. [30] suggest using the Person coefficient since
it produces better results for comparing users than other similarity measures. However,
an empirical study by Sureka and Mirajkar [29] shows that a mix of different similarity
measures delivers the best results.

Regarding explicit ratings, users often rate items differently even though they have the
same opinion about it [31]. Some users hardly ever give one or five stars on a 5-point
rating scale, and others do this regularly. Therefore, Ren et al. [31] suggest taking the
average rating of a user into account. The Pearson coefficient includes this aspect. To
demonstrate the formula as presented in Jannach et al. [20, p. 14] let I = {i1, ..., im}
be the set of items in the database. ra,i expresses how the user a rated item i and ra
the average rating of user a. The similarity of user a and user b is now calculated using
the sim(a, b) formula shown in (3.1).

sim(a, b) =

∑
i∈I(ra,i − ra)(rb,i − rb)√∑

i∈I(ra,i − ra)2
√∑

i∈I(rb,i − rb)2
(3.1)

The Pearson correlation returns a value ranging from +1 which indicates a strong positive
correlation to -1 which indicates a strong negative correlation [20, p. 15]. When applying
the formula on the rating matrix shown in Table 3.1, following similarity values result as
presented in Table 3.2.

Similarity Value

User 2 0.853

User 3 -0.853

User 4 0.653

Table 3.2: Result of the Pearson coefficient formula

The result shows that User 2 is very similar to the active user. Also, User 3 is quite
similar to the active user with a Pearson coefficient of 0.653. However, User 4 shows a
high dissimilarity to the active user with a negative Pearson coefficient of −0.853. After
using a similarity measure to calculate the similarities between the active user and other

24

3.3. COLLABORATIVE-FILTERING RECOMMENDER SYSTEMS

users, the most similar users need to be selected. Jannach et al. [20, p. 17-18] present
two options to determine similar users. Similar users are also called neighbors of the
active user. First, a particular threshold can be set for the similarity value to select all
users that are above that threshold. However, it is difficult to find a proper threshold that
will return a suitable number of neighbors. A high threshold might return not enough
or even no neighbors at all, and a low threshold could return too many neighbors which
has a negative effect on the recommendations. The second option is a fixed number of
neighbors. Other than a threshold, this option will deliver the right amount of neighbors
but faces the problem that the list of neighbors could also include users who have low
similarity to the active user. Herlocker et al. [30] state that a number of neighbors
below ten negatively influences the results of the recommendations. They suggest that
”in most real-world situations, a neighborhood of 20 to 50 neighbors seems reasonable”
[30].

The next step of the user-based method is to calculate a prediction for all items the user
has not rated, yet. To determine the prediction for item i, the user-based method uses
the ratings of the similar users for that item [20, p. 15]. Jannach et al. [20] and Aggarwal
[25] suggest the same formula to calculate a prediction for item i and the active user
a. Let N = {b1, ..., bn} be the set of neighbors for user a and sim(a, b) the similarity
between the active user and the neighbor b. The formula also takes the average rating
of users into account with ra being the average rating of the active user and rb being
the average rating of the neighbor b. The rating of a neighbor b for item i is expressed
by rb,i. Now, the formula to calculate the prediction is shown in Formula (3.2).

pred(a, i) = ra +

∑
b∈N sim(a, b) ∗ (rb,i − rb)∑

b∈N sim(a, b)
(3.2)

In the example, User 2 and User 4 who are both more similar to the active user than User
3 could represent the neighborhood N . Their rating for Item 4 and their similarity to the
active user are taken into account to calculate a prediction for Item 4 for the active user.
The pred(a, i) formula would return a value of 3.033 in this case. The result is slightly
above three because User 2 has rated Item 4 with four stars and is more similar to the
active user than User 4. In other words, the active user will rate Item 4 with three stars
based the ratings of similar users. If the system should recommend a list of items, it will
apply the pred(a, i) formula to all items the active user has not rated, yet [20, p. 16].
After that, the system will recommend the items with the highest prediction values.

3.3.2 Item-based Collaborative-Filtering

As mentioned before, in contrast to the user-based method, the item-based method aims
to find similar items and computes a prediction based on the ratings of the active user
for these items. The item-based method is more suitable for large databases since the

25

3.3. COLLABORATIVE-FILTERING RECOMMENDER SYSTEMS

recommender system can calculate the similarity between items offline [20, p. 18]. Sarwar
et al. [27] explain that the similarity between users can change quickly even if users rate
just a few new items. Therefore, the similarity measure cannot be applied offline. The
similarity between items, on the other hand, is more stable over time.

The item-based method uses the rating matrix as input as well. The recommender
system looks for items that were rated similarly to determine similar items [20, p. 18].
For example, in the rating matrix in Table 3.1 Item 4 was rated by users with {3, 2, 5}.
The item-based method compares these ratings to the ratings of other items like Item 1
which was rated by users with {4, 2, 1}. Herlocker et al. [30] suggested using the Pearson
coefficient to determine the similarity between users. However, the item-based method
usually uses the cosine similarity [20, p. 19]. Both Jannach et al. [20] and Aggarwal
[25] argue that an adjusted cosine similarity performs best for comparing items since it
also takes the average rating of users into account. Jannach et al. [20, p. 19] propose a
formula that defines U = {u1, ..., un} as a set of users. Then, ru,a expresses the rating
of user u for item a and ru the average rating of user u. The formula for the similarity
sim(a, b) between two items a and b is shown in Formula (3.3).

sim(a, b) =

∑
u∈U(ru,a − ru)(ru,b − ru)√∑

u∈U(ru,a − ru)2
√∑

u∈U(ru,b − ru)2
(3.3)

Like the Pearson coefficient, the adjusted cosine similarity returns a value ranging from
+1 which indicates a strong positive correlation to -1 which indicates a strong negative
correlation [20, p. 19]. When applying the adjusted cosine similarity again on the rating
matrix shown in Table 3.1 to find similar items to Item 4, similarity values as shown in
Table 3.3 result.

Similarity Value

Item 1 0.764

Item 2 -0.917

Item 3 0.118

Table 3.3: Result of the adjusted cosine formula

The result shows that Item 1 is the most similar item to Item 4 with an adjusted cosine
similarity of 0.764. Item 2 is very dissimilar to Item 4 with an adjusted cosine similarity
of −0.917 and Item 3 has a moderate similarity to Item 4 with 0.118. Both Jannach et
al. [20] and Aggarwal [25] propose a formula to calculate a prediction for an item based
on similar items. Let I = {i1, ..., in} be the set of similar items and ru,i the rating of the
active user u for item i. The prediction pred(u, p) for an item p is calculated as shown
in Formula (3.4).

26

3.3. COLLABORATIVE-FILTERING RECOMMENDER SYSTEMS

pred(u, p) =

∑
i∈I sim(i, p) ∗ ru,i∑

i∈I sim(i, p)
(3.4)

If the two most similar items to Item 4 represent the neighborhood, Item 1 and Item 3
would be used to calculate a prediction for Item 4, in the example. The result of the
pred(u, p) formula would return a value of 3.133. Even though one would expect a value
of 3.5 since the active user rated Item 1 with three stars and Item 3 with four stars,
the similarity to Item 1 is higher. Thus, the three stars have a higher impact on the
prediction. Therefore, the item-based method comes to the same result as the user-based
method which is that the active user will rate Item 4 with three stars.

3.3.3 Model-based Methods

Both the user-based and item-based method are also described as memory-based methods
since the ratings are kept in memory to make recommendations [20, p. 26]. Model-based
methods, on the other hand, use the rating database to create a model in advance to the
recommendation phase. At the time of computing recommendations, only the model is
used to make predictions [20, p. 26]. Also, Aggarwal [25, p. 71] states that user-based
and item-based methods do not create a model to make recommendations but rather
use some preprocessing steps to target performance issues. He also mentions that the
model-building phase is completely separated from the actual recommendation phase
since the model is created offline in advance. Models are created using machine-learning
techniques that can be either supervised or unsupervised. Different methods exist to
create a model. Aggarwal [25, p. 74-134] presents different approaches such as decision
and regression trees, rule-based collaborative filtering, Naive Bayes collaborative filtering,
and latent factor models.

From a theoretical point of view, memory-based methods deliver better results than
model-based methods since they use all available data to calculate recommendations.
However, as mentioned earlier, these methods face problems when it comes to large
databases. The item-based method targets this problem by computing similar items in
advance to the recommendation phase. However, since only the model is used to make
recommendations, model-based methods perform best for large databases [20, p. 26].

3.3.4 Strengths and Weaknesses

One main advantage of collaborative-filtering recommender systems is the fact that
the ratings of users for items are sufficient to make recommendations. There is no
further information about the users or items required. Consequently, the system can also
recommend different types of items. For example, if users who bought similar books as
the active user watched a particular movie, the system could recommend the movie to

27

3.4. CONTENT-BASED RECOMMENDER SYSTEMS

the active user. Also, collaborative-filtering recommender systems improve over time as
more ratings become available. Finally, the domain of the application does not have any
impact on the recommender system which means that no domain knowledge is needed
for the implementation [24].

Since the comparison of users is based on the ratings alone, it is obvious that this is
not possible if the active user has not rated any items yet. Also, if the active user
has only rated a small number of items, the selected similar users are not meaningful.
This problem is known as the cold-start or ramp-up problem [24, 32]. New items or
items with few ratings face the same problem as the system will hardly ever or never
recommend these items [32]. Jannach et al. [20, p. 26] state that the combination of
the collaborative-filtering method and other types of recommender systems can solve
both of these problems. Possible techniques to combine multiple recommender systems
are presented in Section 3.6. Additionally, Burke [24] also highlights the ”gray sheep”
problem for collaborative-filtering methods. If a user has a unique behavior or opinion
about items, the recommender system will not find any users that are somewhat similar.
Thus, the quality of the recommendations will be low. Another problem identified by
Burke [24] is the fact that it is hard for users to change their opinions. For example,
if a user always liked action movies, but is now more interested in science-fiction, the
recommender system will still recommend action movies because of the ratings made
in the past. As Jannach et al. [20, p. 23] explain, in a real-world scenario, users will
only rate a small number of all items in the database. However, it is difficult to provide
good recommendations if only a small number of ratings is available. This issue is also
called data sparsity problem and can be addressed when combining collaborative-filtering
methods with other types of recommender systems. Aggarwal [25, p. 9] states that many
model-based methods address data sparsity better than memory-based approaches.

3.4 Content-based Recommender Systems

As explained in the previous section, collaborative-filtering methods use only the ratings of
users for items as the knowledge source. Therefore, collaborative-filtering recommender
systems do not require any information about users or items. In contrast, content-based
methods use both the ratings and the description of items to make recommendations
[20, p. 51]. First, content-based methods use the ratings of a user to identify items
the user liked in the past. Then, the content of these items is used to find similar
items which are then recommended to the user [17, p. 11]. In contrast to the item-
based collaborative-filtering method that uses the ratings of users to find similar items,
content-based methods use the description of items for this purpose. Content-based
methods create a so-called user profile that includes the preferences of a user [20, p. 51].
For example, in a scenario where the system should recommend movies, a user profile
could hold the genres and favorite actors of movies the user liked in the past. Finally,
the system compares the information stored in the user profile with the attributes of the

28

3.4. CONTENT-BASED RECOMMENDER SYSTEMS

items the active user has not rated yet [17, p. 73]. After that, the system recommends
the items with the best match.

The following sections introduce the procedure of content-based recommender systems
which includes three steps [17, 25]. In the first step, the system preprocesses the content
of items to prepare them for the next steps. The goal of this step is to bring the content
of items in a uniform structure. This step is especially necessary for unstructured data
such as texts [17, p. 75]. In the second step, the system uses the preprocessed item
information of the items the user liked in the past to create a user profile. Usually,
content-based methods use classification or regression modeling to create a user profile.
In the final step, the system uses the user profile to filter items that might be interesting
to a particular user. It is important to highlight that the recommender systems can
perform the first two steps offline. The system uses only the user profile to filter relevant
items in the recommendation phase [25, p. 142]. Each of these steps will be explained
in more detail in the following sections.

3.4.1 Preprocessing Data

Lops et al. [17] state that the purpose of this step is the representation of the content
of items. In other words, the goal is the analysis of the content and bringing it in
a structured form for further processing. For example, a movie could be represented
by a list of features like the genre, actors and year of release [20, p. 52]. Aggarwal
describes the first step of content-based recommender systems as ”preprocessing and
feature extraction.” [25, p. 142f]. For example, feature extraction techniques determine
important words in unstructured data like texts. Furthermore, he explains that it is
obvious that the content of items varies between different domains. A movie and an
article will have different contents. Therefore, the preprocessing and feature extraction
step differs between applications.

Usually, content-based methods extract keywords from unstructured content of items like
texts [17, 25, 20]. As explained before, the system applies feature extraction techniques
for this purpose [17, p. 75]. Jannach et al. [20, p. 54] presents a possible technique
which is term-frequency inverse-document-frequency TF-IDF. Yun-tao et al. [33] define
TF-IDF as follows:

”The term (word) frequency/inverse document frequency (TF-IDF) approach
is commonly used to weigh each word in the text document according to how
unique it is. In other words, the TF-IDF approach captures the relevancy
among words, text documents and particular categories.” [33]

Therefore, when applying TF-IDF on a text, the most relevant words get extracted.
Term-frequency stands for the number of occurrences of a word in a text. The idea behind

29

3.4. CONTENT-BASED RECOMMENDER SYSTEMS

the inverse-document-frequency is that words that often appear in texts of different items
are less useful when it comes to segregating texts [20, p. 55]. To bring an unstructured
text in a proper format, there are a few steps to keep in mind according to Aggarwal
[25, p. 145]. First, stop-words need to be removed. Stop-words are words that appear
on a high frequency like ”a”, ”the”, or ”and”. Furthermore, a word can appear in
different variations in a text, for example, in singular and plural form. In this case, the
system should not treat these words as two different ones. Finally, the content-based
method should identify phrases like a ”take-off”. Here, the system should not treat the
words ”take” and ”off” as two separate words since they have a different meaning than
”take-off”.

3.4.2 Creating a User Profile

In the second step, a so-called profile learner creates a user profile based on the item
representations of the user’s preferences [17, p. 75]. Different approaches exist to create
such a user profile. Jannach et al. [20, p. 52f] describe a simple technique that just
stores the attributes of items the user liked in the past in the user profile. Regarding the
movie application example, the profile learner could create a user profile that contains
the genres and actors of the movies the user liked in the past. Furthermore, if the
movies have a description, the profile learner could store the extracted keywords using
the TF-IDF technique in the user profile. If the description of a movie contains words
like ”crime” and ”guns”, other movies that also have these words in the description
might be of interest. It is also important to highlight that the user can extend the user
profile by explicitly providing preferences. For example, the profile learner could implicitly
determine the preferred genres based on the movies the user already watched, but ask
the user explicitly to provide preferred actors.

Another approach for creating a user profile is to use machine learning techniques. In this
case, items the user liked or disliked in the past refer to the training data. To be more
specific, the item representations from the preprocessing step are used together with
the ratings of the user for these items. Machine learning techniques like classification or
regression methods create a user-specific model utilizing this training data. The resulting
model determines whether a user will like or dislike an item. Therefore, the model refers
to the user profile [25, p. 142]. Pazzani and Billsus [34] also state that classification
methods are used to create a model based on the user’s history. The training data
is classified based on the ratings of the user which, again, can be either explicit or
implicit. If the example movie application uses explicit ratings, the training data could
be categorized into ”movies the user liked” and ”movies the user did not like”. Regarding
implicit ratings, the movies could be categorized into ”movies the user watched” and
”movies the user did not watch”. Many classification and regression methods exist to
create a user profile. Prominent methods are for example decision trees, nearest neighbor
methods, the Rocchio’s algorithm, and Naive Bayes [34]. According to Aggarwal [25,
p. 163], the Bayes approach is a successful method for content-based recommender

30

3.4. CONTENT-BASED RECOMMENDER SYSTEMS

systems since it can deal with different types of content.

3.4.3 Filtering and Recommendation

Finally, the last step of the content-based method is the use of the user profile to make
recommendations. As explained before, the system preprocesses items and creates user
profiles in advance to the recommendation phase. At the time when the user demands
recommendations, only the constructed user profile is used [25, p. 142]. Content-based
methods usually assess how similar an item is to the user’s preferred items in the past to
decide if the item should be recommended or not. Jannach et al. [20, p. 54] present one
way if the user profile simply contains attributes of items the user liked in the past. The
recommender system could check if the user profile holds an attribute of a given item
and recommend it if this is the case. For example, if ”action” is the genre of a movie and
the user profile contains ”action” in the list of preferred genres, the movie might be of
interest to the user. Another approach would be to use similarity measures to evaluate
the similarity between an item and the user profile. Jannach et al. [20, p. 54] propose
the use of the Dice coefficient to measure how much the attributes of an item and the
user profile overlap. In this case, a movie that has almost identical lists of genres and
actors as in the user profile has a higher potential to be recommended than a movie that
just matches one genre.

However, a user profile can also refer to a model that was created using classification
or regression methods. In this case, the model gets executed on items the user has not
rated yet [25, p. 142]. For example, if the user profile is a classification model, the
recommender system could classify movies the user has not rated yet into ”movies the
user likes” and ”movies the user does not like”.

3.4.4 Strengths and Weaknesses

An important benefit of content-based recommender systems is that they do not face the
cold-start problem of items. As explained in Section 3.3.4, new items that have not been
rated yet will hardly ever be recommended using collaborative-filtering methods. Since
content-based methods calculate the similarity between items based on their content and
not their ratings, even new and unrated items can be recommended [25, p. 161]. Similar
to collaborative-filtering methods, the content-based approach delivers better results over
time since the user will rate more items and the user profile will learn more about the
user’s preferences. Moreover, implicit ratings are sufficient to make recommendations
[24]. For example, whether a user liked or disliked a movie could be determined by
checking if the user watched the movie until the end.

Even though content-based recommender systems can deal with new items, the cold-
start problem for new users still exists. It is necessary that a user rates a certain amount

31

3.5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

of items to learn about the user’s preferences and make recommendations [24]. Ag-
garwal [25, p. 162] even points out that the cold-start problem of users is even more
critical in content-based than in collaborative-filtering methods. The reason is that the
machine learning techniques are dependent on the items the user already rated. There-
fore, a reasonable number of rated items is required to create a suitable model. Another
weakness compared to collaborative-filtering methods is that content-based systems will
only recommend items that are similar to those the user liked in the past. This limits
the user to discover new items that are completely different to those already liked, but
still interesting to the user [25, p. 162]. For example, if the user only watched action
movies in the past, the content-based method will only recommend other action movies.
However, the user could also be interested in other genres like drama or comedy.

3.5 Knowledge-based Recommender Systems

Both collaborative-filtering and content-based systems make recommendations based on
the behavior or preferences of a user in the past. However, this information about the
user needs to be acquired and extended over time to make suitable recommendations.
In some situations, the user will not provide this information regularly. For example, a
user will usually not buy a house, a camera, or a car on a regular basis. Moreover, if a
person is about to buy a new car, it should probably be different from the ones the user
bought before. In these cases but also generally in recommender systems, the time span
is a significant factor. The opinion of a user will change over time which makes ratings
for items that were made years ago less meaningful [20, p. 81]. Additionally, Aggarwal
[25, p. 167] states that both collaborative-filtering and content-based methods are less
useful for items that can be highly customized by the user. For example, when buying
a house, the number of bedrooms might be important to one user, but a balcony more
relevant to another user.

Knowledge-based recommender systems target these issues. First, they do not rely on
any user history, and second, they let users explicitly provide their requirements for items.
In contrast to collaborative-filtering and content-based methods, users can always change
their requirements in knowledge-based recommender systems [25, p. 168f]. The system
could provide an interface like a web-based form to let the users define their requirements
[20, p. 87]. No strict rules for the design of such an interface exist. However, it should
lead the user through an interactive recommendation process [25, p. 170].

According to Jannach et al. [20], Aggarwal [25] and Felfernig et al. [35], two main types
of knowledge-based methods exist, namely case-based and constraint-based. The case-
based approach applies similarity measures to determine how similar an item is to the
requirements of a user. After that, the system will recommend the most similar items to
the user. In case of a computer shop application, for example, the user could specify the
desired display size, processor performance, and hard-drive storage and the case-based
system will recommend computers that are most similar to these requirements. The

32

3.5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

constraint-based method, on the other hand, uses predefined recommendation rules to
relate the requirements of a user to item attributes. Thereby, the system filters out items
that fulfill these rules. For example, a rule for the computer shop application could be
that the display size must be greater or equal to 15 inches if the user specifies to use
it for gaming [35]. The case-based and constraint-based methods will be explained in
more detail in the following sections.

3.5.1 Constraint-based

As mentioned before, the constraint-based method uses a set of recommendation rules
to filter relevant items. Thereby, the requirements or constraints specified by the user
restrict particular item attributes. Regarding the computer shop application, for example,
the user could specify that the computer should have more than 4GB RAM. However, the
user might not always know about the meaning or impact of the item attributes on the
product. Therefore, the system might let the user specify requirements that are different
from the item attributes. Recommendation rules are used to link the requirements to
the item attributes. For example, instead of explicitly asking the user how much RAM
the desired computer should have, the system could let the user define for what purpose
the computer will be used. If the computer will be used for gaming, more RAM will be
needed than just for browsing the web. In this case, a recommendation rule could be that
if the usage of a computer is for gaming, the computer must have at least 8GM of RAM
[25, p. 172]. However, domain knowledge is required to define such recommendation
rules. Therefore, a domain expert is needed for this task [36].

Both Jannach et al. [20] and Felfernig et al. [35] demonstrate a more detailed view of
the constraint-based procedure in a similar way. First, two sets of variables and three
sets of constraints need to be defined:

• Customer Variables VC : These variables represent what a user can specify as re-
quirements. The system will present these to the user for selection, typically as a
web form.

• Product Variables VPROD: This set of variables describe possible properties of
items.

• Compatibility constraints CR: These constraints restrict the selection of possible
user requirements.

• Filter conditions CF : These conditions build the link between user requirements and
item attributes. If a condition is not met by an item, it will not be recommended.

• Product constraints CPROD: This set represents the available items.

Regarding the computer shop application, following sets could be defined:

33

3.5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

• VC = { max-price(300 ... 3000), usage(gaming, high performance, standard) }

• VPROD = { price(300 ... 3000), RAM(3GB ... 16GB), storage(128GB ... 2TB),
displaysize(12”,13”, 15”) }

• CR = { usage = high performance → max-price ≥ 1000 }

• CF = { usage = gaming→ displaysize ≥ 15”, usage = high performance→ RAM
≥ 16GB }

• CPROD = { (id=c1 ∧ price=1250 ∧ RAM=8GB ∧ storage=256GB ∧ display-
size=15”) ∨ (id=c2 ∧ price=2450 ∧ RAM=16GB ∧ storage=1TB ∧ display-
size=12”) }

As defined in the customer variables, the user can specify a maximum price between
300 and 3000 and the usage of the computer which can be either standard, gaming,
or highperformance. The items, which are computers in this case, have a price, the
amount of RAM , storage, and the displaysize. As mentioned before, CR restrict the
available user selections. In this case, the user must specify a max-price of greater or
equal to 1000 if the usage of the computer is highperformance. CF contains two
filter conditions that map the user requirements to item attributes. On the one hand,
the displaysize must be greater or equal to 15” if the usage is for gaming. On the
other hand, computers must have more or exactly 16GB of RAM if the usage will be
for highperformance tasks. Finally, CPROD contains all available computers from the
catalog. If the user defines requirements REQ, the system applies the filter conditions
CF on the products CPROD using the requirements. This process returns a set of products
as a result RES. For example, if the user defines requirements as shown below, following
products will be recommended as a result RES:

• REQ = { usage=gaming, max-price=1500 }

• RES = { id=c1, price=1250, RAM=8GB, storage=256GB, displaysize=15” }

First, the user specified gaming as the usage of the desired computer. Based on the
filter conditions, the display size must be greater or equal to 15”. Furthermore, the
maximum price for the computer is 1500. If the constraint-based system applies these
conditions to the set of products CPROD, it turns out that computer c1 fulfills these
criteria. Therefore, the system will recommend c1 to the user.

3.5.2 Case-based

In contrast to the constraint-based method, case-based systems use similarity measures
to calculate the similarity between the requirements of the user and items based on

34

3.5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

their attributes [20, p. 86]. This approach is well suited in domains where items have
a clear set of attributes like the price, size or weight [37]. The case-based method will
recommend items that are most similar to the requirements of a user. Other than the
constraint-based approach, the system does not apply any constraints or restrictions on
the requirements. For example, the user could specify that the desired computer should
have 1024GB of RAM. Even though there will not be any computer with 1024GB of RAM
in the catalog, the system can still determine items that match this requirement the best.
As explained in the previous section about constraint-based recommender systems, the
result of these systems can be empty if no items fulfill the filter conditions. This problem
does not exist in the case-based approach since the system will always recommend the
most similar items even though they are considerably dissimilar to the requirements [25,
p. 181].

Many similarity measures exist to calculate the similarity between two elements. A proper
similarity measure is decisive to recommend suitable items [25, p. 183]. McSherry [38]
proposes a similarity measure similarity(p,REQ) for case-based recommender systems
which is shown in Formula (3.5).

similarity(p,REQ) =

∑
r∈REQwr ∗ sim(p, r)∑

r∈REQwr

(3.5)

In principle, to calculate the similarity between an item p and the set of requirements of a
user REQ, the system needs to calculate the similarity between each requirement r and
the corresponding item attribute using the similarity function sim(p, r). The formula
shows that each requirement is weighted to incorporate the importance of an individual
requirement using wr. The sum of the weighted similarities between each requirement r
to the item p results in an overall similarity.

McSherry [38] presents three possibilities to compute the similarity between a requirement
r and the corresponding item attribute. It is important to notice that item attributes
might exist that should be as high as possible like the performance of a computer. On the
other hand, some item attributes should be as low as possible like the price. McSherry
[38] defines these attributes as more− is− better and less− is− better attributes. A
formula for the more− is− better approach is shown in Formula (3.6).

sim(p, r) =
πr(p)−min(r)

max(r)−min(r)
(3.6)

In this formula, πr(p) refers to the value of the item attribute of a given item p and
min(r) and max(r) to the minimum and maximum values of the item attribute in the
catalog. The less− is− better approach is shown in Formula (3.7).

35

3.5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

sim(p, r) =
max(r)− πr(p)
max(r)−min(r)

(3.7)

Finally, if the similarity between a requirement r and an item attribute should be as
similar as possible, following formula can be used:

sim(p, r) = 1− |πr(p)− r|
max(r)−min(r)

(3.8)

The case-based system applies the similarity measure similarity(p,REQ) to each item
in the catalog. After that, the system will recommend the items with the best similarity
value. In other words, the items that are most similar to the requirements of the user.

Regarding the computer shop application, a user could specify a desired price of 1000,
8GB RAM and a display size of 13”. After examining the item attributes it is clear that
the price is a less− is− better attribute. Most users will want the price to be as low as
possible. Both the RAM and storage are probably more− is− better attributes because
the user will want them to be as high as possible. The display size, on the other hand,
should be as equal to the user requirement as possible. Since the user did not specify
a desired storage of the computer, it will not be taken into account to calculate the
similarity. To calculate the similarity between the requirements and computer c1, the
price would be calculated as follows:

sim(p, r) =
max(r)− πr(p)
max(r)−min(r)

=
2450− 1250

2450− 1250
= 1 (3.9)

Since the price of computer c1 is the lowest in the example, the similarity is equal to 1.
The RAM using the more− is− better approach can be calculated as follows:

sim(p, r) =
πr(p)−min(r)

max(r)−min(r)
=

8− 8

16− 8
= 0 (3.10)

The result shows that the RAM of computer c1 is completely dissimilar to the require-
ment. The reason is that computer c1 has the lowest amount of RAM in the example, but
the similarity is calculated using the more− is−better approach. Finally, the case-based
system will calculate the similarity of the display size as follows:

sim(p, r) = 1− |πr(p)− r|
max(r)−min(r)

= 1− |15− 13|
15− 12

= 0.3333 (3.11)

Now that the similarities between each requirement to the corresponding item attribute
was calculated, the overall similarity to item p needs to be computed. Before that, the

36

3.5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

item attributes can be weighted. In this case, for example, a domain expert weighted
the price with 3, the RAM with 1 and the display size with 2. An example calculation of
the user requirements and computer c1 in the catalog is shown in Table 3.4.

Attribute REQ Computer c1 sim(pi, ri) wr Summe

Price 1000 1250 1 3 3

RAM 8GB 8GB 0 1 0

Display Size 13” 15” 0.3333 2 0.6666

Sum: 6 3,6666

Table 3.4: Example similarity calculation

The overall similarity between the requirements of the user REQ and the computer c1
is then calculated as follows:

similarity(p,REQ) =

∑
r∈REQwr ∗ sim(p, r)∑

r∈REQwr

=
3.6666

6
= 0.6111 (3.12)

The result shows that computer c1 has a similarity of 61.11% to the user requirements.
As mentioned before, the case-based recommender will calculate the similarity to each
item in the catalog and recommend the items with the best similarity values.

3.5.3 Strengths and Weaknesses

In contrast to collaborative-filtering and content-based methods, knowledge-based rec-
ommender systems do not face any cold-start problem. Since the user defines preferences
explicitly in the form of requirements, knowledge-based systems do not need any past
behavior or opinion of the user to make recommendations. Therefore, no user cold-start
problem exists. Furthermore, as with content-based recommender systems, knowledge-
based systems also take new items that have not been rated before into account when
making recommendations. Since knowledge-based methods only use the content of items
to make recommendations, no ratings are required which means that no item cold-start
problem exists [24].

Knowledge-based systems can also adapt to changes in a user’s preferences as the user
can always change the requirements. Additionally, the user can specify requirements that
are not item attributes. Especially in the constraint-based method, the system uses filter
conditions to map user requirements to item attributes [24].

However, knowledge-based recommender systems do not learn about user preferences

37

3.6. HYBRID RECOMMENDER SYSTEMS

over time like collaborative-filtering and content-based systems do. The reason for this
limitation is that knowledge-based methods do not use the rating database to compute
predictions. Therefore, the output of a knowledge-based recommender will not change if
the user provides more ratings to the system. As mentioned earlier, both collaborative-
filtering and content-based methods do not require any domain knowledge to operate.
In contrast, knowledge-based recommender systems depend on domain knowledge. For
example, a domain expert is required to define recommendation rules for constraint-based
systems. In this case, the recommendation rules are the domain knowledge needed for
making recommendations [24].

3.6 Hybrid Recommender Systems

Three different categories of recommender systems have been presented in the previous
sections. Each category has its strengths and weaknesses. Collaborative-filtering systems
have the advantage that they can recommend items of a different type. Furthermore,
just like content-based systems, they learn about the user’s preferences over time as
more ratings become available. Content-based systems do not face the item cold-start
problem since they use the content of items to find similar items instead of their ratings by
users. Knowledge-based systems go even further and do not have any cold-start problem.
Additionally, they are much more sensitive to changes in a user’s requirements. Therefore,
each category performs best in a particular situation. However, most applications face
multiple recommendation situations over time. For example, a new application will not
have enough ratings in the database to perform collaborative-filtering, but as soon as
the number of ratings grows, collaborative-filtering might deliver better results than, for
instance, a knowledge-based system.

The goal of hybrid recommender systems is to exploit the benefits of two or more in-
dividual recommender systems. Thereby, a hybrid recommender combines multiple rec-
ommender systems into a single system to achieve better recommendations [22]. In the
following, the recommender system refers to the final hybrid recommender system, and a
recommender refers to an individual recommender system that gets combined with other
recommender systems. Seven different techniques are introduced in [20, 25, 22] to com-
bine multiple recommender. Jannach et al. [20, p. 128] classifies them into monolithic,
parallelized and pipelined hybrids. Aggarwal [25, p. 200], on the other hand, categorizes
the hybridization techniques into monolithic, ensembles and mixed techniques. Addi-
tionally, he categorizes ensembles techniques even further in parallel and sequential as
shown in Figure 3.1.

The figure shows that both feature-combination and meta-level belong to monolithic
hybridization techniques. Feature-augmentation, cascade, weighted and switching are
ensembles techniques, and finally, the mixed technique is a category for its own. The
next sections explain the different techniques in more detail.

38

3.6. HYBRID RECOMMENDER SYSTEMS

Figure 3.1: Hybridization Techniques [25, p. 201]

3.6.1 Mixed

When the hybrid recommender system applies this technique, the result of each rec-
ommender will be presented to the user [20, 25, 22]. Therefore, the purpose of this
technique is not to merge the outcome of multiple recommenders [24]. The recommen-
dation methods get executed in parallel and independently from each other [22]. The
system will present the results of each recommender side by side to the user.

3.6.2 Ensembles

Ensembles techniques use off-the-shelf recommender algorithms and execute them either
in parallel or sequential. Both the switching and weighted technique can be executed in
parallel. Other than the mixed technique, the hybrid recommender system returns only
one outcome. On the other hand, cascade and feature augmentation technique execute
multiple recommender sequentially [25, p. 200].

Switching

The first step of switching is equal to the mixed technique. Multiple recommender
algorithms get executed simultaneously. However, instead of returning the outcomes of
all recommenders, switching conditions determine which results to present to the user. In
other words, depending on the current situation, the recommender system decides which
recommendations should be displayed to the user [20, p. 137f]. According to Aggarwal
[25, p. 201], for example, a hybrid recommender system could use the results of a
knowledge-based recommender in early stages of the application. Once enough ratings
are available in the database, the system could switch to the results of a collaborative-
filtering algorithm.

39

3.6. HYBRID RECOMMENDER SYSTEMS

Weighted

Same as with the mixed and switching techniques, recommender algorithms get executed
in parallel using the weighted approach. However, the weighted technique computes a
recommendation score for each item based on the results of the individual recommenders
[22]. The importance of each recommender can be defined by assigning them a weight
factor [20, p. 135]. Jannach et al. [20, p. 137f] present a function recweighted(u, i) to
determine the combined score of n recommenders for an item i for user u which is shown
in Formula (3.13).

recweighted(u, i) =
n∑

k=1

wk ∗ reck(u, i) (3.13)

The function sums up the score for an item of each recommender and multiplies it by
the relative weight wk of each recommender. Same as with the switching technique, the
hybrid recommender system will only return one recommendation list.

Cascade

As mentioned before, recommenders get executed sequentially when the cascade tech-
nique is in use. The task of each recommender is to refine the recommendations made
by the previous recommender [20, p. 138f]. Therefore, the output of a recommender is
the input for another one [25, p. 213]. Burke [24] states that the task of the first rec-
ommender is to produce a roughly ranked list of potential candidate items. The second
recommender refines the candidate items and their ranking to create a final recommen-
dation list. It is important to highlight that the recommended items highly depend on
the previous recommenders. [20, p. 138f]. If the first recommender does not view a par-
ticular item as a potential candidate, it will not pass the item to the next recommender.
Therefore, the next recommender will not consider this item in the refinement of the
candidates.

Feature Augmentation

Same as with the cascade technique, recommenders get executed sequentially in the
feature augmentation technique. However, the difference is that the goal of the first
recommender is to predict a classification or rating of an item. The next recommender
uses this information about the item to make recommendations for a user [24]. Jannach
et al. [20, p. 132ff] explain that the purpose of the first recommender is to create features
that augment the knowledge source of the second recommender. For example, a content-
based method could be used to create pseudo-ratings for items. These pseudo-ratings
could be used to augment the rating matrix for a collaborative-filtering recommender.

40

3.6. HYBRID RECOMMENDER SYSTEMS

Thereby, the pseudo-ratings help to find similar users and to deal with the data sparsity
problem.

3.6.3 Monolithic

The goal of monolithic techniques is to create a single recommendation algorithm that
incorporates aspects of different recommenders. The individual parts of these hybrid
recommender systems cannot be unambiguously assigned to a recommender method,
meaning that it is not clear that a particular part of the system is a collaborative-filtering
approach, for example. Therefore, in contrast to mixed and ensembles techniques, mono-
lithic approaches do not use recommender algorithms as black-boxes but rather modify
them [25, p. 200]. As shown in Figure 3.1, both feature combination and meta-level are
monolithic hybridization techniques.

Feature Combination

The feature combination technique uses various types of input data to make recommen-
dations. The input data refers to the knowledge sources used by recommender systems
[20, p. 130]. For example, a hybrid approach using feature combination could use the
rating matrix in conjunction with the content of items to compute recommendations.
In this case, the rating matrix would be more of a collaborative-filtering aspect and the
content of items a content-based aspect. Aggarwal [25, p. 217] presents an example in
which the original rating matrix gets extended by additional keywords that got extracted
using content-based methods. Therefore, the system not only takes the ratings of users
for items into account to find similar users but also keywords of items the users liked in
the past.

Meta-Level

The purpose of this technique is that one recommender method creates a model that
is then used by another recommender. In contrast to feature combination where a
combination of various input data gets passed to the next recommender, a whole model
gets passed using the meta-level technique [20, p. 139f]. Aggarwal [25, p. 216f] presents
an example that combines a collaborative-filtering with a content-based method. In the
first step, the system uses content-based techniques to create a user-keyword matrix.
The keywords get extracted from the items users liked in the past, and the cell refers to
the weight of the word using TF-IDF, for instance. For the movie application example,
the output of this step could look as shown in Table 3.5.

The example shows keywords as columns that were extracted from the movie descriptions

41

3.6. HYBRID RECOMMENDER SYSTEMS

User/Keyword crime gun detective love wedding

User 1 2.1 2.4 1.8 1.2 0

User 2 2.7 1.3 2.2 2.4 0.8

User 3 0.4 0 1.1 2.3 1.7

Table 3.5: User-Keyword Matrix

using TF-IDF. Based on the example presented by Aggarwal [25, p. 216f], the hybrid
recommender system uses this matrix to find similar users using collaborative-filtering
techniques. However, for the final recommendation, the system uses the original rating
matrix.

3.6.4 Recommender Combinations

The previous sections presented different techniques to combine multiple recommenders
to make precise recommendations in various situations. However, for some techniques,
it is not possible to combine particular recommender methods. Burke [24] carried out
a survey in 2002 to examine what recommender combinations are possible and imple-
mented in the real-world based on the different techniques. The results of the survey for
combinations of collaborative-filtering, content-based, and knowledge-based methods is
shown in Table 3.6.

Weighted Mixed Switching FC Cascade FA ML

CF/CN

CF/KB

CN/CF

CN/KB

KB/CF

KB/CN

Table 3.6: Possible Recommender Combinations [24]

The color of a cell determines if the combination of the two recommender methods is
not possible (black cells), if there are any existing implementations (light gray cells), or
if a combination is redundant (gray cells). A combination is redundant in cases where
it does not matter if one recommender gets executed before the other. For example, it
does not matter if a collaborative-filtering method gets executed before a content-based

42

3.7. SUMMARY

method or the other way around using the mixed hybridization technique. White cells
determine that a combination of two recommenders using a particular technique is rather
unexplored since no known implementations existed so far.

The results show that the feature combination technique is not possible in combina-
tion with a knowledge-based recommender. Burke [24] argues that the reason is that
knowledge-based methods allow any kind of data which makes them unsuitable for fea-
ture combination.

3.6.5 Strengths and Weaknesses

Each category of recommender systems has its strengths and weaknesses. For example,
collaborative-filtering methods are not suitable for cold-start but might produce better
results as soon as more ratings become available. Hybrid recommender systems aim to
exploit the strengths of different types of recommenders. For this purpose, the system
uses techniques to either enrich the input data or to increase the performance to produce
more robust recommendations [25, p. 221f]. Jannach et al. [20, p. 141] states that the
use of hybridization techniques improves the results of basic recommender methods.
However, not enough empirical studies about the different techniques exist to conclude
main advantages and disadvantages for each of them.

3.7 Summary

The goal of a recommender system is discussed in the first part of this chapter and
can be summarized as the determination of items that might be interesting to a user.
The recommender system can either use information about users like their preferences or
behavior to make personalized recommendations or provide impersonalized recommenda-
tions that match the interest of most users. Since this thesis focuses on recommendations
for a particular software architecture, this chapter only investigates personalized recom-
mender systems. Many ways exist in the literature to categorize recommender methods.
However, Jannach et al. [20] state that all recommender methods can be classified into
one of four main types of recommender systems. These four types are collaborative-
filtering, content-based, knowledge-based and hybrid recommender systems. Therefore,
this chapter presents basic methods of these four categories.

Collaborative-filtering approaches were the first recommender systems and are still the
most applied methods nowadays. The only information needed to make recommendations
is the rating database. In other words, how users rated items in the past. As explained in
Section 3.3, the three main collaborative-filtering methods which are user-based, item-
based, and model-based exploit the rating matrix to make recommendations. The user-
based method searches for users who rated items similar to the active user to recommend

43

3.7. SUMMARY

items they liked. In contrast, item-based aims to find items that were rated similarly
to a given item to calculate a prediction based on the ratings of the active user for
these items. Finally, in the model-based approach, the system applies classification or
regression methods to create a model based on the rating matrix. Only the model is
used to predict potential items. However, collaborative-filtering methods face the cold-
start problem of both users and items. Therefore, these methods are only suitable for
applications with a large user and rating database.

Content-based methods, on the other hand, need information about the content of items
as well as the ratings of the active user to make recommendations. First, the system
prepares the content of items, for example, by using text-mining techniques and creates a
user profile based on the items the user liked in the past. Finally, content-based methods
use the user profile to determine if a user will like an unrated item or not. Content-based
recommender systems overcome the cold-start problem for items since the content of
items is used to determine their similarity. The cold-start problem for users still exists in
these systems.

The third category is knowledge-based recommender systems. These methods explicitly
obtain the preferences of a user in form of requirements and do not depend on any user
ratings. There are two knowledge-based methods which are case-based and constraint-
based. The case-based method calculates the similarity between the requirements and the
content of items to recommend the most similar items. The constraint-based method,
on the other hand, use predefined recommendation rules to filter potential items. Since
knowledge-based systems do not need any information about the past behavior or opin-
ions of users in the past, they do not face cold-start problems.

Each recommender system category has its strengths and weaknesses. Hybrid recom-
mender systems combine multiple recommenders to exploit their advantages. This chap-
ter presents seven different techniques to merge recommenders. The mixed technique
presents the outcomes of multiple recommenders side by side. Ensemble techniques exe-
cute different recommenders either in parallel or sequential. Monolithic techniques merge
aspects of several recommender methods to create one robust system. Hybrid recom-
mender systems usually deliver better results than individual recommender systems.

44

Chapter 4

System Requirements and

Concepts

The previous chapter introduced recommender systems and presented different methods
to create recommender systems in general. This chapter focuses on an approach to
develop a recommender system to support software architects in the decision-making
process. For this purpose, a recommender system was developed as part of the AKB
tool presented in Chapter 2. This chapter shows the procedure for creating the concept
of the recommender system. First, this chapter introduces aspects of the AKB tool
that are relevant for the recommender system. These aspects include the top-level
software architecture, applied technologies, as well as the data model. The second
part deals with requirements that were identified. The requirements include the kind of
items that should be recommended and the kind of data that should be used to make
recommendations. The last part deals with the procedure of selecting the most suitable
recommender method for each requirement and visualizes the overall concept of the
recommender system.

4.1 Context

Before going into more detail about the concept of the recommender system, this section
provides some context about the AKB tool described in Chapter 2. For this purpose,
this section provides information about the top-level software architecture of the AKB
application and the technologies used. Furthermore, the data model is presented to show
the information that is available for the recommender system. This information includes
the objects that are used in the AKB tool and the relationships between them.

45

4.1. CONTEXT

4.1.1 Software Architecture and Technologies

The AKB tool was built as a web application and is based on a client-server architecture.
Therefore, the application consists of a client-component as well as a server component.
The client-component is responsible for the user interface and parts of the business logic.
It is accessible via a browser and was built on the AngularJS framework. AngularJS is a
JavaScript web-framework which extends the HTML vocabulary and provides dynamic
views in web-applications [39]. The server component is responsible for the business logic
and data-access as well as data-manipulation in the database. The server-component was
built using the Spring Framework which is a Java platform to develop Java applications
[40]. The Spring Framework got extended by additional modules like Spring Boot, Spring
Web MVC, and Spring Data Neo4j to ensure all functionalities for a web application and
access to a Neo4j database. The AKB tool uses a Neo4j database to persist data. Neo4j
is a graph database that stores data as nodes and edges [41].

4.1.2 Data Model

This section provides an overview of the data model in the AKB application. Since
not all information is relevant for the recommender system, this section shows only the
relevant part of the whole data model. As mentioned before, the AKB tool uses a graph
database which means that data is stored as nodes and edges. Figure 4.1 shows the data
model of the AKB tool.

Architecture profiles are essential objects in the AKB application. An architecture profile
is a software architecture documentation using the architecture haiku approach, which
was discussed in Section 2.2. An architecture profile is called ArchProfile in the data
model and is displayed at the top-left in the figure. As mentioned in Section 2.2, ar-
chitecture profiles may contain multiple elements like attributes, constraints, and design
decisions. Therefore, an architecture profile can have multiple HAS ATTRIBUTE re-
lationships to different architecture profile attributes which are called APAttributes in
the figure. An APAttribute belongs to a specific category like attributes, constraints,
or tactics indicating what kind of element the APAttribute is. In the user interface, the
elements of an architecture profile are then grouped by the category as shown in Figure
2.1.

One of the central concepts of the AKB tool is to build a common terminology among
users. For this purpose, the idea of CoreData was introduced. For example, the term
performance might be used in multiple software architecture documentations. In this
case, performance may become a CoreData in the application with a uniform definition.
An APAttribute can INHERIT from this CoreData to include the attribute perfor-
mance into the architecture profile with its uniform definition. Since an element in an
architecture profile might affect other elements, AttributeRelations were introduced.
For example, if performance has a negative effect on maintainability, the application cre-

46

4.1. CONTEXT

Figure 4.1: Data-Model

ates an AttributeRelation for these elements. The AttributeRelation includes a rating
that shows what kind of affect the elements have on each other. For example, perfor-
mance can have a negative, positive, or neutral affect on maintainability. Additionally, a
rationale can be provided to this relationship.

Keeling [8] states that it is possible to create multiple architecture haikus for a software
system with each describing a subcomponent of the system. To deal with this aspect, the
HAS PARENT relationship was introduced. A hierarchy of architecture profiles can be
created with these relationships by declaring that one architecture profile is the parent of
another architecture profile. Finally, as explained in Section 2.2, architecture profiles can
have multiple properties in form of tags. For example, Tags show the application context
of an architecture profile. For example, if the architecture profile refers to a microservice
architecture, the tag ”Microservice” can be added to the architecture profile.

Besides architecture profiles, the AKB tool provides decision models which represent
project-generic architecture knowledge. Decision models can be used for both decision
guidance and decision documentation. Decision models are discussed in more detail
in Section 2.3. The data model of decision models is similar to those of architecture
profiles. A DecisionModel can have multiple HAS ATTRIBUTE relationships to

47

4.2. REQUIREMENTS

different DMAttributes. A DMAttribute can INHERIT from a CoreData to support
a common terminology in decision models and architecture profiles. Also, an element
in a decision model might affect other elements. Therefore, DMAttributeRelations
show the relationship between elements in a decision model. A hierarchy of decision
models can be created with the HAS PARENT relationship between decision models.
Decision models can have multiple tags which refer to properties of a decision model.
These properties can be used to show the application context of a decision model, for
example. As explained in Section 2.3, the AKB tool combines multiple decision models
into a design process to show the order in which decision models should be used for
decision making in a specific area. In the data model, a DMRelation is shown in the
top-right of the figure and determines the relationship between decision models regarding
the design process.

As explained in Chapter 2, decision models can be used for decision documentation.
In this regards, selected design options when using a decision model can be saved to
an architecture profile. In this case, a new APAttribute is created for the architecture
profile which refers to the same CoreData as the selected DMAttribute. Additionally,
a BASED ON relationship between the APAttribute and the DMAttribute of the
decision model is created. This way, it becomes traceable which decision model was
used for this design decision.

4.2 Requirements

Since the recommender system was developed for the AKB tool described in Chapter
2, the previous section addressed various aspects of the tool to provide context. This
section, on the other hand, deals with the requirements that were identified regarding the
recommender system. The first part examines general requirements of the recommender
system. This part shows that the recommender system has two major application scenar-
ios. On the one hand, the system should recommend decision models to use for decision
making and/or documentation within an architecture profile. On the other hand, the
system should recommend design options when using a particular decision model for
decision making. The following parts of this section deal with the requirements for the
recommendation of both decision models and design options.

4.2.1 General Requirements

The first question that needs to be answered when developing a recommender system is
what items the system should recommend to the user. In the case of software architec-
tures, two different items could help software architects in the decision-making process.
On the one hand, the system could recommend decision models potentially supporting
decision making and documentation for a particular software system. For example, if a

48

4.2. REQUIREMENTS

decision was made for the generation of monitoring data, the system could recommend
that a decision for storing of monitoring data would also be required. On the other hand,
the system could recommend suitable design options when using a decision model. For
example, the storing of monitoring data of a microservice architecture can be designed
either centralized or decentralized. In this case, the system should recommend which of
these two design options is most suitable for a specific software system.

As mentioned before, the goal of this thesis is to develop a recommender system to
support software architects and other stakeholders when making decisions for a software
architecture. This goal is accomplished by recommending decision models to use in the
decision-making and documentation process and design options when using a decision
model.

The literature about recommender systems always assumes that items should be recom-
mended to a particular user. In the case of decision making in software architecture,
however, a person might be involved in multiple different software projects. Further-
more, many stakeholders could collaborate on the same software system. Therefore,
the main factor influencing the recommendation is not the user and its behavior but the
architecture of the system under development. This architecture is described using an ar-
chitecture profile as described in Section 2.2. The items that are being recommended for
a particular software architecture are decision models for particular architectural aspects
of a system and the design options to be selected within a particular decision model.

As mentioned earlier, the system should make recommendations for architectural design
decisions even if there is little known about the architecture of the software system.
Therefore, the recommender system needs to deal with the cold start problem. The cold
start problem is only addressed by a knowledge-based recommender system, which means
that it has to be included to address this problem. On the other hand, the recommender
system requires a learning-based technique like a collaborative-filtering or content-based
method to become more precise when more architecture knowledge is available in the
architecture knowledge base. These requirements show that multiple recommender meth-
ods need to be applied. Therefore, hybridization techniques as presented in Section 3.6
need to be applied to build a hybrid recommender system which is necessary to satisfy
all requirements.

4.2.2 Recommendation of Decision Models

After explaining the general requirements for the developed recommender system, this
section focuses on specific requirements for the recommendation of decision models. In
this regards, this section presents five requirements that were identified.

49

4.2. REQUIREMENTS

Similar Architecture Profiles

The first requirement is to recommend decision models that are used for decision making
and documentation in similar architecture profiles. A similar architecture profile is one
that has a high number of used decision models in common with the active architecture
profile. The system should recommend decision models that are used in similar architec-
ture profiles but not yet in the active architecture profile. Therefore, the system needs
to determine similar architecture profiles first and then recommend the decision models
they also used for decision making and documentation. For example, if most of the sim-
ilar architecture profiles use the decision model ”storing of monitoring data”, the system
should recommend this decision model in the active architecture profile. This procedure
can be expressed by ”recommend decision models that were also used for decision making
and documentation in similar architecture profiles”.

Similar Context

Sections 2.2 and 2.3 showed, that properties can be provided to both architecture profiles
and decision models. Properties are used to define the application context of architec-
ture profiles and decision models, for example. Therefore, the system should recommend
decision models that have a similar context as the active architecture profile. In other
words, decision models that have similar properties to those of the active architecture
profile should be recommended. For example, if the architecture profile refers to a mi-
croservice architecture and thus, has the tag Microservice, the system should recommend
decision models for microservice architectures. Also, if the active architecture profile has
the tags Microservice and Monitoring, decision models for monitoring in the context of
microservices should be recommended. This procedure can be expressed by ”recommend
decision models that have a similar context as the architecture profile”.

Similar Decision Models

This requirement relates to decision models already used for decision making and doc-
umentation in the active architecture profile. As explained in Section 2.2, properties of
decision models are used to classify them and can refer to the application context of
decision models, for example. Therefore, the properties of already used decision models
should be utilized to recommend other decision models of the same classes. For example,
if used decision models have the property ”Monitoring”, the system should recommend
other decision models which also have this property. Therefore, the system should de-
termine the similarity between properties of used decision models and the properties of
unused decision models. Finally, the system should recommend the decision models with
the highest similarity to the properties of used decision models. This procedure can be
expressed by ”recommend decision models that have similar properties as decision models

50

4.2. REQUIREMENTS

that were already used for decision making and documentation”.

Related Decision Models

As explained in Section 2.3, dependencies between decision models exist. The main idea
of this requirement is to recommend decision models that relate to decision models that
were already used in the active architecture profile for decision making and documenta-
tion. In this case, the dependencies refer to excludes- and requires-relationships between
design options of two decision models. This procedure can be expressed by ”recommend
decision models that have dependencies to decision models that were already used for
decision making”.

Design Process

The final requirement for the recommendation of decision models is to include the design
processes into the recommender system. On the one hand, the system should recommend
decision models that should be used next in the design process. On the other hand,
decision models that were already used for experimentation or where the decision-making
process is still unfinished should be recommended. This procedure can be expressed by
”recommend decision models that should be used next in the design process or where
the decision-making process is still unfinished”.

As a result, there are five requirements for the recommendation of decision models. First,
decision models that were used by similar architecture profiles should be recommended to
make use of already documented architectural knowledge in other architecture profiles.
Second, the properties of the active architecture profile should be taken into account
when making recommendations. Therefore, the properties explicitly provided in the ar-
chitecture profile and the properties of already used decision models should be considered
in the recommendation process. Also, the system should recommend decision models
that have dependencies to already used decision models. Finally, the design process in a
specific design space should be considered when making recommendations.

4.2.3 Recommendation of Design Options

As mentioned before, the second major application scenario of the recommender system is
the recommendation of design options when using a decision model for decision making.
Four requirements could be identified in this regards.

51

4.2. REQUIREMENTS

Similar Architecture Profiles

The first requirement is to utilize architecture knowledge that is already documented in
other architecture profiles in the AKB tool. When using a decision model, the recom-
mender system should recommend design options that were selected by similar architec-
ture profiles. In this case, a similar architecture profile is one that has a high number of
design decisions in common with the active architecture profile. Therefore, the system
should make recommendations based on the design decisions made in other architecture
profiles. Additionally, the recommender system should return the rationales for decisions
provided in similar architecture profiles. This procedure can be expressed by ”recommend
design options that were selected by similar architecture profiles when using a decision
model”.

Attributes in an Architecture Profile

As explained in Section 2.2, important attributes of a software system can be added to
the architecture profile. For example, if maintainability is an important quality attribute
of a software system, it may be added to the architecture profile. These attributes can
be used to make recommendations for design options when using a decision model. In
Section 2.3 it was discussed that design options can have positive, negative, or neutral
influences on aspects. In this example, a design option that has a positive influence on
the aspect maintainability should be more likely recommended than a design option that
has a neutral or even a negative influence on maintainability. If both maintainability
and performance are important attributes in an architecture profile, this procedure can
be expressed by ”recommend design options that influence the attributes maintainability
and performance the most positive”.

Design Decisions in an Architecture Profile

Another aspect would be to make recommendations based on design decisions that are
already made and documented in an architecture profile. For example, if most of the
made design decisions have a positive influence on scalability, design options that also
have a positive influence on scalability should be more likely recommended when using a
decision model. Therefore, the attributes that are influenced by selected design options
should be taken into account when making recommendations. This procedure can be
expressed by ”recommend design options that have a similar influence on attributes than
already made design decisions”.

52

4.3. RECOMMENDATION STRATEGIES

Excluded and Required Design Options

As explained in Section 2.3, dependencies between decision models exist. These de-
pendencies express if a design option of a decision model excludes or requires a design
option of another decision model. Therefore, if decision models were already used for
decision making and documentation in an architecture profile, the system should analyze
whether dependencies exist when using a decision model for decision making. For this
purpose, the system should recommend a design option if it requires an already selected
design option in the active architecture profile. On the other hand, the system should
not recommend a design option if it is excluded by an already selected design option.

In total, these four requirements could be identified for the recommendation of design
options. On the one hand, recommendations should be made based on the software ar-
chitecture documentations of other projects. Therefore, similar architecture profiles need
to be determined and the design options they selected in a specific decision model should
be recommended. On the other hand, documented architecture knowledge in the archi-
tecture profile should be used to make recommendations. For this purpose, attributes
that are declared as important and already made design decisions in the architecture
profile are used. Finally, excludes- and requires-relationships should be used to decide
which design options to recommend and which design options to not recommend. These
relationships can be seen as domain knowledge in the corresponding design spaces.

4.3 Recommendation Strategies

The requirements for the recommender system were presented in the previous section.
This section focuses on recommendation strategies to fulfill these requirements. First,
this section deals with recommendation strategies for the recommendation of decision
models and afterward with those for the recommendation of design options. The pro-
cedure to develop these recommendation strategies is divided into four steps. First, the
knowledge sources to make recommendations need to be identified. Therefore, for each
requirement, it needs to be determined what kind of data is used to make recommen-
dations. The kind of data could be a rating, the content of items or some domain
knowledge, for example. As explained in Section 3.2 the knowledge source is the main
criterion to assign a recommender system to a category. Therefore, once the kind of
data is identified, the recommender system category can be determined which is the sec-
ond step in the process. In the third step, the recommender methods in the respective
recommender system category get evaluated to select the best recommender method for
each requirement. After the first three steps are done for each requirement, the final step
deals with hybridization techniques to combine the results of all recommender methods.

53

4.3. RECOMMENDATION STRATEGIES

4.3.1 Recommendation of Decision Models

Section 4.2.2 presented five requirements for the recommendation of decision models.
Strategies for recommending decision models potentially supporting the decision-making
process are examined in this section using the process described before. The following
recommendation strategies aim to fulfill the requirements for the recommendation of
decision models. It needs to be highlighted that the items that should be recommended
are decision models.

Similar Architecture Profiles

The first requirement was the recommendation of decision models that were also used
for decision making and documentation in similar architecture profiles. In this case, a
similar architecture profile is one that has a high number of used decision models in
common with the active architecture profile. Since recommendations are made based on
other architecture profiles, it can be anticipated that the recommender system category
is collaborative-filtering as it is the only category that utilizes items used by others.
Content-based methods would only take into account the decision models already used in
the same architecture profile to make recommendations. Knowledge-based recommender
systems use explicitly provided requirements or preferences to make recommendations,
which is not the case for this requirement. Therefore, the requirement can be fulfilled
by either an user-based, item-based, or model-based collaborative-filtering recommender
system.

First, the knowledge source needs to be determined. As explained in Section 3.3, a pure
collaborative-filtering recommender system uses only ratings to make recommendations.
There is no information used about items. Therefore, it needs to be defined what a rating
is in this case. Whether an architecture profile is similar to the active architecture profile
is determined by the used decision models they have in common. An implicit rating can
be derived from this where decision models that were already used for decision making
have a rating of 1 and unused decision models have a rating of 0. This way, a rating-
matrix can be created as shown in Table 4.1.

The table shows architecture profiles on the y-axis and all decision models in the AKB tool
on the x-axis. The rating is shown in the cells which is either 1 or 0 depending on whether
the decision model was already used for decision making or not. The first and second
decision model were already used for decision making in the active architecture profile.
Decision Model 3 and 4 were not used for decision making yet which means that for these
decision models it needs to be determined whether they should be recommended or not.
Therefore, the decision models that were already used for decision making are utilized
for finding similar architecture profiles. For all unused decision models, the recommender
system should determine whether they should be recommended or not based on what

54

4.3. RECOMMENDATION STRATEGIES

Profile/Decision Model DM 1 DM 2 DM 3 DM4

Active Profile 1 1 ? ?

Profile 2 1 1 0 0

Profile 3 1 0 1 0

Profile 4 1 1 0 1

Table 4.1: Decision Model Rating Matrix

similar architecture profiles used.

As explained in Section 3.3, the item-based collaborative-filtering method was developed
to deal with large databases. In this regards, a large database is one that contains
millions of records. The model-based method is usually less accurate than user-based
and item-based methods but has a better performance when it comes to large databases.
Since the AKB tool will not have a database of this size soon, the user-based method
will be most appropriate for this requirement. Therefore, the techniques described in
Section 3.3.1 should be used to make recommendations. The Person coefficient is used
to determine the similarity between architecture profiles. As discussed in Section 3.3.1,
either a defined threshold for the similarity value or a fixed number of neighbors can
be used to select the most similar architecture profiles. Since a threshold might result
in an empty list of similar architecture profiles and due to the difficulty of defining an
appropriate threshold, a fixed number of similar architecture profiles should be used.
The presented formula in Section 3.3.1 to calculate a prediction value for unrated items
is used to compute a value for each decision model. The result of this recommender
method is a list of all unused decision models with a value between 0 and 1 indicating
how likely it should be used for decision making based on similar architecture profiles.

Similar Context

As explained in Section 2.2, the context of an architecture profile can be defined by
providing properties to the architecture profile in form of tags. In this regards, the system
should recommend decision models that have a similar context as the active architecture
profile. For example, if an architecture profile has the tags Microservice and Monitoring,
decisions models for monitoring in microservice architectures should be recommended.
The system does not make recommendations based on other architecture profiles which
makes collaborative-filtering recommender methods not suitable for this requirement.
Also, recommendations are not based on already used decision models which excludes
content-based methods as well. Therefore, this requirement can be fulfilled by using a
knowledge-based recommender method.

55

4.3. RECOMMENDATION STRATEGIES

The case-based and constraint-based method are the two standard methods for knowledge-
based recommender systems. The case-based method uses similarity measures to com-
pare preferences or requirements with the content of items. The constraint-based method
makes use of rules to filter the item space based on the provided preferences or require-
ments and recommends the remaining items to the user. The case-based method will be
more beneficial in this case since the result of the constraint-based method could be an
empty list of recommendations and developing and maintaining domain-specific rules in
the AKB tool will be a challenging task. In addition, it might be more interesting to see
how well the context of a decision model fits to the context of an architecture profile.
For this purpose, the recommender system should calculate the similarity between the
properties of an architecture profile and the properties of decision models. Consequently,
the preferences or requirements in a case-based approach refer to the list of properties
in an architecture profile and the content of items refers to the properties of decision
models.

In order to apply the similarity measure presented in Section 3.5.2, it needs to be deter-
mined if a property in the architecture profile is also present in a decision model. If this
is the case, the decision model gets a value of 1 for this property. If the decision model
misses a property of the architecture profile, it gets a value of 0 for this property. Table
4.2 demonstrates an example for an architecture profile that has the tags Microservice
and Monitoring.

Requirements DM 1 DM 2 DM 3

Microservice 1 1 1 0

Monitoring 1 1 0 0

Table 4.2: Case-based Recommender Data for Decision Models

The table shows that decision model 1 has both the Microservice and Monitoring tag.
Decision model 2 also has the Microservice tag. However, it misses the Monitoring tag.
Decision model 3 does not have any of these tags. The result of this recommender
method is a list of all unused decision models with a similarity value indicating how
similar its properties are to the properties of the architecture profile.

Similar Decision Models

Regarding this requirement, the recommender system should take into account the prop-
erties of decision models already used for decision making. Since properties are used
for classification, other decision models belonging to the same classes as used deci-
sion models should be recommended. For example, if used decision models have the

56

4.3. RECOMMENDATION STRATEGIES

property ”Monitoring”, other decision models with the property ”Monitoring” should be
recommended. A decision model can have one or more properties which can be seen
as the content of decision models. Consequently, the content of items is used to make
recommendations which refers to the knowledge source of this recommender method.

Since collaborative-filtering recommender methods only use ratings and not the content
of items to make recommendations, they are not applicable for this requirement. Further-
more, the system makes recommendations based on decision models used in the active
architecture profile and not in other architecture profiles. Moreover, since items used in
the past are used to make recommendations and not any requirements or preferences, a
content-based method is most suitable for this requirement.

A content-based recommender system can be implemented by either using rated items as
training-data for machine-learning techniques or by creating a user profile that contains
preferences which are compared to the content of unrated items. In this case, a user
profile that composes properties of all decision models already used for decision making
will be more beneficial than machine-learning techniques. The reason for this is that
the properties in the user profile can be extended by the properties explicitly provided in
the architecture profile. Therefore, both the properties of used decision models and the
explicitly provided properties in an architecture profile are used to find similar decision
models.

The Dice coefficient as proposed by Jannach et al. [20] is used for computing the
similarity between the user profile and unused decision models. Therefore, the system
calculates how much the user profile overlaps with the properties of unused decision
models. Table 4.3 shows an example of the data used for this recommender method.

Tags

User Profile Microservice, Monitoring, Service Discovery

DM1 Microservice, Monitoring

DM2 Microserivce, Fault Tolerance

DM3 Service Discovery

Table 4.3: Content-based Recommender Data for Decision Models

The table demonstrates that the user profile consists of three properties which are Mi-
croservice, Monitoring, and Service Discovery. Decision model 1 has two of these prop-
erties, decision model 2 only one and an additional property that does not exist in the
user profile, and decision model 3 also has one of these properties. Therefore, decision
model 1 will be more likely recommended than the other decision models. The result of
this recommender method is a list of all unused decision models with a value indicating

57

4.3. RECOMMENDATION STRATEGIES

how similar the properties of a decision model are to properties of used decision models
and properties of the architecture profile.

Related Decision Models

The recommender system should also recommend decision models that have depen-
dencies to decision models already used for decision making in an architecture profile.
Since recommendations are not based on other architecture profiles, collaborative-filtering
methods are not suitable for this requirement. Also, recommendations are not made
based on the content of already rated items which excludes content-based methods as
well. Also, neither the case-based nor the constraint-based method of knowledge-based
recommender systems is suitable in this case because the content of items is not used
to make recommendations. Therefore, a domain-specific recommender method needs
to be implemented. Since domain knowledge is used to make recommendations, this
recommender method can be categorized into knowledge-based recommender methods.
The result of this recommender method is a list of all unused decision models with a
value of 1 if a dependency to an already used decision model exists and a value of 0 if
no dependency exists.

Design Process

The final requirement for the recommendation of decision models is to take the de-
sign process into account. Thereby, decision models that should be used next in the
design process and decision models already used for experimentation should be recom-
mended. Again, the recommendations are not based on other architecture profiles which
makes collaborative-filtering methods inappropriate for this requirement. Since the con-
tent of decision models is also not considered, content-based methods, as well as the
case-based and constraint-based methods, are not applicable in this case. The system
utilizes domain-specific knowledge to make recommendations, similar to the previous
recommender method. Therefore, this recommender method can be categorized as a
knowledge-based recommender method. For this requirement, the system should return
a list of all unused decision models with a value of 1 if it should be used next in a design
process or if it was already used for experimentation and a value of 0 if none of the above
is true.

Hybridization Techniques

Multiple different recommender methods need to be applied to fulfill the above men-
tioned requirements. The results of these recommender methods are combined using
hybridization techniques as presented in Section 3.6. Table 4.4 provides an overview of

58

4.3. RECOMMENDATION STRATEGIES

the requirements and the corresponding recommender methods.

Requirement Recommender Method

Similar Architecture Profiles User-based Collaborative-Filtering

Similar Context Case-based

Similar Decision Models Content-based

Related Decision Models Knowledge-based

Design Process Knowledge-based

Table 4.4: Decision Model Recommender Methods

In order to deal with the cold-start problem, the case-based method can be used as soon
as the architecture profile is created. Thereby, if at least one property is provided to
show the context of the architecture profile, this property can be used to recommend
decision models in the same context. Additionally, as soon as the first decision model
was used for decision making and documentation, recommendations can be made based
on both related decision models and the design process. In other words, the knowledge-
based methods can be applied for making recommendations even if there is little known
about the software architecture. The user-based collaborative-filtering method and the
content-based method are learning-based techniques and will be applied at a later stage of
the decision-making process. Since the case-based and the content-based recommender
method deliver decision models based on similar properties, the switching technique can
be used for these recommender methods. The case-based method is used as long as
a certain amount of decision models was used for decision making and documentation.
Afterward, the content-based method will be used which should deliver better results
at this point of the decision-making process. The other recommender methods produce
results with a different meaning. All of these results might be of interest to software
architects. Therefore, these results should be presented side by side using the mixed
hybridization technique. The user-based collaborative-filtering method will only be used
if a certain amount of decision models was already used for decision making and docu-
mentation and if a certain amount of architecture profiles exists in the AKB application.
These numbers are configurations to the recommender system and should be able to be
changed at any time. Figure 4.2 shows an overview of the hybrid recommender system.
The figure includes the requirements, the data that is used, the recommender methods
that are applied, and the hybridization techniques used to combined the different results.

However, using only the hybridization techniques mentioned above, software architects
will receive up to four different recommendation results for each decision model. It might
bring much effort to evaluate these different recommendation results. For software archi-

59

4.3. RECOMMENDATION STRATEGIES

Figure 4.2: Hybrid Recommender System for Decision Models

tects, it might be interesting to see an overall recommendation-score for each decision
model to receive an immediate insight into the results. To address this issue, a weighted
overall score can be calculated for each decision model by applying the weighted hy-
bridization technique. Thereby, a weight can be defined for each recommender method
to add its importance compared to other recommender methods into the calculation.
However, the results of the recommender methods have a different meaning. The user-
based collaborative-filtering method returns a value between 0 and 1 indicating how
likely a decision model should be used based on similar architecture profiles. Both the
case-based and content-based method return a value between 0 and 1 indicating how
similar the properties of a decision model is to the preferred properties. A min-max nor-
malization of the results can address this issue. Thereby, regardless of the actual result,
the decision model with the best result in a recommender method becomes a value of 1
for the calculation of the overall score. Formula 4.1 shows the equation to calculate the
min-max normalized value.

minmax =
result−min
max−min

(4.1)

The result is the actual result of the recommender method. max is the value of the

60

4.3. RECOMMENDATION STRATEGIES

decision model with the best result in the recommender method. In this case, min is
always 0 and not the actual minimum value of the recommender results. The reason for
this is if two decision models have a result of 0.9 and 0.85 in a recommender method,
the decision model with a result of 0.9 will have a min-max normalized value of 1 and
the decision model with the result of 0.85 would have a min-max normalized value of
0 which does not represent the actual result. Table 4.5 shows an example were the
results of the user-based collaborative-filtering and the content-based method get min-
max normalized.

Recommender Method DM1 DM2 DM1 Min-Max DM2 Min-Max

User-based CF 0.8 0.6 1 0.75

Content-based 0.25 0.3 0.83 1

Table 4.5: Min-Max Normalization of Recommender Results

The table shows that the user-based collaborative-filtering method concludes a value
of 0.8 for decision model 1 and a value of 0.6 for decision model 2. Using the min-
max normalization, the results are transformed to a value of 1 for decision model 1
and a value of 0.75 for decision model 2. The weighted overall score is then calculated
using the weighted hybridization formula presented in Section 3.6. The weight of each
recommender method should be configurable to be able to change them at any time.
For example, if the user-based collaborative-filtering method is more important than the
content-based method, it may get a weight of 2

3
and the content-based method a weight

of 1
3
. The calculation for the weighted overall score for decision model 1 is shown in

Formula 4.2.

recweighted(u,DM1) =
n∑

k=1

wk ∗ reck(u,DM1) =
2

3
∗ 1 +

1

3
∗ 0.83 = 0.943 (4.2)

Formula 4.3 shows the calculation for the weighted overall score for decision model 2.

recweighted(u,DM1) =
n∑

k=1

wk ∗ reck(u,DM1) =
2

3
∗ 0.75 +

1

3
∗ 1 = 0.833 (4.3)

The results show that decision model 1 has a higher overall score because it performed
better in the user-based collaborative-filtering method which has a higher weight com-
pared to the content-based method. To sum up the hybrid recommender system for
decision models, the system returns a weighted overall score for each decision model

61

4.3. RECOMMENDATION STRATEGIES

based on the results of the different recommender methods. Additionally, the results of
each recommender method get returned to get a more detailed insight. Since both the
case-based and content-based method return the same result, either the case-based or
the content-based method is used based on how many decision models were already used
for decision making in the active architecture profile.

4.3.2 Recommendation of Design Options

Section 4.2.3 presented four requirements for the recommendation of design options.
The process described in the introduction of this section will be examined for these
requirements. However, the general requirements for the recommender systems need to
be borne in mind which were presented in Section 4.2.1. In general, it must be highlighted
that the items that need to be recommended are design options in this case.

Similar Architecture Profiles

The first requirement was the recommendation of design options that were selected
by similar architecture profiles when using a decision model. A similar architecture
profile refers to one that has a high number of design decisions in common with the
active architecture profile. Since recommendations are made based on other architecture
profiles, the recommender system category is collaborative-filtering. Both content-based
and knowledge-based methods do not use any information about the behaviour of others
to make recommendations. Therefore, they are not applicable for this requirement. Both
the item-based and model-based collaborative-filtering method were developed for large
databases that contain millions of records. However, the AKB tool will not have a
database of this size in the near future. Therefore, the user-bases collaborative-filtering
method is used to fulfill this requirement.

As mentioned before, collaborative-filtering methods only make recommendations based
on ratings. Similar to the user-based collaborative-filtering method for decision models,
it needs to be determined what a rating is in this case. Whether an architecture profile
is similar to the active architecture profile should be determined by the design decisions
they have in common. Another way to see this is to look at the design options they
have selected and the design options they did not select in the past. For example, in a
microservice architecture, monitoring data can be stored centralized or decentralized. If
centralized storing of monitoring data was selected and decentralized was not selected
in two architecture profiles, they have a design decision in common. An implicit rating
can be concluded from this where selected design options have a rating of 1 and not
selected design options have a rating of 0. Based on this information, a rating-matrix
can be created as Shown in Table 4.6.

62

4.3. RECOMMENDATION STRATEGIES

Profile/Design Option DO 1 DO 2 DO 3 DO4 DO 5 DO 6

Active Profile 1 0 1 1 ? ?

Profile 2 1 1 0 0 0 1

Profile 3 1 0 1 0 0 0

Profile 4 1 1 0 1 0 0

Table 4.6: Design Option Rating Matrix

The table shows architecture profiles on the y-axis and design options on the x-axis. The
rating is shown in the cells which is either 1 or 0 depending on whether the design option
was selected or not. To consider all design spaces defined in the AKB tool, design options
of all decision models should be used to create the rating matrix. Additionally, design
decisions that are explicitly provided in an architecture profile and that are not covered
in a decision model should be considered. For example, if a design decision needs to
be documented which is not available in a decision model, it can be added explicitly in
the architecture profile. Other architecture profiles which also have this design decision
documented may also have a rating of 1 for this design decision. Therefore, the similarity
between architecture profiles is calculated based on design decisions in all available design
spaces. For example, in Table 4.6, the first three design options may belong to the same
decision model. Hence, the first and third design option in this decision model was
selected in the active architecture profile. Design Option 4 may be an explicitly defined
design decision which is documented in the active architecture profile and in the fourth
architecture profile. Design Option 5 and 6 belong to another decision model which
was not used for documentation in the active architecture profile, yet. For these design
options, the system should make recommendations based on similar architecture profiles.

Similar to the user-based collaborative-filtering method for the recommendation of de-
cision models, the Pearson coefficient is used to determine the similarity between the
active architecture profile and other architecture profiles. Also, a fixed number of similar
architecture profiles will be used instead of a defined threshold for neighborhood selec-
tion. Otherwise, the result might be an empty list of similar architecture profiles and the
definition of a proper threshold can be difficult in this context. For the calculation of the
prediction value, the same formula as presented in Section 3.3.1 is used. The result of
this recommender method is a list of all design options in the respective decision model
with a value between 0 and 1 for each design option indicating how likely it should be
selected based on the decisions in similar architecture profiles. Additionally, the rationale
for the decision of a design option in similar architecture profiles might be of interest.
Therefore, a list of all rationales for the decision of a design option will be returned by
the recommender system.

63

4.3. RECOMMENDATION STRATEGIES

Attributes of an Architecture Profile

Attributes that are declared as important in an architecture profile should be used to make
recommendations when using a decision model. These attributes can be seen as pre-
ferred attributes the respective software system should have. Therefore, the knowledge
sources are preferences or requirements of the software system. Since recommendations
should not be made based on the decisions in other architecture profiles, collaborative-
filtering methods will not be suitable for this requirement. Furthermore, recommenda-
tions should be made based on preferences or requirements and not on implicit or explicit
ratings. Regarding content-based methods, design decisions made in the past would be
used to make recommendations which is not the case for this requirement. Therefore,
a knowledge-based approach should be applied since these recommender methods use
explicitly provided preferences or requirements to make recommendations.

As mentioned earlier, a knowledge-based recommender system is typically implemented
using either the case-based or constrained-based recommender method. The case-based
method will be more beneficial in this case as it returns a value indicating how well a
design option fits the preferred or required attributes in the architecture profile. The
constraint-based method would only return the design options that fulfill the defined
rules which can result in an empty list of recommendations as discussed in Section 3.5.1.
Furthermore, defining reasonable rules and maintaining them might be a difficult task in
the AKB tool.

The case-based method calculates the similarity between the preferences or requirements
and the content of items. The content of a design option can refer to the attributes
that are influenced by the design option. For example, if a design option has a positive
influence on performance, a negative influence on maintainability, and no influence on
scalability, the content of this design option would be: performance: 1, maintainability:
−1, and scalability: 0. On the other hand, all attributes declared in the architecture
profile can be seen as preferences or requirements and, consequently, have a value of 1.
Therefore, the more positive influences a design option has on important attributes in
an architecture profile, the more likely it will be recommended. As mentioned before,
architecture profiles can be organized in a hierarchy with each describing a subcomponent
of the software system. Since important attributes might be already defined in a parent-
architecture profile, it might not be repeated in a sub-architecture profile. Consequently,
attributes of parent-profiles also need to be considered in this recommender method.
Table 4.7 shows an example where performance, maintainability, and scalability were
defined as important attributes in an architecture profile or parent-architecture profiles.

The table shows that design option 1 has a positive influence on performance, a nega-
tive influence on maintainability, and a neutral or no influence on scalability. The other
two design options have different influences on these attributes. Using the case-based
method, the similarity between the requirements and each design option should be cal-
culated. For this purpose, similarity measures as presented in Section 3.5.2 should be

64

4.3. RECOMMENDATION STRATEGIES

Requirements DO 1 DO 2 DO 3

Performance 1 1 1 0

Maintainability 1 -1 1 0

Scalability 1 0 -1 1

Table 4.7: Case-based Recommender Data

used. The result of this recommender method is a list of all design options in the de-
cision model and their similarity value to the preferences or requirements defined in the
architecture profile.

Design Decisions of an Architecture Profile

The recommender system should also take into account the design decisions that are
already documented in the architecture profile. For example, if most of the already
selected design options have a positive influence on performance, design options that
also have a positive influence on performance might be of interest when using a decision
model. Therefore, similar to the previous recommender method, recommendations should
be made based on the influences a design option has on attributes.

Since recommendations should be made based on the design decisions made in the same
architecture profile and not in other architecture profiles, collaborative-filtering methods
are not suitable for this requirement. A knowledge-based recommender will not be
suitable as well since the recommendations should be made based on design decisions
made in the past. Therefore, a content-based recommender should be applied which
utilizes both the content of items.

As mentioned before, either a user profile containing preferences or machine-learning
techniques can be applied regarding content-based recommender systems. In this case,
a user profile containing preferred attributes will be most suitable for this requirement
as explicitly provided attributes in the architecture profile can also be considered in this
method. Therefore, implicitly determined attributes of already made design decisions and
explicitly provided attributes in the architecture profile are used to create a user profile. As
explained in Section 3.4, similarity measures are used to calculate the similarity between
the user profile and the content of items. Jannach et al. [20] propose to use the Dice
coefficient for this purpose. However, the Dice coefficient only expresses how much the
user profile and the content of an item overlap. In this case, the content of design options
has an additional dimension as it also considers the influence a design option has on an
attribute which can be either positive, negative, or neutral. The Dice coefficient would
only consider if a design option has an influence on an attribute. Therefore, a different
similarity measure needs to be applied. Due to the similarity between the data used in

65

4.3. RECOMMENDATION STRATEGIES

the case-based method for the previous requirement and the data for this recommender
method, the same similarity measure as for the case-based method will be used. This
similarity measure guarantees the consideration of the influence a design option has on
the attribute. An example of the data for the content-based method is shown in Table
4.8.

User Profile DO 1 DO 2 DO 3

Performance 1 1 1 0

Maintainability 1 -1 1 0

Scalability 1 0 -1 1

Usability 1 1 0 -1

Table 4.8: Content-based Recommender Data

Compared to the recommender method of the previous requirement, usability is an at-
tribute that got determined implicitly by already made design decisions and, therefore,
is added to the list of preferences. However, for this purpose, it needs to be deter-
mined which attributes were important during the decision-making process. Section
2.3.2 showed that in the documentation process aspects can be rated to show their im-
portance for the decision. This rating is used to determine if an aspect should be added
to the user profile or not. Thereby, aspects that got rated with four or five stars during
the documentation are added to the preferences. For example, if usability got rated
with five stars during the documentation of a decision, it will be added to the list of
preferences. If an aspect got rated with one to three stars, it is not seen as an important
attribute for this decision. The difference to the case-based recommender method is that
attributes that had a high impact on already made design decisions are also considered
in this recommender method. The result of this recommender method is a list of all
design options in a decision model and their similarity to the list of preferences.

Excluded and Required Design Options

As mentioned earlier, dependencies between decision models exist. These dependencies
refer to excludes- or requires-relationships between design options of different decision
models as explained in Section 2.3. Similar to the recommendation of related decision
models presented in the previous section, this recommender method does not belong to
a standard recommender method. Neither are recommendations based on other archi-
tecture profiles nor is the content of items used to make recommendations. Therefore,
collaborative-filtering, content-based, and the standard knowledge-based recommender
methods are not applicable. However, domain-specific knowledge is used to make recom-

66

4.3. RECOMMENDATION STRATEGIES

mendations whereby this recommender method can be categorized into knowledge-based
recommender methods.

In this recommender method, for each design option it needs to be examined if a re-
lationship exists to an already selected design option in the active architecture profile
when using a decision model. If a requires-relationship exists, the design option is rec-
ommended. If an excludes-relationship exists, the design option is not recommended.
Therefore, the result of this recommender method is a list of design options in a decision
model that require or exclude selected design options in the active architecture profile.

Hybridization Techniques

Multiple different recommender methods have been identified in the previous parts of
this section. Each recommender method produces a different result of some sort. These
different results need to be combined to create overall recommendations for design op-
tions when using a decision model. The combination of the results can be made by using
hybridization techniques presented in Section 3.6. Table 4.9 provides an overview of the
requirements and the corresponding recommender methods.

Requirement Recommender Method

Similar Architecture Profiles User-based Collaborative-Filtering

Attributes of an Architecture Profile Case-based

Design Decision of an Architecture Profile Content-based

Excluded and Required Design Options Knowledge-based

Table 4.9: Design Option Recommender Methods

One of the general requirements is that the recommender system must deal with the cold-
start problem. Recommendations should be made even if there is little known about the
software architecture. To address this aspect, the case-based method will be used for
making recommendations as soon as the architecture profile is created. Consequently,
as soon as the first attribute is added to the architecture profile, the case-based method
is applied which will recommend design options that have a positive influence on this
attribute. Also, the other two knowledge-based methods to deal with required and
excluded design options can be applied as soon as the first design decision is added
to the architecture profile. The user-based collaborative-filtering and the content-based
method are learning-based techniques, which means that they become more precise the
more architecture knowledge is documented. Therefore, these methods will be applied
once enough architecture knowledge is documented. As for the user-based collaborative-

67

4.3. RECOMMENDATION STRATEGIES

filtering method, a certain amount of design decisions need to be documented in order
to get a meaningful similarity to other architecture profiles. Also, a certain amount
of architecture profiles is necessary to guarantee the identification of similar profiles.
A certain amount of design decisions is also required for the content-based method to
determine a trend of important aspects implicitly. In the AKB application, these numbers
should be configurable.

Since both the case-based and content-based method use important attributes to make
recommendations with one using only explicitly provided attributes and the other one
using implicitly determined attributes as well, the switching technique can be applied.
Thereby, the case-based method is used as long as the specified number of required
design decisions is not reached. Afterward, the content-based method is used. All
other recommender methods deliver different results. All of these results might be of
interest to software architects. Therefore, the results of the user-based collaborative-
filtering method, either the case-based or content-based method, and the knowledge-
based recommender method will be presented side by side using the mixed technique.
However, it needs to be highlighted that the user-based collaborative-filtering method
will only be applied if a certain number of design decisions is already documented in the
active architecture profile and if a certain amount of architecture profiles exist in the
AKB tool. Figure 4.3 shows an overview of the resulting hybrid recommender system
including the requirements, the data that is used, the recommender methods that are
applied, and how the results are combined using hybridization techniques.

Similar to the recommendation of decision models, a weighted overall score should be
calculated for each design option to provide immediate insight into the results of the
recommender system. For this purpose, the system should use the weighted hybridization
technique. At his point, it is important to highlight that the excludes- and requires-
relationships have a significant impact on the recommendation. Hence, if a design
option excludes an already selected design option, it gets an overall score of 0, and
if a design option requires an already selected design option, it gets an overall score
of 1. If neither an excludes- nor a requires-relationship exists, the weighted overall
score is calculated as usual. Since the results of the recommender methods have a
different meaning, the results need to be min-max normalized as discussed in the previous
section about the hybridization techniques of the decision model recommender system.
Afterward, the weighted overall score is calculated using the min-max normalized results
of each recommender method. The weight of each recommender method to show its
importance compared to other recommender methods should be configurable. The hybrid
recommender system for the recommendation of design options returns a weighted overall
score for each design option based on the results of the different recommender methods.
Additionally, the results of each recommender method get returned to get a more detailed
insight. Since both the case-based and content-based method return the same result,
either the case-based or the content-based method is used based on how many design
decisions are already documented in the active architecture profile.

68

4.3. RECOMMENDATION STRATEGIES

Figure 4.3: Hybrid Recommender System for Design Options

69

Chapter 5

User Interface and Imlementation

The previous chapter presented the requirements and concepts of the recommender
system that was developed for the AKB tool. This chapter, on the other hand, provides
aspects regarding the realization of the developed recommender system. First, this
chapter demonstrates how the recommendations for both decision models and design
options are presented in the user interface. Second, this chapter deals with software
architecture and implementation aspects of the developed system.

5.1 User Interface

This section focuses on the integration of the results of the recommender system into
the user interface of the AKB tool. Thereby, the chapter demonstrates what information
is available and how the information is presented to the user. On the one hand, the
calculated recommendations for decision models need to be displayed in an architecture
profile. On the other hand, the calculated recommendations for design options need to
be integrated into the user interface of decision models when an architecture profile is
selected.

5.1.1 Recommendation of Decision Models

The hybrid recommender system for the recommendation of decision models in an archi-
tecture profile delivers multiple different outputs. On the one hand, the system calculates
the weighted overall score for each decision model. On the other hand, the results of
multiple recommender methods are returned using the mixed hybridization technique.
The results of the recommendation of decision models are integrated into the active
architecture profile. For this purpose, the system displays a list of all currently not used

70

5.1. USER INTERFACE

decision models on the right side of an architecture profile. This list is displayed when the
owner of the architecture profile or a user with permissions to edit the architecture profile
enables the edit-mode of the profile. The weighted overall score provides a consolidated
outcome of all recommender methods and should be the first result that is presented to
the user. For this reason, the weighted overall score is displayed next to each decision
model in the list. The decision models are ranked by the weighted overall score as shown
in Figure 5.1.

Figure 5.1: Decision Model Recommendations

The weighted overall score for each recommended decision model has a value between
0 and 100. The decision models are ranked by that score and the user can search for
a specific decision model to see how it performed in the recommender system. The
results of the individual recommender methods are not displayed at first. However, they
are displayed in a popover as soon as the user clicks on the weighted overall score of
a decision model. This way, the user gets a more detailed view of the results of the
recommender system. An example of a popover is presented in Figure 5.2.

In the example shown in the figure, the decision model API support has a weighted overall
score of 100 since it is recommended based on similar architecture profiles and the design
process. As shown in the figure, the decision model is used by similar architecture profiles
and it had already been opened and viewed. For each recommender method, the popover
shows a different description of the results. The descriptions of the recommender method
results read as follows:

Similar Architecture Profiles As shown in Figure 5.2, if a decision model is used

71

5.1. USER INTERFACE

Figure 5.2: Decision Model Recommendation Popover

by similar architecture profiles, following information is shown in the popover:
”Recommended because this decision model was usually used for decision making
in similar architecture profiles, e.g., ...” with a list of the most similar architecture
profiles.

Similar Context The case-based recommender method compares the properties of an
architecture profile with the properties of decision models. If there are any matches
between properties, the popover will display them as follows: ”This decision model
shares following properties with this profile: ...” with a list of the matching prop-
erties.

Similar Decision Models The content-based recommender method uses the proper-
ties of an architecture profile and the properties of used decision models for making
recommendations. If there are any matches between the properties of the already
used decision models and the properties of any other decision model, they are dis-
played as follows in the popover: ”This decision model shares following properties
with this profile or with already used decision models in this profile: ...” with a list
of the matching properties.

Related Decision Models This knowledge-based recommender method analyses if
there are any dependencies between already used decision models and the current
decision model. If there exist excludes- or requires-relationships between decision
models, the popover includes following information: ”This decision model relates
to the decisionmodelname decision model already used for decision making and
documentation in this profile.”. decisionmodelname will be replaced with the
actual name of the decision model.

Design Process Finally, the popover should display information if the decision model
is recommended based on the design process. For this purpose, the popover shows
following information if the decision model should be used based on the design
process: ”Recommended because you have already documented decisions with
decision models in the same design process.”. Also, if the decision model was
already opened and used for experimentation, the popover will show following

72

5.1. USER INTERFACE

information: ”Recommended because you have already opened and experimented
with the decision model.”.

The results of the recommender system of decision models are integrated into the user
interface of architecture profiles. The recommendations are only shown if the owner
or a user with permissions to edit the architecture profile enables the edit-mode of the
profile. At first, a list of all unused decision models with their weighted overall scores is
presented to the user to provide an immediate insight into the results. If the software
architect requires more information, the popover shows more details of the results of the
recommender methods.

5.1.2 Recommendation of Design Options

Similar to the recommendation of decision models, the hybrid recommender system for
the recommendation of design options delivers multiple different outputs. For each
design option, the system returns the weighted overall score and the results of each
recommender method. As for the recommendations based on similar architecture profiles,
the rationales for the decisions in other architecture profiles get returned as well. These
results are integrated into the user interface of decision models when an architecture
profile is selected for which a decision should be made. The weighted overall score is the
first result the user should see and is displayed at the bottom right corner of a design
option. An example is shown in Figure 5.3.

Figure 5.3: Design Option Recommendations

Similar to the weighted overall score of decision models, the score of each design option
has a value between 0 and 100. The score has a green color if it is 70 or higher, red

73

5.1. USER INTERFACE

if it is 30 or less, and yellow otherwise. Therefore, the color is an additional indication
of how well a design option performed in the recommender system. The results of the
individual recommender methods are not displayed at first. However, they are displayed in
a popover as soon as the user clicks on the weighted overall score of a design option. This
way, the user gets more detailed information about the recommendation. An example of
a popover is presented in Figure 5.4.

Figure 5.4: Design Option Recommendation Popover

The figure shows the outcomes of both the content-based method and the user-based
collaborative-filtering method. In this example, the design option is not recommended
based on the content-based method as it has a negative influence on efficiency and effi-
ciency is an important attribute in the architecture profile. On the other hand, the design
option is recommended based on the user-based collaborative-filtering method. Hence,
it was usually chosen by similar profiles. Therefore, for each recommender method, the
popover displays an explanation of whether a design option is recommended or not. The
explanations for each recommender method are as follows:

Similar Architecture Profiles A design option can either be recommended or not
recommended based on similar architecture profiles. In other words, a design option
was selected or not selected in similar architecture profiles. Therefore, the result of
this recommender method will either be ”Recommended because this design option
was selected in similar profiles, e.g.,” with a list of the most similar profiles or ”Not
recommended because this design option was not selected in similar profiles, e.g.,”
also with a list of similar profiles. Additionally, a button ”Further information” is
displayed that will show a list of rationales for the decision in similar architecture
profiles once it is clicked. This way, the software architect can see why a design
option was selected or not selected in other architecture profiles.

Attributes of an Architecture Profile The case-based method will display impor-
tant attributes in the architecture profile that are positively, negatively, or neutrally

74

5.1. USER INTERFACE

influenced by the design option. Positively influenced attributes will have following
description: ”Recommended because following aspects are selected as important
in this architecture profile and the design option positively influences these aspects:
...”. Negatively influenced attributes will have following description: ”Not recom-
mended because following aspects are selected as important in this architecture
profile and the design option negatively influences these aspects: ...”. Finally, neu-
trally influenced attributes have following description: ”This design option has a
neutral influence on following aspects, i.e. it has a positive as well as a negative
impact: ...”.

Design Decisions of an Architecture Profile Similar to the case-based method,
the content-based method shows the attributes of the user profile and how they
are influenced by the design option. Positively influenced attributes have following
description: ”Recommended because following aspects are selected as important in
the profile or decision documentations and the design option positively influences
these aspects: ...”. Negatively influenced attributes have following explanation:
”Not recommended because following aspects are selected as important in the
profile or decision documentations and the design option negatively influences these
aspects: ...”. Also, neutrally influenced attributes are considered as follows: ”This
design option has a neutral influence on following aspects, i.e. it has a positive as
well as a negative impact: ...”.

Required Design Options The knowledge-based recommender method for requires-
relationships provides following result for each design option in other decision
models that have a relationship to the current design option: ”Recommended be-
cause thedesignoption relates to the already selected design option designoption
in decisionmodel. Therefore, the recommendation score is 100.”. Instead of
thedesignoption the user interface displays the name of the design option, designoption
is replaced by the name of the design option in the other decision model, and
decisionmodel is replaced by the name of the other decision model. As discussed
in Section 4, requires-relationships have a significant impact on the overall score.
Therefore, the overall score is 100 if the design option requires an already selected
design option.

Excluded Design Options Similar to the requires-relationship, selected design op-
tions that exclude the current design option should be displayed in the popover.
Therefore, the popover includes following information in this regards: ”Not rec-
ommended because thedesignoption is excluded by the selected design option
designoption in decisionmodel. Therefore, the recommendation score is 0.”.
thedesignoption refers to the current design option in the decision model. designoption
is replaced by the name of the design option in the other decision model, and
decisionmodel is replaced by the name of the other decision model. Also, excludes-
relationships have a significant impact on the overall score. If an excludes-relationship
exists, the overall score of a design option is 0.

If there exists both requires- and excludes-relationships to a design option, a conflict

75

5.2. ARCHITECTURE AND IMPLEMENTATION

message will be displayed. The conflict message contains a list of all design options of
other decision models and their relationship to the design option. For example, a conflict
message can read as follows: ”Conflict since thedesignoption is: required by Service-side
Discovery, excluded by Client-side Discovery.”. Again, thedesignoption is replaced by
the name of the current design option. If a conflict exists, the design option has an
overall score of 0.

To sum up the integration of the recommender system results for design options into
the user interface, it can be said that the overall score is the first information the user
sees when using a decision model as soon as an architecture profile gets selected. The
overall score provides an immediate consolidated result of the recommender system.
When the user clicks on the weighted overall score, a popover provides more detailed
information about the results of each recommender method. Software architects can use
this information to make the best decision for a given software architecture in a specific
design space.

5.2 Architecture and Implementation

The previous section showed how the results of the recommender system are integrated
into the user interface of the AKB tool. This section covers implementation aspects
of the recommender system. Thereby, this section presents the general architecture of
the recommender system by describing the components that were implemented and how
they interact with each other. Additionally, this chapter describes the recommendation
objects that are returned by the API of the recommender system.

5.2.1 Top-Level Software Architecture

As explained in Section 4.1, the server component of the AKB tool is a Java Application
using the Spring Framework with the Spring Web MVC module. Therefore, a RestCon-
troller, service, and a business component were created for the recommender system.
These components and their interactions are shown in Figure 5.5.

The figure shows that the RestController offers two REST-interfaces. One interface
to get recommendations for design options when using a specific decision model and
another to get recommendations for decision models. Both interfaces require the ID
of the corresponding architecture profile apId in the URL. Since recommendations for
design options should be made when using a particular decision model, the ID of the
decision model dmId is also required in this REST-interface of design options. Both the
recommender system service and business component have two methods that take the ID
of the architecture profile and decision model as parameter. One to get recommendations

76

5.2. ARCHITECTURE AND IMPLEMENTATION

Figure 5.5: Spring Web MVC Recommender System Architecture

for decision models and another one to get recommendations for design options. The
service, however, only calls the method of the business component. Finally, the business
component orchestrates the recommender system. Therefore, the business component is
responsible to decide which recommender methods to apply and how the results should be
combined as described in Chapter 4. As for the hybridization techniques, if-statements
are used in the business component to decide which recommender methods to apply.
In the business component, configurations like the minimum number of made design
decisions in an architecture profile can be made. These configurations are used in the
if-statements of the switching- and mixed hybridization techniques. Finally, the business
component returns the results of the recommender system to the service and the service
forwards the results to the RestController. Afterward, the RestController sends a response
to the client component with the results of the recommender system.

5.2.2 High-Level Component Interactions

In general, the recommender system business component uses three types of components
to create recommendations. First, data preparation classes are responsible for querying
required data from the Neo4j database and preparing them for further processing. There-
fore, data preparation classes can be seen as the preprocessing steps for recommender
algorithms. For collaborative-filtering methods, for example, the data preparation class
would be responsible for creating the rating matrix. In case of content-based methods,
the data preparation class creates the user profile. The second type of components are

77

5.2. ARCHITECTURE AND IMPLEMENTATION

the actual recommender algorithm implementations. They receive data from the data
preparation classes and are responsible for creating the actual recommendations. For
example, user-based collaborative-filtering is a recommender algorithm that takes the
rating matrix and calculates recommendations as described in Section 3.3.1. The rec-
ommender algorithms were implemented as black-box algorithms. Therefore, the same
recommender algorithm can be used for both design options and decision models. Only
the data preparation classes are different for design options and decision models. Since
most recommender algorithms use similarity measures in one way or the other, sim-
ilarity measures refer to the third type of components. For example, the user-based
collaborative-filtering algorithm uses the Pearson coefficient to determine the similarity
between the active architecture profile and other architecture profiles. The Dice coeffi-
cient can be used to calculate the overlap of the user profile and the content of unrated
items in a content-based approach. An overview of the three components and their
interaction is shown in Figure 5.6.

Figure 5.6: Recommender System Application Flow

The figure demonstrates the interaction between the data preparation class and the Neo4j
database on the left side. The first step of each data preparation class is the querying
of required data from the Neo4j database. This data gets manipulated to bring it in a
form that can be used by the recommender algorithm. The necessary data preparation
manipulations vary between the different recommender algorithms. However, the result of
the data preparation class gets passed to the corresponding recommender algorithm. The
recommender algorithm optionally uses a similarity measure in its algorithm. However,
the calculation of similarities is not hard coded in a recommender algorithm. The idea is
to make similarity measures exchangeable in a recommender algorithm to make it easy
to compare the output using different similarity measures. Finally, the recommender
algorithm creates the actual recommendations.

78

5.2. ARCHITECTURE AND IMPLEMENTATION

5.2.3 Recommender Algorithms

As mentioned earlier, the recommender algorithms were implemented as black-box algo-
rithms to make them reusable for any kind of items. For this purpose, a Recommender-
Algorithm interface was created that has a recommend() method. Therefore, each
recommender algorithm implements this interface and has a recommend() method that
creates recommendations. Each recommender algorithm has further individual methods
to set prepared data and configurations. The different recommender algorithms are pre-
sented in Figure 5.7.

Figure 5.7: RecommenderAlgorithm Interface

CollaborativeFilteringRecommender The collaborative-filtering recommender method
refers to the user-based collaborative-filtering algorithm. It can be configured by
setting the active architecture profile id and the number of neighbors for the neigh-
borhood selection. Furthermore, the rating matrix can be set that was created in
the corresponding data preparation class by calling the setProfiles() method.
Also, the unrated items can be set for which recommendation predictions should
be calculated.

ContentBasedRecommender The content-based recommender can be configured
by setting the user-profile that was created in the data preparation class and the
items that have not been rated yet.

CaseBasedRecommender Similar to the content-based recommender algorithm, the
case-based recommender algorithm can be configured by setting the preferences or
requirements and the items.

79

5.2. ARCHITECTURE AND IMPLEMENTATION

DesignOptionsExcludesRequiresRecommender This recommender algorithm only
takes the architecture profile ID and the decision model ID as input. There is no
data preparation needed since the final recommendations are created by the Neo4j
query itself.

DecisionModelsExcludesRequiresRecommender Similar to the previous recom-
mender algorithm, no data preparation is needed for this algorithm. Only the
architecture profile ID needs to be set.

DesignProcessRecommender Also, this recommender algorithm needs no data prepa-
ration step. However, the architecture profile ID needs to be set for this recom-
mender algorithm as well. The recommendations are computed by the Neo4j query
itself.

5.2.4 Similarity Measures

Similar to the recommender algorithm interface, a SimilarityMeasure interface was
created. The goal of this interface is to bring similarity measures in a uniform form to
make them exchangeable. Therefore, each SimilarityMeasure implementation needs
to implement the calcSimilarity() method that takes two objects as parameters. The
method calculates the similarity between these objects, and returns the similarity value
of data type Double. For the recommender system, three similarity measures have been
implemented. First, the Pearson coefficient for collaborative-filtering methods. Second,
the case-based similarity measure as presented by Jannach et al. [20]. Finally, the Dice
coefficient for the content-based method. The similarity measures are shown in Figure
5.8.

Figure 5.8: SimilarityMeasure Interface

The figure shows that the two parameters that get passed to the calcSimilarity()
method are key-value pairs. The key-value pairs are implemented as a HashMap in
the Java Application. For example, to calculate the similarity between two architecture
profiles based on used decision models, the keys would refer to the IDs of the decision

80

5.2. ARCHITECTURE AND IMPLEMENTATION

models and the values would indicate whether the decision model was used (1) or not (0).
For the case-based recommender method, the keys would refer to the IDs of attributes and
the value would refer to the influence a design option has on this attribute which is either
positive (1), negative (−1), or neutral (0). Therefore, each similarity measure calculates
the similarity between a map of key-value pairs. The Pearson coefficient requires the
average rating of each object as input. The CaseBasedSimilarityMeasure requires
the max and min values as presented in the formula by Jannach et al. [20].

5.2.5 Recommender System API

Section 5.2.1 described that the recommender system is accessible by two REST-interfaces.
One interface for the recommendation of design options and one interface for the recom-
mendation of decision models. This section demonstrates the recommendation objects
that get returned by these interfaces. As explained before, the recommender system
returns the results of multiple recommender methods at the same time using the mixed
hybridization technique. Furthermore, the weighted overall score is calculated and re-
turned by the recommender system. Therefore, a list of all applied recommender methods
including the weighted overall score needs to be returned. Each of these recommender
methods must include a list of all items for which recommendations should be made. A
recommender method refers to a RecommendationListDto object in the recommender
system as shown in Figure 5.9.

Figure 5.9: RecommendationListDto Class

The figure shows that a recommender method has a recommendationType indicat-
ing which recommender method was used to make these recommendations. Further-
more, this object contains a list of recommendations which refers to all items for
which recommendations were made. These recommendations refer to unrated items
and include information about the item itself and information about the recommen-
dation result of this item. For example, for the recommendation of design options in
a decision model, a RecommendationListDto object with the recommendationType
”casebased” would be created for the case-based recommender method. This object
includes a RecommendationDto object for each design option in the decision model in
the recommendations list. The RecommendationDto object is shown in Figure 5.10.

The RecommendationDto object contains the ID, title, and definition of the corre-

81

5.2. ARCHITECTURE AND IMPLEMENTATION

Figure 5.10: RecommendationDto Class

sponding item and additional information about the recommendation. In case of decision
model recommendations, the RecommendationDto object would contain the ID, title
and description of the decision model. On the other hand, if design options should be rec-
ommended, the RecommendationDto object would contain the ID, title and definition
of the design option.

Each recommender algorithm produces some kind of recommendation results. For ex-
ample, the collaborative-filtering method calculates a prediction value for each unrated
item. The case-based method calculates the similarity between the requirements and
the content of items. In the recommender system, these results got generalized into a
value property. Since every recommender algorithm calculates some kind of value for
items, it made sense to store this value in the recommendation. This also allows to
order the recommendations by this value. For example, the prediction value calculated
by the collaborative-filtering recommender gets stored in this property. Furthermore, a
RecommendationDto object has a recommendationInfo property. This property can
be used to define why an item was recommended or not recommended. For example,
the content-based method could provide the properties of a decision model that lead to
the recommendation. The recommendation information of the different recommender
methods were presented in the previous section. Finally, more detailed information can
be stored in the additionalInfo property. For example, in the AKB tool, this prop-
erty is used to store the rationales for decisions of design options of similar profiles in a
collaborative-filtering algorithm. To sum up the RecommendationDto class, it can be
said that it contains information about the recommended item, on the one hand, and
information about why it is recommended or not recommended, on the other hand.

Also, a RecommendationListDto object is created for the weighted overall score of
items. In this case, the recommendationType is ”overallscore” and the recommendations
list includes all unrated items with the computed weighted overall score in the value
property. Consequently, the interfaces of the recommender system will return a list of
RecommendationListDto objects.

This section demonstrated that the hybrid recommender systems for design options and
decision models are accessible through REST-interfaces. Only the ID of the architec-
ture profile and, in case of design options, the ID of the decision model is required.
Data preparation classes are responsible for the preprocessing of data. Recommender
algorithms are implemented as black-boxes to make them usable for any kind of items.

82

5.2. ARCHITECTURE AND IMPLEMENTATION

Similarity measures were implemented in a way to make them exchangeable. This way,
different similarity measures can be used in recommender methods to determine the
similarity measure that delivers the best results. Finally, the REST-interface returns a
list of RecommendationListDto objects with each referring to an applied recommender
method or to the results of the weighted overall score. The RecommendationListDto
objects contain a list of recommendations which include information about the items
and more detailed information about the recommendation results.

83

Chapter 6

Conclusion

The goal of this thesis was to develop a recommender system for decision making in
software architecture design. To reach this goal, existing concepts and approaches for
recommender systems were first analyzed based on literature and then an existing tool for
software architecture knowledge management was extended with recommender systems
for design decision models and design options.

In the course of this thesis, two hybrid recommender systems were developed. One for
the recommendation of decision models and one for the recommendation of design op-
tions. In both cases it was necessary to include knowledge-based recommender methods
into the system to deal with the cold-start problem. Thereby, it is guaranteed that the
system can make recommendations even if there is little known about a software system.
Regarding decision models, a content-based recommender method was implemented to
find decision models similar to those already used for decision making and documen-
tation in an architecture profile. Also, in the hybrid recommender system for design
options, a content-based recommender method was used to recommend design options
that have a similar influence on aspects to those already selected in an architecture pro-
file. Finally, user-based collaborative-filtering recommender methods were implemented
to recommend decision models used in similar architecture profiles and design options se-
lected in similar architecture profiles. Using the mixed hybridization technique the results
of all recommender methods are presented to the user side by side. Also, the weighted
hybridization technique was applied to compute an overall score for each recommended
decision model or design option. In addition, the switching hybridization technique was
used to switch between the case-based and content-based recommender method as both
deliver a similar result.

The developed hybrid recommender systems have been prototypically tested. For this
purpose, decision models in the context of microservices have been created and added to
the AKB tool. These decision models cover various design spaces like monitoring, fault
tolerance, and service discovery. Afterward, multiple architecture profiles have been

84

created with the support of the recommender system. The goal of the prototypical tests
was to ensure that the recommender systems deliver the expected results. However, an
empirical evaluation of the system is missing and would be necessary in order to make
stronger statements about the suitability of the recommender system for the decision-
making process in a real architectural design scenario.

An important aspect of the developed recommender systems is that the user-based
collaborative-filtering method only makes sense if a reasonable number of architecture
profiles already exist in the AKB tool. The reason for this is that there should be at least
twenty similar profiles available for a specific architecture profile in order to make rec-
ommendations when using collaborative-filtering. This can only be guaranteed for each
architecture profile if many software systems are documented in the AKB tool. Otherwise
the selected architecture profiles could be too different from the active architecture profile
and might result in insufficient recommendations. In comparison to the other recom-
mender methods, the knowledge-based methods are particularly suitable at the beginning
of the decision-making process to receive recommendations. The content-based methods
will not make proper recommendations at the beginning and should therefore be used
at a later point in time. However, content-based methods should provide better results
than knowledge-based methods when more architectural knowledge is documented.

With the developed recommender system, software architects receive recommendations
for decision models and design options in the decision-making process. Based on this
recommendations, software architects should be able to make better decisions for a
software system’s architecture. The recommender system is designed in a way that the
quality of the recommendations increases with the amount of architectural knowledge
that is captured using learning-based recommendation techniques. However, the system
provides recommendations even at the beginning of the decision-making process. As a
result, this should lead to proper design decisions from the beginning of the architectural
design process and will avoid costly and time-intensive changes to the architecture later
on.

It is obvious that the recommender system could be designed in a different way because of
the amount of available hybridization techniques to combine multiple recommender meth-
ods. This thesis presented one possible implementation of a recommender system. One
aspect that is currently not addressed by the developed recommender system is whether
an already made design decision was a satisfying decision or not. This aspect could be
addressed in future extensions of the system. For example, the collaborative-filtering
method recommends design options selected in similar architecture profiles. However, if
it turns out that this design option was not suitable for this type of software architec-
ture, it still gets recommended in new software projects. Therefore, the recommender
system should not only consider if a design option was selected but also if it was a good
decision to select this design option. For this purpose, the AKB tool could be extended
by a feature to let software architects rate the made design decisions and incorporate
this knowledge into the recommender system. Additionally, when it comes to the clas-
sification of decision models, a list of properties is used. All properties in this list are

85

considered equally important. However, some properties may have more significance
for the classification than others. For example, the property Microserivce could be more
important for the classification of a decision model than the property Monitoring. There-
fore, it might be appropriate to use weighted properties to make recommendations. For
example, the weight of a property could be defined either by the software architect or by
the number of occurrences of the property in the AKB tool.

86

List of Figures

2.1 Excerpt of an architecture profile for eBay 9

2.2 Decision Guidance Model for Service Discovery 12

2.3 Decision Guidance Model for Service Discovery 13

2.4 Design Process for Microservice API Management 14

2.5 Preselection of a Design Option . 15

2.6 Preselection of a Concern . 16

2.7 Decision Documentation . 17

2.8 Design Process for Microservice API Management Documentation . . . 17

3.1 Hybridization Techniques [25, p. 201] 39

4.1 Data-Model . 47

4.2 Hybrid Recommender System for Decision Models 60

4.3 Hybrid Recommender System for Design Options 69

5.1 Decision Model Recommendations . 71

5.2 Decision Model Recommendation Popover 72

5.3 Design Option Recommendations . 73

5.4 Design Option Recommendation Popover 74

5.5 Spring Web MVC Recommender System Architecture 77

87

LIST OF FIGURES

5.6 Recommender System Application Flow 78

5.7 RecommenderAlgorithm Interface . 79

5.8 SimilarityMeasure Interface . 80

5.9 RecommendationListDto Class . 81

5.10 RecommendationDto Class . 82

88

List of Tables

3.1 Rating Matrix . 23

3.2 Result of the Pearson coefficient formula 24

3.3 Result of the adjusted cosine formula 26

3.4 Example similarity calculation . 37

3.5 User-Keyword Matrix . 42

3.6 Possible Recommender Combinations [24] 42

4.1 Decision Model Rating Matrix . 55

4.2 Case-based Recommender Data for Decision Models 56

4.3 Content-based Recommender Data for Decision Models 57

4.4 Decision Model Recommender Methods 59

4.5 Min-Max Normalization of Recommender Results 61

4.6 Design Option Rating Matrix . 63

4.7 Case-based Recommender Data . 65

4.8 Content-based Recommender Data . 66

4.9 Design Option Recommender Methods 67

89

Bibliography

[1] R. Weinreich and I. Groher, “Software architecture knowledge management ap-
proaches and their support for knowledge management activities: A systematic
literature review,” Information and Software Technology, vol. 80, pp. 265–286, Dec.
2016.

[2] R. N. Taylor, N. Medvidović, and E. M. Dashofy, Software architecture: foundations,
theory, and practice. Hoboken, NJ: John Wiley, 2010. OCLC: ocn231670965.

[3] M. Ali Babar, ed., Software architecture knowledge management: theory and practice.
Dordrecht ; New York: Springer, 2009. OCLC: ocn428028065.

[4] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik, “Ab-
stractions for software architecture and tools to support them,” IEEE transactions
on software engineering, vol. 21, no. 4, pp. 314–335, 1995.

[5] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd edn.
SEI Series in software engineering. Addison-Wesley Pearson Education, Boston,
2003.

[6] J. Bosch, “Software architecture: The next step,” in European Workshop on Soft-
ware Architecture, pp. 194–199, Springer, 2004.

[7] P. Liang and P. Avgeriou, “Tools and technologies for architecture knowledge man-
agement,” in Software Architecture knowledge management, pp. 91–111, Springer,
2009.

[8] M. Keeling, “Architecture Haiku: A Case Study in Lean Documentation [The Prag-
matic Architect],” IEEE Software, vol. 32, pp. 35–39, May 2015.

[9] G. Fairbanks, “Architecture Haiku,” 2010. URL:
https://www.georgefairbanks.com/assets/pdf/Haiku-tutorial-2011-06-24-final.pdf,
Accessed: 26.9.2018.

[10] S. Haselböck, R. Weinreich, and G. Buchgeher, “Decision Models for Microservices:
Design Areas, Stakeholders, Use Cases, and Requirements,” in Software Architec-
ture (A. Lopes and R. de Lemos, eds.), vol. 10475, pp. 155–170, Cham: Springer
International Publishing, 2017.

90

BIBLIOGRAPHY

[11] A. MacLean, R. M. Young, V. M. Bellotti, and T. P. Moran, “Questions, op-
tions, and criteria: Elements of design space analysis,” Human–computer interac-
tion, vol. 6, no. 3-4, pp. 201–250, 1991.

[12] A. Maclean and D. McKerlie, “Design space analysis and use-representations,”
Scenario-based design: envisioning work and technology in system development,
pp. 183–207, 1995.

[13] O. Zimmermann and C. Miksovic, “Decisions required vs. decisions made: connect-
ing enterprise architects and solution architects via guidance models,” in Aligning
Enterprise, System, and Software Architectures, pp. 176–208, IGI Global, 2013.

[14] G. A. Lewis, P. Lago, and P. Avgeriou, “A decision model for cyber-foraging sys-
tems,” in Software Architecture (WICSA), 2016 13th Working IEEE/IFIP Conference
on, pp. 51–60, IEEE, 2016.

[15] S. Haselböck, R. Weinreich, and G. Buchgeher, “Decision guidance models for
microservices: service discovery and fault tolerance,” in Proceedings of the Fifth
European Conference on the Engineering of Computer-Based Systems - ECBS ’17,
(Larnaca, Cyprus), pp. 1–10, ACM Press, 2017.

[16] S. Haselbock and R. Weinreich, “Decision Guidance Models for Microservice Mon-
itoring,” in 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW), (Gothenburg, Sweden), pp. 54–61, IEEE, Apr. 2017.

[17] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, eds., Recommender Systems
Handbook. New York: Springer, 2011. OCLC: ocn373479846.

[18] J. A. Konstan and J. Riedl, “Recommender systems: from algorithms to user ex-
perience,” User Modeling and User-Adapted Interaction, vol. 22, pp. 101–123, Apr.
2012.

[19] X. Sun, F. Kong, and S. Ye, “A comparison of several algorithms for collabora-
tive filtering in startup stage,” in Proceedings. 2005 IEEE Networking, Sensing and
Control, 2005., pp. 25–28, Mar. 2005.

[20] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender Systems An
Introduction. 32 Avenue of the Americas, New York, NY 10013-2473, USA: Cam-
bridge University Press, 2011.

[21] J. Zhou and T. Luo, “Towards an Introduction to Collaborative Filtering,” in 2009
International Conference on Computational Science and Engineering, vol. 4, pp. 576–
581, Aug. 2009.

[22] R. Burke, “Hybrid Web Recommender Systems,” in The Adaptive Web: Methods
and Strategies of Web Personalization (P. Brusilovsky, A. Kobsa, and W. Nejdl,
eds.), pp. 377–408, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

91

BIBLIOGRAPHY

[23] J. K. Tarus, Z. Niu, and G. Mustafa, “Knowledge-based recommendation: a re-
view of ontology-based recommender systems for e-learning,” Artificial Intelligence
Review, Jan. 2017.

[24] R. Burke, “Hybrid Recommender Systems: Survey and Experiments,” User Modeling
and User-Adapted Interaction, vol. 12, pp. 331–370, Nov. 2002.

[25] C. C. Aggarwal, Recommender Systems. Switzerland: Springer International Pub-
lishing, 2016.

[26] F. Ge, “A User-Based Collaborative Filtering Recommendation Algorithm Based
on Folksonomy Smoothing,” in Advances in Computer Science and Education Ap-
plications: International Conference, CSE 2011, Qingdao, China, July 9-10, 2011.
Proceedings, Part II (M. Zhou and H. Tan, eds.), pp. 514–518, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011.

[27] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of recommendation
algorithms for e-commerce,” in Proceedings of the 2nd ACM conference on Electronic
commerce, pp. 158–167, ACM, 2000.

[28] Z. Huang, D. Zeng, and H. Chen, “A Comparison of Collaborative-Filtering Recom-
mendation Algorithms for E-commerce,” IEEE Intelligent Systems, vol. 22, pp. 68–
78, Sept. 2007.

[29] A. Sureka and P. P. Mirajkar, “An Empirical Study on the Effect of Different Simi-
larity Measures on User-Based Collaborative Filtering Algorithms,” in PRICAI 2008:
Trends in Artificial Intelligence: 10th Pacific Rim International Conference on Artifi-
cial Intelligence, Hanoi, Vietnam, December 15-19, 2008. Proceedings (T.-B. Ho and
Z.-H. Zhou, eds.), pp. 1065–1070, Berlin, Heidelberg: Springer Berlin Heidelberg,
2008.

[30] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic framework
for performing collaborative filtering,” in Proceedings of the 22nd annual interna-
tional ACM SIGIR conference on Research and development in information retrieval,
pp. 230–237, ACM, 1999.

[31] L. Ren, J. Gu, and W. Xia, “An Item-Based Collaborative Filtering Algorithm Uti-
lizing the Average Rating for Items,” in Signal Processing and Multimedia: Interna-
tional Conferences, SIP and MulGraB 2010, Held as Part of the Future Generation
Information Technology Conference, FGIT 2010, Jeju Island, Korea, December 13-15,
2010. Proceedings (T.-h. Kim, S. K. Pal, W. I. Grosky, N. Pissinou, T. K. Shih,
and D. Slezak, eds.), pp. 175–183, Berlin, Heidelberg: Springer Berlin Heidelberg,
2010.

[32] C. Birtolo, D. Ronca, R. Armenise, and M. Ascione, “Personalized suggestions
by means of Collaborative Filtering: A comparison of two different model-based
techniques,” in 2011 Third World Congress on Nature and Biologically Inspired Com-
puting, pp. 444–450, Oct. 2011.

92

BIBLIOGRAPHY

[33] Z. Yun-tao, G. Ling, and W. Yong-cheng, “An improved TF-IDF approach for text
classification,” Journal of Zhejiang University-SCIENCE A, vol. 6, pp. 49–55, Aug.
2005.

[34] M. J. Pazzani and D. Billsus, “Content-Based Recommendation Systems,” in The
Adaptive Web: Methods and Strategies of Web Personalization (P. Brusilovsky,
A. Kobsa, and W. Nejdl, eds.), pp. 325–341, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007.

[35] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, “Developing Constraint-
based Recommenders,” in Recommender Systems Handbook (F. Ricci, L. Rokach,
B. Shapira, and P. B. Kantor, eds.), pp. 187–215, Boston, MA: Springer US, 2011.

[36] M. Zanker, M. Aschinger, and M. Jessenitschnig, “Development of a Collabora-
tive and Constraint-Based Web Configuration System for Personalized Bundling of
Products and Services,” in Web Information Systems Engineering – WISE 2007: 8th
International Conference on Web Information Systems Engineering Nancy, France,
December 3-7, 2007 Proceedings (B. Benatallah, F. Casati, D. Georgakopoulos,
C. Bartolini, W. Sadiq, and C. Godart, eds.), pp. 273–284, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007.

[37] B. Smyth, “Case-Based Recommendation,” in The Adaptive Web: Methods and
Strategies of Web Personalization (P. Brusilovsky, A. Kobsa, and W. Nejdl, eds.),
pp. 342–376, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

[38] D. McSherry, “Similarity and compromise,” in International Conference on Case-
Based Reasoning, pp. 291–305, Springer, 2003.

[39] “AngularJS MVW Framework,” 2018. URL: https://angularjs.org/, Accessed:
13.08.2018.

[40] R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu, R. Harrop, T. Risberg, A. Arend-
sen, D. Davison, D. Kopylenko, M. Pollack, and others, “The spring frame-
work–reference documentation,” Interface, vol. 21, p. 27, 2004.

[41] “Neo4j,” 2018. URL: https://neo4j.com/, Accessed: 13.08.2018.

93

