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Abstract

High resolution Digital Elevation models, such as the (Big) grid terrain model of Denmark
with more than 200 billion measurements, is a basic requirement for water flow modelling and
flood risk analysis. However, a large number of modifications often need to be made to even
very accurate terrain models, such as the Danish model, before they can be used in realistic flow
modeling. These modifications include removal of bridges, which otherwise will act as dams in
flow modeling, and inclusion of culverts that transport water underneath roads. In fact, the
danish model is accompanied by a detailed set of hydrological corrections for the digital elevation
model. However, producing these hydrological corrections is a very slow an expensive process,
since it is to a large extent done manually and often with local input. This also means that
corrections can be of varying quality. In this paper we propose a new algorithmic apporach based
on machine learning and convolutional neural networks for automatically detecting hydrological
corrections for such large terrain data. Our model is able to detect most hydrological corrections
known for the danish model and quite a few more that should have been included in the original
list.

1 Introduction

High resolution Digital Elevation models, such as the grid terrain model of Denmark with more than
200 billion measurements available as part of the government’s basic data program by the Agency for
Data Supply and Efficiency (SFDE) [5], is a basic requirement for several terrain based applications
like water flow modeling and flood risk analysis. However, a large number of modifications often
need to be made to even very accurate terrain models, such as the Danish model, before they can
be used in realistic flow modeling. These modifications include removal of bridges, which otherwise
will act as dams in flow modeling, and inclusion of culverts that transport water underneath roads.
For this reason SDFE distribute a detailed set of hydrological corrections for the Denmark model.
However, producing these corrections is a very slow and expensive process, since it is to a large
extent done manually. This also means that these corrections are of varying quality. Moreover,
there are terrain models for many countries that does not come with an official list of hydrological
corrections hindering realistic applications of important hydrological analyses.

The most prominent application of terrain data is probably analyzing the risk of flooding, and
the importance of this has only increased by efforts to mitigate the consequences of climate changes.
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Thus the high costs associated with extreme weather events occurring in densely populated areas
has spurred an increased effort into developing new hydrological models and methods for analyzing
how water flows across terrains in the case of heavy rain and increased sea levels. Consider a classic
simulation of how water flows across a terrain in the event of rain fall. The result of a rain fall may
be estimated by first adding some water to all (or subset of) the cells of the terrain model, and then
simulating what happens as water flows down hill as follows: In each step water is moved from a
one cell to a neighboring cell of lower height, usually the lowest neighboring cell. The simulation
considers the cells in order of their height, with the highest cell considered first. In this process each
cell may be annotated with the amount of water passing through it. This annotation of the cells is
known as flow accumulation [2, 3] and is used reveal river networks and water ways by extracting
the cells with high annotation. The cells that cannot get rid of the water reveal which depressions
in the terrain that are flooded [16, 2]. For such a water flow simulation to produce useful and
realistic results, the directions that water flow in the simulation has to (approximately) match how
water flows over the surface in real life. However, a bridge recorded in the digital elevation model
breaks this condition, because in real life the water would pass below it, while in the simulation
this path is blocked. Hence, obstacles like a bridge that makes the water flow in a wrong direction
in the simulation needs to be handled.

We loosely define a hydrological correction as any connected set of cells in the digital elevation
model that relative to the surrounding cells has large heights, thus blocking the flow of water in the
simulation, where in real life water would actually flow through these cells. A simple requirement
for dealing with the problems created by hydrological corrections is to know where they are. For
this reason, lists of hydrological corrections to digital elevation models are sometimes maintained
together with the elevation model, and this list can be used to update the digital elevation model
before any computations are performed. This can for instance be done by cutting the hydrological
correction from the elevation model, replacing the heights of the cells comprising the hydrological
correction with interpolated heights of the cells of the flow path the hydrological correction blocks.
In Figure 1, a set of hydrological corrections and the results of running flow accumulation with
and without considering these hydrological corrections are shown. This figure clearly shows that
running analysis that do not consider hydrological corrections returns poor results.

Compiling a list of hydrological corrections is usually a manual process. In particular, the list
of hydrological corrections for Denmark was made in a manual process where a group of people
manually inspected orthophotos and digital elevation data, focusing primarily on intersections
between road and river networks. Such an approach has several issues. First of all manual labor is
slow, expensive, imprecise, and very often inconsistent since deciding whether something is in fact
a hydrological correction is hard to pin down exactly. Furthermore, the manual process needs to be
applied again every time the underlying data is changed, which happens continuously. In Denmark
the full terrain model is completely updated every five years, each year updating one fifth of the
model. Finally, intersections between road and river networks does not contain all hydrological
corrections. For instance, trenches connected with pipes, small streams with small bridges, and
tunnels cannot be found this way.

Problem Formulation The goal is to create an algorithm that automatically locates hydrological
corrections in a digital elevation model, and thus automating and improving on the process above.
The algorithm takes as input a digital elevation model, along with other supporting information,
such as location of roads and rivers, and the output of water flow algorithms, and outputs a list
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(a) Flow Accumulation without
hydrological corrections.

(b) Hydrological corrections. (c) Flow Accumulation with hy-
drological corrections.

Figure 1: Visualization of flow accumulation with and without considering hydrological corrections.
Notice how water accumulates between bridges and on the high way instead of flowing away when
hydrological corrections are not considered.

of potential hydrological corrections including their positions and shapes. We note that we do
not really care about very large hydrological corrections (like large bridges) since a list of these is
readily available and easy to discover.

Related Work Carlson and Danner [1] used feature engineering and machine learning for au-
tomated detection of bridge-like objects. The approach they took was to manually design local
feature maps around each cell in an elevation model and then applying the AdaBoost [6] machine
learning algorithm on these features for a cell, trying to predict whether each cell is a part of a
hydrological correction. The output of this is then processed by another algorithm that tries to
locate the hydrological corrections by grouping areas with many cells predicted as hydrological
corrections. The prediction of whether a given cell is part of hydrological correction or not, is
based on five kinds of precomputed features. Carlsen and Danner create four local feature maps
from the digital elevation model: the first feature is the raw height data, and the next tree features
are output of different edge detectors, each based on a 3 x 3 neighborhood around the given cell.
The final feature is a global feature, called a fill map, that is made from a water flow simulation
of the entire area in consideration. From each of these feature maps, Carlson and Danner extract
102 features like min, max, mean, avg which totals 510 features per cell. The data used in [1] has
approximately 6 million cells of 20 feet x 20 feet or 40 feet x 40 feet resolution. To get labeled data,
they manually tagged 600 cells of the digital elevation model, 400 negative and 200 positive.

Our Approach: Our approach for detecting hydrological corrections along with their position
and shape is based on convolutional neural networks. The main ingredient in our algorithm is a
convolutional neural network architecture [10] for supervised learning, heavily inspired by convolu-
tional neural networks for image segmentation. Since terrains have high spatial locality, we believe
convolutional neural nets that are designed for exactly this situation are the best available tool
for the problem, alleviating the need for manually designing features. While the hand designed
features designed by Carlson and Danner [1] may to some extent resemble the low level features a
convolutional network automatically generate on the same data, convolutional networks are almost
always better at learning useful discriminative features from data with spatial locality than people
are at designing them.

The convolutional neural net we employ is designed to solve the problem on a fixed size tile.
More formally, our tile neural network algorithm takes as input a fixed size tile, potentially with
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several layers of features, and outputs a new tile of the same size, mapping each cell of the input
to the probability of whether this cell is a part of a hydrological correction. The prediction for
each cell is based on the entire tile, allowing the neural network to learn to take advantage of any
relevant features within a large area around each cell. Compared to the 3 x 3 cell neighborhood
considered in [1], the neighborhoods we consider are orders of magnitude larger, even when we
take into consideration that the cell size in the data we consider is an order of magnitude smaller.
The data set of tiles for training the network is initially constructed from the list of hydrological
corrections maintained by SFDE, such that each hydrological correction is contained in at least one
tile in the training data. We train a neural network to predict bit maps of the same size as the
input tile, where the bits set in the bit map carve out the hydrological corrections contained in the
tile.

We solve the full problem of locating all hydrological corrections in an digital elevation model
with the tile algorithm as follows: We scan the digital elevation model, splitting it into overlapping
fixed size tiles and apply the tile algorithm on these overlapping tiles of the input. The output
from the algorithm for these tiles is then combined and used to list all the hydrological corrections
and their shapes.

The data set we use are orders of magnitude larger than the data set considered in [1], containing
approximately 200 hundred billion cells at a resolution of 0.4 meters by 0.4 meters and the list
of hydrological corrections from SFDE just shy of 150.000 hydrological corrections. Hence, the
results presented are incomparable to the results achieved by Carlson and Danner [1]. Also, since
convolutional nets are considered the state of the art for most image recognition tasks, we have not
compared our approach to theirs.

Our Results For the tile problem where the task is to predict the cells that are part of a
hydrological correction within the tile, all variations of our algorithm obtain an area under ROC
curve (AUC) score between 0.95 and 0.97. The AUC score of an algorithm is equal to the probability
it will will rank a randomly chosen cell that is part of a hydrological correction higher than a
randomly chosen cell that is not. We note that the bounding boxes of hydrological corrections in
the official list maintained by SFDE has non-negligible variation both in terms of size and position
when compared with the the digital elevation model and it is not possible to get perfect accuracy.
With this in mind we believe our results for the tile problem are very good.

For the more general problem of listing all hydrological corrections in an arbitrary sized digital
elevation model, we measure how well our algorithm detects the known hydrological corrections.
However, we do not have a notion of true negative for this problem, as we do not output where there
is not a hydrological correction. This means that we cannot compute an AUC score for this problem.
Since an algorithm can propose an excessive amount of hydrological corrections it is important to
consider both precision: the number of hydrological corrections found divided by the number of
hydrological corrections suggested and recall: the number of hydrological corrections found divided
by the number of hydrological corrections. Computing the precision and recall statistics is not
completely trivial. We need to check if the shape of the hydrological correction output by our
algorithm is close to the bounding box of a true hydrological correction. This is complicated by
the fact that positions and sizes of ground truth hydrological corrections are noisy, and there may
be several hydrological corrections that are close to a proposed hydrological correction. For our
applications recall is more important than precision, and we mainly trade off the two in favor of
recall. All our algorithm variants achieve high recall, but the cost of this is quite low precision.
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This may make our results seems less impressive than we believe they are. There are hydrological
corrections in the official list that are almost impossible to detect from the data we have. More
importantly, after having analyzed a large number of the false positives, it is clear to us that many
of the false positive output by our algorithm are in fact actual hydrological corrections that are just
not part of the official list maintained by SFDE. It is clear to us that the precision of our algorithm
is much higher than the tests on the official lists of hydrological corrections suggests, and is in fact
a very good algorithm for the problem. Our algorithm has already been included in the commercial
product Scalgo Live [15] where it is being used to detect hydrological corrections in Sweden that
does not have an official list of hydrological corrections available.

Paper Outline: In Section 2 we describe the data we use in more detail. In Section 3 we give
a short description of the previous work that is the basis for our neural net architecture. In section
4 we describe the neural net architecture we use for segmenting a tile into the cells that are part of
hydrological corrections and cells that are not. We then describe in detail how we use this neural
net algorithm that work for fixed size tiles to detect and output hydrological corrections for the
entire digital elevation model.

In Section 5 we show the results of our experiments including several actual hydrological correc-
tions output by our algorithm that are not a part of the list of hydrological corrections maintained
by SFDE.

2 The Data

In this section we give descriptions of the data and how we construct our initial data set of tiles
for the tile algorithm. The main data source we consider is the danish digital elevation model
which is made and maintained by The Danish Agency for Data Supply and Efficiency. The digital
elevation model is freely available and may be downloaded from [5]. The resolution of the model is
0.4 meters, meaning the digital elevation model contains a tiling of Denmark with 0.4m×0.4m cells
each supplied with the height of that cell. This gives a model off approximately 200 billions cells,
including parts of ocean which are not relevant for our task. Besides the digital elevation model,
we have extracted road and river network grids from Denmark that we appropriately align with
the digital elevation model. Finally, we have made flood computation maps that are also aligned
with the digital elevation model. All these we may consider as extra layers of features.

Hydrological Correction Types The Danish Agency for Data Supply and Efficiency also makes
and maintains a list of hydrological corrections of different types for Denmark. There are several
different kind of hydrological corrections each with different characteristics. See [4] for the official
information on hydrological corrections for the digital elevation model for Denmark including a few
examples. The list of hydrological corrections also includes underground pipes that do not leave any
marks on the digital elevation models. These are not possible to locate from the data available and
we do not consider them. The list of these pipes are generated from a separate database that holds
the information about such constructed pipe networks. The hydrological corrections we consider
has two types that are named Horse Shoes and Lines respectively. There are approximately 22.000
Horse Shoe hydrological corrections, and 125.000 Line hydrological corrections in the list for the
Denmark model.
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Figure 2: Distribution of hydrological corrections lengths.

Horse Shoes are hydrological corrections formed by three line segments connected as three sides
of a rectangle which resembles the shape of a horse shoe. The Horse Show allow (or disallow)
water flowing through an obstacle. A hydrological correction denoted as a line is represented as a
single line segment that allow water to flow between the end points. In the data these lines can
sometimes be connected into a poly line that lead the water from one end to the other. Such a poly
line may be interpreted as one large hydrological correction instead of several small ones but that
makes no difference for our purpose, since our algorithm tries to predict all the cells comprising a
hydrological correction in the digital elevation model. We preprocess the hydrological corrections
and keep only the Horse Shoe and Line corrections that take up more than one cell. Inspecting the
hydrological corrections in the list compiled by SFDE, it is clear that the size and position relative
to the actual corrections one can deduce from the digital elevation model is varying a great deal.
It would of course have been more helpful for us if the true bounding box of every hydrological
correction was available, but this is the data that we have. There also seems to be Line corrections
that are sitting on top of completely flat areas, leaving no mark on the digital elevation model, and
these essentially acts a noise for our model. They may actually be indicating an underground pipe,
which we would prefer to remove from the data set, but we cannot deduce it from the information
contained in the list of hydrological corrections. We note that the size of the individual hydrological
corrections vary greatly, from less than one meter to the hydrological correction for the Great Belt
Bridge which is close to 7000 meters. The distribution of hydrological correction lengths is shown
in Figure 2.

3 Segmenting Tiles with Neural Networks

Image classification and segmentation algorithms using convolutional neural networks introduced in
[10] for optical character recognition systems has flourished greatly since the breakthrough paper by
Krizhevsky, Sutskever and Hinton [9] that presented a convolutional neural net that outperformed
all previous solutions on the famed ImageNet data set by a large margin. Convolutional networks
are now the gold standard for several image recognition tasks including image segmentation where
the task is to assign the pixels in an image into groups that comprise the relevant different object
shown in the image.

6



As explained in the introduction the goal of our tile algorithm is to segment a tile into the cells
that are part of a hydrological correction and the cells that are not. The very similar and more
general problem of predicting pixel level segmentation maps from input images is a well studied
problem in the Deep Learning Computer vision field, with a wide range of different models, having
different trade-offs. On a high level, the main challenge, when moving from an object detection
model (is there a dog in the image), to a pixel level segmentation model (return the pixels that
comprise the dog), is the large class imbalance that stem from the fact that most objects only take
up a small part of the input image, and the issue of integrating both high level information about
the overall presence of an object and low level information about the precise geometric form of the
object.

Techniques that tackle the first problem generally fall into two categories. First, there are
methods that try to separate the problem into two subproblems: 1) constructing an algorithm that
searches the input image for candidate locations for objects and 2) predicting pixel maps from
crops of the image at these locations, making the problem significantly more class balanced for the
second task [7]. Secondly, there are methods that try to modify the loss functions to suppress the
contribution from pixels that are not part of any object [12].

For the second problem, the integration of both high and low level information about objects, is
typically handled through the creation of a feature pyramid. We can separate the feature pyramid
network in two processes. First, the encoder which increase the channel dimension while decreasing
the width and height for increasing layers. Second, the decoder which follow up with a decreasing
channel dimension and increasing width and height, with concatenated features from the encoder
layers. See Figure 3 for a depiction of this process. The hope is that the upsampled features will
contain high level information about the presence of objects, while the concatenated channels from
previous layers will contain precise information about possible edges of objects. Examples of this
is found in U-Net [13] and Feature Pyramid Networks [11].

Our solution borrows ideas from all of these; We use the U-Net network architecture [13], the
focal loss to suppress the contribution from low loss pixels from [12] and postprocess crops from
candidate locations as in Mask R-CNN [7].

4 Complete Algorithm

In this section we describe our complete algorithm for detecting hydrological corrections in an
arbitrary sized region in detail. We start by explaining how we solve the same problem on fixed
sizes tiles and then explain how to use this tile algorithm to analyze an entire region. Our algorithm
works even if the only feature layer we have is the digital elevation model. Adding more features is
straight forward by adding extra layers to the input data aligned with the digital elevation model.

4.1 Tile Algorithm

Here we describe our algorithm for locating hydrological corrections in fixed size tiles. This al-
gorithm is a convolutional neural network inspired by convolutional neural networks for image
segmentation as described in Section 3.

A Data Sets for cell prediction on tiles In order to train our neural network to locate the
hydrological corrections in a tile we need a data set D = {(x1, y1), . . . , (xn, yn)} which we initially
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Figure 3: The model. Arrows represent operations, blocks represent data. We use an encoder for
each input feature type, as depicted by the model subfigure. For example, when using only the
elevation map as input feature, the vector feature encodings (red blocks) aren’t present. The flow
of data is as follows. First the input feature encodings are produced (grey blocks), though a series
of operations, each of these decreasing the width and height of the features by a factor 2, while
increasing the channel count by a factor 2. These are then used as input to the decoder indicated by
the yellow/red blocks. The horizontal UpConv operation then integrate lateral information from
the encoder(s) along with more global information from the decoder, each of these increasing width
and height by a factor 2, while decreasing the channel count by a factor 2. Lastly the channel count
is reduced to 1 though a single ResNet block and a sigmoid elementwise operation, producing Y ,
representing the probability that a pixel is part of a correction.

construct as follows. Each feature tile xi is a fixed size tile with potentially several feature layers
always including a layer with elevation data from the digital elevation model. The corresponding
ground truth element yi is a tile with one layer of the same size as the feature tile, encoding all
the cells within the tile that are a part of a hydrological correction. This encoding is simply a bit
mask, where a cell is given the value one if that cell is a part of a hydrological correction, and zero
otherwise. We will refer to such a ground truth tile as a label mask.

For a given region of the digital elevation model to learn from we create a data set of tiles as
follows. For every hydrological correction contained in the region we construct a feature tile and
a corresponding label mask with the hydrological correction placed at the center. The feature tile
consists of 752× 752 cells from the digital elevation model which we downsample to 376× 376 cells
of size 0.8 × 0.8 meters. This is done simply to save computation time. Tests have shown that it
has no effect on the quality of our algorithm and speeds up our algorithms considerably. The same
upsampling is performed on any extra feature layers included. This means that the tiles we consider
are squares of approximately 300 by 300 meters. We note that the size of our tiles is so large that we
can fit all hydrological corrections of interest. For a given data tile centered around a hydrological
correction, we create a the label mask as follows. We start from the all zero tile of the same size as
the feature tile and write one in each cell that intersect any of the hydrological corrections in the
list of known hydrological corrections for the region, including the hydrological correction at the
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center of the tile. For the Horse Shoe hydrological corrections this is done by writing a one in each
tile cell intersecting the rectangle defined by the Horse Shoe. The Line hydrological corrections are
handled the same way by adding a small width to the line segment making into a thin rectangle
which is then processed like a Horse Shoe.

The Loss Function The goal of the training algorithm is to learn a function f that maps the
input tiles xi to the corresponding labels masks yi, such that f(xi) ≈ yi. See Figure 3 for a full
specification of the neural net architecture we employ, which as mentioned earlier is heavily inspired
by ideas from image segmentation and computer vision. The parameters of the neural net is fit by
minimizing the sum of cross entropy loss between between the cells of predicted masks, f(x) and
the label mask y. We use the focal loss function [12] and a special weight map to counter-act the
effect of class imbalance in the label masks the algorithm tries to predict. The weight map exist to
address two concerns that are important for the quality of the final output of our algorithm:

• On average, only about 1 percent of the cells in a label mask are part of a hydrological
correction and set to one. The rest are zeros. If the contribution to the loss from each cell
that is part of a hydrological corrections is not higher than the loss associated to the zero
valued cells that does not, the learned function becomes heavily biased towards not predicting
cells to be part of hydrological corrections.

• Predicting the label of cells close to a hydrological correction correctly is much more important
than getting all the vast amount of easily predicted cells far from a hydrological correction
correct. Especially cells at the edge of the hydrological correction are important since down-
stream processes vectorize hydrological corrections based on the contour of the prediction
maps.

• Since hydrological corrections are varying in size, the contribution of large corrections to the
loss is much higher than that of small hydrological corrections if each hydrological correction
cell is penalized equally. If this is not handled the learning algorithm puts all emphasis on
learning the large hydrological corrections and essentially ignores the small.

These concerns give rise to the following definition of the weight-map for scaling the loss to
help the neural network focus on the most important areas of the input and to ensure that the
algorithm learns to detect hydrological corrections of any size. The weight map W for a data point
(x, y) is directly computed from the label mask y as follows.

W =
1√
wh

+ E +B + L,

where w and h is respectively the width and the height of the tile counted in cells,

E = L ∗ Ekernel, B = E ∗Bkernel (1)

Lij =

{
0 if yij = 0

1
number of cells in correction

otherwise

Ekernel =
−1

8 −1
8 −1

8
−1

8 1 −1
8

−1
8 −1

8 −1
8

, Bkernel =

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9
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Figure 4: An example of the weight matrix of a single data point.

where ∗ is the convolutional operator. Note that cells that are neither part of a hydrological
correction nor close to one are weighed as 1/

√
wh. See Figure 4, for an example of the weight

matrix.
The loss for the neural network on a predicted tile is the weighed sum of the losses over the

cells of the tile, where the weights are specified by the weight map derived from the label mask.
More formally, let ŷ be the output mask predicted by the neural network on data point x with
label mask y, and let L be the weight map induced by y. Finally let ` be the focal loss function
from [12]. Then the loss of the network is defined as∑

i,j

Wi,j` (ŷi,j , yi,j)

Training stage Our learning algorithm follows the standard practice in image segmentation tasks
to boost the number of samples and adding robustness to the learned function, by for each data
point xi considered we first extract a random crop from the feature tile, and then at randomly
decide whether to flip the crop on both the horizontal and vertical axis. The same transformation
is done on the label mask to predict, and this transformed data point and label mask is then used
for training.

4.2 Algorithm For General Region

While we were very successful at recognizing hydrological corrections in the tiles, as we show in
Section 5, this does not solve the actual problem posed. Here we describe how our algorithm finds
hydrological corrections in an arbitrary sized region given the algorithm we just described for fixed
sized tiles. First, we cannot just tile the region arbitrarily into fixed size tiles, since that may split
hydrological corrections in several pieces, making recognition of them impossible. Such a tiling may
also cause an algorithm to report the same hydrological correction several times. Finally, there may
be several hydrological corrections in one tile which complicates things further.

Without loss of generality we assume the input region to analyze is a, potentially very large,
rectangle M including the necessary feature layers that corresponds with the features used in the
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Figure 5: Prediction pipeline:a: Tiles are extracted from the input rectangle in a strided fashion,
such that each tile overlap other tiles 50 percent. b: Cell-level probability of hydrological correction
membership is predicted for each tile using our trained model for the tile problem defined in Section
4.1. c: Each tile is then weighed through a monotone window function such that center pixels are
weighted 1 and corner pixels are weighted 0. d: Tiles are added to a probability map of the same
size as the input, creating a cell-level probability map of the entire input rectangle. Weighing the
tiles with a window function ensure independence of the actual tiling of the region. e: As the
probability map is filled, a different crop (red rectangle), independent of the tiling in a, is extracted
and polygons containing possible corrections are extracted using contours at a fixed threshold. f:
Each possible correction is evaluated and filtered according to different heuristics. In the above
example a correction is filtered because the median probability within the polygon is too low. g:
Finally, polygons are converted to horse shoe shapes and added to the output.
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tile neural network algorithm as described above. The basic idea is to use the tile algorithm on
overlapping tiles to generate a new estimated probability map P , a rectangle of the same size of M ,
where each cell is associated with the probability of being a part of a hydrological correction, exactly
as we did in the tile algorithm. This large map P of probabilities is then processed by searching for
areas of high probability and then applying several heuristics to determine if each area found this
way is indeed a hydrological correction. Finally, if a hydrological correction has been found, we
create a best fit Horse Shoe hydrological correction and add to the set of hydrological corrections
that is output at the very end. The full process is visualized and described in more detail in Figure
5.

Formally our algorithm works as follows.

Creating Probability Map First we process the input M in a overlap-add fashion, extracting
fixed sized crops that fit with the tile algorithm using a stride of s (we sample tiles, s cells apart),
creating a set of fixed size tiles that we input into the tile algorithm and save into a list of predicted
tiles Xi,j :

Xij = nnet
(
Mi:(i+2s),j:(j+2s)

)
i = {0, s, 2s, . . . , h− 2s}
j = {0, s, 2s, . . . , w − 2s}

, where nnet is the neural net we created for the tile problem, and w, h is the width and the height
of the input rectangle M .

The tile predictions are then inserted in prediction map P as follows

Pi:(i+2s),j:(j+2s)+ = H �Xij , P ∈ Rh×w

where H = hhT , hi = 1
2 cos

(
πi
s

)
is a scaling map that ensures that mainly the predictions for

the cells around the center of the tiles are added to the probability map, the further a cell is from
the center from the center the more it is scaled down, and � is element-wise multiplication. This
finishes the construction of the map of probabilities P .

Extracting Hydrological Corrections From Probability Map To find the actual hydrolog-
ical corrections and their shapes we start by creating a contour map on P , using a fixed threshold.
Each contour polygon in this contour map represent a possible hydrological correction. We then
filter these candidates using the following heuristics designed from manual inspection.

• Very small and very large contours are dropped, as most of them are false positives.

• Contours with small variance in the elevation data are dropped, as these are mostly false
positives. They may also have negligent negative effect on water flow simulations.

• The median pixel probability is used as a threshold to control the tradeoff between precision
and recall.
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Outputting Horse Shoes Next step is to modify the shape of the contour polygons that the
algorithm has decided constitute a hydrological correction. A given polygon found by our algorithm,
describing a hydrological correction, is processed as follows. First we increase the size of the polygon
by lowering the probability threshold used in the contour map to gain slightly more context to work
with. Then we extract a crop C from the digital elevation model around the polygon. The cell
heights in this tile of elevation data is then mapped to a probability distribution based on their
heights with the lowest values getting the highest probabilities. We transform the elevation values
in the crop C by negating the values, translating them such that the min height is zero and then
normalizing by dividing each height value by the sum of heights.

We then sample points from this distribution and fit a Gaussian mixture model with two
components to extract the two depressions that the hydrological correction is connecting. This is
achieved by picking the mean of the components µ1, µ2 output by by the algorithm as the centers
of the two depressions The line between µ1 and µ2 form the skeleton of the connection, while the
width is extended in perpendicular direction to the line until it intersect the contour polygon. This
give us the resulting horseshoe.

4.3 Bootstrapping our algorithm

As described above, the distribution of zeros and ones in the label masks the neural network for the
tile problem must learn to predict, is highly unbalanced. This problem increases significantly when
we need to predict hydrological corrections on the entire region considered. In this case the ratio
of cells that are part of hydrological corrections is extremely small, much much smaller than in the
training data set. The weight map and the focal loss we use to counter this problem help, however
with the neural network learned on the initial data set the full algorithm is not able get high
recall without predicting relatively many false positives. To counter this, we analyze the output of
the first run of the complete algorithm, and sample new important tiles to learn from for the tile
problem. This is achieved by creating tiles centered around false positives, where the predictions
of the tile algorithm is close to the decision boundary we use to determine the contour map for
the full algorithm. From manual inspection, the false positives far from the decision boundary
tend to be actual corrections, revealing incompleteness in the set of manually created corrections.
Including these as false positives in our tile algorithm would then make our algorithm worse. With
these extra tiles defined we simply restart the training with the new data set, creating a new tile
prediction neural network algorithm. We show the results for both in the next section.

5 Experiments and Results

In this section we describe our experiments. For training and evaluating our algorithm we use data
from the island of Funen, which we have separated along the north-south axis in 2 splits. The
training split, which comprise 70 percent of the total area and validation split which comprise 20
percent of the total area1. Funen has 9000 corrections, split in 5758 Lines and 3299 Horse Shoes

From these splits of Funen, we generate the following data sets:

bl Baseline experiment using only the digital elevation model and training only on tiles centered
at the hydrological correction.

1we set aside the last 10 percent as a test set if we decide to do hyperparameter optimization as future work.
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AUC mP recall

bl 0.969 0.2231 0.9126

bs 0.9692 0.3056 0.853

ff 0.9542 0.3603 0.7845

vv 0.977 0.5126 0.7482

vv wz 0.9761 0.3012 0.8498

bs wz 0.9663 0.2624 0.8626

Table 1: Results for the different data sets. AUC is the area under ROC curve on the validation
set of tiles that are generated the same way as the training set. mP is the average precision of
the centroids of the generated polygons with-in the validation split of Funen, evaluated at a set of
thresholds weighted by the change in recall, eg: mP =

∑
n

[
(Recalln − Recalln−1)/Precisionn

]
.

Recall is the maximal possible recall in the validation region by our full algorithm. That is, how
many ground truth corrections are close to a proposed correction, when including all the proposed
corrections from prediction pipeline.

bs Bootstrap version of the baseline experiment (Section 4.3), with extra tiles centered at locations
where the median probability of predicted polygons, using a trained baseline model, is with-in
the range .435− .45. We call these extra locations bootstrapped locations.

ff Like bs but with flash flood features [14]. These features may help the model since flash flood
simulations accumulate water at the edge of a correction.

vv Like bs but with tiles rasterizing road and river vectors as extra layers of features. This is
expected to help as most intersections between rivers and roads are hydrological corrections.

bs wz Like bs with extra ground truth tiles from the island of Zealand. Zealand has 26651 extra
hydrological corrections to consider.

vv wz: Like vv with extra ground truth tiles from the island of Zealand. Zealand has 26651 extra
hydrological corrections to consider.

The neural network is implemented in Tensorflow, and training on all experiments is done using
the ADAM[8] optimizer with a learning rate of .0001. We use a batch size of 32 and train on each
data set for 50 epochs. After each epoch, the model is evaluated on the validation set of tiles and
the model is saved if the cost has improved.

5.1 Results

We report results for both the tile algorithm and for the algorithm that detects hydrological cor-
rections for an entire input region. For the tile algorithm, the validation set of tiles we consider is
generated the same way as the training set just for a different region. This means tiles centered
around a hydrological correction and tiles centered at the bootstrapped locations, except for bs,
that only contain tiles centered at hydrological corrections. This validation score can be evaluated
fast, since the area of the tiles is much smaller than the entire region. The quality of the tile
algorithm for predicting which cells in a tile is part of a hydrological correction is evaluated using

14



the area under ROC curve (AUC) score. Reporting pure accuracy is uninformative because of the
large class imbalance.

For the full problem of locating hydrological corrections in an entire region, it is not possible
to use AUC since the pipeline can propose any number of corrections and ”true negatives” are not
well defined. Instead we report precision: the ratio between the amount of proposed hydrological
corrections close (center-distance< 25 meters) to a true correction (true positive), and all the
proposed corrections (true positive + false positive), and recall : the ratio between the amount
of proposed hydrological corrections close (center-distance< 25 meters) to a true correction (true
positive), and the amount of hydrological corrections in the validation region (true positive + false
negative). Notice that, in image segmentation tasks, one would usually apply mean intersection
over union (mIoU) to determine if a proposed region corresponds to the ground truth shape, but
as most of our ground truth hydrological corrections are line shaped, and therefore don’t have a
well defined area, we use distance to center instead.

The distinction between these two problems is important. We note that while we are ultimately
only interested in the performance on the entire region, it is impractical to train on the entire region
by including an excessive amount of extra tiles without any hydrological corrections. That would
also add significantly to the label imbalance problem discussed in Section 4.

Detecting hydrological corrections on an entire region is a significantly harder problem than
predicting pixel probabilities on tiles, since hydrological corrections are very rare and the distribu-
tion of non-correction locations is suspected to be complex. As mentioned earlier, we try to handle
this problem, by including non-correction tiles in the training and validation set, whose centers
have median probability close to the decision boundary. Perhaps surprisingly, we do not sample
false positive locations which have median probability above .45, since, manual inspection reveal
that many such false positive locations, are in fact true positives. See Figure 6 for an example
with several false positives that are actually true positives. Including these as non-correction tiles
in the bootstrapping, would only degrade performance. Predicting hydrological corrections on the
region of Funen takes between 30 minutes and an hour, depending on the number of predicted hy-
drological corrections, on a dual NVIDIA 1080ti GPU’s and a Intel Xeon E5-1650 CPU. Training
the neural network for the tile algorithm takes approximately six hours when only considering tiles
from Funen.

The discrepancy between the problem of predicting cells in the validation tiles and predicting
shapes of corrections on the entire region is shown in Table 1, where all experiments show good
performance on the validation tiles; all with-in 0.95 − 0.97 AUC. But we also see, that the per-
formance on the validation tiles, does not necessarily translate to good performance on the entire
region. For example, the vv experiment has the best AUC (0.977), but, when using this model
in the prediction pipeline, it proposes too few hydrological corrections, resulting in lowest recall of
all experiments. On the other hand, the baseline experiment actually have the best recall of all
the experiments, but not very good precision. To gain better understanding of this relationship we
show the different trade-off curves in Figure 7 for the full algorithm based on the neural network
trained on the different data sets.

Inspecting figure 7, it not clear that any model is ultimately better, since they all trade maximal
recall for precision. One exception is vv wz which achieve the same maximal recall as both bs ex-
periments while maintaining a much better precision. Its also clear that including the bootstrapped
locations improve precision significantly.
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Figure 6: An example actual corrections not in the ground truth set. The purple lines are hy-
drological corrections from the official list of hydrological corrections and the green polygons are
hydrological corrections proposed by our algorithm.
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Figure 7: Precision/Recall curves. The precision and recall trade off is determined by the median
pixel probability with-in each proposed polygon.

6 Conclusion and Future Work

In this paper we have described a new approach for detecting hydrological corrections that auto-
mates and improves the existing manual process. Our algorithms find almost all known hydrological
corrections, and finds many more that should have been included in the list. The many missing
hydrological corrections from the list maintained by SFDE is a problem both in terms of reporting
how well an algorithm actually works but it is also a significant issue because the labels the algo-
rithm learn from become noisy. As mentioned above, another issue with the official data is that
the exact position and shape of the hydrological corrections in the list vary greatly when compared
with the underlying digital elevation model. This makes both tile problem and the full problem
harder. From our experiments our algorithm for the tile problem seems to be fairly robust to this
problem. An industrial strength version of our algorithm have been implemented and incorporated
into the commercial product of Scalgo Live[15]. This algorithm uses only digital elevation model
which is often the only data available. Our algorithm is currently only used for Sweden that does
not have any official list of known hydrological corrections. To help our algorithm we have acquired
1500 hydrological corrections from three different Swedish cities and added to the hydrological cor-
rections from Denmark to train on. We use the bootstrapped version of our algorithm which gives
the best tradeoff between precision and recall. The Swedish model has a resolution of 2m × 2m
and it took 3 days on a standard, single GPU work station to run our full algorithm on the entire
country.

There are several avenues to explore for further improvement of our algorithm mainly to improve
precision. We believe the most promising strategy is to improve the quality of the list of hydrological
corrections since this will help all parts of the process, from the learning algorithm, to reporting
more truthful precision and recall statistics. The latter is very important since it is hard to improve
on our algorithm when the measure we use to compare algorithms is noisy. For this reason we are
currently running a project where different experts and end users in the field are shown the false
positives output by our algorithm and then has to decide by manual inspection whether the false
positive is actually a hydrological correction or not.
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