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ABSTRACT 
Face anti-spoofing plays a vital role in security systems including 

face payment systems and face recognition systems. Previous 

studies showed that live faces and presentation attacks have 

significant differences in both remote photoplethysmography 

(rPPG) and texture information, we propose a generalized method 

exploiting both rPPG and texture features for face anti-spoofing 

task. First, multi-scale long-term statistical spectral (MS-LTSS) 

features with variant granularities are designed for representation 

of rPPG information. Second, a contextual patch-based 

convolutional neural network (CP-CNN) is used for extracting 

global-local and multi-level deep texture features simultaneously. 

Finally, weight summation strategy is employed for decision level 

fusion, which helps to generalize the method for not only print 

attack and replay attack but also mask attack. Comprehensive 

experiments were conducted on five databases, namely 3DMAD, 

HKBU-Mars V1, MSU-MFSD, CASIA-FASD, and OULU-NPU, 

to show the superior results of the proposed method compared with 

state-of-the-art methods. 

CCS Concepts 
• Security and Privacy➝Authentication➝Biometrics. 
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1. INTRODUCTION 
Security systems have always been a significant research area. 

Biometric systems are widely used in our daily lives.  Fingerprint, 

voiceprint, iris, and face are most commonly used biometric 

modalities. As one of the most popular modalities, the face is 

widely used in designing artificial intelligence security systems, 

e.g., face recognition systems [1][2], access authorization systems, 

and payment authorization systems. At the same time, many 

presentation attacks have been developed for spoofing the face 

security system. The presentation attacks can be divided into 

multiple types, print attack, video replay attack, mask attack, and 

so on. 

Print attack: an attacker presents a printed photo or image of the 

legitimate user on a mobile phone to the face authentication system. 

However, the 2D structure lacks of the depth information and pulse 

information, and the consistent face image limited by face life signs, 

such as blinking, head movement, and facial expression. Most of 

face authentication systems require users to present several specific 

facial expressions or head motions. So, the print attack is the 

weakest attack among all kinds of attacks. 

Video replay attack: an attacker presents video sequences 

containing the legitimate user’s face on displays. The video replay 

attack is more difficult than print attack since video could contain 

the movements that the system requires and the pulse information. 

However, the reflection of the screen makes the texture of the input 

video weird, hence it can be discriminated easily. 

Figure 1. Our method uses both rPPG feature and texture 

feature for prediction. 

Mask attack: an attacker wears a 3D face mask to cheat the system. 

Mask attack is the most difficult attack to be detected because the 

high-quality mask is quite similar to the real face. It also contains 

the depth information which is widely used in face anti-spoofing. 

However, it is pricey to be implemented and lack of pulse 

information.  

During the past decade, many researchers made efforts for face 

anti-spoofing area [3][4]. Most of the researches were based on 2D 

sensors. However, the limitation of 2D sensors is that a single 2D 

sensor cannot record 3D structure information. Most recent 

research works also focused on estimating depth map from 2D 

images. Even though the 3D structure information contributes to 

face anti-spoofing, the disadvantage is also obvious. When high-

quality mask attack presents, the 3D structure information could be 
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the same as genuine faces, which makes the system based on solely 

depth information vulnerable. 

To solve this security problem in face anti-spoofing, we propose a 

model that employs both remote photoplethysmography (rPPG) 

feature and texture feature. As shown in Figure 1, rPPG feature is 

discriminant for photo attack and mask attack, while texture feature 

is effective for detecting replay attacks. Our contributions include: 

1) we design multi-scale long-term statistical spectral (MS-LTSS) 

features with variant granularities for representation of rPPG 

information; 2) we propose a contextual patch-based convolutional 

neural network (CP-CNN), which is able to extract global-local and 

multi-level texture features simultaneously; 3) we fuse this two 

information in decision level, which allows the method to be able 

to detect all three common attack types, i.e., photo attack, replay 

attack and mask attack. 

The paper is organized as follows: Section 2 introduces the related 

work of face anti-spoofing. Section 3 describes the details of the 

proposed method. Then in section 4, we show the experiment 

results on five anti-spoofing databases, namely 3DMAD, HKBU-

Mars V1, MSU-MFSD, CASIA-FASD, and OULU-NPU. Finally, 

we summarize the work and list future work. 

2. RELATED WORKS 
In this section, we review previous works related to face liveness 

detection. Previous methods can be divided into four groups as 

follows.  

Texture-based methods for face anti-spoofing. Using texture 

information was a common method to deal with face anti-spoofing 

task because most face recognition systems use one single 2D 

sensor camera. Many research works proposed various hand-

crafted features, for example, Local Binary Patterns (LBP) [7], 

Histogram of Gradient (HoG) [8], Difference of Gaussian (DoG) 

[9], Scale-invariant Feature Transform (SIFT) [10] and Speeded Up 

Robust Features (SURF) [11]. The traditional classifiers such as 

support vector machine (SVM), Random Forest, and Latent 

Dirichlet Allocation (LDA) were utilized in those works. They tried 

to transform input data into different domains, e.g., to transform 

input images from RGB color space into HSV or YCbCr color 

spaces [12], or from time domain to frequency domain, to obtain 

more robust results. However, traditional methods cannot perform 

perfectly, because the extracted features can be affected by various 

conditions, such as camera qualities, illumination conditions, and 

presentation attack instruments. 

In recent years, deep learning methods have shown their power in 

many research areas, especially in computer vision tasks. Several 

works used CNN-based features for face anti-spoofing [13][14]. Li 

et al. [14] used CNN as the feature extractor and fine-tuned a model 

which was pretrained on ImageNet. Feng et al. [13] fed various 

drafts of the samples of face images into CNN and obtained the 

result of classification, i.e., live vs. spoof. In more recent research 

works, deep learning methods achieved perfect performance on 

anti-spoofing databases and in competitions. For old databases, 

such as NUAA [16], Replay-Attack [17], which were collected 

several years ago, the video resolution and quality are very poor. 

Deep learning methods can achieve 100% accuracy, which is far 

more robust than traditional methods. On the other side, newer 

databases such as OULU-NPU and SiW include higher-quality 

videos recorded from a large number of subjects in different 

conditions, which might be more challenging. We still need to 

explore new deep learning methods on those databases. 

Compare to other computer vision tasks, e.g., object detection, 

object identification, and facial expression classification, solving 

the task of face anti-spoofing using deep learning methods still have 

a long way to run. One goal of this paper is to construct a novel 

CNN model, which is able to extract more sophisticated and 

reliable texture features for face liveness detection. 

Temporal-based methods for face anti-spoofing. Temporal-

based methods can be further divided into two categories. The first 

category of methods is based on facial motion patterns, such as eye-

blinking and mouth or lip movements. Prior works reported that the 

frequency of spontaneous blinking of normal people is about 0.25 

to 0.5 blinks per second. Hence, Sun et al. [18] proposed a blinking-

based face anti-spoofing method, which utilized Conditional 

Random Fields (CRFs) to analysis eye blinking actions (eye closed 

and opening state). The main idea of the proposed CRFs method is 

to represent actions by face images. In addition, Sun compared the 

performance of CRFs with Adaptive Boosting (AdaBoost) and 

Hidden Markov Model (HMM), and CRFs achieved outstanding 

results. Pan et al. [19] reported a method which combines eyeblinks 

and scene context for face recognition to imitate the contextual 

relationships of eyeblinks among eye image sequences by using 

undirected conditional graphical structure. The other category of 

methods relied on the movement between face and background. 

Kollreider et al. [20] proposed to use optical flow methods to track 

the movement of face to differentiate real vs. fake faces. Besides, 

Haralick features [34] and motion mag were also used for face anti-

spoofing task. For deep learning, Feng et al. [13] proposed to 

extract features from optical flow map and Shearlet image using 

CNN. Xu et al. [15] also proposed an LTSM-CNN model using 

multiple frames of a single video to obtain fused results of 

classification. 

However, the motion clues that these temporal based methods rely 

on can be easily manipulated. For example, an attacker can hold a 

print face photo with cropped eye holes (e.g., cropped print attack 

in CASIA). On the other side, there are other forms of temporal 

clues for face liveness, which are much harder (or impossible) to 

fake, that is the temporal color fluctuation of live facial skin caused 

by pulsation (a.k.a. the rPPG), which is invisible to human eyes. 

Thus, another goal of the current work is to extract and utilize the 

rPPG information for face liveness detection. 

3D structure-based methods for face anti-spoofing. Most of 

existing anti-spoofing databases have 2D videos, which do not 

contain 3D structure information. 3D structure-based face anti-

spoofing methods can be roughly divided into two categories. One 

category of methods extract depth information from 2D images. Liu 

et al. [21] proposed a CNN model which uses the depth map with 

auxiliary supervision instead of binary supervision. They estimated 

the 3D structure of the face by implementing the most recent dense 

face alignment (DeFA) methods. 

The other category of methods analyze 3D shape information 

recorded with 3D sensors such as a dot projector. They compared 

the 3D model of the input sample with that of a genuine face to 

obtain the result of live vs. spoof. However, this method requires 

special 3D devices which might be costly and not commonly 

accessible.  

However, methods mentioned in this session may become 

vulnerable when an attacker wears a high-quality 3D mask. 

Because the mask has the same 3D structure information as the 

genuine face it can easily cheat these methods. Hence, we may need 

multiple methods to work together in order to detect various types 

of attacks. 



rPPG-based methods for face anti-spoofing. Remote 

Photoplethysmography (rPPG) is a method to extract pulse signal 

from facial videos without contacting any skin. Li et al. [5] 

proposed the first pulse-based face anti-spoofing method with a 

simple six-dimensional feature. In order to achieve stronger 

representation ability, Heusch et al. [6] designed a long-term 

statistical spectral (LTSS) approach for face liveness detection. Liu 

et al. [22] also proposed to use rPPG signals to discriminate 3D 

mask attack. Pulse signals can be extracted from live faces, while 

there is only random noise if we try the same way of extraction 

from 3D masks. They calculated the correlation features to classify 

the face video as live vs. spoof faces. In another related work, 

Nowara et al. [23] analyzed five different rPPG signals extracted 

from three face regions and two background regions to classify 

print and video attacks.  Even though in video attacks, pulse signals 

still exist, the analysis of specific regions can discriminate live vs. 

spoof. In Liu et al. [21], they proposed to use rPPG to supervise the 

CNN-RNN model, and they trained the rPPG model by using the 

estimated rPPG signals for live faces and flattened signals for all 

kinds of attacks.  

All the works mentioned above show the effectiveness of rPPG-

based methods for face anti-spoofing detection. In this work, we 

propose a novel multi-temporal-resolution rPPG feature as one part 

of the whole model for solving the face anti-spoofing task. 

3. THE PROPOSED APPROACH  

 
Figure 2. The overview of the proposed method. 

In this section, firstly, we propose Multi-scale long-term spectral 

statistics method for rPPG feature representation, which improves 

the original LTSS [6] method in multi-scale level. Secondly, we 

will describe the Contextual patch-based CNN. The overview of 

the proposed method is shown in  

. 

3.1 Multi-scale LTSS 
First of all, we use Li’s method to extract rPPG signal from input 

face sequence as in paper [5]. Compared to the original LTSS 

extracting the spectral features only on constant temporal 

dimension, the Multi-scale LTSS (MS-LTSS) combines the 

spectral statistics of sliding windows with different length and 

different overlapping size. As a result, we expect our proposed MS-

LTSS can extract more elaborate rPPG information due to the 

pyramid-like multi-scale segmentation. The Framework of the 

proposed MS-LTSS is shown in  

Figure 3.  

 

Figure 3. The Framework of Multi-scale LTSS. 

For each sliding window w, we convert the extracted rPPG signal 

from time domain into frequency domain by using an N-point 

discrete Fourier transform (DFT). Then we receive a sequence 

𝑋𝑤 of dimension 𝑘 = 0 … 𝑁 2⁄ − 1 which contains DFT 

coefficients. We consider log-magnitude of the frequency bins of 

the spectrum for statistics. The DFT coefficient |𝑋𝑤(𝑘)| is set to 1 

if it is lower than 1, so that the log-magnitude is always positive. 

The mean and variance statistics of the coefficient vectors 

(𝑋1, 𝑋2, … , 𝑋𝑤) are computed as following: 

𝜇(𝑘) =
1

𝑊
∑ 𝑙𝑜𝑔|𝑋𝑖(𝑘)|

𝑊

𝑖=1

. (1) 

 

𝜎2(𝑘) =
1

𝑊
∑ 𝑙𝑜𝑔|𝑋𝑖(𝑘) − 𝜇(𝑘)|

𝑊

𝑖=1

. (2) 

The first and second order for vectors (for 𝑘 = 0 … 𝑁 2⁄ − 1) are 

concatenated as the feature of the signal. Then we introduced the 

MS-LTSS, we concatenated the LTSS features that calculated by 

different settings of length of sliding windows w and the 

overlapping size of the sliding window o.  

𝐹 = [𝜇1, 𝜎1
2, … , 𝜇𝑛, 𝜎𝑛

2]. (3) 

Where, F is the final MS-LTSS feature of the given signal, 𝜇1, 𝜎1
2 

is calculated by 𝑤1, 𝑜1, similarly, 𝜇𝑛 , 𝜎𝑛
2 is calculated by 𝑤𝑛,  𝑜𝑛. 

Then we used the SVM as the classifier to classify, whether it is a 

genuine presentation or an attack. 

 

Figure 4. The pipeline of the proposed architecture. The number of filters is shown in the middle of each layer. Color code used: 

purple=Patch convolution layer, blue=convolution layer, green=pooling layer, orange=fully connect lay



3.2 Contextual Patch-based CNN 
Previous patch-based CNN methods [24] divide the original RGB 

face image into several patches and extract the local texture feature 

from the patches directly, which ignores the mutual information 

interaction between global and local features. In order to better 

represent both global and local texture features, a contextual patch-

based CNN (CP-CNN) is proposed and its architecture is shown in 

Figure 4. 

3.2.1 Network Architecture 
As illustrated in Figure 4, the network backbone contains one 

convolution layer with a 5x5 kernel and three ConvBlocks, which 

intends to obtain global texture features. The ConvBlock consists 

of three convolutional layers with a 3x3 kernel and one maximum 

pooling layer. Every convolutional layer is followed by a batch 

normalization layer and ReLU layer.  

Patch-based Convolution Module. The key component in CP-

CNN is the patch-based convolution module, which extracted 

semantic patch feature in deep feature level instead of RGB level. 

As shown in Figure 5, the deep features are divided into spatial 

uniform N patches, then each patch features are convoluted with an 

independent 3x3 filter. It is mentioned that the parameters of the 

3x3 filter for each patch are not shared, which helps to learn the 

discriminant features for each local patch position. There are two 

patch-based convolution modules with convolutional two stride 

and four stride embedded after the first and second ConvBlock 

respectively, which outputs the patch features with the same spatial 

dimension for further fusion. In our experiment, local patch number 

is set asN = 4, 9, and 16. 

Contextual Fusion. After obtaining the patch features and global 

feature, fusion is needed for feature integration. The patch features 

are merged in spatial dimension and reshape to the same spatial size 

as the global feature. Then all global and patch features are channel-

wise concatenated, as illustrated in Figure 4. Hence, the fused 

multi-level features are with rich contextual global-local 

information and strong representation ability.  

Global and Local Classifier. With the deep contextual features, a 

global classifier and N local classifiers are designed for confidence 

prediction of face liveness. As for the global classifier, global 

average pooling is used and then cascaded with two fully connected 

layers and a sigmoid function. Similarly, local classifiers use the 

same operations for corresponding patch positions.  

 

Figure 5. Illustration of Patch-based Convolution Module. 

Loss Function and Network Inference. In the training stage, it 

can be regarded as a binary classification task. The network input 

is the RGB face image 𝐼128×128×3, and the output is the predicted 

global score 𝑆𝑔 and patch based local scores  𝑆𝑖(𝑖 = 1 … 𝑁) and N 

is the number of patches. If the input face image is a genuine face, 

we set the binary label 1 while the label is set to 0 when there are 

attacks. We adopt binary cross entropy as the loss function, so the 

overall loss can be formulated as 

𝐿𝑜𝑠𝑠 = 𝑤𝐿𝑔 +
(1 − 𝑤) ∑ 𝐿𝑖

𝑁
𝑖=1

𝑁
, (4) 

where 𝑤 is a hyper-parameter to tradeoff the global loss 𝐿𝑔 and all 

the patches losses 𝐿𝑖(𝑖 = 1 … 𝑁).  

In the inference stage, we use the weighted scores among all the 

global score 𝑆𝐺 and local scores 𝑆𝐿 with the same hyper-parameter 

w. It can be formulated as 

𝑆𝑐𝑜𝑟𝑒 = 𝑤𝑆𝐺 +
(1 − 𝑤) ∑ 𝑆𝐿𝑖

𝑁
𝑖=1

𝑁
. (5) 

Then we can obtain the fused score 𝑆𝑐𝑜𝑟𝑒 ∈ [0, 1] from the single 

frame. The final result of the input video is the average predicted 

score across all video frames, as 

𝑆𝐹 =
∑ 𝑆𝑐𝑜𝑟𝑒𝑖

𝑁𝑓

𝑖=1

𝑁𝑓
, (6) 

where 𝑁𝑓  is the number of input video frames. 𝑆𝐹 ∈ [0, 1] is the 

final result of the input video. 

3.2.2 Multi-modality Fusion 
In order to fuse these two modalities features, i.e., rPPG features 

and texture features, we employ the weight summation strategy in 

the decision level. to fusion the scores output from the Multi-scale 

LTSS model and Contextual Patch-based CNN model. So, the 

fusion method can be formulated as 

𝑆 = 𝑤𝑓𝑆𝑀𝑆−𝐿𝑇𝑆𝑆 + (1 − 𝑤𝑓)𝑆𝐶𝑃−𝐶𝑁𝑁, (7) 

where 𝑤𝑓  is the tradeoff weight, and  𝑆𝑀𝑆−𝐿𝑇𝑆𝑆   is the predicted 

score of MS-LTSS while 𝑆𝐶𝑃−𝐶𝑁𝑁 is the predicted score from CP-

CNN. 

4. EXPERIMENT RESULTS 

4.1 Experimental Setup 
We evaluated our method on five databases, 3DMAD [25], HKBU-

Mars V1 [22], MSU-MFSD [26], CASIA-FASD [27], OULU-NPU 

[28], to evaluate its performance under three different types of 

attacks, e.g., print, video replay, and 3D mask attacks. The 

performance on each database is compared with the results of state-

of-the-art methods. 

4.1.1 Databases 
3D Mask Attack Database (3DMAD): It contains 255 video clips 

recorded from 17 subjects, including 3D mask attack. The FPS of 

videos is 30 and the resolution is 640×480. The length of each video 

is 10 seconds. 

HKBU 3D Mask Attack with Real World Variations V1 

Database (HKBU-MARs V1): This database contains 120 videos, 

80 genuine videos recorded from 8 subjects, and the other 40 videos 

are two different kinds of masks. The FPS of each video is 30 and 

the resolution is 1280×720. The length of each video is 10 seconds. 

The MSU Mobile Face Spoofing Database (MSU-MFSD): This 

database contains 280 video clips recorded from 35 subjects, 

including print attack, and video replay attack. The FPS of videos 

is 30 and the resolution is 640×480 or 720×480 because of different 

recording devices. The length of each video is 10 seconds. 

The CASIA Face Anti-spoofing Database (CASIA-FASD): It 

contains 600 video clips recorded from 50 subjects, including 

warped photo attack, cut photo attack, and video replay attack. The 

FPS of videos is 25. This database has high-quality and low-quality 



videos, and the resolution is 1280×720 or 640×480. The length of 

each video is approximately 5 seconds.  

OULU-NPU: It contains 4950 video clips recorded from 55 

subjects, including print attack and video replay attack. The FPS of 

videos is 30 and the resolution is 1080×1920. The length of each 

video is 5 seconds. This database provides four protocols for 

testing. The protocol I is designed to evaluate the performance of 

methods under unseen environmental conditions, specifically 

illumination and background scene. The protocol II is designed to 

evaluate the generalization of the methods under different types of 

printers or displays. The protocol III is a Leave One Camera Out 

(LOCO) protocol to evaluate the performance of sensor 

interoperability. The protocol IV is the most challenging protocol, 

it contains all above three conditions together to evaluate the 

performance of methods. 

4.1.2 Hyperparameter setting 
The proposed Multi-scale LTSS method is implemented in 

MATLAB. The two pairs of the settings of the length of sliding 

windows w and the overlapping size of the sliding window o are 

[64, 16] and [128, 64] respectively. For the video which is shorter 

than 256 frames, we added several beginning frames to the end of 

the frame sequences to supplement the video to 256 frames. 

The proposed Contextual Patch-Based CNN method is 

implemented in PyTorch v1.0.1 with the learning rate of 1e-4, and 

the training phase is 30 epochs. The batch size of the Contextual 

patch-based CNN stream is 16. We set the tradeoff parameter 𝑤 

and 𝑤𝑓 to 0.5 and 0.4 respectively. We trained and tested the model 

on Nvidia K80. 

4.1.3 Evaluation metrics 
In order to fairly compare the performance, we follow previous 

studies on each of the databases and use the same evaluation 

metrics. The metrics are from the standardized ISO/IEC 30107-3 

metrics.  

In OULU-NPU, we utilized 1) Attack Presentation Classification 

Error Rate (APCER), which evaluates the highest error rate from 

all presentation attack instruments (PAI), e.g., print or display, 2) 

Bona Fide Presentation Classification Error Rate (BPCER), which 

calculates the error rate of real accesses, and 3) ACER, the average 

of APCER and BPCER: 

𝐴𝑃𝐶𝐸𝑅 =
∑ (1 − 𝑅𝑒𝑠𝑖)𝑁𝑃𝐴𝐼

𝑖=1

𝑁𝑃𝐴𝐼
, (8) 

 

𝐵𝑃𝐶𝐸𝑅 =
∑ 𝑅𝑒𝑠𝑖

𝑁𝐵𝐹
𝑖=1

𝑁𝐵𝐹
, (9) 

 

𝐴𝐶𝐸𝑅 =
𝐴𝑃𝐶𝐸𝑅 + 𝐵𝑃𝐶𝐸𝑅

2
, (10) 

where 𝑁𝑃𝐴𝐼 is the total number of attack presentations for the given 

PAI, 𝑁𝐵𝐹 is the number of bona fide presentations. 𝑅𝑒𝑠𝑖 sets as 1 

when the ith presentation is classified as an attack presentation. 

However, set 𝑅𝑒𝑠𝑖 as 0 if classified as bona fide presentation. 

For evaluations on 3DMAD and HKBU-Mars V1, we adopted 

HTER (Half total error rate) and EER (equal error rates). TPR and 

EER were adopted when evaluated MSU-MFSD and CASIA-

FASD. HTER is the mean of False Negative Rate (FNR) and False 

Positive Rate (FPR). FNR and FPR are commonly used in 

presentation attack detection (PAD). 

𝑇𝑃𝑅 =
∑ (1 − 𝑅𝑒𝑠𝑖)𝑁𝐺

𝑖=1

𝑁𝐺
. (11) 

 

𝐹𝑁𝑅 =
∑ (1 − 𝑅𝑒𝑠𝑖)𝑁𝐴

𝑖=1

𝑁𝐴
. (12) 

 

𝐹𝑃𝑅 =
∑ 𝑅𝑒𝑠𝑖

𝑁𝐺

𝑖=1

𝑁𝐺
. (13) 

 

𝐻𝑇𝐸𝑅 =
𝐹𝑁𝑅(𝜏∗) + 𝐹𝑃𝑅(𝜏∗)

2
. (14) 

𝑁𝐴  is the total number of attack presentations s, and 𝑁𝐺  is the 

number of genuine presentations. Same as the APCER and BPCER, 

𝑅𝑒𝑠𝑖  is 1 when the ith presentation is classified as an attack 

presentation, and 𝑅𝑒𝑠𝑖  is 0 if it is classified as a genuine 

presentation. The threshold 𝜏∗  corresponds to the EER when 

testing on the development set. 

4.2 Experimental Comparison 

4.2.1 Comparison with State-of-the-art Methods  
We measured performance on 3DMAD, HKBU-Mars V1, MSU-

MFSD, CASIA-FASD, and OULU-NPU databases. All the CP-

CNN is the proposed 16 patch-based CNN. For 3DMAD and 

HKBU-Mars V1 databases, we report their EER and HTER in 

Table 1 and Table 2. The EER, and TPR (when FNR = 0.1) of 

MSU-MFSD and CASIA-FASD are reported in Table 3 and Table 

4 respectively. For OULU-NPU, we report ACER, APCER, and 

BPCER of four protocols in Table 5.  

 

Table 1. Results on 3DMAD 

Method 3DMAD 

EER HTER 

LBP [35] 1.40% - 

LPQ [35] 4.70% - 

Li et al. [5] 4.71 % 7.94 % 

MS -LTSS 3.52 % 6.86 % 

CP-CNN 0.00 % 0.00 % 

MS -LTSS + CP-CNN 0.00 % 0.00 % 

 

Results on 3DMAD database. We compare with rPPG and 

texture-based method and achieved the perfect result on 3DMAD. 

With only the CP-CNN method, we could classify all the videos 

correctly. The proposed Multi-scale LTSS method also 

outperformed previous results. Our CP-CNN model could extract 

the more useful texture features of 3D masks, and the 16 patch-

based methods solved the problem of insufficient samples for deep 

learning. 

 

Table 2. Results on HKBU-Mars V1 

Method HKBU-Mars V1 

EER HTER 

Liu et al. [22]  14.7 % 22.6% 

MS -LTSS 0.95 % 3.11 % 

CP-CNN 0.00 % 0.00 % 

MS -LTSS + CP-CNN 0.00 % 0.00 % 

 

Results on HKBU-Mars V1 database. We compare the proposed 

MS-LTSS and CP-CNN methods with two previous results, and the 

results showed superior performance of our methods on HKBU-



Mars V1. With only the CP-CNN method we could achieve perfect 

classification with zero error. The proposed Multi-scale LTSS 

method made a few errors but still outperformed the baseline results 

with a significant range. The HKBU-Mars V1 data contains both 

low quality and high-quality 3D mask attacks which makes it more 

challenging than 3DMAD data. Our results indicate that the 

proposed methods (both CP-CNN and MS-LTSS) have good 

generalization ability over mask types. We used LOOCV protocol, 

which means that even if an attacker uses a high-quality mask 

which is not seen in the training, our proposed methods are still able 

to reliably detect the attack. 

 

Table 3.  Results on MSU-MFSD 

Method MSU-MFSD 

EER TPR 

(FNR=0.1) 

LBP Baseline 14.7 % 69.9 % 

DoG-LBP Baseline 23.1 % 62.8 % 

IDA [26] 8.6 % 92.8 % 

MS-LTSS 3.4 % 96.5 % 

CP-CNN 1.1 % 99.1 % 

MS -LTSS + CP-CNN 0.00 % 100.00 % 

 

Results on MSU-MFSD database. We compared with two 

baselines and a texture-based method. With only MS-LTSS or CP-

CNN, we are able to achieve better performance than previous 

results, and when these two are fused, we achieved the perfect 

result. The MSU-MFSD contains video replay attack and print 

attack which evaluates the robustness of method over different 

kinds of attacks. The result indicates that our proposed method has 

good generalization ability over different kinds of attacks. 

 

Table 4. The results on CASIA-FASD 

Method CASIA-FASD 

EER TPR (FNR=0.1) 

LBP+LDA [29] 21.0 % 75.7 % 

IDA [26] 12.9 % 86.7 % 

CDD [30] 11.8 % 88.8 % 

Dynamic [31] 10.0 % 89.1 % 

Patch-based CNN [24] 4.44% - 

SPMT + SSD [32] 0.04 % 100.0 % 

MS -LTSS 8.3 % 92.6 % 

CP-CNN 3.2 % 96.6 % 

MS -LTSS + CP-CNN 1.8 % 98.7 % 

 

Results on CASIA-FASD database. We compared with five state-

of-the-art methods and our method achieved the second-best 

performance which is quite close to the best one. Our proposed CP-

CNN achieved better performance than the prior patch-based CNN 

[24].  

Results on OULU-NPU database. We reported the results of four 

protocols of OULU-NPU and compared with several state-of-the-

art methods. In Protocol one, we achieved the best result of 

APCER. However, the protocol 4 is the most challenging one, we 

achieved poor result. 

Table 5. The results on OULU-NPU 

Prot. Method OULU-NPU 

APCER 

(%) 

BPCER 

(%) 

ACER 

(%) 

 

 

 

1 

CPqD 2.9 10.8 6.9 

GRADIANT 1.3 12.5 6.9 

FAS-BAS [21] 1.6 1.6 1.6 

Wang et al. [33] 2.5 0.0 1.3 

MS -LTSS 3.0 18.6 10.8 

CP-CNN 2.1 8.3 5.2 

MS -LTSS + 

CP-CNN 

1.2 7.6 4.4 

 

 

 

2 

MixedFASNet 9.7 2.5 6.1 

FAS-BAS  2.7 2.7 2.7 

GRADIANT 3.1 1.9 2.5 

Wang et al.  1.7 2.0 1.9 

MS -LTSS 1.8 15.3 9.5 

CP-CNN 6.5 2.2 4.3 

MS -LTSS + 

CP-CNN 

4.7 2.5 3.6 

 

 

 

3 

MixedFASNet 5.3 ± 6.7 7.8 ± 5.5 6.5 ± 4.6 

Wang et al.  5.9 ± 1.0 5.9 ± 1.0 5.9 ± 1.0 

GRADIANT 2.6 ± 3.9 5.0 ± 5.3 3.8 ± 2.4 

MS -LTSS 5.9 16.5 11.2 

CP-CNN 2.5 ± 1.7 5.0 ± 3.3 3.7 ± 2.5 

MS -LTSS + 

CP-CNN 

1.9 ± 1.0 4.4 ± 2.6 3.1 ± 1.8 

FAS-BAS  2.7 ± 1.3 3.1 ± 1.7 2.9 ± 1.5 

 

 

 

4 

Massy HNU 35.8±35.3 8.3±4.1 22.1±17.6 

GRADIANT 5.0±4.5 15.0±7.1 10.0±5.0 

FAS-BAS  9.3±5.6 10.4±6.0 9.5±6.0 

Wang et al.  14.0±3.4 4.1±3.4 9.2±3.4 

MS -LTSS 19.8±10.5 24.6±17.8 21.6±6.8 

CP-CNN 18.7±16.2 23.5±23.5 20.5±12.5 

MS -LTSS + 

CP-CNN 

16.3±11.2 18.1±17.5 15.1±7.5 

 

4.2.2 Ablation Study 
 

Table 6. The results of CP-CNN with the different number of 

patches, on OULU-NPU Protocol 2 

Method OULU P2 

APCER (%) BPCER (%) ACER (%) 

Global 15.50 3.67 9.58 

Global + 4P 13.76 2.63 8.19 

Global + 9P 13.19 3.33 8.26 

Global + 16P 6.53 2.22 4.38 

 

The performance with different patches. We compare four 

architectures to illustrate the advantages of the proposed contextual 

patch-based CNN. We train models on OULU-NPU based on 

Protocol 2, and the result of each model is shown in Table 6. The 

first model without patches shows poor performance due to lack of 

local features. In comparison, by using the local features together 

with the global features, we achieve better performance in the 

second model (Global+4P). Moreover, with an increased number 

of patches, the 16 patches model (Global+16P) achieves even better 

results. Hence, we can see the advantage of combining global and 

local features using patch-based CNN. 



 

Table 7. The results of different settings of LTSS and Multi-

scale LTSS on OULU-NUP Protocol 1 

Method OULU P1 

APCER (%) BPCER (%) ACER 

(%) 

[64, 16] 7.2 17.4 12.3 

[128, 64] 5.0 18.2 11.6 

[64, 16] + [128, 

64] 

1.8 15.3 9.5 

 

The effectiveness of Multi-scale LTSS.  In order to show the 

advantage of Multi-scale LTSS for extracting the rPPG features, we 

test two different settings of LTSS ([64,16] and [128,64]) and 

compare with the combined MS-LTSS (([64,16] + [128,64])) on 

OULU-NPU based on Protocol 1, and the results are shown in 

Table 7. It can be seen that the combined MS-LTSS achieved 

significantly better performance than the other two, especially for 

metrics of APCER and ACER.  

The performance of sequences length. In Table 8, we report 

results of different length of sequence for the proposed method on 

OULU-NPU based on Protocol 1. Results show that by increasing 

the length of input sequences, we can reduce the APCER and 

ACER. A possible reason could be that with the longer sequence 

we can achieve more accurate estimated rPPG signal and more 

samples for the proposed CP-CNN model. 

 

Table 8. The results of the Multi-scale LTSS with different 

length of sequences on OULU-NUP Protocol 1 

Method OULU P1 

APCER (%) BPCER (%) ACER (%) 

64 Frames 13.1 18.1 15.6 

128 Frames 12.5 15.3 13.4 

256 Frames 1.8 15.3 9.5 

 

4.2.3 Visualization and Analysis 
In this proposed method, the Multi-scale LTSS is analyzed by the 

rPPG signal which is important for the whole model, Figure 6 

shows examples of succeeded and failed samples in rPPG signals.  

The estimated rPPG signal of the failed sample contains periodic 

peaks like the real ECG signal. However, it also has too much noise 

like small and random peaks. This kind of signals is hard to be 

discriminated as live vs. spoof. 

.

 

Figure 6. (a) 8 succeeded examples and their estimated rPPG signals. The first four are live and the other four are spoof. (b) 4 

failed examples. The first two are live and the other two are spoof. 

 

5. CONCLUSION 
In this work, we propose a method of combining rPPG based Multi-

scale LTSS features and a contextual patch-based convolutional 

neural network (CP-CNN) for face anti-spoofing task. The method 

was evaluated and achieved robust performance on five databases 

including various evaluations. According to the analysis of results, 

the rPPG based face anti-spoofing method is extremely effective 

for mask and print attack detection. The Contextual Patch-based 

CNN achieved great performance for all kinds of attacks. This 

combined model also improves efficiency and accuracy. In the 

future, we will continue focusing on exploring the hidden 

information of the rPPG signal which can be used for face anti-

spoofing detection.  
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