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ABSTRACT
Kulldorff’s (1997) seminal paper on spatial scan statistics (SSS)

has led to many methods considering different regions of inter-

est, different statistical models, and different approximations while

also having numerous applications in epidemiology, environmental

monitoring, and homeland security. SSS provides a way to rigor-

ously test for the existence of an anomaly and provide statistical

guarantees as to how "anomalous" that anomaly is. However, these

methods rely on defining specific regions where the spatial infor-

mation a point contributes is limited to binary 0 or 1, of either

inside or outside the region, while in reality anomalies will tend to

follow smooth distributions with decaying density further from an

epicenter. In this work, we propose a method that addresses this

shortcoming through a continuous scan statistic that generalizes

SSS by allowing the point contribution to be defined by a kernel. We

provide extensive experimental and theoretical results that shows

our methods can be computed efficiently while providing high

statistical power for detecting anomalous regions.
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1 INTRODUCTION
We propose a generalized version of spatial scan statistics called the

kernel spatial scan statistic. In contrast to the many variants [1, 6, 8–

12, 14, 19, 21] of this classic method for geographic information

sciences, the kernel version allows for the modeling of a gradually

dampening of an anomalous event as a data point becomes further

from the epicenter. As we will see, this modeling change allows for

more statistical power and faster algorithms (independent of data

set size), in addition to the more realistic modeling.

To review, spatial scan statistics consider a baseline or popula-

tion data set B where each point x ∈ B has an annotated valuem(x).
In the simplest case, this value is binary (1 = person has cancer; 0 =

person does not have cancer), and it is useful to define the measured

set M ⊂ B as M = {x ∈ X | m(x) = 1}. Then the typical goal is

to identify a region where there are significantly more measured

points than one would expect from the baseline data B. To prevent
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Figure 1: An anomaly affecting 8% of data (and rate param-
eters p = .9, q = .5) under the Bernoulli Kernel Spatial Scan
Statistic model on geo-locations of crimes in Philadelphia.

overfitting (e.g., gerrymandering), the typical formulation fixes a

set of potential anomalous regions R induced by a family of geo-

metric shapes: disks [12], axis-aligned rectangles [18], ellipses [13],

halfspaces [16], and others [13]. Then given a statistical discrepancy

function Φ(R) = ϕ(R(M),R(B)), where typically R(M) = |R∩M |
|M | and

R(B) = |R∩B |
|B | , the spatial scan statistic SSS is

Φ∗ = max

R∈R
Φ(R).

And the hypothesized anomalous region is R∗ = argmaxR∈RΦ(R)
so Φ∗ = Φ(R∗). Conveniently, by choosing a fixed set of shapes, and
having a fixed baseline set B, this actually combinatorially limits the

set of all possible regions that can be considered (when computing

the max operator), since for instance, there can be only O(|B |3)
distinct disks which each contains a different subset of points. This

allows for tractable [1] (and in some cases very scalable [15]) combi-

natorial and statistical algorithms which can (approximately) search

over the class of all shapes from that family. Alternatively, the most

popular software, SatScan [13] uses a fixed center set of possible

epicenters of events, for simpler and more scalable algorithms.

However, the discreteness of thesemodels has a strangemodeling

side effect. Consider a the shape model of disksD, where each disk

D ∈ D is defined D = {x ∈ Rd | ∥x − c∥ ≤ r } by a center c ∈ Rd
and a radius r > 0. Then solving a spatial scan statistic over this

family D would yield an anomaly defined by a disk D; that is,
all points x ∈ B ∩ D are counted entirely inside the anomalous

region, and all points x ′ ∈ B \D are considered entirely outside the

anomalous region. If this region is modeling a regional event; say
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the area around a potentially hazardous chemical leak suspected of

causing cancer in nearby residents, then the hope is that the center

c identifies the location of the leak, and r determines the radius

of impact. However, this implies that data points x ∈ B very close

to the epicenter c are affected equally likely as those a distance of

almost but not quite r away. And those data points x ′ ∈ B that are

slightly further than r away from c are not affected at all. In reality,

the data points closest to the epicenter should be more likely to

be affected than those further away, even if they are within some

radius r , and data points just beyond some radius should still have

some, but a lessened effect as well.

Introducing the Kernel Spatial Scan Statistic. The main model-

ing change of the kernel spatial scan statistic (KSSS) is to prescribe

these diminishing effects of spatial anomalies as data points be-

come further from the epicenter of a proposed event. From a model-

ing perspective, given the way we described the problem above, the

generalization is quite natural: we simply replace the shape class

R (e.g., the family of all disksD) with a class of non-binary contin-

uous functionsK. The most natural choice (which we focus on) are

kernels, and in particular Gaussian kernels. We define each K ∈ K

by a center c and a bandwidth r as K(x) = exp(−∥x −c ∥2/r2). This
provides a real value K(x) ∈ [0, 1], in fact a probability, for each

x ∈ B. We interpret this as: given an anomaly model K , then for

each x ∈ B the value K(x) is the probability that the rate of the

measured event (chance that a person gets cancer) is increased.

Related Work on SSS and Kernels. There have been many pa-

pers on computing various range spaces for SSS [2, 7, 18, 22] where

a geometric region defines the set of points that included in the re-

gion for various regions such as disks, ellipses, rings, and rectangles.

Other work has combined SSS and kernels as a way to penalize

far away points, but still used binary regions, and only over a set

of predefined starting points [4, 5, 20]. Another method [6] uses a

Kernel SVM boundary to define a region; this provides a regular-

ized, but otherwise very flexible class of regions – but they are still

binary. A third method [3], proposes an inhomogeneous Poisson

process model for the spatial relationship between a measured

cancer rate and exposure to single specified region (from industrial

pollution source). This models the measured rate similar to our

work, but does not search over a family of regions, and does not

model a background rate.

Our contributions, and their challenges. We formally derive

and discuss in more depth the KSSS in Section 2, and contrast this

with related work on SSS. While the above intuition is (we believe)

quite natural, and seems rather direct, a complication arises: the

contribution of the data points towards the statistical discrepancy

function (derived as a log-likelihood ratio) are no longer indepen-

dent. This implies that K(B) and K(M) can no longer in general be

scalar values (as they were with R(B) and R(M)); instead we need

to pass in sets. Moreover, this means that unlike with traditional

binary ranges, the value of Φ no longer in general has a closed form;

in particular the optimal rate parameters in the alternative hypoth-

esis do not have a closed form. We circumvent this by describing a

simple convex cost function for the rate parameters. And it turns

out, these can then be effectively solved for with a few steps of

gradient descent for each potential choice of K within the main

scanning algorithm.

Our paper then focuses on the most intuitive Bernoulli model

for how measured values are generated, but the procedures we

derive will apply similar to the Poisson and Gaussian models we

also derive. For instance, it turns out that the Gaussian model

kernel statistical discrepancy function has a closed form.

The second major challenge is that there is no longer a combina-

torial limit on the number of distinct ranges to consider. There are

an infinite set of potential centers c ∈ Rd to consider, even with

a fixed bandwidth, and each could correspond to a different Φ(K)
value. However, there is a Lipschitz property on Φ(K) as a function
of the choice of center c ; that is if we change c to c ′ by a small

amount, then we can upperbound the change in Φ(Kc ) to Φ(Kc ′) by
a linear function of ∥c − c ′∥. This implies a finite resolution needed

to consider on the set of center points: we can lay down a fixed

resolution grid, and only consider those grid points. Notably: this
property does not hold for the combinatorial SSS version, as a direct
effect of the problematic boundary issue of the binary ranges.

We combine the insight of this Lipschitz property, and the gradi-

ent descent to evaluate Φ(Kc ) for a set of center points c , in a new

algorithm KernelGrid. We can next develop two improvements to

this basic algorithm which make the grid adaptive in resolution,

and round the effect of points far from the epicenter; embodied

in our algorithm KernelFast, these considerably increase the ef-

ficiency of computing the statistic (by 30x) without significantly

decreasing their accuracy (with provable guarantees). Moreover,

we create a coreset Bε of the full data set B, independent of the
original size |B | that provably bounds the worst case error ε .

We empirically demonstrate the efficiency, scalability, and ac-

curacy of these new KSSS algorithms. In particular, we show the

KSSS has superior statistical power compared to traditional SSS al-

gorithms, and exceeds the efficiency of even the heavily optimized

version of those combinatorial Disk SSS algorithms.

2 DERIVATION OF THE KERNEL SPATIAL
SCAN STATISTIC

In this section we will provide a general definition for a spatial scan

statistic, and then extend this to the kernel version. It turns out,

there are two reasonable variations of such statistics, which we

call the continuous and binary settings. In each case, we will then

define the associated kernelized statistical discrepancy function

Φ under the Bernoulli ΦBe
, Poisson ΦP , and Gaussian ΦG models.

These settings are the same in the Bernoulli model, but different in

the other two models.

General derivation. A spatial scan statistic considers a spatial

data set B ⊂ Rd , each data point x ∈ B endowed with a measured

valuem(x), and a family of measurement regions R. Each region

R ∈ R specifies the way a data point x ∈ B is associated with the

anomaly (e.g., affected or not affected). Then given a statistical

discrepancy function Φ which measures the anomalousness of a

region R, the statistic is maxR∈R Φ(R). To complete the definition,

we need to specifyR and Φ, which it turns out in the way we define

R are more intertwined that previously realized.

To define Φ we assume a statistical model in how the values

m(x) are realized, where data points x affected by the anomaly

havem(x) generated at rate p and those unaffected generated at

rate q.
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Then we can define a null hypothesis that a potential anomalous

region R has no effect on the rate parameters so p = q; and an

alternative hypothesis that the region does have an effect and

(w.l.o.g.) p > q.
For both the null and alternative hypothesis, and a region R ∈

R, we can then define a likelihood, denoted L0(q) and L(p,q,R),
respectively. The spatial scan statistic is then the log-likelihood

ratio (LRT)

Φ(R) = log

(
maxp,q L(p,q,R)

maxq L0(q)

)
=

(
max

p,q
logL(p,q,R)

)
−
(
max

q
logL0(q)

)
.

Now the main distinction with the kernel spatial scan statistic

is that R is specified with a family of kernelsK so that each K ∈ K

specifies a probability K(x) that x ∈ B is affected by the anomaly.

This is consistent with the traditional spatial scan statistic (e.g.,

with R as disks D), where this probability was always 0 or 1. Now

this probability can be any continuous value. Then we can express

the mean rate/intensity д(x) for each of the underlying distribu-

tions from whichm(x) is generated, as a function of K(x), p, and
q. Two natural and distinct models arise for kernel spatial scan

statistics.

Continuous Setting. In the continuous setting, which will be our

default model, we directly model the mean rate д(x) as a convex
combination between p and q as,

д(x) = K(x)p + (1 − K(x))q.
Thus each x (with nonzero K(x) value) has a slightly different

rate. Consider a potentially hazardous chemical leak suspected of

causing cancer, this model setting implies that the residents who

live closer to the center (K(x) is larger) of potential leak would be

affected more (have elevated rate) compared to the residents who

live farther away. The kernel function K(x) models a decay effect

from a center, and smooths out the effect of distance.

Binary Setting. In the second setting, the binary setting, the mean

rate д(x) is defined

д̆(x) =
{
p w.p. K(x)
q w.p. (1 − K(x)).

To clarify notation, each part of the model associated with this

setting (e.g., д̆) will carry a˘ to distinguish it from the continuous

setting. In this case, as with the traditional SSS, the rate param-

eter for each x is either p or q, and cannot take any other value.

However, this rate assignment is not deterministic, it is assigned

with probabilityK(x), so points closer to the epicenter (largerK(x))
have higher probability of being assigned a rate p. The rate д̆(x) for
each x is a mixture model with known mixture weight determined

by K(x).
The nullmodels. We show that the choice ofmodel, binary setting,

vs continuous setting, does not change the null hypothesis (e.g.

ℓ0 = ˘ℓ0).

2.1 Bernoulli
Under the Bernoulli model, the measured value m(x) ∈ {0, 1},
and these values are generated independently. Consider a 1 value

indicating that someone is diagnosed with cancer. Then an anoma-

lous region may be associated with a leaky chemical plant, where

the residents nearby the plant have an elevated rate of cancer p,
whereas the background population may have lower rate q of can-

cer. That is, the cancer occurs through natural mutation at a rate q,
but if exposed to certain chemicals, there is another mechanism to

get cancer that occurs at rate p−q (for a total rate of q+(p−q) = p).
Under the binary model, any exposure to the chemical triggers this

secondary mechanism, and so the chance of exposure is modeled

as proportional to K(x), and rate at x is д̆(x) is modeled well by the

binary setting. Alternatively, the rate of the secondary mechanism

may increase as the amount of exposure to the chemical increases

(those living closer are exposed to more chemicals), with rate д(x)
modeled in the continuous setting. These are both potentially the

correct biological model, so we analyze both of them.

For this model we can define two subsets of B asM = {x ∈ B |
m(X ) = 1} and B \M = {x ∈ B | m(x) = 0}.

In either setting the null likelihood is defined

LBe
0
(q) = L̆Be

0
(q) =

∏
x ∈M

q
∏

x ∈B\M
(1 − q),

then

ℓBe
0
(q) = ˘ℓBe

0
(q) =

∑
x ∈M

log(q) +
∑

x ∈B\M
log(1 − q),

which is maximized over q at q = |M |/|B | as,

ℓBe
∗

0
= ˘ℓBe

∗
0
= |M | log

|M |
|B | + (|B | − |M |) log(1 − |M |

|B | ).

The continuous setting. We first deriving the continuous setting

ΦBe
, starting with the likelihood under the alternative hypothesis.

This is a product of the rate of measured and baseline.

LBe(p,q,K) =
∏
x ∈M

д(x) ·
∏

x ∈B\M
(1 − д(x))

and so

ℓBe(p,q,K)

= log(LBe(p,q,K)) =
∑
x ∈M

logд(x) +
∑

x ∈B\M
log(1 − д(x))

=
∑
x ∈M

log(pK(x) + q(1 − K(x))) +
∑

x ∈B\M
log(1 − pK(x) − q(1 − K(x))).

Unfortunately, we know of no closed form for the maximum of

ℓBe(p,q,K) over the choice of p,q and therefore this form cannot

be simplified further than

ΦBe
∗(K) = max

p,q
ℓBe(p,q,K) − ℓBe

0

∗

The binary setting. We continue deriving the binary setting Φ̆Be
,

starting with

L̆Be(p,q,K) =
∏
x ∈B

(
pm(x )(1 − p)m(x )K(x) + qm(x )(1 − q)m(x )K(x)

)
,

and so

˘ℓBe(p,q,K) = log(L̆Be(p,q,K))

=
∑
x ∈B

log

(
pm(x )(1 − p)m(x )K(x) + qm(x )(1 − q)m(x )K(x)

)
.



Conference’17, July 2017, Washington, DC, USA Mingxuan Han, Michael Matheny, and Jeff M. Phillips

Similarly as in the continuous setting, there is no closed form of

the maximum of log(L̆Be(p,q,K)) over choices of p,q, so we write
the form below.

Φ̆Be
∗ (K) = max

p,q
˘ℓBe(p,q,K) − ℓBe

0

∗

Equivalence. It turns out, under the Bernoulli model, these two

settings have equivalent statistics to optimize.

Lemma 2.1. The ˘ℓBe(p,q,K) and ℓBe(p,q,K) are exactly same,
hence Φ̆Be∗ = ΦBe∗ which implies that the Bernoulli model under two
settings are equivalent to each other.

Proof. We simply expand the binary setting as follows.

˘ℓBe(p,q,K)

=
∑
x ∈M

log(pm(x )(1 − p)1−m(x )K(x) + qm(x )(1 − q)1−m(x )(1 − K(x)))

+
∑

x ∈B\M
log(pm(x )(1 − p)1−m(x )K(x) + qm(x )(1 − q)1−m(x )(1 − K(x)))

=
∑
x ∈M

log(pK(x) + q(1 − K(x))) +
∑

x ∈B\M
log(1 − (p − q)K(x) − q)

=
∑
x ∈M

log(д(x)) +
∑

x ∈B\M
log(1 − д(x))

= ℓBe(p,q,K)

Since the
˘ℓBe(p,q,K) = ℓBe(p,q,K) and ˘ℓBe

∗
0
= ℓBe

0

∗
, then Φ̆Be

∗
=

ΦBe
∗
. □

2.2 Gaussian
The Gaussian model can be used to analyze spatial datasets with

continuous values m(x) (e.g., temperature, rainfall, or income),

which we assume varies with a normal distribution with a fixed

known standard deviation σ . Under this model, both the continu-

ous and binary settings are again both well motivated.

Consider an insect infestation, as it affects agriculture. Here we

assume fields of crops are measured at discrete locations B, and
each has an observed yield ratem(x), which under the null models

varies normally around a value q. In the continuous setting, the

yield rate at x ∈ B is effected proportional to K(x), depending on
how close it is to the epicenter. This may for instance model that

fewer insects reach further from the epicenter, and the yield rate is

effected relative to the number of insects that reach the field x . In
the binary setting, it may be that if insects reach a field, then they

dramatically change the yield rate (e.g., they eat and propagate

until almost all of the crops are eaten). In the latter scenario, the

correct model is binary one, with a mixture model of two rates

governed by K(x), the closeness to the epicenter.

In either setting the null likelihood is defined as,

LG
0
(q) = L̆G

0
(q) =

∏
x ∈B

exp(− (m(x) − q)2

2σ 2
),

then

ℓG
0
(q) = ˘ℓG

0
(q) =

∑
x ∈B

−(m(x) − q)2

2σ 2
,

which is maximized over q at q =
∑
x∈B m(x )
|B | = m̂ as,

ℓG
∗

0
= ˘ℓG

∗
0
=

−1

2σ 2

∑
x ∈B

(m̂ −m(x))2.

The continuous setting. We first derive the continuous setting

ΦG
and terms free of p and q would be treated as constant then

ignored, starting with,

LG(p,q,K) =
∏
x ∈B

exp(− (m(x) − д(x))2

2σ 2
)

and so

ℓG(p,q,K) = log(LG(p,q,K)) =
∑
x ∈B

−(m(x) − д(x))2

2σ 2

=
∑
x ∈B

−(m(x) − pk(x) − q(1 − K(x))2

2σ 2
.

Fortunately, there is a closed form for themaximumof ℓG(p,q,K)
over the choice ofp,q by setting the

dℓG(p,q,K )
dp = 0 and

dℓG(p,q,K )
dq =

0. Hence we come up with the closed form solution of Gaussian

Kernel statistical discrepancy shown by the theorem below.

Theorem 2.2. Gaussian kernel statistical discrepancy function is

ΦG∗
(K) =

∑
x ∈B

(m(x) − p̂K(x) − q̂(1 − K(x)))2 −
∑
x ∈B

(m̄ −m(x))2

where m̄ = 1

|B |
∑
x ∈Bm(x), p̂ = K±K−m−KmK−2

K 2

±−K2K−2

, q̂ = KmK±−K2K−m
K 2

±−K2K−2

,

using the following terms Km =
∑
x ∈B K(x)mx , K2 =

∑
x ∈B K(x)2,

K± =
∑
x ∈B K(x)(1 − K(x)), K−m =

∑
x ∈Bm(x)(1 − K(x)), and

K−2 =
∑
x ∈B (1 − K(x))2.

Proof. For the alternative hypothesis, the log-likelihood is

ℓG(p,q,K) = −1

2σ 2

∑
x ∈B

(m(x) − д(x))2

The optimal values of p,q minimize

−ℓG(p,q,K) = 1

2σ 2

∑
x ∈B

(m(x) − pK(x) − q(1 − K(x)))2.

By setting the partial derivatives wrtp andq of −ℓG(p,q,L) equal
to 0, we have,

dℓG(p,q,K)
dp

=
∑
x ∈B

K(x)[m(x) − K(x)p − (1 − K(x)q] = 0,

and

dℓG(p,q,K)
dq

=
∑
x ∈B

(1 − K(x))[m(x) − K(x)p − (1 − K(x)q] = 0,

and these two can be further simplified to,

dℓG(p,q,K)
dp

=
∑
x ∈B

K(x)m(x) − p
∑
x ∈B

K(x)2 − q
∑
x ∈B

K(x)(1 − K(x))

= 0,
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and

dℓG(p,q,K)
dq

=
∑
x ∈B

(1 − K(x))m(x) − p
∑
x ∈B

(1 − K(x))K(x) − q
∑
x ∈B

(1 − K(x))2

= 0.

We replace these terms by notations defined in the theorem,

Km − pK2 − qK± = 0,

and

K−m − pK± − qK−2 = 0.

Thenwe can solve the optimumvalue ofp andq as,p = K±K−m−KmK−2

K 2

±−K2K−2

=

p̂ and q = KmK±−K2K−m
K 2

±−K2K−2

= q̂.

Hence we have the closed form

ℓG
∗
= max

p,q
ℓG(p,q,K) = −1

2σ 2

∑
x ∈B

(m(x) − p̂K(x) − q̂(1 − K(x)))2.

□

The binary Setting. Now we derive the binary setting Φ̆Be
, start-

ing

L̆G(p,q,K) =
∏
x ∈B

exp(− (m(x) − p)2

2σ 2
)K(x)+exp(− (m(x) − q)2

2σ 2
)(1−K(x))

and so,

˘ℓG(p,q,K)

=
∑
x ∈B

log(exp(− (m(x) − p)2

2σ 2
)K(x) + exp(− (m(x) − q)2

2σ 2
)(1 − K(x))).

Different from the continuous setting we know of no closed form

for the maximum of
˘ℓG(p,q,K) over p and q. Hence,

Φ̆G
∗ (K) = max

p,q
˘ℓG(p,q,K) − ℓG

0

∗
.

Equivalence. Different from the Bernoulli models, the Gaussian

models under the binary setting and continuous setting are not

equivalent to each other. Under the continuous setting,

m(x) ∼ N(д(x),σ ),
however, under the binary setting, each data point follow a two

components Gaussian mixture model where the mixture weight is

given by K(x) and 1−K(x), and so it is not a Gaussian distribution

anymore.

2.3 Poisson
In the Poisson model the measured value m(x) is discrete and

non-negative, but it can now take any positive integer value with

m(x) ∈ Z+. This can for instance model the number of check-ins

or commentsm(x) posted at each geo-located business x ∈ B (this

can be a proxy for instance for the number of customers). An event,

e.g., a festival, protest, or other large impromptu gathering could

be modeled spatially by a kernel K , and it affects the rates at each

x in the two different settings.

In the continuous setting, the closer a distance a restaurant is

from the center of the event (modeled by K(x)) the more the usual

number of check-ins (modeled by q) will trend towards p. On the

hand, in the binary setting, only certain businesses are affected (e.g.,

a coffee shop, but not a fancy dinner location), but if it is affected,

its rate is elevated all the way from q to p. Perhaps advertising at a
festival encouraged people to patronize certain restaurants, or a

protest encouraged them to give bad reviewers to certain nearby

restaurants – but not others. Hence, these two settings relate to two

different ways an event could affect Poisson check-in or comment

rates.

In either setting, the null likelihood is defined as,

LP
0
(q) = L̆P

0
(q) =

∏
x ∈B

e−qqm(x )

m(x)! ,

then

ℓP
0
(q) = ˘ℓP

0
(q) =

∑
x ∈B

log(e
−qqm(x )

m(x)! )

=
∑
x ∈B

−q +m(x) log(q) − log(m(x)!),

which is maximized over q at q =
∑
x∈B m(x )
|B | = m̂ as,

ℓP
∗

0
= ˘ℓP

∗
0
=

∑
x ∈B

−m̂ +m(x) log(m̂) − log(m(x)!)

= −|B |m̂ −
∑
x ∈B

log(m(x)!) −m(x) log(m̂).

The continuous setting. We first derive the continuous setting

ΦP
, starting with,

LP(p,q,K) =
∏
x ∈B

e−д(x )д(x)m(x )

m(x)!

=
∏
x ∈B

e−pK (x )−q(1−K (x ))(pK(x) + q(1 − K(x))m(x )

m(x)! ,

so

ℓP(p,q,K)

=
∑
x ∈B

−д(x) +m(x) log(д(x)) − log(m(x)!)

=
∑
x ∈B

−(pK(x) + q(1 − K(x)) +m(x) log(pK(x) + q(1 − K(x)) − log(m(x)!))

There is no closed form for the maximum of ℓP(p,q,K) over the
choice of p and q and hence

ΦP
∗ (K) = max

p,q
ℓP(p,q,K) − ℓP∗

0
(q)

The binary setting. We continue deriving the binary setting Φ̆P
∗
,

starting with

L̆P(p,q,K) =
∏
x ∈B

e−qqm(x )

m(x)! (1 − K(x)) + e−ppm(x )

m(x)! K(x),

so

˘ℓP(p,q,k) =
∑
x ∈B

log

(
e−qqm(x )

m(x)! (1 − K(x)) + e−ppm(x )

m(x)! K(x)
)
.

Same as the continuous setting, there is no closed form of

˘ℓP(p,q,k), hence,
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Φ̆P
∗ (K) = max

p,q
˘ℓP(p,q,k) − ˘ℓP

∗
0
(q)

Equivalence. In the Poisson model the binary setting and the

continuous setting are not equivalent to each other. Under the

continuous setting,

m(x) ∼ Poi(д(x)),
however under the binary settingm(x) follows a mixture Poisson

model which is not a Poisson distribution anymore and the mixture

weight is given by K(x) and 1 − K(x).

3 COMPUTING THE APPROXIMATE KSSS
The traditional SSS can combinatorially search over all disks [12,

16, 17] to solve for or approximate maxD∈D Φ(D), evaluating Φ(D)
exactly. Our new KSSS algorithms will instead search over a grid

of possible centers c , and approximate Φ(Kc ) with gradient de-

scent, yet will achieve the same sort of strong error guarantees as

the combinatorial versions. Improvements will allow for adaptive

gridding, pruning far points, and sampling.

3.1 Approximating Φ with GD
We cannot directly calculate Φ(K) = maxp,q Φp,q (K), since it does
not have a closed form. Instead we run gradient descent GradDesc

over −Φp,q (Kc ) on p,q for a fixed c . Since we have shown Φp,q (K)
is convex over p,q this will converge, and since Lemma A.8 bounds

its Lipschitz constant at 2|B | it will converge quickly. In particular,

from starting points p0,q0, after s steps we can bound

|Φp∗,q∗ (K) − Φps ,qs (K)| ≤
|B |∥(p∗,q∗) − (p0,q0)∥

s
,

for the found rate parameters ps ,qs . Since 0 ≤ p,q ≤ 1, then

after sε = |B |/ε steps we are guaranteed to have |Φp∗,q∗ (K) −
Φpsε ,qsε (K)| ≤ ε . We always initiate this procedure on Φp,q (Kc )
with the p̂, q̂ found on a nearby Kc ′ , and as a result found that

running for s = 3 of 4 steps is sufficient. Each step of gradient

descent takes O(|B |) to compute the gradient.

3.2 Gridding and Pruning
Computing Φ(K) on every center in R2

is impossible, but Lemma

A.4 shows that Φ(Kĉ ) with ĉ close to the true maximum c∗, then
Φ(Kĉ ) will approximate the true maximum. From Lemma A.4 we

have |Φ(Kĉ ) −Φ(Kc∗ )| ≤ 1

r

√
8

e ∥ĉ − c∗∥. To get a bound of |Φ(Kĉ ) −

Φ(Kc∗ )| ≤ ε we need that ∥ĉ − c∗∥ 1

r

√
8

e ≤ ε or rearanging that

∥ĉ − c∗∥ ≤ εr
√

e
8
. Placing center points on a regular grid with

sidelength τε = εr
√

e
4
will ensure the a center point will be close

enough to the true maximum.

Assume that B ⊂ ΩΛ ⊂ R2
, which w.l.o.g. we assume ΩΛ ∈

[0,L] × [0,L], where Λ = L/r is a unitless resolution parameter

which represents the ratio of the domain size to the scale of the

anomalies. Next define a regular orthogonal grid Gε over ΩΛ at

resolution τε . This contains |Gε ∩ ΩΛ | = Λ2

ε2

4

e points. We compute

the scan statistic Φ(Kc ) choose as c each point in Gε ∩ ΩΛ. This

algorithm, denoted KernelGrid and shown in Algorithm 1, can

be seen to run in O(|Gε ∩ ΩΛ | · |B |tд) = O(Λ
2

ε2
|B |sε ) time, using sε

iterations of gradient decent (in practice sε = 4).

Lemma 3.1. KernelGrid(B, ε,ΩΛ) returns Φ(Kĉ ) for a center ĉ
so | maxKc ∈Kr Φ(Kc ) −Φ(Kĉ )| ≤ ε in timeO(Λ2

ε2
|B |sε ), which in the

worst case is O(Λ2

ε3
|B |2).

Algorithm 1 KernelGrid(B, ε,ΩΛ)
Initialize Φ = 0; define Gε,Λ = Gε ∩ ΩΛ

for c ∈ Gε,Λ do
Φc = GradDesc(Φp,q (Kc )) over p,q on B
if (Φc > Φ) then Φ = Φc

return Φ

Adaptive Gridding. We next adjust the grid resolution based on

the density of B. We partition the ΩΛ domain with a coarse grid

Hε with side length 2rmax (from Lemma A.3). For a cell γ ∈ Hε in

this grid, let Sγ denote the 6rmax × 6rmax region which expands the

grid cell γ the length of one grid cell in either direction. For any

center c ∈ γ , all points x ∈ B which are within a distance of 2rmax

from c must be within Sγ . Hence, by Lemma A.3 we can evaluate

Φ(K ′
c ) for any c ∈ γ only inspecting S ∩ B.
Moreover, by the local density argument in Lemma A.5, we

can describe a new grid G ′
ε,γ inside of each γ ∈ Hε with center

separation β only depending on the local number of points |Sγ ∩B |.
In particular we have for c, c ′ ∈ γ with ∥c − c ′∥ = β

|Φ(K ′
c ) − Φ(K ′

c ′)| ≤ β
|S ∩ B |
|B |

2rmax

r2
+ ε

To guarantee that all c ∈ γ have another center c ′ ∈ G ′
ε,γ so that

|Φ(Kc ) − Φ(K ′
c ′)| ≤ 2ε we set the side length in G ′

ε,γ as

βγ = ε
|B |

|B ∩ Sγ |
r2

2rmax

,

so the number of grid points in G ′
ε,γ is

|G ′
ε,γ | =

4r2

max

β2

γ
=

r4

max

r4

16

ε2

|B ∩ Sγ |2

|B |2
.

Now defineG ′
ε =

⋃
γ ∈Hε G

′
ε,γ as the union of these adaptively

defined subgrids over each coarse grid cell. Its total size is

|G ′
ε | =

∑
γ ∈Hε

|Gε,γ | =
∑
γ ∈Hε

r4

max

r4

16

ε2

|B ∩ Sγ |2

|B |2
.

=
r4

max

r4

16

ε2
· 1

|B |2
∑
γ ∈Hε

|B ∩ Sγ |2.

= log
2(|B |/ε)16

ε2

∑
γ ∈Hε

· 1

|B |2
∑
γ ∈Hε

|B ∩ Sγ |2.

≤ log
2(|B |/ε)1296

ε2
,

where the last inequality follows from Cauchy-Schwarz, and that

each point x ∈ B appears in 9 cells Sγ . This replaces dependence

on the domain size Λ2
in the size of the grid Gε , with a mere loga-

rithmic log
2(|B |/ε) dependence on |B | in G ′

ε . We did not minimize

constants, and in practice we use significantly smaller constants.
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Moreover, since this holds for each c ∈ γ , and the same gridding

mechanism is applied for each γ ∈ Hε , this holds for all c ∈ ΩΛ.

We call the algorithm that extends Algorithm 1 to use this grid G ′
ε

in place of Gε KernelAdaptive.

Lemma 3.2. KernelAdaptive(B, ε,ΩΛ) returns Φ(Kĉ ) for a cen-
ter ĉ so | maxKc ∈Kr Φ(Kc )−Φ(Kĉ )| ≤ ε in timeO( 1

ε2
log

2 |B |
ε |B |sε ),

which in the worst case is O( 1

ε3
|B |2 log

2 |B |
ε ).

Pruning. For both gridding methods the runtime is roughly the

number of centers times the time to compute the gradient O(|B |).
But via Lemma A.3 we can ignore the contribution of far away

points, and thus only need those in the gradient computation.

However, this provides no worst-case asymptotic improvements

in runtime for KernelGrid, or KernelAdaptive since all of B may

reside in a rmax × rmax cell. But in the practical setting we consider,

this does provide a significant speedup as the data is usually spread

over a large domain that is many times the size of rmax.

We will define two new methods KernelPrune and KernelFast

(shown in Algorithm 2) where the former extends KernelGrid

method, and latter extends KernelAdaptive with pruning. In par-

ticular, we note that bounds in Lemma 3.2 hold for KernelFast.

Algorithm 2 KernelFast(B, ε,ΩΛ)
Initialize Φ = 0; define grid Hε over ΩΛ

for γ ∈ Hε do
Define G ′

ε,γ adaptively on γ and Sγ ∩ B

for c ∈ G ′
ε,Λ do

Φc = GradDesc(Φp,q (Kc )) over p,q on pruned set B ∩ Sγ
if (Φc > Φ) then Φ = Φc

return Φ

3.3 Sampling
We can dramatically improve runtimes on large data sets by sam-

pling a coreset Bε iid from B, according to Lemma A.7. With prob-

ability 1 − δ we need |Bε | = O( 1

ε2
log

2 1

ε log
κ
δ ) samples, where κ

is the number of center evaluations, and can be set to the grid

size. For KernelGrid κ = |Gε | = O(Λ2

ε2
) and in AdaptiveGrid

κ = |G ′
ε | = O( 1

ε2
log

2 |Bε |
ε ) = ( 1

ε2
log

2 1

ε ). We restate the runtime

bounds with sampling to show they are independent of |B |.

Lemma 3.3. KernelGrid(Bε , ε,ΩΛ) & KernelPrune(Bε , ε,ΩΛ)
with sample size |Bε | = O( 1

ε2
log

Λ
εδ ) returns Φ(Kĉ ) for a center

ĉ so | maxKc ∈Kr Φ(Kc ) − Φ(Kĉ )| ≤ ε in time O( sεε4
log

Λ
εδ ), with

probability 1 − δ . In the worst case the runtime is O(Λ2

ε7
log

2 Λ
εδ ).

Lemma 3.4. KernelAdaptive(Bε , ε,ΩΛ)&KernelFast(Bε , ε,ΩΛ)
with sample size |Bε | = O( 1

ε2
log

1

εδ ) returns Φ(Kĉ ) for a center ĉ so
| maxKc ∈Kr Φ(Kc ) − Φ(Kĉ )| ≤ ε in time O( sεε4

log
3 1

εδ ), with proba-
bility 1 − δ . In the worst case the runtime is O( 1

ε7
log

4 1

εδ ).

3.4 Multiple Bandwidths
We next show a sequence of bandwidths, such that one of them

is close to the r used in any K ∈ K (assuming some reasonable

but large range on the values r ), and then take the maximum over

all of these experiments. If the sequence of bandwidths r0 . . . rs is
such that ri − ri−1 ≤ eri ε

4
then |Φ(Kri ) − Φ(Kri )| ≤ ε .

Lemma 3.5. A geometrically increasing sequence of bandwidths
Rmin = r0, . . . ,Rmax = rs with s = O( 1

ε log
Rmax
Rmin

) is sufficient so
| maxi Φ(Kri ) − Φ(Kr )| ≤ ε for any bandwidth r ∈ [Rmin,Rmax].

Proof. To guarantee a ε error on the bandwidth r there must

be a nearby bandwidth ri . Therefore if |Φ(Kri ) −Φ(Kri+1
)| ≤ ε then

|Φ(Kri ) − Φ(Kr )| ≤ ε if r ∈ [ri , ri+1].
From Lemma A.6 we can use the Lipshitz bound at ri to note

that |Φ(Kri ) −Φ(Kri+1
)| ≤ 4

eri (ri+1 − ri ). Setting this less than ε we
can rearrange to get that ri+1 ≤ ( e

4
ε + 1)ri . That is r0( εe

4
+ 1)s ≥ rs ,

which can be rearranged to get s s =
log( Rmax

R
min

)
log( εe

4
+1) . Since log(x+1) ≥ x

2

when x is in (0, 1), we have s ≤ 8

εe log
Rmax

Rmin

. □

Running our KSSS over a large sequence of bandwidths is simple

and merely increases the runtime by a O( 1

ε log
rs
r0

) factor. Our
experiments in Section 4.4 suggest that choosing 4 to 6 bandwidths

should be sufficient (e.g., for scales Rmax/Rmin = 1,000).

4 EXPERIMENTS
We compare our new KSSS algorithms to the state-of-the-art meth-

ods in terms of empirical efficiency, statistical power, and sample

complexity, on large spatial data sets with planted anomalies.

Data sets. We run experiments on two large spatial data sets

recording incidents of crime, these are used to represent the base-

line data B. The first contains geo-locations of all crimes in Philadel-

phia from 2006-2015, and has a total size of |B | = 687,636; a

subsample is shown in Figure 1. The second is the well-known

Chicago Crime Dataset from 2001-2017, and has a total size of

|B | = 6,886,676; which is 10x the size of the Philadelphia set.

In modeling crime hot spots, these may often be associated with

an individual or group of individuals who live at a fixed location.

Then the crimes they may commit would often be centered at that

location, and bemore likely to happen nearby, and less likely further

away. A natural way to model this decaying crime likelihood would

be with a Gaussian kernel — as opposed to a uniform probability

within a fixed radius, and no increased probability outside that

zone. Hence, our KSSS is a good model to potentially detect such

spatial anomalies.

Planting anomalous regions. To conduct controlled experiments,

we use a spatial data sets B above, but choose them values in a

synthetic way. In particular, we plant anomalous regions Kc ∈ Kr ,

and then each data point x ∈ B is assigned to a group P (with

probability K(x)) or Q (otherwise). Those x ∈ P will be assigned

m(x) through a Bernoulli process at rate p, that ism(x) = 1 with

probability p and 0 otherwise; those x ∈ Q are assignedm(x) at
rate q. Given a region Kc , this could model a pattern crimes (those

withm(x) = 1 may be all vehicle theft or have suspect matching a

description), where c may represent the epicenter of the targeted

pattern of crime. We use p = 0.8 and q = 0.5.

We repeat this experiment with 20 planted regions and plot

the median on the Phileadelphia data set to compare our new

algorithms and to compare sample complexity properties against

existing algorithms. We use 3 planted regions on the Chicago data
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Figure 2: New KSSS algorithms with statistican power compared with increased sample size using ∥c − ĉ ∥, Φ(Kĉ ), and JS(Kc ,Kĉ ).
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Figure 3: Runtime of new KSSS algorithms in sample size.

set to compare scalability (these take considerably longer to run).

We attempt to fix the size P so |P | = f |B |, by adjusting the fixed

and known bandwidth parameter r on each planted region. We set

f = 0.03 for Philadelphia, and f = 0.01 for Chicago, so the region

contains a fairly small region with about 3% or 1% of the data.

Evaluating themodels. A statistical power test, plants an anoma-

lous region (for instance as described above), and then determines

how often an algorithm can recover that region; it measures recall.

However, all considered algorithms typically do not recover the

exact same region as the one planted, so we measure how close to

the planted regionKc the recovered oneKĉ is. To do so we measure:

• distance been found centers ∥c − ĉ ∥, smaller is better.

• Φ(Kĉ ), the larger the better; it may be larger than Φ(Kc )
• the extended Jaccard similarity JS(Kc ,Kĉ ) defined

JS(K , K̂) = ⟨K(x), K̂(x)⟩B
⟨K(x),K(x)⟩B + ⟨K̂(x), K̂(x)⟩B − ⟨K(x), K̂(x)⟩B

where ⟨K(x), K̂(x ′)⟩B =
∑
x ∈B K(x)K̂(x); larger is better.

We plot medians over 20 trials; the targeted and hence measured

values have variance because planted regions may not be the opti-

mal region, since them(x) values are generated under a random

process. When we cannot control the x-value (when using time)

we plot a kernel smoothing over different parameters on 3 trials.

4.1 Comparing New KSSS Algorithms
We first compare the new KSSS algorithms against each other,

as we increase the sample size |Bε | and the corresponding other

griding and pruning parameters to match the expected error ε from
sample size |Bε | as dictated in Section 3.2.

We observe in Figure 2 that all of the new KSSS algorithms

achieve high power at about the same rate. In particular, when the

sample size reaches about |Bε | = 1,000, they have all plateaued

near their best values, with large power: the center distance is close

to 0, Φ(Kĉ ) near maximum, and JS(Kc ,Kĉ ) almost 0.9. At medium

sample sizes |Bε | = 500, KernelAdaptive and KernelFast have

worse accuracy, yet reachmaximumpower around the same sample

size – so for very small sample size, we recommend KernelPrune.

In Figure 3 we see that the improvements from KernelGrid up

to KernelFast are tremendous; a speed-up of roughly 20x to 30x

improvement. By considering KernelPrune and KernelAdaptive

we see most of the improvement comes from the adaptive gridding,

but the pruning is also important, itself adding 2x to 3x speed up.

4.2 Power vs. Sample Size
We next compare our KSSS algorithms against existing, standard

Disk SSS algorithms. As comparison, we first consider a fast reim-

plementation of SatScan [12, 13] in C++. To make-even the com-

parison, we consider the exact same center set (defined on grid

Gε ) for potential epicenters, and consider all possible radii of disks.

Second, we compare against a heavily-optimized DiskScan algo-

rithm [15] for Disks, which chooses a very small “net” of points to

combinatorially reduce the set of disks scanned, but still guaran-

tee ε-accuracy (in some sense similar to our adaptive approaches).

For these algorithms we maximize Kuldorff’s Bernoulli likelihood

function [12], whose log has a closed for over binary ranges D ∈ D.

Figure 4 shows the power versus sample size (representing how

many data points are available), using the same metrics as before.

The KSSS algorithms perform consistently significantly better – to

see this consider a fixed y value in each plot. For instance the KSSS

algorithms reach ∥c − ĉ ∥ < 0.05, Φ(Kĉ ) > 0.003 and JS(Kc ,Kĉ ) >
0.8 after about 1000 data samples, whereas it takes the Disk SSS

algorithms about 2500 data samples.

4.3 Power vs. Time
We next measure the power as a function of the runtime of the

algorithms, again the new KSSS algorithms versus the traditional

Disk SSS algorithms. We increase the sample size |Bε | as before,
now from the Chicago dataset, and adjust other error parameters

in accordance to match the theoretical error.

Figure 5 shows KernelFast significantly outperforms SatScan

and DiskScan in these measures in orders of magnitude less time.
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Figure 4: New KSSS vs. Disk SSS algorithms via statistican power from sample size using ∥c − ĉ ∥, Φ(Kĉ ), and JS(Kc ,Kĉ ).
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Figure 5: Accuracy measures as a function of runtime using ∥c − ĉ ∥, Φ(Kĉ ), and JS(Kc ,Kĉ ).
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Figure 6: Accuracy on bandwidth r of planted region.

It efficiently reaches small distance to the planted center faster

(10 seconds vs 1000 or more seconds). In 5 seconds it achieves Φ∗

of 0.0006, and 0.00075 in 100 seconds; whereas in 1000 seconds

the Disk SSS only reaches 0.0004. Similarly for Jaccard similarity,

KernelFast reaches 0.8 in 5 seconds, and 0.95 in 100 seconds;

whereas in 1000 seconds the Disk SSS algorithms only reach 0.5.

4.4 Sensitivity to Bandwidth
So far we chose r to be the bandwidth of the planted anomaly

Kc ∈ Kr (this is natural if we know the nature of the event). But if

the true anomaly bandwidth is not known or only known in some

range then our method should be insensitive to this parameter.

On the Philadelphia dataset we consider 30 geometrically increas-

ing bandwidths scaled so for original bandwidth r we considered
rs where s ∈ [10

−2, 10]. In Figure 6 we show the accuracy using

Jaccard similarity and the Φ-value found, over 20 trials. Our KSSS

algorithms are effective at fitting events with s ∈ [0.5, 2], indicating
quite a bit of lee-way in which r to use. That is, the sample com-
plexity would not change, but the time complexity may increase by

a factor of only 2x - 5x if we also search over a range of r .

5 CONCLUSION
In this work, we generalized the spatial scan statistic so that ranges

can be more flexible in their boundary conditions. In particular,

this allows the anomalous regions to be defined by a kernel, so

the anomaly is most intense at an epicenter, and its effect decays

gradually moving away from that center. However, given this new

definition, it is no longer possible to define and reason about a

finite number of combinatorially defined anomalous ranges. More-

over, the log-likelihood ratio test derived do not have closed form

solutions and as a result we develop new algorithmic techniques

to deal with these two issues. These new algorithms are guaran-

teed to approximately detect the kernel range which maximizes

the new discrepancy function up to any error precision, and the

runtime depends only on the error parameter. We also conducted

controlled experiments on planted anomalies which conclusively

demonstrated that our new algorithms can detect regions with few

samples and in less time than the traditional disk-based combina-

torial algorithms made popular by the SatScan software. That is,

we show that the newly proposed Kernel Spatial Scan Statistics

theoretically and experimentally outperform the existing Spatial

Scan Statistic methods.
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A APPROXIMATING THE BERNOULLI KSSS
In the following sections, we focus on the Bernoulli model and for

notational simplicity use Φ = ΦBe
, ℓ = ℓBe. Sometimes we also use

Φp,q (K) = Φ(p,q,K).
The values of p and q are bounded between 0 and 1, but at

these extremes Φp,q (K) can be unbounded. Instead we will bound

structural properties of Φ, by assuming p = p∗,q = q∗.

Lemma A.1. When (p = p∗,q = q∗) = argmaxp,qΦ(p,q,K) then

|B | =
∑

x ∈B\M

1

1 − д(x) and |B | =
∑
x ∈M

1

д(x) .

Proof. Consider first the derivatives of the alternative hypothe-

sis ℓ = ℓ(p,q,K) with respect to p and q.

dℓ

dp
=

∑
x ∈M

K(x)
д(x) −

∑
x ∈B\M

K(x)
1 − д(x)

dℓ

dq
=

∑
x ∈M

1 − K(x)
д(x) −

∑
x ∈B\M

1 − K(x)
1 − д(x)

from this we can see that at the maximum p∗,q∗, when д(x) =
p∗K(x) + q∗(1 − K(x)) then

dℓ

dp
p∗ +

dℓ

dq
q∗ =

∑
x ∈M

д(x)
д(x) −

∑
x ∈B\M

д(x)
1 − д(x) = 0

Since

∑
x ∈M

д(x )
д(x ) = |M |, hence ∑

x ∈B\M
д(x )

1−д(x ) = |M | and then we

can derive

|M | =
∑

x ∈B\M

1 + д(x) − 1

1 − д(x) =
∑

x ∈B\M

1

1 − д(x) − |B \M |.

As a result

|B | =
∑

x ∈B\M

1

1 − д(x)

Similarly

dℓ

dp
(1 − p∗) + dℓ

dq
(1 − q∗) =

∑
x ∈M

1 − д(x)
д(x) −

∑
x ∈B\M

1 − д(x)
1 − д(x)

and following similar steps we ultimately find

|B | =
∑
x ∈M

1

д(x) . □

This implies simple bounds on д(x) as well.
Lemma A.2. When (p = p∗,q = q∗) = argmaxp,qΦ(p,q,K) then

д(x) ∈
[

1

|B | , 1
]
if x ∈ M and д(x) ∈

[
0,

|B | − 1

|B |

]
if x ∈ B \M

Proof. From Lemma A.1 we can state that

|B | =
∑
x ∈M

1

д(x) ≥ 1

д(x)

for any x ∈ M and therefore д(x) ≥ 1

|B | for x ∈ M . In the case that

x ∈ B we have that

|B | =
∑

x ∈B\M

1

1 − д(x) ≥ 1

1 − д(x)

for any x ∈ B. Therefore 1 − д(x) ≥ 1

|B | or
|B |−1

|B | ≥ д(x). □

A.1 Spatial Approximation of the KSSS
In this section we define useful lemmas that can be used to spa-

tially approximate the KSSS by either ignoring far away points or

restricting the set of centers spatially.

TruncatingKernels. We argue here that we can consider a simpler

set of truncated kernelsKr,ε in place ofKr so replacing atKc ∈ Kr
with a corresponding K ′

c ∈ Kr,ε without affecting ℓ(p,q,K) and
hence Φ(K) by more than and additive ε-error. Specifically, define

any K ′
c ∈ Kr,ε using rmax = r

√
log(|B |/ε) as

K ′
c (x) =

{
Kc (x) = exp(−∥x − c ∥2/r2) if ∥x − c ∥ ≤ rmax

0 otherwise.

Lemma A.3. For any data set B, center c ∈ Rd , and error ε > 0

|Φ(Kc ) − Φ(K ′
c )| ≤ ε .

Proof. The key observation is that for ∥x − c∥ > rmax then

K(x) ≤ exp(− log(|B |/ε)) = ε/|B |. Since 0 ≤ q,p ≤ 1, then

|д(x) − д′(x)| ≤ ε/|B |
as well; where д′(x) = q + (p − q)K ′(x).

Next we rewrite ℓ(p,q,K) as

ℓ(p,q,K) = 1

|B |
∑
x ∈B

log

({
д(x) ifm(x) = 1

(1 − д(x)) ifm(x) = 0

)
.

Thus since д(x) > (1/|B |) for x ∈ M and 1 − д(x) > (1/|B |) for
x ∈ B \M by Lemma A.2, then we can analyze each term of the

average as log(·) of a quantity at least 1/|B |. If that quantity changes
by at most ε/|B |, then that term changes by at most

log(1/|B | + ε/|B |) − log(1/|B |) ≤ (ε/|B |)|B | = ε,

by taking the derivative of log at 1/|B |. Hence each term changes

by at most ε , and ℓ(p,q,K) takes the average over these terms, so

the main claim holds. □

Center Point Lipschitz Bound. Next we show that Φ(Kc ) is sta-
ble with respect to small changes in its epicenter c

Lemma A.4. The magnitude of the gradient with respect to the
center c of Φ(Kc ) for any considered Kc ∈ Kr is bounded by

|∇cΦ(Kc )| ≤ (1/r )
√

8/e .

Proof. We take the derivative of c in direction ®u (a unit vector

in R2
) at magnitude t . First analyze the Gaussian kernel under such

a shift as Kc (x) = exp(−∥c − x + t ®u∥2/r2), so as t → 0 we have����dKc (x)
dt

���� = ����2⟨®u, (c − x)⟩
r2

exp

(
− ∥c − x ∥2

r2

)����
This maximized for ®u = (c − x)/∥c − x ∥ so����dKc (x)

dt

���� ≤ ����2(∥c − x ∥)
r2

exp

(
−(∥c − x ∥)2

r2

)���� ≤ 1

r

√
2

e
,

since it is maximized at ∥c − x ∥/r =
√

1/2.

Now examine
dΦ(Kc )

dt =
dℓ(p∗,q∗,Kc )

dt which expands to

dΦ(Kc )
dt

=
∑
x ∈B

dΦ(Kc )
dKc (x)

dKc (x)
dt

+
dΦ(Kc )
dp∗

dp∗

dt
+
dΦ(Kc )
dq∗

dq∗

dt
.
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Since at p = p∗,q = q∗ both dΦ(Kc )
dp = 0 and

dΦ(Kc )
dq = 0, then

as long as
dp∗
dt and

dq∗

dt are bounded the associated terms are also

0. We bound these by taking the derivative of the equation |B | =∑
x ∈M

1

д(x ) , from Lemma A.1. with respect to t :∑
x ∈M

1

д(x)2

(
dp

dt
Kc (x) +

dq

dt
(1 − Kc (x)) +

dKc (x)
dt

(p∗ − q∗)
)
=

d|B |
dt
= 0.

The first term

∑
x ∈M

�� dKc (x )
dt

�� (p∗−q∗)
д(x )2 < C for some constant C at

p∗ and q∗ from Lemma A.2 and since
dK (x )
dt is bounded. Hence

C ≥
����� ∑
x ∈M

1

д(x)2

(
dp∗

dt
Kc (x) +

dq∗

dt
(1 − Kc (x))

)�����
≥

�����dp∗dt

∑
x ∈M

Kc (x) +
dq∗

dt

∑
x ∈M

(1 − Kc (x))
�����

Therefore ifKc (x) > 0 for any x ∈ M then
dp∗
dt and

dp∗
dt are bounded.

This holds for any Kc considered, as otherwise Φ = 0 since the

alternative hypothesis ℓ∗(Kc ) is equal to the null hypothesis ℓ∗.
Finally, we bound the magnitude of the first term����dΦ(Kc )
dt

���� = ����dΦ(Kc )
dt

���� for fixed p∗,q∗
=

������ 1

|B |
©«
∑
x ∈M

d log(д(x))
dt

+
∑

x ∈B\M

d log(1 − д(x))
dt

ª®¬
������ fixed p∗,q∗

=
1

|B |

������ ∑x ∈M p∗ − q∗

д(x)
dKc (x)
dt

−
∑

x ∈B\M

p∗ − q∗

1 − д(x)
dKc (x)
dt

������
≤ 1

|B |

(
1

r

√
2

e

) ©«
����� ∑
x ∈M

p∗ − q∗

д(x)

����� +
������ ∑
x ∈B\M

p∗ − q∗

1 − д(x)

������ª®¬
=

(
1

r

√
8

e

)
,

where the last step follows by p∗ − q∗ < 1 and Lemma A.1. □

This bound suggests a further improvement for centers that

have few points in their neighborhood. We will state this bound in

terms of a truncated kernel, but it also applies to non truncated

kernels through Lemma A.3.

Lemma A.5. For a truncated kernel K ′
c ∈ Kr,ε , if we shift the

center c to c ′ so ∥c − c ′∥ ≤ β ≤ rmax, then

|Φ(K ′
c ) − Φ(K ′

c ′)| ≤ β
|D ∩ B |
|B |

2rmax

r2
+ ε

where D is a disk centered at c of radius 2rmax.

Proof. From the previous proof for a regular kernel Kc ∈ Kr����dΦ(Kc )
dt

���� ≤ 1

|B |

������ ∑x ∈M p∗ − q∗

д(x)
dKc (x)
dt

−
∑

x ∈B\M

p∗ − q∗

1 − д(x)
dKc (x)
dt

������ .
Adapting to truncated kernel K ′

c ∈ Kr,ε , then this magnitude times

β would provide a bound, but a bad one since the derivative is

unbounded for x on the boundary. Rather, we analyze the sum over

x ∈ B in three cases. For x < D, these have both K ′
c (x) = 0 and

K ′
c ′(x) = 0, so do not contribute. For ∥x−c ∥ ∈ [rmax−β , rmax+β] the

derivative is unbounded, but K ′
c (x) ∈ [0, ε] and K ′

c ′(x) ∈ [0, ε] by
Lemma A.3, so the total contribution of these terms in the average is

at most ε . What remains is to analyze the x ∈ B such that ∥x −c ∥ ≤
rmax − β , where the derivative bound applies. However, we will not
use the same approach as in the non-truncated kernel.

We write this contribution in terms as the sum over M and B
separately as

β
|B | (∆M −∆B ), focusing only on points in D (and thus

double counting ones near the bounary) where

∆M =
∑

x ∈D∩M

p∗ − q∗

д(x)
dKc (x)
dt

and ∆B =
∑

x ∈D∩B\M

p∗ − q∗

1 − д(x)
dKc (x)
dt

.

To bound ∆M , observe that д(x) = (p∗ − q∗)Kc (x) + q∗ ≥ (p∗ −
q∗)Kc (x), and dKc (x )

dt = −2
∥x−c ∥
r 2

Kc (x). Thus

|∆M | ≤
����� ∑
x ∈D∩M

p∗ − q∗

(p∗ − q∗)Kc (x)
2Kc (x)

∥x − c ∥
r2

����� = |D ∩M | 2rmax

r2
.

To bound ∆B , we use that 1 − д(x) = 1 − q∗ − (p∗ − q∗)K(x) ≥
1 − q∗, that p∗ − q∗ ≤ 1 − q∗, and from the previous proof that��� dKc (x )

dt

��� ≤ 1

r

√
2

e . Thus

|∆B | ≤

������ ∑
x ∈D∩B\M

1 − q∗

1 − q∗
1

r

√
2

e

������ = |D ∩ B \M | 1
r

√
2

e
.

Since 2 >
√

2/e we can combine these contributions as

β

|B | |∆M − ∆B | ≤ β
|D ∩ B |
|B |

2rmax

r2
. □

A.2 Bandwidth Approximations of the KSSS
Wemainly focus on solving maxKc ∈Kr Φ(Kc ) for a fixed bandwidth
r . Here we consider the stability in the choice in r in case this is

not assumed, and needs to be searched over.

Lemma A.6. For a fixed p, q, and c we have
�� dΦ(K )

dr

�� ≤ 4

er .

Proof. Let zx = ∥x − c∥2, wx = zx /r , then K(x) = exp(−w2

x ).
We derive the derivative for ℓ = ℓ(p,q,K) with respect to r .

dℓ

dr
=

1

|B |
©«
∑
x ∈M

2z2

x (p − q)e−
z2

x
r 2

r3д(x)
−

∑
x ∈B\M

2z2

x (p − q)e−
z2

x
r 2

r3(1 − д(x))
ª®®¬

=
2(p − q)
r |B |

©«
∑
x ∈M

w2

xe
−w2

x

д(x) −
∑

x ∈B\M

w2

xe
−w2

x

(1 − д(x))
ª®¬

By two observations, maxw>0we
−w = 2/e and p − q ≤ 1, simplify

dℓ

dr
≤ 2

r |B |
©«
∑
x ∈M

2/e
д(x) −

∑
x ∈B\M

2/e
(1 − д(x))

ª®¬
And by Lemma A.1 we bound the sums over x ∈ M and over

x ∈ B \M each by (2/e)|B | and hence the absolute value by����dℓ
dr

���� ≤ ����4/er ���� . □
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A.3 Sampling Bounds
Sampling can be used to create a coreset of a truelymassive data set

B while retaining the ability to approximately solve maxK ∈K Φ(K).
In particular, we consider creating an iid sample Bε from B.

Lemma A.7. For sample Bε of size t = O( 1

ε2
log

2 1

ε log
κ
δ ), then

for κ different centers c ∈ C , with probability at least 1 − δ , for all
estimates ˆℓ(Kc ) from Bε of ℓ(Kc ) satisfy |ℓ(Kc ) − ˆℓ(Kc )| ≤ ε .

Proof. To approximate −ℓ(Kc ) we will use a standard Chernoff-
Hoeffding bound: for t independent random variables X1, . . . ,Xt ,
so E[Xi ] = µ, and Xi ∈ [0,∆i ] then the average X̄ = 1

t
∑t
i=1

Xi

concentrates as Pr[|X̄ − µ | ≥ α] ≤ 2 exp

(
− 2α 2

t∆2

)
. Set

µ = − 1

B

∑
x ∈B

m(x) log(д(x)) + (1 −m(x)) log(1 − д(x)) = −ℓ(Kc ),

and each ith sample x ′ ∈ Bε maps to the ith random variable

Xi = −(m(x ′) log(д(x ′)) + (1 −m(x ′)) log(1 − д(x ′))).

Since д(x) > 1/|B | form(x) = 1 and 1 − д(x) > 1/|B | form(x) = 0

by Lemma A.2 we have ∆ = − log(1/|B |) = log(|B |). Plugging these
quantities into CH bound yields

Pr[| ˆℓ(Kc ) − ℓ(Kc )| ≤ ε] ≤ 2 exp

(
− 2ε2

t log
2(|B |)

)
≤ δ ′.

Solving for t finds t =
log

2 |B |
2ε2

log
1

2δ ′ . Then taking a union bound

over κ centers, reveals that with probability at least 1− δ = 1− δ ′κ,
this holds by setting

t =
log

2 |B |
2ε2

log

κ

2δ
.

At this point, we almost have the desired bound; however, it

has a log
2 |B | factor in t in place of the desired log

2 1

ε . One should

believe that it is possible to get rid of the dependence on |B |, since
given one sample with the above bound, the dependence on |B | has
been reduced to logarithmic. We can apply the bound again, and the

dependence is reduced to log
2( 1

ε log
2 |B |) and so on. Ultimately, it

can be shown that we can directly replace |B | with poly(1/ε) in the

bounds using a classic trick [23] of considering two samples Bε and
B′
ε , and arguing that if they yield results close to each other, then

this implies they should both be close to B. We omit the standard,

but slightly unintuitive details. □

A.4 Convexity in p and q
We next show that Φp,q (K) is convex and has a Lipschitz bound

in terms of p and q. However, such a bound does not exist using

p,q ∈ (0, 1) as the gradient is unbounded on the boundary. We

instead define a set of constraints related to д(x) at the optimal

p∗,q∗ that allow a Lipschitz constant.

Lemma A.8. The following optimization problem is convex with
Lipschitz constant 2|B |, and contains p∗,q∗ = argminp,q − Φp,q (K).

min

p,q
−Φp,q (K)

1/B − д(x) ≤ 0 for x ∈ M

(|B | − 1)/|B | − д(x) ≥ 0 for x ∈ B \M
p ∈ (0, 1)
q ∈ (0, 1)

(1)

Proof. The set of constraints follow from Lemma A.2 and from

this bound we know that the optimal p∗ and q∗ will be contained in
this domain. As each constraint is a linear combination of p and q,
and hence convex, the space of solutions is also convex. Now since

д(x) is an affine transformation of p and q so it is both convex and

concave with respect to p,q. The logarithm function is a concave

and non-decreasing function, hence both log(д(x)) and log(1−д(x))
are concave. The sum of these concave functions is still a concave

function, and thus −ℓ(p,q,K) and hence −Φ(p,q,K) is convex.
The task becomes to show the absolute value of first order partial

derivatives are bounded for p and q in this domain. We have that

for p (the argument for q is symmetric)����dℓ(p,q,K)δp

���� =
������ 1

|B |
©«
∑
x ∈M

K(x)
д(x) −

∑
x ∈B\M

K(x)
1 − д(x)

ª®¬
������

≤ 1

|B |
©«
����� ∑
x ∈M

K(x)
д(x)

����� +
������ ∑
x ∈B\M

K(x)
1 − д(x)

������ª®¬
≤ 1

|B |

����� ∑
x ∈M

1

д(x)

����� + 1

|B |

������ ∑
x ∈B\M

1

1 − д(x)

������
≤ 1

|B |

����� ∑
x ∈M

|B |
����� + 1

|B |

������ ∑
x ∈B\M

|B |

������ = 2|B |,

where the steps follow from the triangle inequality, byK(x) ≤ 1, and

that д(x) > 1/|B | for x ∈ M and 1−д(x) > 1/|B | for x ∈ B \M . □
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