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ABSTRACT
We propose a novel method for generalizing continuous valued
raster data with respect to topological constraints whereby smaller
scale connected components and holes in the data sublevel sets
are removed. The proposed method formulates the problem of
generalization as an optimization problemwith respect to persistent
homology. We prove the objective function to be locally continuous
with analytical gradients which can be used to perform optimization
using gradient descent. Furthermore, we prove the convergence
of gradient descent to a global optimal solution. The proposed
method is general in nature and can be applied to raster data of
any dimension. The utility of the method is demonstrated with
respect to generalizing two- and three-dimensional raster data
corresponding to digital elevation models (DEM) and subsurface
mineral interpolation respectively.
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1 INTRODUCTION
The raster data model is fundamental approach to modelling and
storing geographical data. In this model the data in question is
modelled using an array or grid of data points where these data
points can be categorical or real/continuous values. For example,
digital elevation models (DEM) are commonly modelling using a
raster model where the data points are continuous values equalling
height. On the other hand, land-use/land-cover classifications are
commonly modelling using a raster model where the data points
are categorical values equalling land-use/land-cover class.

Given a raster data in many cases it is useful to perform some
form of generalization whereby the information or detail of the data
is reduced [3]. For example, generalization is commonly performed
prior to rendering a visualization in order to reduce computational
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complexity. Also, generalization can be used to produce a represen-
tation which is tailored to a user’s requirements whereby irrelevant
information is removed and important information is enhanced [4].

Generalization methods may be categorized in terms of the con-
straints they perform generalization with respect to [3]. Gener-
alizing categorical valued raster data with respect to topological
constraints is a well studied problem for which there exists many
solutions. On the other hand, generalizing continuous valued raster
data with respect to such constraints is less well studied and repre-
sents an open research problem. In this article we propose a novel
solution to this problem which employs the theory of persistent
homology. Persistent homology measures the topological features
of a given raster data in terms of the persistence of connected com-
ponents and holes of various dimensions in the data sublevel sets.
In the context of a two-dimensional raster data, connected compo-
nents and holes in the sublevel sets correspond to valleys and peaks
respectively in the data. For example, consider the two-dimensional
raster data displayed in Figure 1(a) where a corresponding one-
dimensional cross section is displayed in Figure 1(b). This data
contains a smaller and a larger scale valley which correspond to
connected components in the sublevel sets of smaller and larger
persistence respectively. This data also contains a smaller scale
peak which corresponds to a hole in the sublevel sets of smaller
persistence.

The proposed generalization method poses the generalization
problem as an optimization problem with respect to persistent
homology. The solution to this problem equals a generalization
where connected components and holes in the data sublevel sets of
lesser persistence have been removed. To illustrate the proposed
method consider again the two-dimensional raster data displayed
in Figure 1(a). A generalizing of this data is displayed in Figure 1(c)
were a corresponding one-dimensional cross section is displayed
in Figure 1(d). Here the connected component and hole in the data
sublevel sets of lesser persistence have been removed. Although the
above example considers two-dimensional raster data, the proposed
method is applicable to raster data of any dimension.

The layout of this paper is as follows. Section 2 describes the
proposed generalization method. Section 3 presents an evaluation
of the method. Finally, section 4 draws some conclusions.

2 TOPOLOGICAL GENERALIZATION
The proposed generalization method contains the following four
steps. In the first step the raster data to be generalized is modelled
using a combinatorial data structure known as a filtration. In the
second step this filtration is used to compute the persistent homol-
ogy of the raster data. In the third step the problem of generalization
is posed as a problem of optimizing an objective function defined
in terms of persistent homology. In the final step, the raster data
is optimized with respect to this objective function using gradient
descent. These steps are now described in the following subsections.
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Figure 1: A two-dimensional raster data is displayed in (a) where a corresponding one-dimensional cross section is displayed
in (b). This data contains a smaller and a larger scale valley which correspond to connected components of smaller and larger
persistence respectively. This data also contains a smaller scale peak which corresponds to a hole of smaller persistence. A
generalization of this data is displayed in (c) were a corresponding one-dimensional cross section is displayed in (d).

2.1 Filtration
An (abstract) simplicial complexK is a finite collection of sets such
that for each σ ∈ K all subsets of σ are also contained in K . Each
element σ ∈ K is called a p-simplex where p = |σ | − 1 is the
corresponding dimension of the simplex. The faces of a simplex
σ correspond to all simplices τ where τ ⊂ σ . The dimension of a
simplicial complexK is the largest dimension of any simplex σ ∈ K .
A triangulation of a topological space corresponds to a simplicial
complex representation of that space. In this work we triangulate
the raster data to be generalized using a Freudenthal triangulation
where each raster cell is represented using a 0-simplex.

Given a simplicial complex K containingm simplices, consider
a function f : K → R such that f (τ ) ≤ f (σ ) whenever τ is a
face of σ . For all a ∈ R, the sublevel set K(a) = f −1(−∞,a] is a
subcomplex of K . The ordering of the simplices of K with respect
to the corresponding values of f induces an ordering of the sublevel
sets defined in Equation 1 known as a filtration. Note that, any two
successive sublevel setsKi andKi+1 in this sequence differ by only
a single simplex. If the function f maps multiple simplices to the
same real value, we order them by dimension and if they have equal
dimension we order them arbitrary.

∅ = K0 ⊂ · · · ⊂ Km−1 ⊂ Km = K (1)

In this work we represent the data to be generalized as a filtration
using the following approach. Let K be the simplicial complex
corresponding to the Freudenthal triangulation of the raster data
in question. Let f be the function which maps each 0-simplex in K

to the value of corresponding raster cell. We extend the domain of
f to all simplices in K using Equation 2 which in turn induces a
filtration on K known as a lower star filtration.

f (σ ) = max(f (γ ) : γ ∈ σ , |γ | = 0) (2)

2.2 Persistent Homology
Let Hp (K) denote the p-homology group of K [2]. Intuitively an
element of the p-homology group corresponds to a p-dimensional
hole inK . That is, an element of the 0-homology group corresponds

to a path-connected component in K while an element of the 1-
homology group corresponds to a one-dimensional hole inK . Given
a filtration of a simplicial complex K , for every i ≤ j there exists
an inclusion map from Ki to Kj and in turn an induced homomor-
phism fromHp (Ki ) to Hp (Kj ) for each dimension p. An element of
the p-homology group is born at Ki+1 if it exists in Hp (Ki+1) but
does not exist in Hp (Ki ). An element of the p-homology group dies
at Ki+1 if it exists in Hp (Ki ) but does not exist in Hp (Ki+1). If an
element of a p-homology group never dies, its death is determined
to be at a hypothetical simplicial complex K∞.

Let P denote the space {(b,d) ∈ R2,b ≤ d}. An element of
the p-homology group which is born at Ki and dies at Kj can be
represented as a point (f (α), f (β)) ∈ P where α and β are the
single simplices added to the filtration at Ki and Kj respectively.
The value f (β) − f (α) is known as the persistence of the element in
question. The multiset of k points {(f (αi ), f (βi )) ∈ P, i = 1 . . .k}
corresponding to the p-homology group is called the p-dimensional
persistence diagram. For a given simplicial complex K , let Persp be
the map defined in Equation 3 from the space of functions defined
on K to the space of p-dimensional persistence diagrams. The
persistence diagrams Pers0(.) and Pers1(.) corresponding to the
raster data in Figure 1(a) are displayed in Figures 2(a) and 2(b)
respectively.

Persp (f ) = {(f (αi ), f (βi )) ∈ P, i = 1 . . .k} (3)

2.3 Objective Function
In this section we pose the problem of generalization as an optimiza-
tion problem where the objective function is defined in terms of per-
sistent homology. Let Persp (f ) = {(f (α1), f (β1)), . . . , (f (αk ), f (βk ))}
be the p-dimensional persistence diagram corresponding to the
raster data to be generalized. The real valued objective function
T to be minimized is defined in Equation 4 where τ is a real val-
ued function defined in Equation 5. The function τ has a single
hyper-parameter a.

T (Persp (f )) =
k∑
i=1

τ (f (βi ) − f (αi )) (4)
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Figure 2: Persistence diagrams Pers0(.) and Pers1(.) corre-
sponding to Figure 1(a) are displayed in (a) and (b) respec-
tively. Elements of Pers0(.) and Pers1(.) are represented us-
ing blue circles. Elements of Pers0(.) that do not die are rep-
resented by arrows.

τ (t) =

{
t t ≤ a

0 t > a
(5)

The objective function T can be interpreted as follows. For each
point (f (αi ), f (βi )) if the corresponding persistence f (βi )− f (αi ) is
less than or equal to the hyper-parameter a, a value of f (βi )− f (αi )
will be added to the objective function. Otherwise, a value of 0 will
be added to the objective function. This has the effect of penalizing
topological features with persistence less than or equal to a while
not penalizing those topological features with persistence greater
than a.

A global optimal solution to the objective function will corre-
spond to a function f such that Persp (f ) does not contain any
points with persistence less than or equal to a. Such a solution
will have an objective function value of 0. To illustrate this con-
sider again the two-dimensional raster data displayed in Figure
1(a) where the corresponding persistence diagrams are displayed in
Figure 2. A generalizing of this data corresponding to a global opti-
mal solution with a hyper-parameter a of value 30 is displayed in
Figure 1(c). The corresponding persistence diagrams are displayed
in Figure 3. The smaller scale peak and the smaller scale valley
in the original data have persistent less than or equal to 30 and
therefore do not exist in the generalized result.

2.4 Optimization
In this section we present an optimization algorithm for minimiz-
ing the objective function T defined in Equation 4. The algorithm
in question is gradient descent which uses gradient information
to iteratively minimize the objective function. Toward this goal
we derive the analytic gradients. Analytic gradients are necessary
for performing gradient descent which attempts to minimize the
objective function by iteratively taking a step in the direction of
negative gradient.

It can be proven that the objective functionT is locally continuous
(this proof is omitted due to page constraints). Given this we derive
the analytic gradient of T with respect to the function f evaluated
at the 0-simplices of K . Note that, the function f evaluated at the
0-simplices of K corresponds to the raster cell values. For a given

(a) (b)

Figure 3: Persistence diagrams Pers0(.) and Pers1(.) corre-
sponding to Figure 1(c) are displayed in (a) and (b) respec-
tively. Elements of Pers0(.) and Pers1(.) are represented us-
ing blue circles. Elements of Pers0(.) that do not die are rep-
resented by arrows.

point (f (αi ), f (βi )) in Persp (f ), application of the sum and chain
rules gives the corresponding partial derivatives of T which are
defined in Equation 6. Note that, a subgradient is selected at the
point a.

∂T

∂ f (αi )
=

{
−1 f (βi ) − f (αi ) ≤ a

0 f (βi ) − f (αi ) > a

∂T

∂ f (βi )
=

{
1 f (βi ) − f (αi ) ≤ a

0 f (βi ) − f (αi ) > a

(6)

Let {γ1, . . . ,γm } be the set of 0-simplices in the Freudenthal tri-
angulation K of the raster data to be generalized. By applying the
chain we extend the domain of the partial derivatives defined in
Equation 6 from { f (α1), f (β1), . . . , f (αk ), f (βk )} to { f (γ1), . . . , f (γm )}

using Equation 7. We subsequently use these partial derivatives to
form the gradient vector defined in Equation 8. Given this gradient
vector we minimize the objective function T (Persp (f )) using the
gradient descent algorithm defined in Algorithm 1. In each iteration
of this algorithm we compute Persp (f ) using the method described
in Section 2.2. In line 6, ϵ is an algorithm hyper-parameter corre-
sponding to step size. In all experiments presented in the results
section of this paper we used an ϵ value of 0.001.

∂T

∂ f (γi )
=


∂T

∂f (α j )
γi = argmax

ρ ∈α j
f (ρ)

∂T
∂f (βj )

γi = argmax
ρ ∈βj

f (ρ)

0 otherwise

(7)

∇T =

(
∂T

∂ f (γ1)
, . . . ,

∂T

∂ f (γm )

)
(8)

It can be proven that the gradient descent algorithm defined
in Algorithm 1 converges to a global optimal solution where the
objective function evaluates to 0 (this proof is omitted due to page
constraints). This solution corresponds to a generalization where
all topological features with persistence less than or equal to the
hyper-parameter a have been removed.
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Figure 4: Persistence diagrams corresponding to the DEM in (a) are displayed in (b). The result of generalizing this DEM using
a value of 100 for the hyper-parameter a is displayed in (c). The persistence diagrams corresponding to this generalization are
displayed in (d). Elements of Pers0(.) and Pers1(.) are represented by blue and red dots respectively. Elements of Pers0(.) that
do not die are represented by arrows.

Algorithm 1: Gradient descent optimization
Input: A Freudenthal triangulation K of the raster data to

be generalized. A function f : K0 → R where K0 is
the set of 0-simplices in K .

Output: A function f : K0 → R such that T (Persp (f )) = 0.

1 begin
2 prev_objective = ∞

3 current_objective = T (Persp (f ))
4 while prev_objective - current_objective > 0 do
5 compute ∇T
6 f = f − ϵ∇T

7 prev_objective = current_objective
8 current_objective = T (Persp (f ))
9 end

10 return f

11 end

3 RESULTS
This section presents an evaluation of the proposed generalization
method and is structured as follows. Section 3.1 describes the raster
used within the evaluation. Section 3.2 presents an analysis of the
convergence properties of the generalization method.

3.1 Raster Data
The raster data used in this evaluation consists of two- and three-
dimensional raster datawhichwe nowdescribe. The two-dimensional
raster data corresponds to digital elevation models (DEM). We ob-
tained ten DEMs from the National Elevation Dataset provided
by the U.S. Geological Survey Science Data Catalog. One of these
DEMs corresponding to a region in the Trace State Park Missis-
sippi is displayed in Figure 4(a). The three-dimensional raster data
corresponds to a subsurface interpolation of copper mineral per-
centage. We constructed this raster data using the Brenda Mine
dataset obtained from [1].

3.2 Convergence Analysis
To demonstrate convergence with respect to a two-dimensional
DEM consider the DEM displayed in Figure 4(a). The corresponding
zero-dimensional persistence diagram Pers0(.) and one-dimensional
persistence diagram Pers1(.) are displayed in Figure 4(b). The gen-
eralization of this DEM achieved using a value of 100 for the hyper-
parameter a is displayed in Figure 4(c) where the corresponding
persistence diagrams are displayed in Figure 4(d). The proposed
generalization method uses a step size of ϵ (line 6 of Algorithm
1). A consequence of this is that the method cannot reduce the
persistence of a point to exactly 0 but instead can only reduce it to a
value within ϵ of 0. As mentioned in section 2.4, in our analysis we
used an ϵ value of 0.001. It is evident from the persistence diagrams
in Figure 4(d) that the generalization method has reduced the per-
sistence of all points with persistence less than or equal to 100 to a
value within ϵ of 0. That is, all the points in question now lie along
the diagonal of the figure. When applied to the three-dimensional
subsurface interpolation, the proposed generalization method was
found to also converge correctly.

4 CONCLUSIONS
Generalization of continuous valued raster data with respect to
topological constraints represents an open research problem. We
proposed a novel solution which poses the problem as an optimiza-
tion problem with respect to persistent homology. We proved that
the optimal solution to this problem can be computed efficiently and
corresponds to a generalization where connected components and
holes in the sublevel sets of lesser persistence have been removed.
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