N
N

N

HAL

open science

A Bottom-Up Approach for Reconstructing Software
Architecture Product Lines

Mohamed Lamine Kerdoudi, Tewfik Ziadi, Chouki Tibermacine, Salah Sadou

» To cite this version:

Mohamed Lamine Kerdoudi, Tewfik Ziadi, Chouki Tibermacine, Salah Sadou. A Bottom-Up Approach
for Reconstructing Software Architecture Product Lines. ECSA 2019 - 13th European Conference on
Software Architecture, Sep 2019, Paris, France. pp.46-49, 10.1145/3344948.3344964 . hal-02428869

HAL Id: hal-02428869
https://hal.sorbonne-universite.fr /hal-02428869
Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/hal-02428869
https://hal.archives-ouvertes.fr

A Bottom-Up Approach for Reconstructing Software
Architecture Product Lines

Mohamed Lamine Kerdoudi
L Kerdoudi@univ-biskra.dz
Computer Science Department, University of Biskra
Algeria

Chouki Tibermacine
Chouki.Tibermacine@lirmm.fr
LIRMM, CNRS and Montpellier University
France

ABSTRACT

A large component and service-based software system exists in dif-
ferent forms, as different variants targeting different business needs
and users. This kind of systems is provided as a set of “indepen-
dent” products and not as a “single whole". The presence of a single
model describing the architecture of the whole system may be of
great interest for developers of future variants. Indeed, this enables
them to see the invariant part of the whole, on top of which new
functionality can be built, in addition to the different options they
can use. We investigate in this work the use of software product line
reverse engineering approaches, and in particular the framework
named BUT4Reuse, for reconstructing an architecture model of a
Software Architecture Product Line (SAPL), from a set of variants.
We propose a generic process for reconstructing an architecture
model of such a product line. We have instantiated this process
for the OSGi Java framework and experimented it for building the
architecture model of Eclipse IDE SPL.

ACM Reference format:

1 INTRODUCTION

Software Product Line (SPL) Engineering (SPLE) considers the ex-
istence of a single architecture describing all the variants that im-
plement each software product. The particularity of this “single”
architecture is that it includes what is refereed as a variability model,
in which variability and commonality are explicitly specified using
high level characteristics of the so-called features [2]. These are
then mapped to components, which are organized according to the
identified features. Product variants can be derived (generated) by
choosing the desired features, then SPL tools choose and assemble

Tewfik Ziadi
Tewfik.Ziadi@lip6.fr
LIP6, Sorbonne Universités, UPMC University Paris 6
France

Salah Sadou
Salah.Sadou@irisa.fr
IRISA- University of South Brittany
France

the appropriate components mapped to the selected features [2].
During recent years, multiple approaches have been proposed ad-
dressing SPL implementation, or product derivation [2, 22]. How-
ever, there are many systems that exist as several “independent”
variants and not as a “single whole". Indeed, large component and
service-based software systems exist in different forms, as different
variants targeting different business needs and users. These systems
often use ad hoc mechanisms to manage variability and they do
not take complete benefits from the SPLE framework.

This paper considers the challenge of analysing these systems
to reverse-engineer a software architecture following the SPLE
framework that is common to all the existing variants. We call
this constructed architecture Software Architecture Product Line
(SAPL) which is different from the Software Product Line Archi-
tecture (SPLA)[16]. We defend a new vision by considering SAPL
as a reference architecture starting from which the architecture
of each product variant can be derived. Indeed, each derived soft-
ware variant can have its own life that is regulated by evolution
needs whose origin often depends on the context which is specific
to each product. But, SPLA raises problems during the mainte-
nance stage of a product on two points: i) referring to a generic
architecture to understand a given product is a very difficult task.
Knowing that understanding is the most costly activity during
maintenance, this will generate considerable additional costs. ii)
Modifying a generic architecture, to take into account the mod-
ifications made on one of its products, is a task that is not only
difficult and error prone, but also with unforeseeable consequences
on the other products. We propose in this paper a process (see Sec-
tion 2 and Section 3) for SAPL-reverse-engineering. This process
extends the BUT4Reuse framework, which is one of the most effec-
tive methods for SPL-reverse-engineering [13, 15]. This framework
was proposed as a generic and extensible framework for SPL-RE.
We extend BUT4Reuse to SAPL reverse-engineer large component
and service-based software systems starting from a collection of
their existing variants. We show the results of our experiments in
Section 4.

2 A GENERIC PROCESS FOR SAPL-REVERSE
ENGINEERING
Before presenting our SAPL-RE process, we first describe the meta-

model for software srchitectures that are supported by our ap-
proach. Figure 1 depicts the defined SAPL meta-model. We have

https://doi.org/10.1145/3344948.3344964
https://doi.org/10.1145/3344948.3344964
tziadi

tziadi

tziadi

ECSA, September 9-13, 2019, Paris, France M. L. Kerdoudi et al.

E SAPLArchitecture
= graphTypeTree : Boolean

ot oo

04 constraints

E Constraint
= fext : String
>

[1 CompositeE lement|
model 1.* | = hame : String

[}
=
£
St
s
X

features

source Q.1 oot
0.* 1

connectors

components

ComponentElemen

0

E Feature
=id : String
target 0.1 - name : String

0.1 = selected : Boolean

>4 = mandatory : Boolean requiredElements| | providedElements
— operator | = description : String 11
= abstract : Boolean 1.1] source 0.% 0.*

A A
5 AndE Ol [EXor|E O 1E RequirchIemcnﬂ‘ 1E Pr'ovidedEIcmcnﬂ‘
. | | | |

chil I | | |

0.*| outgoingEdge

5 Edge

incomingEdge ¢ x

target Tl--l

Figure 1: SAPL Metamodel for Component-Based Software Variants

been inspired in its definition by the feature meta-model in [18].
We enriched it by adding component-based architecture elements.
An instance of this meta-model serves as a feature model that rep-
resents the variability in a family of software product variants and
a comprehensive architecture (modules / components) that helps
the developer to understand the structure of the SPL features. As
our meta-model is generic and used for representing component-
based systems, it has been defined based on an abstract syntax of a
software component model. The overall process of our approach
is illustrated in Figure 2. This process is defined in three main
activities:

2.1 Reverse-Engineering of SA Variants

First, we use reverse-engineering techniques to extract a software
architecture variant from the source code of each software variant.

2.2 SAPL Construction

In this activity, the different SA variants are analyzed and compared
to identify the common part and the different features. As illus-
trated in Figure 2, this activity extends the BUT4Reuse framework
to support architectural artefacts. Indeed, BUT4Reuse [13, 15] was
proposed as a generic and extensible framework to identify features
from a set of similar artifacts. To support the different types of arti-
facts, and enabling extensibility, BUT4Reuse relies on adapters for
the different artifact types. These adapters are implemented as the
main components of the framework. An adapter is responsible for
decomposing each artifact type into the constituting elements, and
for defining how a set of elements should be constructed to create a
reusable asset. In this paper, we extend BUT4Reuse by proposing a
new adapter related to software architectures. In addition, to allow
comparing software architectures, this new adapter is designed
with a set of parameters to consider different architectural views
(services, interfaces, packages, extensions, etc). Once the adapter
is implemented, SAPL construction follows four sub-activities as
illustrated in Figure 2.

Decomposition in Architectural Elements. The first step takes as
input a collection of architecture variants that are obtained from
the reverse-engineering activity. It decomposes each variant as a
set of Architectural Elements (AEs). The computed AEs can be of
different types depending on the considered view. This can include
components, interface, services, extension, etc.

Block Identification and Feature Naming. This step reuses algo-
rithms implemented in BUT4Reuse which automatically identify
sets of AEs that correspond to the distinguishable features from the
SA variants. These sets of AEs are named Blocks. In this paper, we
reused especially the algorithm, called Interdependent Elements that
formalize block identification using class equivalences. Once blocks
are identified, the next step is a semi-automatic process where do-
main experts manually review the elements from the identified
blocks to map them with the functionalities (i.e., features) of the
system. BUT4Reuse integrates what is called VariCloud [14], an
approach that analyzes the elements inside each block and extracts
words that help domain experts to identify features. VariCloud uses
information retrieval techniques, such as TF-IDF, to analyze the
text describing elements inside blocks. The descriptions used by
BUT4Reuse to build word clouds are thus provided by the specific
adapter. As we will see in the next section, for our adapter, words
correspond to the names of packages, interfaces and plugins.

Dependencies Identification. During this step, the approach iden-
tifies the dependencies between the different blocks. BUT4Reuse
uses the dependencies defined within the adapter to identify depen-
dencies between blocks.

Multi-View SAPL Constrcution. A software architecture of a large
system is a complex entity; it cannot be presented in a single view.
One of the most important concepts associated with software archi-
tectures are views. A view is the result of applying a viewpoint to a
particular system of interest (for instance, service-, interface-, and
extension-oriented views). In this step of our process, we enable
the developer to construct a muti-view SAPL. These views can help
and assist the developer to understand progressively the SPL.

2.3 Variants Derivation

In this step, the developer can select starting from the recovered
SAPL a set of features that meet her/his requirements for deriving
the architecture of the new variant. We provide a graphical tool to
visualize the derived architecture. Once the developer analyzed and
understood this architecture, she/he can derive the new product as
a new variant.

A Bottom-Up Approach for Reconstructing Software Architecture Product Lines

ECSA, September 9-13, 2019, Paris, France

Source code Software Architecture
variants variants ﬁﬂware Architecture Product Line Construction j
% |:|'> Decomposition In
Architecture m———— B
Elements I Views | i
Reverse-Engineering of T

Software Architecture

Variants

(Use techniques like WCA, LIMBO |
IACDC, . etc)

Dependencies
Identification

Block identification
ind Feature Naming

. A

N

\ =7
B i Variants
Multi-views SAPL Construction :> Derivation

V2 l
see [

/

Figure 2: Proposed SAPL-Reverse Engineering Process

3 INSTANTIATION OF THE PROCESS FOR
OSGI COMPONENT/SERVICE MODEL

We have instantiated our process for OSGi Java applications. The
OSGi specification defines a component model and a framework
for creating highly modular Java systems [17]. Eclipse-based appli-
cations run on top of Equinox which is the reference implementa-
tion of the OSGi specification. It is a collection of similar software
products that share a set of software assets. It offers a set of “re-
leases" where each one is a large-sized Java application composed of
hundreds to thousands of components, registering and consuming
hundreds of services. The default Eclipse releases are predefined for
targeting specific developer needs. Currently, if a developer wants
to create a customized release, she/he has to select one of the default
releases (for instance, IDE for C/C++ Developers) and then manu-
ally install new plugins which meet her/his requirements. In this
paper, we consider Eclipse releases as product variants and we aim
to adopt the SAPL approach in order to be able to develop efficiently
a personalized Eclipse variant. We have adapted the meta-model in
Figure 1 for the OSGi component model. In this meta-model an OSGi
component is represented by a PluginElement (specialization of
ComponentElement). The required elements in the OSGi meta-
model are: Extension, ImportPackage, RequiredInterface, and
ConsumedService. The provided elements are ExtenionPoint,
ExportedPackage, ProvidedInterface, and RegistredService.
In order to implement our adapter for Eclipse-SA variants, we
have followed the generic activities which are defined in [15]'. Be-
sides, our OSGi meta-model allows to produce several SA views that
represent different kinds of plug-in’s capabilities and requirements.
The supported architecture views are: interface, service, package,
and extension views. Of course these views are not orthogonal, there
are intersections between each other. But, nobody would be able to
understand the whole system by analyzing all the views together.
Thanks to this meta-model, developers can progressively under-
stand the system by analyzing each architecture view separately.
At the end, in order to create a new Eclipse variant, we imple-
mented a derivation mechanism inegrated with the FeatureIDE
tool. The developer can configure manually the SAPL and select a

!For more details about our adapter see: https://pages.lip6.fr/tewfik.ziadi/ecsa19.html

set of desired features among the identified list. Before deriving the
variant, we offer to the developer a way for mapping this configu-
ration into an architecture model for this variant. This architecture
model represents the selected features without variability informa-
tion, which is useful as a product documentation. Finally, the new
variant can be derived by collecting the extracted software assets
which correspond to the selected features.

4 EVALUATION OF THE PROCESS

In order to evaluate our approach, we have conducted a set of experi-
ments on 12 Eclipse releases 2. First, we have measured the accuracy
of SAPL recovery process. We used the Architecture2Architecture
(a2a) [10] metric to measure the architectural change between the
derived SA using our approach and the SA of the variant that is
created manually (installing manually a new feature by clicking
on Help->Install New Software...). Second, we have used a set of
measures for comparing the size and complexity of the recovered
SAPL views using our process.

We have used the LoongFMR implementation® of the a2a metric
for comparing the two architectures. The obtained value is a2a =
87%. This value can be considered as a good result that indicates
that the two architectures are almost the same. In fact, this little dif-
ference between them is due to the fact that the manual installation
allows to add plugins with old versions which already exist.

Besides, we compared the size of the recovered SAPL views with
the whole SAPL (all views together). First, we have observed that the
number of elements in each SAPL view is much less than the number
of elements in the whole SAPL. This confirms our intuition that
focusing on a single view allows to reduce the size and complexity
of the SAPL. We have also observed that the number of elements in
the extension view is less than the number of elements in the other
views. This supports our idea that the developer needs to start with
an architecture view that contains a few elements (only the plugins
and their extensions). After that, (s)he can pass to another view
with more information about other kinds of dependencies.

2Downloaded from: https://bit.ly/2uylkT8
3Downloded from:https://github.com/csytang/LoongFMR

https://pages.lip6.fr/tewfik.ziadi/ecsa19.html
https://bit.ly/2uylkT8
https://github.com/csytang/LoongFMR

ECSA, September 9-13, 2019, Paris, France

5 RELATED WORK

Wesley et al. [3] present a complete survey on the existing SPLE
approaches. Several extensions of the framework BUT4Reuse have
already been developed and published in [9, 12, 24]. Besides, soft-
ware architecture recovery (SAR) is a challenging problem, and
several works in the literature have already proposed contributions
to solve it (e.g., works cited in [4, 10, 11]). Most of these approaches
are proposed for a single software architecture recovery. In the
last decade several works had proposed approaches that aim to
recover component-/service-oriented architectures from existing
systems. For example, the work in [19] is based on the definition of
a correspondence model between code elements and architectural
concepts. In [1] a component is considered as a group of classes col-
laborating to provide a system function. The authors in [7] recover
BPMN models starting from service oriented systems that have
been generated from web applications. Some works such as [6, 8]
have been proposed to recover software architecture at run-time.
In our approach, we assume that the SAs of the product variants
can already exist and considered as inputs for our SAPL-RE process.
Otherwise, we can use one of the existing approaches for recovering
them.

Besides, few works were proposed in the literature that aim
to recover SPLA. [21] presented a mapping study of the existing
SPLA recovery approaches. Shatnawi et al. [20] have proposed
a process for recovering software product line architectures of a
family of object-oriented product variants. They build the SPLA
as a feature model where the dependencies between component
variants are based on relations of type alternative, OR, AND, require
and exclude. The authors in [5] have proposed an approach for
recovering SPLA from software product variants. Compared to our
work, the recovered SAPL using our approach is both a feature
model and a complete architecture that shows all the architectural
connections between components. In addition, our inputs can be
system variants or SA variants. The variability is identified starting
from the elements in the input architectures. Wille et al. [23] have
proposed a variability mining approach for Technical Architecture
variants. Our solution can derive new SAs and product variants
starting form the reconstructed SAPL.

6 CONCLUSION

Recovering architecture models of large-sized software products is
an important activity in software maintenance and evolution. SPL
Reverse Engineering (SPL-RE) processes enable to recover models
with a better structure, since they factorize the variable part in
the product variants and enable to see the variability points. In
this work we focused on component- and service-based systems
and proposed in this paper: i) a (meta-)model for architectures of
component/service-based software product lines, ii) the design of
an adapter of a generic SPL-RE process (But4Reuse) for building
architecture models (SAPL models) by analyzing product variants,
iii) an implementation of this adapter specific to OSGi-based appli-
cations, and iv) an experimentation of this recovery process on a

set of Eclipse releases.

As perspectives to this work, we plan to study the enrichment of
SPL reverse engineering of large component/service-based systems
by including a learning module which exploits existing SPLs and
their variants/features. In addition, we envisage the instantiation

M. L. Kerdoudi et al.

of the process for other component/service frameworks, or just
investigate its use with Java modules for exploring variability in
Java SE, EE, ME, TV, etc. From a tool-support point of view, we
intend to enrich our implementation by capabilities such as software
product configuration and derivation to complete the “loop".

REFERENCES

[1] Simon Allier, Salah Sadou, Houari A. Sahraoui, and Régis Fleurquin. 2011.
From Object-Oriented Applications to Component-Oriented Applications via
Component- Oriented Architecture. In Proc. of the 9th WICSA, USA. IEEE.

[2] Sven Apel, Don S. Batory, Christian Késtner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines - Concepts and Implementation. Springer.

[3] Wesley Klewerton Guez Assuncédo and Silvia Regina Vergilio. 2014. Feature
location for software product line migration: a mapping study. In 18th SPLC,
Companion Volume, Italy.

[4] Stéphane Ducasse and Damien Pollet. 2009. Software Architecture Reconstruc-
tion: A Process-Oriented Taxonomy. IEEE TSE 35, 4 (2009), 573-591.

[5] Hamzeh Eyal-Salman and Abdelhak-Djamel Seriai. 2016. Toward Recovering
Component-based Software Product Line Architecture from Object-Oriented
Product Variants. In Proc. of SEKE.

[6] Gang Huang, Hong Mei, and Fu-Qing Yang. 2006. Runtime recovery and manip-
ulation of software architecture of component-based systems. Journal of ASE 13,
2 (2006), 257-281.

[7] Mohamed Lamine Kerdoudi, Chouki Tibermacine, and Salah Sadou. 2016. Open-
ing web applications for third-party development: a service-oriented solution.
Journal of SOCA 10, 4 (2016), 437-463.

[8] Mohamed Lamine Kerdoudi, Chouki Tibermacine, and Salah Sadou. 2018. Spot-

lighting Use Case Specific Architectures. In Proc. the 12th ECSA. Springer.

Li Li, Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and

Yves Le Traon. 2016. Mining families of Android applications for extractive SPL

adoption. In Proceedings of the 20th SPLC 2016, Beijing, China.

Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek Rayside, Nenad

Medvidovi¢, and Robert Kroeger. 2018. Measuring the impact of code depen-

dencies on software architecture recovery techniques. IEEE TSE 44, 2 (2018),

159-181.

[11] Onaiza Magbool and Haroon Babri. 2007. Hierarchical clustering for software

architecture recovery. IEEE TSE 33, 11 (2007), 759-780.

Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le

Traon. 2015. Automating the Extraction of Model-Based Software Product Lines

from Model Variants (T). In 30th IEEE/ACM, ASE , Lincoln, NE, USA,. 396-406.

Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le

Traon. 2015. Bottom-up adoption of software product lines: a generic and exten-

sible approach. In Proceedings of the 19th SPLC, Nashville, TN, USA. 101-110.

[14] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le

Traon. 2016. Name suggestions during feature identification: The VariClouds
approach. In Proceedings of the 20th SPLC , Beijing, China.

[15] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and Yves Le

Traon. 2017. Bottom-up technologies for reuse: automated extractive adoption of

software product lines. In Proc. of the 39th ICSE Companion. IEEE Press, 67-70.

Mari Matinlassi. 2004. Comparison of Software Product Line Architecture Design

Methods: COPA, FAST, FORM, KobrA and QADA. In Proceedings of the 26th ICSE

(ICSE ’04). IEEE Computer Society, Washington, DC, USA, 127-136.

[17] Jeff McAffer, Paul VanderLei, and Simon Archer. 2010. OSGi and Equinox: Creating

highly modular Java systems. Addison-Wesley Professional.

[18] Gilles Perrouin, Jacques Klein, Nicolas Guelfi, and Jean-Marc Jézéquel. 2008.

Reconciling automation and flexibility in product derivation. In Proc of. the 12th

SPLC. IEEE.

Abderrahmane Seriai, Salah Sadou, and Houari A Sahraoui. 2014. Enactment of

Components Extracted from an Object- Oriented Application. In Proc. ECSA.

[20] Anas Shatnawi, Abdelhak-Djamel Seriai, and Houari Sahraoui. 2017. Recover-

ing Software Product Line Architecture of a Family of Object-oriented Product

Variants. J. Syst. Softw. 131, C (Sept. 2017), 325-346.

Zipani Tom Sinkala, Martin Blom, and Sebastian Herold. 2018. A mapping

study of software architecture recovery for software product lines. In Companion

Proceedings of ECSA.

Thomas Thiim, Christian Kistner, Fabian Benduhn, Jens Meinicke, Gunter Saake,

and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-

oriented software development. Science of Computer Programming 79, 0 (2014).

David Wille, Kenny Wehling, Christoph Seidl, Martin Pluchator, and Ina Schaefer.

2017. Variability Mining of Technical Architectures. In Proceedings of the 21st

SPLC - Volume A. ACM.

Tewfik Ziadi and Lom Messan Hillah. 2018. Software Product Line Extraction

from Bytecode based applications. In Proc. of the 23rd (ICECCS). IEEE, 221-225.

—
o)

[10

[12

(13

(16

[19

[
—

[22

[23

[24

	Abstract
	1 Introduction
	2 A Generic Process for SAPL-Reverse Engineering
	2.1 Reverse-Engineering of SA Variants
	2.2 SAPL Construction
	2.3 Variants Derivation

	3 Instantiation of the Process for OSGi Component/Service Model
	4 Evaluation of the Process
	5 Related Work
	6 Conclusion
	References

