
1

Generalization of LRU Cache Replacement

Policy with Applications to Video Streaming
Eric Friedlander and Vaneet Aggarwal

Abstract

Caching plays a crucial role in networking systems to reduce the load on the network and is commonly employed

by content delivery networks (CDNs) in order to improve performance. One of the commonly used mechanisms,

Least Recently Used (LRU), works well for identical file sizes. However, for asymmetric file sizes, the performance

deteriorates. This paper proposes an adaptation to the LRU strategy, called gLRU, where the file is sub-divided into

equal-sized chunks. In this strategy, a chunk of the newly requested file is added in the cache, and a chunk of

the least-recently-used file is removed from the cache. Even though approximate analysis for the hit rate has been

studied for LRU, the analysis does not extend to gLRU since the metric of interest is no longer the hit rate as the

cache has partial files. This paper provides a novel approximation analysis for this policy where the cache may have

partial file contents. The approximation approach is validated by simulations. Further, gLRU outperforms the LRU

strategy for a Zipf file popularity distribution and censored Pareto file size distribution for the file download times.

Video streaming applications can further use the partial cache contents to help the stall duration significantly, and

the numerical results indicate significant improvements (32%) in stall duration using the gLRU strategy as compared

to the LRU strategy. Furthermore, the gLRU replacement policy compares favorably to two other cache replacement

policies when simulated on MSR Cambridge Traces obtained from the SNIA IOTTA repository.

Index Terms

aching, Least Recently Used, Video Streaming, Characteristic Time Approximation, Che’s approximation, aching,

Least Recently Used, Video Streaming, Characteristic Time Approximation, Che’s approximation, C

I. INTRODUCTION

In order to improve the performance of web-based services (e.g., cloud-based storage systems, Video-on-Demand

(VoD), etc.), content delivery architectures frequently employ a caching system. A typical system consists of a set of

large centralized servers storing a large set of documents (e.g. videos) and a network of distributed servers (caches).

The caches are closer to the user, and thus allow for faster download speeds. However, since the caches are small

relative to the size of the centralized servers, one needs to employ a set of rules governing which files are stored on

each cache, referred to as a “Cache Replacement Policy”.

E. Friedlander is with the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, email: ebf2@email.unc.edu. V. Aggarwal
is with Purdue University, West Lafayette, IN 47907, USA, email: vaneet@purdue.edu

DRAFT

ar
X

iv
:1

80
6.

10
85

3v
2

 [
cs

.N
I]

 2
4

Ju
n

20
19

2

One of the most popular policies is the so-called “Least Recently Used” (LRU) replacement policy. Under the

LRU policy, the cache can be thought of as a queue. When a new file is requested, it is added to the head of the queue

(or moved to the head if it is already present in the queue). If a file reaches the tail of the queue it is “pushed out”

(i.e., removed from the cache). Since the most popular files are the ones which are requested most often, they have a

much higher probability of being stored in the cache resulting in faster content delivery. As a result, the performance

and properties (both theoretical and empirical) are a topic of much research (cf. [1]–[13] and references therein).

There are many extensions of the classical LRU policy, including q-LRU and LRU(m) [14], [15], that mainly

focus on situations where entire files are cached. One of the issues with the LRU policy is that a large file request

will evict multiple small files in the cache and thus can hurt the system performance. In order to avoid this effect, this

paper proposes a generalization of the LRU replacement policy (denoted as gLRU). In general, files can be divided

into equally sized pieces or chunks of equal size. The gLRU replacement policy differs from LRU in that, when a

file is requested, only one additional chunk is added to the cache (unless all chunks of the file exist already in the

cache). For example, suppose a document with 100 chunks is requested and 10 chunks are currently cached. Under

gLRU, the 10 chunks will be moved to the head of the cache along with 1 additional chunk. In the LRU policy, the

entire file will be added. We assert that gLRU results in improved performance (i.e., faster download speeds, fewer

delays, etc.) than the original LRU.

Even though gLRU is a general approach and for identical sized files with a single chunk reduces to the LRU

policy, analysis of the gLRU scheme is an important and challenging problem. As with LRU, the computation of

hit rates, the probability that a file is in the cache in the steady state, cannot be characterized easily in closed form.

There have been multiple approximation methods to characterize the approximate hit rate for LRU, with one of the

commonly known approximations called the “characteristic time approximation” [2], [3]. With the gLRU caching

policy, a file is partly in the cache. Thus, the metric of interest is not the hit rate, but the distribution of the number

of chunks of each file in the cache in the steady state. Thus, the analysis of gLRU brings a new dimension in

solving the problem and the previous analysis which adds or removes the entire file in the cache cannot be readily

applied. The main result of the paper is the approximation for the steady state distribution for the gLRU strategy.

The proposed approximation is also validated through simulation. Even though multiple approximation techniques

have been proposed for cache replacement strategies, this is the first work to the best of our knowledge that analyzes

the distribution of files in cache, where partial files can exist in the cache and the caching strategies adds/removes a

chunk of the file rather than the complete file. The method proposed in [16] considers a similar policy targeted toward

a video streaming setting in which portions of files can be stored, however no present analytical results characterizing

the number of cached files in steady state are given.

This paper further aims to compare the performance of gLRU with LRU and give preliminary comparisons with

several other cache replacement policies. In addition to LRU, we consider two alternative policies. We now give a

brief description of these two policies with a more in-depth description given in Section VI-B. The first alternative,

outlined in [16], aims to improve the performance of video streaming by first grouping the chunks into segments

such that the i-th segment contains 2i−1 chunks and we refer to this policy as segLRU. This segmentation of the

chunks means that as a video is requested more frequently, the number of cached chunks increases faster than with

a simple LRU policy. The policy then divides the cache into two sub-caches, the first for segments consisting of

chunks occurring early on in the video and the second for later segments. The two sub-caches operate according to

DRAFT

3

a modified LRU policy. The performance improvement of this policy lies in the fact that early portions of requested

videos are more likely to be stored since there is a cache which is devoted to these segments. We also consider the

AdaptSize method proposed in [17]. AdaptSize is a probabilistic caching policy in which smaller files are stored with

higher probabilities, and these probabilities are dynamically tuned to improve performance. In order to compare these

methods, multiple performance metrics are considered, including the proportion of chunks retrieved from the cache

(as a generalization to the average hit rate), and the download time of the file. Further, video specific metrics like

the stall duration are also considered.

We observe for a Zipf file popularity distribution and censored Pareto file size distribution that the gLRU cache

policy outperforms the LRU policy in all the metrics. These results indicate that the flexibility of adding and removing a

chunk of the file in contrast to the entire file can improve system performance, at least in a setting with static popularity

distribution. When compared with segLRU and AdaptSize on production traces the results are also promising (cf.

Figures III and IV). Specifically, gLRU outperforms segLRU in between 43-46 out of 48 trials (depending on the

performance metric considered). Furthermore, the median improvement in performance ranges from 1.79% to 78.2%

(depending on the metric). When compared to AdaptSize, gLRU performs better in all 48 trials for the cache miss

rate pm and download time Tw . In addition it outperforms AdaptSize in 27, 45, and 36 out of 48 trials for the

proportion of chunks retrieved from the cache pc, the delay time Td, and the proportion delayed pd, respectively.

The median improvement for each metric ranges from .16% for pc to 96.1% for Tw. The proposed scheme borrows

the advantages of LRU, including low complexity, ease of implementation, and being adaptive to the change in the

arrival distributions. In addition, gLRU outperforms LRU by not having to displace multiple small files to add a

larger file. For VoD settings, the availability of earlier chunks in the cache can further help since the later chunks

have later deadlines. The proposed scheme will have partial files in the cache, and that can help the stall duration

since only the later chunks must be retrieved. Numerical results indicate a median improvement of 20%, 31%, and

32% in proportion of chunks accessed from cache, download time, and video stall duration, respectively, using the

gLRU caching strategy as compared to the LRU caching strategy. It is important to note that we only consider a

static popularity distribution and gLRU may suffer when the popularity distribution is rapidly changing. To combat

this, one can consider extensions of gLRU in which more and more chunks are added each time a file is requested

in order to improve the policies reactivity (cf. Section III-B). However, we leave a more in-depth analysis of gLRU’s

reactivity to future work. Another topic of concern is the dependence structure between the file size and popularity

distributions. While the file size and popularity distributions are assumed independent in the synthetic traces, we note

that the joint distribution is certainly important for the performance of gLRU. In Appendices C and D, we explore

the effect of positive and negative correlation between the the file size and popularity distributions. In the case of

negative correlation, the more popular files are smaller and thus more of them can be stored in the cache leading

to improved performance (cf. Table V and Figure 5). Furthermore, gLRU outperforms LRU in both the positive and

negative correlation cases but the effects are more pronounced in the case of negative correlation (cf. Table VI).

The rest of the paper is organized as follows. Section II reviews some of the related work in the analysis of LRU

caching, as well as some proposed variants of LRU to deal with the issue of asymmetric file sizes. In Section III we

describe the model which is the subject of our analysis including a description of our proposed cache replacement

policy, gLRU. Section IV-C then gives the proposed approximation to the gLRU caching policy. In Section IV-D, we

use both the original characteristic time approximation and the approximations proposed in Section IV-C to compare

DRAFT

4

LRU with gLRU. In particular, we show that since gLRU does not need to add entire files to the cache, it is able to

store smaller pieces of more files in the cache. Sections V and VI are devoted to the results of numerical simulations.

In Section V, we demonstrate that the proposed approximation to gLRU is valid and in Section VI, evaluation of

gLRU against several alternative policies are given on both synthetic and production trace data. Finally, Section VII

concludes this paper.

II. RELATED WORK

Analysis of LRU Caching: Evaluating the performance of cache networks is hard, considering that the Markov

chain associated with a single LRU (Least Recently Used) cache has an exponential number of states [4], [18],

[19]. Multiple approximation approaches have been studied [1]–[13] in the literature, with two key types of analysis

techniques - the characteristic time approximation [2], [3], [19] and the network calculus approach [13]. One of the

key metrics to quantify in caching systems is the hit rate, which describes the probability of finding a file in the

cache given a popularity distribution on the set of available content. The authors of [19] provided an expression

for hit rate of identical-sized files, which can be computed using numerical integration approaches. The authors of

[2], [3] presented a method for approximating (called the characteristic time approximation) the hit rates for such a

system assuming that all files are of identical size. However, in most cases files are of different sizes. Further work

by the authors of [6] provide the theoretical machinery behind the efficacy of the characteristic time approximation

and provide a simple extension to the case of multiple file sizes (cf. equation (5) therein).

Adaptations of LRU Caching: Several extensions of LRU have been proposed. [14] outlines a variety of these

methods, specifically q-LRU, k-LRU, RANDOM, and k-RANDOM. The q-LRU policy is the same as LRU except

that files are only added with probability q. An extension of q-LRU called qi−LRU in which each file has its own

probability of being added to the queue is presented in [20]. This probability is computed based on the content size

and time required to retrieve the content from the cache . In k-LRU, requested files must traverse k − 1 additional

virtual LRU caches before it is added to the actual cache. RANDOM and k-RANDOM are the same as q-LRU and

k-LRU except files are evicted from the cache at random. Another method, called LRU(m), is outlined in [21], [22].

This policy exploits h caches of sizes m1, . . . ,mh in which the first v caches are virtual and of sizes m1, . . . ,mv

while the remainder are real. For more details see [15] which gives an analysis of both k-LRU and LRU(m). Several

other probabilistic replacement policies are proposed in [23], where the authors consider files which have non-uniform

size and non-uniform access costs. However, the setting of [23] differs from ours in that it does not consider chunked

files. We note that in future work, it maybe possible to combine the above policies with gLRU by, for example,

considering a sequence of caches employing a gLRU replacement policy instead of a pure LRU policy.

One of the key issues in the LRU based caching strategy is that a large file arrival can evict multiple small files. In

order to have better performance with realistic file sizes, multiple approaches have been proposed, see [17], [24] and

the references therein. An admission control strategy in [17] is used to decrease the probability that a large file size is

added in the cache. One of the potential issues with these strategies is that the addition and removal from the cache

is still at the file level. In a VoD setting, one may achieve better performance from simply caching the early portions

of each file as in [16]. The time it takes to watch the early portion of the video provides a buffer during which the

later segments of the video can be returned from a centralized server. In contrast, this paper provides the flexibility of

adding/removing files at the chunk level. The authors of [25] considered the flexibility for adding/removing chunks

from the cache, however, the caching strategy is based on knowing the file arrival rates. Even though a window-based

DRAFT

5

scheme can be used to learn the arrival rate and use such caching policies, the complexity for the cache update is

higher. In contrast, this paper uses a generalization of the LRU caching strategy that is completely adaptive to the

arrival pattern, does not take any such parameters in the strategy, and is easy to implement. Similarly, in [26], the

author’s propose a replacement policy based on the Greedy Dual-Size algorithm which leverages information based

on the file popularities which are estimated online. However, despite considering varying file sizes, the authors do

not consider chunked files.

Cache Management for Video Streaming: There is a large amount of literature on the particulars of video

caching and, in some cases, its relationship with the LRU caching policy. Many of these are concerned with the

intricacies of how to design hierarchical network architectures to improve system performance. This differs from the

work presented here in that our proposed cache replacement is considered on a more granular level, considering the

performance on a single cache. For example, four different caching algorithms for planet-scale CDNs called xLRU,

Cafe Cache, Optimal Cache, and Psychic Cache are outlined in [27]. These methods are concerned with networking

together large sets of servers and a large portion of their work is devoted to evaluating when to redirect traffic

between servers versus when to add files to caches at which a requests arrive. Another paper is [28] in which the

authors consider a two-layered architecture tailored to video streaming for chunked files. In the presented system,

the second level caches employ an LRU caching policy and the model exploits correlations between files chunks of

the same video in order to prefetch later file chunks in order improve the performance of video streaming. It is an

interesting topic of future work as to whether some of these network architectures can be improved by incorporating

gLRU instead of LRU caches. Another work of interest is [16], in which the authors also consider chunked video

files. In this work, the chunks are divided into segments containing multiple chronologically adjacent chunks. Chunks

from later on in a given video are combined into larger and larger segments. Furthermore, the cache is divided in

two. The first portion is devoted to smaller, early (i.e., those segments corresponding to the beginning of a video)

segments operating under an simple LRU policy. The second cache handles the larger, later segments and employs a

probabilistic LRU policy in which the relative popularity and size of each segment is used to determine its admission

probability. Throughout this work we will refer to this policy as segLRU. In Sections VI-A and VI-C, we compare

gLRU with segLRU and the AdaptSize method outlined earlier.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we outline the system model and describe the caching policy that will be analyzed in this paper.

A. System Parameters

Consider a single server storing a collection of N files. The files may be of different sizes and file i ∈ {1, . . . ,N}

is comprised of s(i) equally sized pieces, or chunks. While the number of chunks which comprise each file may

vary, the size of each individual chunk is the same for all files. In video streaming settings, each chunk typically

consists of 1-4 seconds of video [29]. Without loss of generality, we assume all chunks have unit size.

We assume a single user in the system, which may be an aggregate point for multiple users (e.g., edge router).

The user requests the files from the server, where the aggregate arrival process follows a Poisson process with rate

λ. The probability that a given request is for file i ∈ {1, . . . ,N} is proportional to its popularity q(i). In general, q

is assumed to follow a Zipf law with parameter α (cf. [2], [3], [6], [12] and references therein for a more in-depth

DRAFT

6

discussion). Without loss of generality, we assume that λ = ∑Ni=1 q(i) and the arrival rate for file i is q(i). This

implies that the probability that a given request is for file i is q(i)/λ.

When a file request arrives at the server, all chunks are entered in a first-in-first-out (FIFO) queue which services

the requests. We assume that distribution of service times (from the server) for any chunk is exponential with a

rate µ. In order to improve retrieval speed, the system employs a cache of capacity C in which any file chunk

requires one unit of capacity. For approximating the steady state hit probabilities in Section IV-C, we assume that the

processing rate µ is infinite. This assumption is in line with [2], [3], [6] in which it is assumed that files are cached

instantaneously upon request. For the numerical evaluation of the gLRU policy in Section VI, we assume a finite µ.

Furthermore, the steady state hit probabilities can be used to compute performance metrics (e.g. download time) for

a system with finite µ. A file i finishes downloading when all the s(i) chunks of the file are available to the user.

However, when considering video streaming, a user can begin playing the video before all the chunks are received.

More about this will be discussed in Section VI-A. One can think about the cache as being “close” to the user and

having a service time which is negligible. In the next subsection, we will describe the cache replacement policy that

will be used to decide the contents in the user cache.

B. Cache Replacement Policy

In order to achieve a better user experience (e.g., higher latency, less buffering, etc.), one can consider several

different policies for allocating space within the cache. One commonly used policy is the Least Recently Used (LRU)

replacement policy [1]–[4]. When employing the LRU replacement policy, all pieces of a requested file are moved

to the head of the cache. If there is not enough capacity to accommodate these new file requests, the files at the tail

of the cache (i.e., those which were the least recently requested) are forced out. One of the key issues with LRU is

that different files have different sizes, and a large file-size request can displace multiple files with lower file size. In

this work, we propose a generalization of LRU which we will refer to as gLRU. In the gLRU replacement policy,

instead of adding all file chunks to the head of the cache, only the pieces already in the cache plus one additional

chunk (should one exist) are added, thus increasing the number of cached pieces of the requested file by at most one.

The proposed gLRU scheme is easy to implement since the existing chunks of the file are moved to the head with

one additional chunk and one chunk at the tail is removed. We note that the LRU policy can be implemented using

concurrent linked hashed maps [30], [31]. This can be easily modified to add the counter of chunks in the cache.

The changes for gLRU include decreasing the number of chunks rather than removal of the file index at the end of

the doubly linked list (unless there is only one chunk already), and adding a chunk when the file is moved to the

head. Thus, gLRU can be implemented using concurrent linked hashed maps with minor adaptations on the LRU

implementation. Further, this scheme is online and adapts to the changing file arrival distribution. As we will show

in Section VI-A, numerical results demonstrate that gLRU has superior performance on many performance metrics

of interest, including file download times and video stall duration.

We note that adding chunks one-by-one may be slow in adapting and has the potential to yield poor performance

when the popularity distribution is rapidly changing. In order to improve the reactivity of gLRU, one could consider

simple extensions of the algorithm outlined here. For example, by dividing the chunks into segments as in [16] so that

each time the file is requested a larger portion is added. These extensions fit quite simply within the approximation

heuristic framework proposed in Section IV-C, and equivalent approximations of hit probabilities can be derived using

the same steps as outlined in this work.

DRAFT

7

With this in mind, we propose a further generalization of LRU which we refer to as gLRU(d) inspired by the

transport control protocol (TCP) congestion control algorithm [32], [33]. In particular, in TCP CUBIC, the window

size is a cubic function of time since the last congestion event [34]. Since the window size increases as a cubic

function rather than increasing by 1 as in TCP Reno, TCP cubic has been shown to produce less bursty traffic [35].

In gLRU(d), when a file is requested, instead of adding one additional chunk, an additional pd chunks are added where

p is the number of times that file has been requested since it last dropped out of the cache (To draw a parallel with the

TCP congestion control algorithm, the last time it dropped out of cache is equivalent to the last congestion event and

the amount of chunks in the cache is equivalent to the window size). We can tune the reactivity of the replacement

policy by changing the value of d in that increasing d will increase the reactivity of the algorithm. As previously

mentioned, the approximation heuristic proposed in Section IV-C can easily be extended to gLRU(d). However, as

we have only numerically validated the approximation for gLRU (i.e. gLRU(1)) we present the heuristic in Appendix

A. We leave a further detailed analysis of the effects on the reactivity and the question of how to optimally choose

d for future work.

C. Problem Formulation

Fagin first proposed a simple approach for estimating the hit rates of a cache operating under the LRU strategy

[2]. The method was then rediscovered in [3], [36]. We call this approach the characteristic time approximation

approach and note that other papers in the area [6], [14] use the term Che’s approximation, even though the paper

[3] has multiple co-authors. In this paper, we aim to estimate the probability distribution of the number of chunks of

a file in the cache in the steady state using the gLRU caching policy. Further, this paper aims to see improvement of

the proposed caching strategy as compared to the LRU strategy.

IV. GENERALIZATION OF THE CHARACTERISTIC TIME APPROXIMATION

In this section, we will provide an approximation for the distribution of cache contents using the gLRU caching

strategy and discuss the results with a comparison to the LRU caching policy.

A. Characteristic Time Approximation for LRU Caching Policy

In this subsection, we will describe the key approach in the characteristic time approximation [2], [3]. The

characteristic time approximation gives a simple, efficient, and accurate method of estimating the hit probabilities

(i.e., the probability of finding a given file in the cache) for a system employing the LRU replacement policy. While

the approximation was established for a system in which all files had one chunk of equal size, the method can easily

be extended to files of multiple sizes (c.f. [6]). Let τ̃i,1 represent the time of the first request for file i (the first

inter-arrival time). The characteristic time approximation, applied to files of multiple sizes (c.f. (5) of [6]) relies on

defining, for each file n ∈ {1, . . . ,N}, random variables

Xn(t) =
N

∑
i=1,i≠n

1{τ̃i,1<t}s(i) (1)

and

TC(n) = inf{t > 0 ∶Xn(t) ≥ C}

DRAFT

8

where Xn(t) represents the number of file chunks, other than file n, that will be added to the head of the cache by

time t. Assuming that object n is inserted into the cache at time 0, it follows that TC(n) represents the amount of

time it will take for at least C chunks to be added to the cache at which point all pieces of file n will have fallen

out of the cache if n has not been requested.

Ultimately, TC(n) is estimated by setting C equal to the expected value of Xn,

EXn(TC(n)) = E∑
i≠n
(1 − e−q(i)TC(n))s(i) (2)

however, some assumptions need to made. The first is that the cache is sufficiently large as to assume that TC(n) is

deterministic. The second is to assume that TC(n) = tC is the same for all n where tC solves

C =
N

∑
i=1
(1 − e−q(i)tC)s(i). (3)

It is also assumed that it is sufficient to consider,

X(t) =
N

∑
i=1

1{τ̃i,1<t}s(i)

to estimate tC rather than each Xn and thus (2) becomes

C = EX(tC) =
N

∑
i≠1
(1 − e−q(i)tC)s(i) (4)

which is the same as (3). Such an assumption is valid if the popularity of any individual file is small compared to

the total popularity (i.e. ∑i q(i)). Indeed, this is the case for the Zipf popularity distribution. An estimate for tC is

then obtained by numerically solving (4).

B. Challenges for Analysis of gLRU

The key difference in gLRU as compared to LRU is that the cache contains partial files. For each file request, at

most one chunk is added in gLRU whereas in LRU where the entire file is added. Similarly, gLRU removes a chunk

of a file at a time in contrast to the removal of entire file(s) in LRU.

The difficulty in extending the characteristic time approximation to the gLRU caching policy is that the number

of chunks added to the head of the cache is a random variable dependent on the state of the system, the file size

distribution, and the popularity distribution. In [2], [3], [6], the state of the cache at time zero is unimportant and

thus one can assume that it is empty. In the case of gLRU, the number of chunks added to the head of the cache

due to a file request is dependent on the current state of the cache. As a result, it is difficult to write down an exact

expression equivalent to (1).

C. Proposed Approximation for gLRU(d)

In this subsection, we provide an approximation for the probability of j chunks of file n in the cache when the

gLRU caching policy is used.

Since an exact expression equivalent to (1) is hard to write, we write an approximation of Xn(t) by replacing

s(i) in the i-th term in the sum with the expected number of file i chunks in the cache when the system is in steady

state. This expected value can be computed given tC , and we will denote it as d(i, tC).

DRAFT

9

Let τn,k represent the kth inter-arrival time of requests for file n. Given a tC , the probability of finding at least

j chunks of file n in the cache is equal to the probability that the last j inter-arrival times, looking back from the

current time, for file n are less than tC . Assuming that the probability of a file being requested while it is at the end

of the cache is small, this can be approximated as follows,

hj(n, tC) ≐ P(τn,1 < tC , . . . , τn,j < tC) = (1 − eq(n)tC)j , (5)

which follows since the τn,j’s are independent and identically distributed exponential random variables with rate

parameter q(n). We note that this is not really a new assumption but a result of the rate of requests for file i being

small compared to that overall rate of requests under a Zipf popularity law. Without this assumption, the expression

for hj would need to account for all cases in which the specified file is requested after several chunks of the file had

fallen out of the cache and j − 1 were remaining, vastly complicating (5). Suppose one starts with j′ > j chunks in

the cache. If a file request arrives when j′ − j +1 chunks have fallen out of the end of the cache then j will be added

to the head. The assumption implies that this event can be ignored. Let Yi, i ∈ {1, . . . ,N} be random variables such

that Yi represents the number of cached chunks of file i when the system is in steady state. Recalling that d(i, tC)

denotes the expected number of file i chunks in the cache when the system is in steady state, it then follows that

d(i, tC) =
s(i)
∑
k=1

P(Yi ≥ k) =
s(i)
∑
k=1
(1 − eq(i)tC)k.

The proposed approximation of Xn(t) is then given as

X̃n(t) =
N

∑
i=1,i≠n

d(i, t).

As in the derivation of (4), it is sufficient to consider

X̃(t) =
N

∑
i=1
d(i, t)

and one can then estimate tC by setting the expected value of X̃ to C and solving for tC . This amounts to solving

the following equation,

C = EX̃ =
N

∑
i=1

s(i)
∑
k=1
(1 − eq(i)tC)k.

Once an estimate for tC is obtained, one can compute hit probabilities using (5). For example, the probability of

finding at least one piece of file n in the cache is simply h1(n, tC), where h is as in (5). This can then be used to

find other metrics of interest. For example, the probability that exactly j pieces of file n are cached when the system

is in steady state is given as

P(at least j pieces of file n are cached)

−P(at least j + 1 pieces of file n are cached)

= hj(n, tC) − hj+1(tC)

= (1 − eq(n)tC)j − (1 − eq(n)tC)j+1. (6)

DRAFT

10

D. Discussion

One important implication of the assumptions made in the characteristic time approximation is that the popularity

of any given file is small relative to the total popularity. Indeed, the simulations in [3], [6] and Section V suggest

that this is reasonable. In this work, we further use this assumption when approximating the hit rates via (5) to imply

that the amount of time a file spends at the end of the cache is small, and thus, the probability a request arrives while

a few (but not all) chunks have fallen out of the cache is negligible. When contrasting LRU and gLRU, this implies

that the LRU replacement policy results in an “all or none” scheme in which files are either entirely in the cache or

not at all in the cache while gLRU is able to store portions of a greater number of files.

In Figure 1, we present estimates from the characteristic time approximation and the proposed approximation

that the cache contains any chunks of a file of given popularity for LRU and gLRU. Further, Figure 1 also depicts

the probability of finding all chunks of a file (i.e. the entire file) under the gLRU replacement policy. Since the LRU

policy stores either all or no chunks of each file, an analogous line is not needed as it would coincide with the

earlier LRU line. In this particular example α = .8, all files have 5 chunks, and the cache can hold 10,000 chunks

at a time. Similar results can be obtained by varying α or the number of chunks. If we allow the number of chunks

to be random, similar patterns are obtained for the probabilities of observing any chunks in the cache, however the

probabilities of finding full files in the cache under gLRU becomes dependent on the individual file sizes.

Fig. 1: Comparison of hit rates for LRU and gLRU cache replacement policy. gLRU-A and LRU-A lines indicate
the probabilities of finding at least one piece of a file of a given popularly (rank is given on x-axis) in the cache
under the gLRU and LRU replacement policies, respectively. gLRU-F line gives the probability of finding all chunks
of the file under the gLRU policy. Note that there is no need for an analogous LRU line since this value doesn’t
change for LRU since it is an “all or nothing” policy.

In the Video-on-Demand (VoD) setting, the user can begin watching as soon as a single chunk has been retrieved.

The time it takes to view this chunk (and the other chunks stored in the cache) provides a cushion during which

portions of the video which occur later, and are not stored in the cache, can be retrieved from the centralized server.

For this reason, it makes sense that gLRU should be superior in the VoD setting. In Section VI-A, we provide

numerical results showing that, in addition to this improvement in delay times, total download time is also reduced

by using gLRU. The flexibility of having partial file chunks can indeed help getting the number of file chunks in the

cache roughly proportional to the arrival rates, helping to improve the file download times.

DRAFT

11

V. NUMERICAL VALIDATION OF THE PROPOSED APPROXIMATION

In this section, we present the result of several numerical simulations showing the validity of the approximations

established in Section IV-C. We validate the approximations presented in Section IV-C via simulation. The simulated

system contains N = 10,000 different files with popularity law q(i) ∼ Zipf(α). Each file has a constant number of

chunks c. The reason for this is to separate the performance differences due to file size and popularity. If one were to

consider distributions on popularity and file size then one would need to account for the joint distribution between the

two, an interesting question on its own (see Section C). While not presented here, we did consider Pareto file sizes

and the results were qualitatively similar. Pareto file sizes have been used in Section VI-A to compare performance

of LRU and gLRU. The arrivals of requests for file i ∈ {1, . . . ,N} is a Poisson process with rate q(i).

The notion of hit rate in this context is slightly different than the hit rate in the characteristic time approximation

[2], [3] in that we are no longer just concerned with the proportion of requests which find the requested file in the

cache. Since the system can store partial files, we are interested in how many chunks of the requested file are found

in the cache. Consider an arbitrary file i. We are able to estimate the probability for finding exactly k, 0 ≤ k ≤ s(i)

chunks of file i in the cache using Equation (6). Figure 2 displays the estimated (solid lines) and simulated (markers)

hit rates over a variety of parameters. Each point represents that probability (y-axis) of finding the number of chunks

indicated on the x-axis. The blue, red, and pink represent the 1, 100, 1000, most popular files, respectively. For

example, if we look at the blue line at 5 on the x-axis in Figure 2a, this represents the estimated probability of there

being 5 cached chunks of the most popular file when it is requested and the star on top indicates the corresponding

simulated value. These figures show near perfect alignment between the estimated hit rates and true hit rates. In

particular, the largest difference between predicted and simulated values is .016 indicating that the approximations

establish in Section IV-C are valid.

VI. NUMERICAL EVALUATION OF GLRU

In this section, we compare gLRU with several other replacement policies. Section VI-A presents a comparison

with LRU on a set of synthetic traces. The results indicate the gLRU outperforms LRU on a variety of performance

metrics in a video streaming setting. In addition, we discuss some preliminary comparisons with two alternative

policies, AdaptSize [17] and a segment-based generalization of the LRU replacement policy which we will refer to

as segLRU [16]. See Section VI-B, for an outline of these two alternative policies. A brief discussion of preliminary

comparisons on synthetic trace data is given at the end of Section VI-A and a more developed analysis is given

comparing the results on production trace data in Section VI-C. For the sake of reproducibility the code used to

generate all figures and tables can be found at: https://github.com/EricFriedlander/gLRU.

A. VoD Latency for LRU and gLRU on Synthetic Trace Data

We now provide numerical simulations comparing the performance of the LRU and gLRU replacement policies.

All simulated systems consist of N = 1,000 video files. The popularity of each video file is distributed according to

a Zipf law with parameter α and the file sizes are distributed according to a censored Pareto distribution [37] with

shape 2 and scale 300 (corresponding to an average length of 10 minutes) truncated so that no video is longer than

1 hour. Each video file is broken down into chunks of length L seconds. When a video file is requested, the chunks

are played sequentially, with each chunk consisting of L seconds of video. In this section, we assume that the the

DRAFT

12

(a) α = .8, C = 5000, c = 30 (b) α = 1.2, C = 5000, c = 30 (c) α = .8, C = 1000, c = 30

(d) α = 1.2, C = 1000, c = 30 (e) α = .8, C = 5000, c = 15 (f) α = 1.2, C = 5000, c = 15

(g) α = .8, C = 1000, c = 15 (h) α = 1.2, C = 1000, c = 15 (i) Legend

Fig. 2: Comparison of true (markers) and estimated (lines) hit rates for a simulated caching system. The estimated
hit rates are nearly perfect.

popularity and file size distributions are independent. However, the joint distribution is surely important and a topic

of further work. We give some results in this direction in Appendix C.

Chunks retrieved from the cache are available to play immediately, while those not cached must be served by a

single server FIFO queue as described in Section III-A. There is a start-up delay ds during which the video can be

buffered before playing. If the user attempts to view a file chunk which has not yet been served, they must wait for

it to be processed and incur a delay. The storage model is as described in Section III. The system is simulated under

both the LRU and gLRU cache replacement policies.

In our simulations, we study five performance metrics of interest,

i) pc - the proportion of file chunks retrieved from the cache.

ii) pm - the proportion of requests in which no chunks are found in the cache.

DRAFT

13

Parameter Definition Values Used
α Zipf law parameter 0.8, 1.2
Cp Cache sizes as proportion of total number of chunks 0.1, 0.2
ds Delay before video playback. See Section VI-A 3, 4 seconds
L The length of each video chunk 1, 2, 3, 4 seconds

ρ
The traffic intensity, i.e., the total arrival rate (weighted by file size)

divided by the processing rate (assuming no cache) 0.1, 0.5, 0.9
r Processing rate. Note that we assume each second of video corresponds to 3.13 MBps. 1, 2, 10, 30 MBps

TABLE I. List of parameters in LRU and gLRU simulations for VoD setting

iii) Tw - the average amount of time required for each file to be retrieved, i.e., the download time of the file.

iv) Td - the average amount of time playback of a video is delayed. This is the re-buffering or the stall duration of

the video and is a key metric in video streaming [38]. This metric calculates the download time of each chunk

and plays them in order with the play time of chunk k being the maximum of the play time of chunk k − 1 + L

and the download time of chunk k. The difference of the play time of the last video chunk and ds + (s(i) − 1)L

gives the stall duration for file i.

v) pd - the proportion of requested videos which experience a nonzero stall duration.

The input parameters are summarized in Table I, which includes all definitions and values, and the system is

simulated to convergence under the values described therein. Note that we do not explicitly give a processing rate

µ because it is implicitly defined through the traffic parameter ρ. All combinations of parameters are simulated

resulting in 384 separate trials. The reader should keep in mind that each configuration is only simulated once and

thus the effects of the stochasticity in both the popularity distribution and file size distribution are not “averaged out”.

However, since there are 1000 files in each simulation, the effects should be minimal.

In Figure 3, we present the results of the simulations. A histogram of the relative difference between gLRU

and LRU for all performance metrics is presented. Specifically, the x-axes correspond to the difference between

the specified performance metric under gLRU and LRU divided by the metric for LRU. Histograms of the gross

differences can be found in Appendix B.

In Table II, we present the results of comparing gLRU with LRU. The columns “Worse” and “Better” represent

the number of trials in which gLRU performs worse and better and “Worst”, “Best”, and “Median” give the worst,

best, and median improvement of gLRU over LRU. In the tables, positive numbers correspond to gLRU performing

better. The results are given in terms of relative improvement where the magnitude is computed as (gLRU-LRU)/LRU.

When considering pc, pm, and Tw, gLRU outperforms LRU in every instance. For the delay focused metrics, Td and

pd, gLRU outperforms LRU in 237 and 240 out of 384 configuration, respectively. In the remaining cases there was

no discernible difference in performance.

These results indicate that the gLRU replacement policy is almost always superior to the LRU policy and results

in shorter download times (30.8% improvement), lower stall duration (32.0% improvement), and more videos with

non-zero stalls (19.7% improvement). Since videos are watched sequentially (i.e., a user begins at the beginning and

proceeds through the file pieces one by one), it make sense that gLRU would result in an improvement in the VoD case

since this viewing of earlier video chunks provides time for chunks appearing later in the video to load. Moreover, our

results show that by employing a gLRU policy, a system designer is able to improve the user experience by increasing

DRAFT

14

(a) Proportion from Cache (b) Cache Miss Rate (c) Download Time

(d) Delay Time (e) Proportion Delayed

Fig. 3: Histograms of relative performance improvement of gLRU over LRU. gLRU outperforms LRU in almost
every instance.

Performance
Metric Worse Better Worst Best Median
pc 0 384 7.3% 51.9% 31.9%
pm 0 384 78.4% 91.0% 84.9%
Tw 0 384 11.0% 44.0% 30.8%
Td 0 237 0% 118.7% 32.0%
pd 0 240 0% 128.4% 19.7%

TABLE II. Comparison of gLRU to LRU shows that gLRU outperforms LRU in almost every trial. Rows with less
that 384 trials indicate that there were ties.

the number of files which are partially stored in the cache even is non-VoD settings due to the improvement in the

download time. The ultimate result is a system with fewer and shorter delays and shorter download times.

In addition, we compared gLRU with segLRU and AdaptSize (cf. Section VI-B) on synthetic traces with the

same parameters as discussed above, although with smaller numbers of files and fewer numbers of requests. These

preliminary results show that gLRU outperforms AdaptSize most of the time, while significantly under-performing

segLRU. It is not clear exactly what is causing the difference in performance, as the production trace evaluation in

Section VI-C show a significant performance improvement of gLRU over segLRU. Furthermore, we are not troubled

by these results as we believe that gLRU will prove useful when incorporated, instead of LRU, in more complicated

replacement policies and content delivery architectures.

B. Alternative Policies

a) AdaptSize: AdaptSize is a probabilistic admission policy in which a file is admitted into the cache with

probability e−object size/c. Larger objects are admitted with lower probability and the parameter c is tuned to maximize

DRAFT

15

the object hit rate (OHR), defined as the probability that a requested file is found in the cache. In particular, given

a c and estimates on the arrival rate for the requests for each file, one can estimate the probability that a given file

will be found in the cache. One can then use these probabilities to compute the OHR as a function of c and then

optimize. This process is performed in windows, recomputing c after a given number of file requests. We refer the

reader to [17] for a more in-depth description. In all simulations, we take our window size to be 1,000 requests.

b) segLRU: This segment-based caching policy relies on breaking up chunked files into segments with

segment i containing 2i−1 chunks. It follows that chunks which occur early in a video are contained in very small

segments while those which occur later are contained in large segments. The cache is then broken into two stacks.

The first stack is devoted to the first Kmin segments of each file and the second devoted to the later segments.

The first stack operates under a simple LRU replacement policy while the second uses a thresholding approach. In

particular, each segment receives a score dependent on the time of its last request and position in the video file and

is added to the cache only if its score is higher than another segment currently in the cache. In this case, the lowest

ranked segment is evicted to make space for the one with the higher score. For more information we refer the reader

to [16]. Throughout this section we take each stack as half the size of the cache in the other policies and set Kmin

so that one quarter of all chunks are directed to the first cache.

C. VoD Latency for LRU, segLRU, and AdaptSize on Production Trace Data

We now compare gLRU with segLRU and AdaptSize on MSR Cambridge Traces obtained from the SNIA IOTTA

repository. There are 36 I/O traces from 36 different volumes on 13 servers. For more information see [39]. The data

includes the timestamp of each request, the file size of each request, and whether the entry is a read or write request.

For the comparisons below we only consider read requests. No file identifiers are given, so we take each file size as

the unique identifier. We test our policies on two of the 36 traces. Specifically, we select the first media trace and

the first web trace which include 143,973 and 606,487 read requests, respectively. These were selected both because

they were large but also because of the distribution of file requests. Namely, in the second media trace, over 95%

of the files requests were for files of the same size and recall that we take the file size as the unique identified. In

contrast, the first web trace had more than half of the files account for at least 1% of the traffic each. We assume the

same system as in Section VI-A in which files are retrieved immediately from the cache if available, otherwise they

are served from a FIFO queue. Several combinations of parameters are considered. We consider settings in which

the chunk size is chosen so that the average file has 10, 50, and 100 chunks. Furthermore, we consider a range of

eight cache sizes capable of storing between 1% and 50% of the total files in the system. This range of parameters

results in 48 separate simulations per replacement policy. The processing rate and start-up delay are chosen so that

the traffic rate on the queue is manageable. In order to initialize the queue and cache, we run our simulation through

each trace once and use the end state of the queue and cache as the initial condition for all future simulations.

Tables III and IV present the results of comparing gLRU with segLRU and AdaptSize, respectively. The columns

“Worse” and “Better” represent the number of trials in which gLRU performs worse and better and “Worst”, “Best”,

and “Median” give the worst, best, and median improvement of gLRU over the competing replacement policy. In the

tables, positive numbers correspond to gLRU performing better. The results show that gLRU outperforms segLRU

in almost every trial. In addition, gLRU performs favorably to AdaptSize, having lower delay time in 45 out of 48

trials, and a lower proportion in delayed requests in 36 out of 48 trials. Furthermore, the gains in performance for the

DRAFT

16

Performance
Metric Worse Better Worst Best Median
pc 3 45 -.71% 231% 1.79%
pm 3 43 -119% 89.6% 53.7%
Tw 3 45 -140% 97.6% 72.8%
Td 2 46 0% 99.8% 78.2%
pd 3 45 17.5% 97.9% 52.2%

TABLE III. Comparison of segLRU to gLRU shows that gLRU outperforms segLRU in almost every trial. Rows
with less that 48 trials indicate that there were ties.

Performance
Metric Worse Better Worst Best Median
pc 21 27 -1.49% 41.9% .16%
pm 0 48 23.3% 95.1% 68.4%
Tw 0 48 72.4% 99.4% 96.1%
Td 3 45 -28.3% 95.1% 35.0%
pd 12 36 -35.3% 97.3% 9.57%

TABLE IV. Comparison of AdaptSize to gLRU shows that gLRU performs favorably compared to AdaptSize.

cases in which gLRU performs better seem to be quite large while they are much smaller in cases where AdaptSize

outperforms gLRU.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we present a generalization for the LRU cache replacement policy, called gLRU. We first establish a

generalization of the characteristic time approximation to this new policy which can be used to accurately approximate

the distribution of the number of chunks of a file in the cache in the steady state. The results of Section V show that

the approximation is, indeed, quite accurate. We then provide numerical results demonstrating that gLRU outperforms

gLRU on a variety of performance metrics including download time and stall duration in a VoD setting. Our results

indicate that gLRU outperforms LRU in non-VoD settings as well because of its superior performance on download

time. Furthermore, preliminary comparisons with alternative replacement policies indicate that gLRU will be a valuable

tool in improving the efficiency of content delivery architectures.

Exploring generalizations of gLRU, such as how segment-based additions can be exploited to hone the reactivity

of the algorithm present an interesting direction for future research. Furthermore, it remains to be seen how more

complicated architectures can be improved from the addition of gLRU in place of LRU caches. It is also worth

thinking about how this policy can fit into an adaptive streaming framework [40]–[43], where each chunk could

be fetched at different quality levels. Exploring a trade-off between the average quality at which adaptive video is

streamed and the stall duration with an online caching algorithm is an important direction for the future.

APPENDIX A

HUERISTIC ANALYSIS FOR GLRU(d)

In this subsection, we extend the analysis of Section IV-C to gLRU(d). Take i, Xn(t), s(i), tC , d(i, tC),

and τn,k as in Section IV-C. For a given j ∈ N, define kreq(j) such that Hkreq(j)−1,−d < j ≤ Hkreq(j),−d where

DRAFT

17

Hn,p = ∑nk=1 k−p are generalized Harmonic numbers [44]. The probability of finding at least j chunks of file n in

the cache is equal to the probability that the last kreq(j) inter-arrival times, looking back from the current time, for

file n are less than tC . This can be approximated as follows,

hj(n, tC) ≐ P(τn,1 < tC , . . . , τn,jreq < tC) = (1 − eq(n)tC)kreq(j). (7)

Let Yi, i ∈ {1, . . . ,N} be as in Section IV-C, the number of cached chunks of file i when the system is in steady

state. Recalling that d(i, tC) denotes the expected number of file i chunks in the cache when the system is in steady

state, it then follows that

d(i, tC) =
s(i)
∑
j=1

P(Yi ≥ j) =
s(i)
∑
j=1
(1 − eq(i)tC)kreq(j).

The proposed approximation of Xn(t) is then given as

X̃n(t) =
N

∑
i=1,i≠n

d(i, t).

As in the derivation of (4), it is sufficient to consider

X̃(t) =
N

∑
i=1
d(i, t)

and one can then estimate tC by setting the expected value of X̃ to C and solving for tC . This amounts to solving

the following equation,

C = EX̃ =
N

∑
i=1

s(i)
∑
j=1
(1 − eq(i)tC)kreq(j).

As in Section IV-C, and using h as defined in (7) this can then be used to find other metrics of interest.

APPENDIX B

VOD GROSS DIFFERENCE

In order to supplement the results of Section VI-A, we also present the gross improvement of gLRU over LRU.

Figure 4 presents histograms of the gross improvement of gLRU over LRU for each performance metric of interest.

In each histogram the x-axes corresponds to the difference between the specified performance metric under gLRU

and LRU. The figures back-up the results of Section VI-A in demonstrating the improved performance of gLRU over

LRU for all performance metrics considered.

APPENDIX C

JOINT POPULARITY AND FILE SIZE DISTRIBUTION

We now briefly consider the impact of the joint distribution of the popularity and file size on each of our

performance metrics. Modeling this joint distribution can be quite complicated. In particular, specifying a probability

measure such that the marginal distributions are Zipf for popularity and Pareto for file size while imposing a given

correlation structure between the two is a nontrivial problem on its own.

DRAFT

18

(a) Proportion from Cache (b) Cache Miss Rate (c) Download Time

(d) Delay Time (e) Proportion Delayed

Fig. 4: Histograms of gross performance improvement of gLRU over LRU. gLRU outperforms LRU is almost every
instance. Even in 5d and 4e the difference in performance when LRU outperforms gLRU are nearly negligible.

Metric gLRU LRU
pc -.41 -.47
pm 4.03 2.16
Tw 9.52 8.02
Td 4.99 4.28
pd 2.42 1.37

TABLE V. Mean relative difference in performance for the positive vs. negative correlation setting. Values are
computed as (positive correlation - negative correlation)/negative correlation for each metric of interest.

In this section, we consider of the effect of strong positive and negative correlation between popularity and file

size through simulation. The system, as described in Section VI-A, is simulated with one major change. In order

to induce strong positive correlation we simply assign the highest popularities to the largest files and vice versa to

induce negative correlation. The system was then simulated for all of the combinations of parameters described in

Table I for both cases resulting in 384 cases for each.

Table V presents a comparison of the positive and negative correlation cases for both the gLRU and LRU

settings. For each of the performance metrics described in Section VI-A, we present the average relative difference

in performance positive vs. negative correlation (i.e. (positive metric - negative metric)/positive metric). The results

show that the case of negative correlation vastly outperforms the case of positive correlation in both when employing

either a gLRU or LRU replacement policy. This is because in the case of negative correlation, most popular files are

smaller and thus more of them can be stored in the cache improving all the metrics as compared to when there is

positive correlation.

In addition, we note that gLRU outperforms LRU in both the positive and negative correlation case. In Table VI,

DRAFT

19

Metric Positive Correlation Negative Correlation
pc .42 .21
pm -.57 -1.51
Tw -.10 -.82
Td -.14 -.69
pd -.16 -.46

TABLE VI. Mean relative performance improvement of gLRU over LRU in the case of both positive and negative
correlation for each of the performance metrics outlined in Section VI-A

we present the mean relative performance improvement for gLRU vs LRU in all performance metrics of interest in

both the correlation settings. While the results are much more pronounced in the case of negative correlation, it is

clear that gLRU outperforms LRU in both correlation cases. For a more granular look at the data see Appendix D.

APPENDIX D

CORRELATION HISTOGRAMS

Histograms for the same performance metrics as considered in VI-A are presented in Figure 5. In order to

compare the case of positive correlation with the case of negative correlation we simply subtract the performance

metric of interest obtained under positive correlation from the respective result under negative correlation. Each

subfigure contains two histograms, one for the system under gLRU (red) and one for the system under LRU (green)

and provide a more granular view of the data than that was shown in Section C.

(a) Proportion from Cache (b) Cache Miss Rate (c) Download Time

(d) Delay Time (e) Proportion Delayed

Fig. 5: Histograms of Relative Performance Improvement of gLRU over LRU.

DRAFT

20

REFERENCES

[1] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and zipf-like distributions: Evidence and implications,”

in INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings.

IEEE, vol. 1. IEEE, 1999, pp. 126–134.

[2] R. Fagin, “Asymptotic miss ratios over independent references,” Journal of Computer and System Sciences, vol. 14, no. 2, pp.

222–250, 1977.

[3] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems: Modeling, design and experimental results,” IEEE Journal

on Selected Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.

[4] A. Dan and D. Towsley, An approximate analysis of the LRU and FIFO buffer replacement schemes. ACM, 1990, vol. 18,

no. 1.

[5] S. Dernbach, N. Taft, J. Kurose, U. Weinsberg, C. Diot, and A. Ashkan, “Cache content-selection policies for streaming video

services,” in Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on. IEEE,

2016, pp. 1–9.

[6] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approximation for lru cache performance,” in Proceedings of

the 24th International Teletraffic Congress. International Teletraffic Congress, 2012, p. 8.

[7] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix on caching performance in a content-centric network,”

in Computer Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on. IEEE, 2012, pp. 310–315.

[8] P. R. Jelenković and X. Kang, “Characterizing the miss sequence of the lru cache,” ACM SIGMETRICS Performance Evaluation

Review, vol. 36, no. 2, pp. 119–121, 2008.

[9] A. Mahanti, C. Williamson, and D. Eager, “Traffic analysis of a web proxy caching hierarchy,” IEEE Network, vol. 14, no. 3,

pp. 16–23, 2000.

[10] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for general cache networks,” in INFOCOM, 2010

Proceedings IEEE. IEEE, 2010, pp. 1–9.

[11] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, and C. Tanguy, “Performance evaluation of the random replacement

policy for networks of caches,” Performance Evaluation, vol. 72, pp. 16–36, 2014.

[12] J. Zhang, R. Izmailov, D. Reininger, and M. Ott, “Web caching framework: Analytical models and beyond,” in Internet

Applications, 1999. IEEE Workshop on. IEEE, 1999, pp. 132–141.

[13] E. J. Rosensweig and J. Kurose, “A network calculus for cache networks,” in 2013 Proceedings IEEE INFOCOM, April 2013,

pp. 85–89.

[14] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the performance analysis of caching systems,” ACM

Transactions on Modeling and Performance Evaluation of Computing Systems, vol. 1, no. 3, p. 12, 2016.

[15] N. Gast and B. Van Houdt, “Asymptotically exact ttl-approximations of the cache replacement algorithms lru (m) and h-lru,”

in Teletraffic Congress (ITC 28), 2016 28th International, vol. 1. IEEE, 2016, pp. 157–165.

[16] K.-L. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy caching of multimedia streams,” in Proceedings of the 10th

international conference on World Wide Web. ACM, 2001, pp. 36–44.

[17] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize: Orchestrating the hot object memory cache in a content

delivery network.” in NSDI, 2017, pp. 483–498.

[18] W. King, “Analysis of paging algorithms,” in Proc. IFIP 1971 Congress, Ljubljana. North-Holland, 1972, pp. 485–490.

[19] P. Flajolet, L. Thimonier, and D. Gardy, “Birthday paradox, coupon collectors, caching algorithms and self-organizing search,”

Ph.D. dissertation, INRIA, 1987.

[20] G. Neglia, D. Carra, M. Feng, V. Janardhan, P. Michiardi, and D. Tsigkari, “Access-time-aware cache algorithms,” ACM

Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS), vol. 2, no. 4, p. 21, 2017.

DRAFT

21

[21] N. Gast and B. Van Houdt, “Transient and steady-state regime of a family of list-based cache replacement algorithms,” ACM

SIGMETRICS Performance Evaluation Review, vol. 43, no. 1, pp. 123–136, 2015.

[22] O. I. Aven, E. G. Coffman, and Y. A. Kogan, Stochastic analysis of computer storage. Springer Science & Business Media,

1987, vol. 38.

[23] D. Starobinski and D. Tse, “Probabilistic methods for web caching,” Performance evaluation, vol. 46, no. 2-3, pp. 125–137,

2001.

[24] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Cliffhanger: Scaling performance cliffs in web memory caches,” in 13th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 16). Santa Clara, CA: USENIX Association,

2016, pp. 379–392. [Online]. Available: https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon

[25] V. Aggarwal, Y. F. R. Chen, T. Lan, and Y. Xiang, “Sprout: A functional caching approach to minimize service latency in

erasure-coded storage,” IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp. 3683–3694, Dec 2017.

[26] S. Jin and A. Bestavros, “Popularity-aware greedy dual-size web proxy caching algorithms,” in Proceedings 20th IEEE

International Conference on Distributed Computing Systems. IEEE, 2000, pp. 254–261.

[27] K. Mokhtarian and H.-A. Jacobsen, “Caching in video cdns: Building strong lines of defense,” in Proceedings of the Ninth

European Conference on Computer Systems. ACM, 2014, p. 13.

[28] G. Rossini, D. Rossi, M. Garetto, and E. Leonardi, “Multi-terabyte and multi-gbps information centric routers,” in INFOCOM,

2014 Proceedings IEEE. IEEE, 2014, pp. 181–189.

[29] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang, “Substream trading: Towards an open p2p live streaming system,”

in Network Protocols, 2008. ICNP 2008. IEEE International Conference on. IEEE, 2008, pp. 94–103.

[30] M. Surtani and J. Greene, “Concurrent linked hashed maps,” May 6 2014, uS Patent 8,719,307.

[31] B. Manes, “A concurrentlinkedhashmap for java,” nov 2018. [Online]. Available: https://github.com/ben-manes/

concurrentlinkedhashmap

[32] J. C. Hoe, “Improving the start-up behavior of a congestion control scheme for tcp,” in ACM SIGCOMM Computer

Communication Review, vol. 26, no. 4. ACM, 1996, pp. 270–280.

[33] K. Liu, Z. Zha, W. Wan, V. Aggarwal, B. Fu, and M. Chen, “Optimizing tcp loss recovery performance over mobile data

networks,” IEEE Transactions on Mobile Computing, 2019.

[34] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp variant,” ACM SIGOPS operating systems review, vol. 42,

no. 5, pp. 64–74, 2008.

[35] K. Simon, S. Molnár, J. Komjathy, and P. Móra, “Large deviation multifractal analysis of a process modeling tcp cubic,” arXiv

preprint arXiv:1705.11039, 2017.

[36] P. R. Jelenković and A. Radovanović, “Optimizing lru caching for variable document sizes,” Combinatorics, Probability and

Computing, vol. 13, no. 4-5, pp. 627–643, 2004.

[37] V. Ramaswami, K. Jain, R. Jana, and V. Aggarwal, “Modeling heavy tails in traffic sources for network performance evaluation,”

in Computational Intelligence, Cyber Security and Computational Models. Springer, 2014, pp. 23–44.

[38] Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao, “Deriving and validating user experience model for dash video streaming,”

IEEE Transactions on Broadcasting, vol. 61, no. 4, pp. 651–665, 2015.

[39] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading: Practical power management for enterprise storage,” ACM

Transactions on Storage (TOS), vol. 4, no. 3, p. 10, 2008.

[40] Y. Sánchez de la Fuente, T. Schierl, C. Hellge, T. Wiegand, D. Hong, D. De Vleeschauwer, W. Van Leekwijck, and

Y. Le Louédec, “idash: improved dynamic adaptive streaming over http using scalable video coding,” in Proceedings of

the second annual ACM conference on Multimedia systems. ACM, 2011, pp. 257–264.

[41] C. Müller and C. Timmerer, “A test-bed for the dynamic adaptive streaming over http featuring session mobility,” in Proceedings

of the second annual ACM conference on Multimedia systems. ACM, 2011, pp. 271–276.

DRAFT

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon
https://github.com/ben-manes/concurrentlinkedhashmap
https://github.com/ben-manes/concurrentlinkedhashmap

22

[42] A. Elgabli, V. Aggarwal, S. Hao, F. Qian, and S. Sen, “Lbp: Robust rate adaptation algorithm for svc video streaming,”

IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1633–1645, Aug 2018.

[43] A. Elgabli and V. Aggarwal, “Fastscan: Robust low-complexity rate adaptation algorithm for video streaming over http,” IEEE

Transactions on Circuits and Systems for Video Technology, 2019.

[44] J. Choi and H. Srivastava, “Some summation formulas involving harmonic numbers and generalized harmonic numbers,”

Mathematical and Computer Modelling, vol. 54, no. 9-10, pp. 2220–2234, 2011.

DRAFT

	I Introduction
	II Related Work
	III System Model and Problem Formulation
	III-A System Parameters
	III-B Cache Replacement Policy
	III-C Problem Formulation

	IV Generalization of the Characteristic Time Approximation
	IV-A Characteristic Time Approximation for LRU Caching Policy
	IV-B Challenges for Analysis of gLRU
	IV-C Proposed Approximation for gLRU(d)
	IV-D Discussion

	V Numerical Validation of the Proposed Approximation
	VI Numerical Evaluation of gLRU
	VI-A VoD Latency for LRU and gLRU on Synthetic Trace Data
	VI-B Alternative Policies
	VI-C VoD Latency for LRU, segLRU, and AdaptSize on Production Trace Data

	VII Conclusions and Future Work
	Appendix A: Hueristic Analysis for gLRU(d)
	Appendix B: VoD Gross Difference
	Appendix C: Joint Popularity and File Size Distribution
	Appendix D: Correlation Histograms
	References

