
One-Dimensional Convolutional
Neural Networks on Motor Activity

Measurements in Detection of
Depression

Joakim Ihle Frogner

Thesis submitted for the degree of
Master in Programming and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019

One-Dimensional Convolutional
Neural Networks on Motor
Activity Measurements in
Detection of Depression

Joakim Ihle Frogner

© 2019 Joakim Ihle Frogner

One-Dimensional Convolutional Neural Networks on Motor Activity
Measurements in Detection of Depression

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Teaching machines to learn patterns in data is very common these days,
and it has a broad spectrum of applications everywhere. Sensors like
smart-watches are getting more functionality each year, and more and
more people buy them. Passing data from the watches, for example,
activity or heart rate to machine learning algorithms, can generate
significant results within many fields. Mental health is an example of
a field where computer-generated predictions can be helpful to gain
knowledge about patients. For example, machine learning can help
predict that someone has a specific type of mental disorder.

In this thesis, we present applied machine learning to detect depres-
sion. The dataset (collected for another study about behavioral patterns
in schizophrenia vs. major depression) contains motor activity measure-
ments for each minute in the measured period for each participant. Three
machine learning models are trained to fit time-sliced segments of these
measurements. The first model classifies participants into condition group
(depressed) and control group (non-depressed). We trained another model
to classify the depression level of participants (normal, mild or moderate).
Finally, we trained a model that predicts MADRS scores. We evaluate the
performance of classification models using leave one participant out val-
idation as a technique, in which we achieved an average F1-score of 0.70
for detecting control/condition group and 0.30 for detecting the depres-
sion levels. The MADRS score prediction resulted in a mean squared error
of approximately 4.0.

These performance scores are promising, but not good enough to be
used in the real world. However, not much more work is needed for the
first model if we apply it to a dataset with more participants.

i

ii

Acknowledgements

I would like to thank Pål Halvorsen and Michael Riegler for being my
supervisors. Their feedback and tips have been essential for the success of
my thesis.

Thanks to the developers of Grammarly. Their software has kept my
writing at a decent level.

I would also like to thank my family and friends for motivating me and
always believing in me. It has been difficult at times to stay focused on a
large project like this.

My inner circle at IFI deserves a special thanks. We have been pushing
each other through everything since day one, and we have now finished
five years of education together.

iii

iv

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Thesis Overview . 4
1.3 Thesis outline . 6

2 Background 7
2.1 Mental health . 7

2.1.1 Depression Rating: MADRS 7
2.1.2 Bipolar Disorder . 8

2.2 Machine learning . 9
2.3 Machine learning strategies 10

2.3.1 Supervised learning 10
2.3.2 Unsupervised learning 11
2.3.3 Semi-supervised learning 11

2.4 Machine learning approaches 11
2.4.1 Decision tree learning 12
2.4.2 Deep Neural Networks 13

2.5 Related work . 15
2.5.1 Mental Health Monitoring Systems 15
2.5.2 Convolutional Neural Networks 17

2.6 Summary . 18

II Methodology 19

3 Planning and Preparing Data 21
3.1 The dataset . 22
3.2 Data Preprocessing . 24
3.3 Performance . 26

3.3.1 Loss functions and Optimizers 26
3.3.2 Classification metrics 27
3.3.3 Training and testing data 30

3.4 Summary . 33

v

4 Implementation of Machine Learning Models 35
4.1 Linear Regression . 35
4.2 1D Convolutional Neural Network 36

4.2.1 Convolution . 36
4.2.2 Creating the Model . 37

4.3 Optimizing the models . 40
4.4 Summary . 41

5 Training the models 43
5.1 Linear Regression . 43

5.1.1 Results . 44
5.2 1D CNN: Control vs Condition groups 47

5.2.1 Training and finding the optimal segment length . . 47
5.2.2 Cross-validation . 48
5.2.3 Leaving one participant out 52

5.3 1D CNN: Depression Classes 53
5.3.1 Training and finding the optimal segment length . . 53
5.3.2 Cross-validation . 56
5.3.3 Leaving one participant out 57

5.4 1D CNN: MADRS Score Prediction 58
5.4.1 Segment length . 58
5.4.2 Cross-validation . 59
5.4.3 Hyper-parameters . 59
5.4.4 Training the model . 59

5.5 Summary . 63

III Conclusion 65

6 Discussion 67
6.1 Convolutional neural networks for mental health detection . 67

6.1.1 Limited number participants 67
6.1.2 Input data and hyper-parameters 68
6.1.3 Compared to earlier research 68

6.2 Real world applications . 69
6.2.1 Privacy and ethical concerns 70

7 Conclusion and Future work 71
7.1 Summary . 71
7.2 Contributions and Conclusions 72
7.3 Future work . 73

Appendices 79

vi

A Source code 81
A.1 Create segments and labels 82
A.2 Linear regression model . 83
A.3 Classification CNN . 84
A.4 Prediction CNN . 85

vii

viii

List of Figures

2.1 Neural network visualization. The inputs on the left side
are passed into the neurons in the hidden layer in the
middle, which passes the values to the output layer. 14

3.1 Diagram of how we detect whether a participant is de-
pressed or not (first objective) after we have trained the
CNN. 21

3.2 The 5 first and the 5 last rows in demographic dataset
(scores.csv). The displayed participants are from the
condition group (above) and control group (below). 22

3.3 Motor activity measurements for a participant in the con-
dition group (above) and control group (below). The con-
dition group participant is male between 35 and 39 years
old, diagnosed with unipolar depression. The control group
participant is female between 45 and 49 years old. The num-
ber on the X-axis corresponds to the minute throughout the
measurement period, and the number on the Y-axis is the
activity levels. 23

3.4 Confusion Matrix Example: 95 True Positives, 93 True
Negatives, 7 False Positives and 5 False Negatives 28

3.5 Visualization of a dataset evaluation split. Training and
evaluation data are subsets of the dataset, and the valida-
tion data is a subset of the training data. 30

3.6 K-fold cross-validation visualized. For each fold, a testing
set is defined, and the rest of the data is a training set. 32

4.1 Feature Detector / Filter "sliding" over input data 37
4.2 The architecture of our convolutional neural network for

the first objective. The segment length is 480 in this
example. We can see the output shape underneath each layer. 38

5.1 Regression Training Loss (MSE) by Epoch. The MADRS
scores of participants tell more about their condition than
gender, age and days. 44

5.2 Confusion Matrices for Regression. For both MADRS1 and
MADRS2, detections were perfect. 45

ix

5.3 Graphs for training loss and accuracy, where we can see
the model’s performance for different segment lengths
throughout 10 epochs of training. 49

5.4 Evaluation loss and accuracy. We can see how the model
performed when tested against evaluation data. The
performance did not seem to improve with segments longer
than 48 hours. 50

5.5 Graphs for training loss and accuracy, where we can see
the model’s performance for different segment lengths
throughout 50 epochs of training. Using 48 hours long
segments was still the best option (performance did not
improve much for longer segments). 51

5.6 Confusion matrix for testing the classifier on unseen data.
After training the model for 50 epochs, it was able to
correctly classify 3122 control group and 1677 condition
group segments. 52

5.7 Confusion matrix containing detected classes after leave
one participant out experiment. The model was best at
classifying participants in the control group. 53

5.8 Training loss and accuracy for different segment lengths.
After 50 epochs we can see that loss and accuracy continues
to be better with longer segments. 54

5.9 Evaluation loss and accuracy for different segment lengths.
Unlike for the first objective, we continue to gain perform-
ance when increasing the segment length. 55

5.10 After training the model on 96 hour long segments for 50
epochs, classification on test-data segments is perfect. 56

5.11 Confusion matrix containing detected classes after leave
one participant out experiment. The model was only good
for detecting normal participants. 57

5.12 Training the MADRS prediction model for 100 epochs with
different segment lengths. The model trained on 48-hour
segments performed best. 60

5.13 Training the models with 48-hour segments for 100 epochs,
comparing different optimizers. The Adam optimizer
performed significantly better than SGD and Nadam. 61

5.14 MADRS Prediction: Training history throughout 2700
epochs. The MSE is approximately 4.0 after 2000 epochs. . . 62

5.15 Running the MADRS prediction model on unseen seg-
ments. The predictions are not perfect, but they some-
what follow the line where predictions and correct MADRS
scores are the same. 62

x

List of Tables

2.1 Example training data set: days a person went out for a run 12

3.1 Categorical Labels. A 0 and a 1 (first row) means that the
participant is in the condition group. 25

5.1 Performance metrics for control vs condition group classifier. 48
5.2 3-Fold Cross validation. Mean accuracy was 0.98 and mean

loss was 0.06. 48
5.3 Performance metrics for leave one participant out experiment. 53
5.4 3-Fold Cross validation for this experiment to verify con-

sistency of the model. All three folds perform well. 57
5.5 Performance metrics for leave one participant out experiment. 58
5.6 3-Fold Cross validation for the prediction model. Only

small variation between the folds tells us that the model is
consistent enough. 59

xi

xii

Part I

Introduction

1

Chapter 1

Introduction

1.1 Motivation

The concept of Artificial Intelligence (AI) was introduced more than 80
years ago by among others Alan Turing [40]. We have come a long way
when it comes to the type of technology, and AI is a heavily discussed
topic today. Artificial General Intelligence (AGI) is the concept of creating
independent AI that can think on its own, which many are either looking
forward to or afraid of (probably because of movies like the Terminator),
and we may not be that far away in terms of years from being able to build
it [30].

Machine learning (ML) is a sub-genre of AI where we train computers
to detect patterns in data quickly. One type of ML, deep learning, enables
computers to beat humans in many games and predict outcomes of
different events.

Research on the usage of AI in the medical field is particularly
interesting, as the results can be life-changing [39]. Instead of getting
diagnosed only by a single doctor, an AI can influence their decisions. The
difference between independent doctors worldwide would not matter as
much, and with high accuracy, doctors could instantly know a lot about
the patient.

Three hundred and fifty million people globally are fighting the burden
of depression [38], which in a lot of the cases does not end well for them.
ML has the potential here to help with diagnoses, help in the process of
prescribing the optimal medicine to patients and predict whether a person
is likely to attempt suicide [39].

There is no limit to the usefulness of ML in the medical field, and it
can undoubtedly help in the field of mental health too. Consider bipolar
disorder; a syndrome where a person experiences extreme mood swings.
Say bipolar patients had a device that measured their heart rate among
other things 24 hours a day could feed the data into a deep neural network
that gave the user’s bipolar state as output. That would be useful for both

3

the patients and doctors/nurses. Using ML in this field of study could
help many people get through their depression or mania, and potentially
get rid of the condition altogether.

In summary, diagnosing bipolar patients is a challenge, errors are
made, and it potentially takes a lot of time. However, much information
can be extracted from simple sensor data measurements over a span of
time, and in this respect, ML has great potential.

We use ML to do experiments on recorded motor activity data from
participants using a smartwatch. The included participants are divided
into a condition group (participants with a mental condition) and a control
group (participants without depression). With this data, we aim to detect
which group participants are in, and also their severity of depression. The
primary motivation for these experiments comes from earlier work done
by Garcia-Ceja, E. et al. ([15]), where they used ML to detect depression on
the same participants. However, our usage of ML is different, and whether
our performance is any better is a topic of discussion.

1.2 Thesis Overview

Based on the diagnosis challenges and the potential of ML on datasets
collected from bipolar patients, we aim to find whether one specific
type of ML, convolutional neural networks (CNN), together with motor
activity measurements as input data, is a valid approach to detecting
depression. We divide our goal into three objectives which we implement
ML models to satisfy. We provide a walkthrough of the whole process,
from data preprocessing to predictions and classifications from the trained
ML models which we use to determine, for each objective, the final
detected outcome of tested participants.

• The first objective is to build a CNN model to detect depression.
It should be able to detect (classify) whether a participant (where
the motor activity measurements are unseen by the model while
training) belongs to the control group or the condition group. We
view this objective as the most relevant because it is the only
objective that is comparable to earlier research.

• The second objective is to build a CNN model to detect levels of
depression. We divide the levels of depression into the following
groups based on the Montgomery-Åsberg Depression Rating Scale
(MADRS): no depression, mild, moderate and severe depression.
The CNN should be able to classify the depression level of an
arbitrary participant.

• Our third and last objective is building CNN model that predicts
the MADRS score of participants. The main difference between

4

the second and this goal is the architecture of the model. Instead
of a classification model (multiple possible outcomes), we create a
prediction model (one possible outcome, which can be any number).
We evaluate this neural network by calculating the mean squared error
(MSE) of the predicted labels vs. the correct labels.

However, before getting started building CNN models, we experi-
mented with linear regression. This type of machine learning can show
whether variables are related to the target variable. In our experiment,
we trained a linear regression model on several variables within the data-
set to predict whether participants were in the control group or condition
group (essentially the same as objective 1, only with linear regression).
We achieved perfect performance with the models trained on the MADRS
value of participants, which was an expected result.

We built a system that addresses the objectives defined above. This sys-
tem uses real data from depressed patients and non-depressed participants
in order to see whether one can detect depression with ML.

We evaluate the performance of classification models (objective 1 and
2) using a leave one participant out technique combined with majority
voting. In the first objective, we achieved an F1-score of 0.70, which is
promising but it still has room for improvement. The second objective
resulted in an F1-score of 0.30, which is significantly worse than the first.
However, as described in chapter 5, this model detects non-depressed
participant correctly at a high performance. For the third objective, we
achieved an MSE of approximately 4.0, which is also promising.

The reported performance indicates that motor activity measurements
can give useful information about mental health issues. However, the
results are only at best promising. Applying our ML models in the real
world needs to happen together with experts, especially for the second
and third objectives.

5

1.3 Thesis outline

In chapter 2, we provide background information about mental health and
ML. In mental health, we describe the topics of bipolar disorder and how
the Montgomery-Åsberg Depression Rating Scale can tell patients how de-
pressed they are. Then we introduce important topics within ML, and how
easy it is to get started writing models in Keras, a ML framework for Py-
thon. Related work is the last section in chapter 2, where we mention
several papers related to the topics of mental health and ML.

Chapter 3 is where we describe the objectives that we want to achieve in
the thesis. We present the dataset we use to achieve those objectives, and
also how we structure and preprocess the data so that it can be used to
train models. Performance metrics that we use later in order to evaluate a
trained model is another topic we define in the chapter.

Chapter 4 contains a description of the neural network model for each
objective in addition to a linear regression model. We describe all layers
in the models and include the source code used to create them in the ML
framework Keras.

In chapter 5, we walk through how we trained the models in order to reach
our objectives, then evaluated them with metrics described in chapter 3.

Chapter 6 is where we discuss whether convolutional neural networks can
be used to classify and predict mental health issues. We also suggest real-
world applications of our work, focusing on the pros and cons of creating
and trusting an AI for mental health diagnoses.

Chapter 7 contains our conclusion and a summary of the chapters, and we
give directions for future research.

6

Chapter 2

Background

The fields of studies for this thesis are both mental health and ML, and this
chapter contains background information and previous research within
both of them. We start with mental health, where we describe mental
issues, depression, and bipolar disorder. Then we dive into the topic of
ML, where we provide a technical introduction.

2.1 Mental health

Mental health problems are not known very well by the public. Jorm et
al. performed research [21] where they displayed vignettes of one patient
suffering from major depression and one from schizophrenia to the people
of the Australian public. Of the participants, only 39% correctly guessed
depression, and 27% correctly guessed schizophrenia. Another study has
shown that schizophrenia is often confused with multiple personalities
[1]. Such poor public knowledge about mental health problems can be
problematic, as people may have a condition without knowing anything
about it. When this is the case, professional help use more time to establish
their diagnosis.

2.1.1 Depression Rating: MADRS

Montgomery-Åsberg Depression Rating Scale, or MADRS for short, is
a rating system for telling how depressed a patient is. Stuart A.
Montgomery and Marie Åsberg designed it in 1979, and it is more
sensitive to changes than the Hamilton Rating Scale for Depression (HRS)
for patients that go through antidepressant medication. The process for
calculating a MADRS rating contains ten statements about the patient’s
behavior, where the topics are: apparent sadness, reported sadness,
inner tension, reduced sleep, reduced appetite, concentration difficulties,
lassitude, inability to feel, pessimistic thoughts, suicidal thoughts [29].

7

The person doing the rating answers each question with a number
between 0 and 6, where the higher the number, the more relevant the
statement is for the patient. The numbers added together gives us the
total MADRS score, which we split into four categories: normal/not
depressed: 0-6, mild depression: 7-19, moderate depression: 20-34 and
severe depression: 34-60 [17].

2.1.2 Bipolar Disorder

Bipolar disorder is the syndrome with extreme mood swings, referred to
as mania and depression [2]. One day the person can feel amazing, and
everything is fine, but the next day they feel like they do not belong
anywhere in this universe. In general, one should be concerned about
mood swings. It is, however, the extreme cases where the mind turns 180
degrees from day to day that is the main symptom of bipolar disorder.
There is not a specific type of people that get this; they can be of any age
and any gender, but most people that suffer from it find out (by having an
experience or episode) around age 25 [6].

When talking about bipolar disorder, we often separate between the
states normal, mania and depression. The last two are the states we usually
talk about since a normal state is not that interesting. These two states
are very different, but they have some similarities, for example sleeping
problems. When a bipolar person is in a manic state, he/she may feel
so excited and powerful that they do things that they would never have
intended doing, like spending much money on items they do not need [2].

A bipolar patient is in a depressive state when he or she is in a bad
mood swing. They can stop doing everything they usually like to do,
and lie down in bed all day with no motivation to do anything useful.
They may feel useless and that they do not belong here, or being guilty
of something they may or may not have done. In some cases, depression
may even end up with suicidality, where the person either spends much
time thinking of death, or attempt suicide.

The frequency of these symptoms can vary. One year they can have
these mood swings every day for several weeks at the time, and the next
they get them less frequent, like once every month. We also separate
between bipolar disorder type I and II, with the main difference being
that the manic episodes are way more aggressive in type I [5]. Statistics
say that bipolarity is genetically inheritable, with 23% chance of getting a
child with bipolar disorder if one parent is bipolar, and 66% if both parents
are [6].

8

2.2 Machine learning

ML is the field of computer science where we throw data into an algorithm
and expect it to give answers to whatever the goal is, with as little work
as possible. The process of performing ML was not as simple in the early
days of the technology, but nowadays it is a lot easier with all the different
frameworks and tools available.

ML is a tremendous and almost magical technology, but knowing how
one should use it can be difficult without the experience. The amount of
data needed to make an algorithm learn something makes it difficult to
get started, and to be efficient when training the model on a large dataset,
decent hardware is required. One can get away with using a CPU if they
want to test ML on a small dataset, but if the goal is to build something
useful, too much time is saved using a GPU.

The reason why GPUs are so much better than CPUs on this specific
task is that the design choices of a CPU are for flexibility and general
computing workloads. The GPU, on the other hand, is designed to do
simple arithmetic instructions over and over again (easy to parallelize).
These design choices make GPUs a lot more efficient for ML, and
especially for deep neural networks [37]. Alternatively, if investing in a
GPU is not the preferred choice, there are many cloud services available
to us today where we can pay a small sum in order to use a system that is
a better fit for the task.

Now how do we make a machine learn? Well, there are many different
approaches to this, which we will discuss in the next sections, but let us say
we want to use a neural network for achieving some goal. Then our next
step should be to choose a framework. We can, of course, do everything
from scratch, but why reinvent the wheel when there are so many good
frameworks and tools already out there?

Python is a programming language perfect for ML in our opinion.
The language looks a lot like pseudo-code, and this is perfect because
we do not want to spend time on syntax rules in another language. A
popular framework called TensorFlow is available to use in Python, and
developers from Google have built it.

TensorFlow allows the programmer to build models quickly, and also
execute the training and testing. TensorFlow can be used directly, but
using Keras as an abstraction layer above it is a popular choice, which we
did when implementing the neural networks for our objectives. On their
documentation website [22], they describe their framework as ‘A high-
level neural networks API, written in Python and capable of running on
top of TensorFlow, CNTK or Teano’.

Following their 30 seconds to Keras guide [22], you can create a sequential
model with dense layers, configure its learning process (compile), then fit,
train, evaluate and predict with just a few lines of code 2.1.

One thing that Keras does not make any easier is structuring the

9

1 from keras.models import Sequential
2 from keras.layers import Dense
3

4 model = Sequential()
5

6 model.add(Dense(units=64, activation=’relu’, input_dim=100))
7 model.add(Dense(units=10, activation=’softmax’))
8

9 model.compile(loss=’categorical_crossentropy’,
10 optimizer=’sgd’,
11 metrics=[’accuracy’])
12

13 model.fit(x_train, y_train, epochs=5, batch_size=32)
14 loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
15 classes = model.predict(x_test, batch_size=128)

Code 2.1: Simple introduction to Keras, where we create a Sequential
model with two Dense layers, compile it with with the loss function
Categorical Crossentropy and the optimizer SGD [22].

dataset so that the model can fit it. There is a high chance that we have
to write some code ourselves to do this. Numpy is a package for Python
built for math operations where everything happens optimally (Python
by itself adds overhead to everything). All Python based ML algorithms
assume that the input data is Numpy arrays, so experience with Numpy
can be advantageous when structuring the dataset.

2.3 Machine learning strategies

Picking the right ML model can be quite tricky, especially for an
inexperienced programmer. There are a couple of different strategies
one can choose from when deciding on an ML model. These are called
supervised and unsupervised learning, and we need to think about how the
dataset is structured, and what we want to achieve to find out which one
to use. The following sections will be a description of the strategies, to
make the decision easier.

2.3.1 Supervised learning

Supervised learning is the ML strategy where we provide both input
and correct output data to the algorithm [25]. We may use supervised
learning if the goal is to train a model to classify letters in the alphabet,
or something else where we have a dataset with both input and output

10

data (for the alphabet, images of letters are input data, and the actual
letters are the output data). If we train this alphabet detection model,
we will be able to input an image (not seen before by the algorithm) of
a letter, and the model will classify it to the letter it most likely correct.
This kind of supervised learning is called Classification and is the problem
of assigning new observations to the class they most likely belong, based
on a classification model built from labeled training data [25].

Another kind of supervised learning is called Regression and is all about
predicting (or estimating) a value. A classic example of regression learning
is predicting income, using features like home, location, job title, the field
of study, years of education and years of experience. We call these features
categorical (first three) and numerical (last two) [25].

2.3.2 Unsupervised learning

Another strategy is unsupervised learning. We want to use this if we
have a dataset without the same meaning as in a dataset for supervised
learning. The items may not have a fixed answer, like the letters in the
alphabet are. It is useful when we have unlabeled data and want to for
example group data together in what we call a cluster. Unsupervised
learning may not be as common as supervised learning, but it can be quite
beneficial in some cases; for example when grouping addresses together
in neighborhoods if we have an unsorted list of addresses as the dataset.
Patterns are given to the algorithm, but no answers are provided [18].

2.3.3 Semi-supervised learning

We may not always want to use one of the strategies above. Looking at
the dataset, maybe we want something in between like a combination of
labeled and unlabeled data. Semi-supervised learning comes in handy
when this is the case. For example, if we have many data samples to
label in our dataset, it can be too much work. We will not go deep into
details about how this works, but it is essential to mention it because of
its usefulness. The goal of semi-supervised learning is to understand how
combining labeled, and unlabeled data may change the learning behavior,
and design algorithms that take advantage of such a combination [41].

2.4 Machine learning approaches

When we know whether we want to use supervised learning, unsuper-
vised learning or something in between, we need to select an approach.
We use the term approach because we use these regardless of the strategy,
as most approaches work in both supervised and unsupervised learning.

11

There are a lot of different approaches available, and we will describe
some of them.

2.4.1 Decision tree learning

Day Temperature Outlook Humidity Wind Run
1 15 C Sun Low Strong Yes
2 6 C Rain High Weak No
3 15 C Rain Medium Strong Yes
4 6 C Overcast High Medium Yes
5 15 C Sun Low Weak No
6 12 C Overcast Medium Weak No
7 12 C Sun Medium Medium Yes

Table 2.1: Example training data set: days a person went out for a run

In computer science, trees are data structures commonly used to
describe something that branches out based on different input. For
example, a tree can be a representation of how the frequency of letters
in the alphabet are distributed in a text file so that the text file can be
compressed optimally. We will not go into details about how this works,
but our point is that tree-structures are very common in most fields of
computer science.

In ML, we can apply the tree-structures as decision tree learning.
Decision trees are trees that classify instances by sorting them based on
feature values, and each node represents a feature. Each branch represent
a value that the node can assume [25]. In this approach, we set up all
the different outcomes (with the training data set) of a specific question
in a tree. Let us say we want to predict whether or not a person will
run outside on a specific day. Then it makes sense that the training set
contains weather information. The different data in the training set is
called attributes, and correctly picking these is essential for the quality
of the prediction.

Table 2.1 contains data about whether a person went outside for a
run or not for a week (just an example, not real data). Here the first 4
(excluding "Day") columns (Temperature, Outlook, Humidity, and Wind)
is the "predictors" and the last column (Run) is the target. To use this table
in decision tree learning, we need to view it as a tree, with one of the
predictors as the root node and the targets as leaf nodes.

How we choose the tree structure is critical to the performance of
the ML, and we need to use a good tree building algorithm. The most
common algorithm to use in this situation is the ID3 algorithm made
by J. R. Quinlan. It is a top-down, greedy search through the space of
possible branches with no backtracking [11]. The way this happens is by

12

calculating Entropy and Information Gain. The idea is to recursively choose
the predictor that has the highest information gain and generate a tree
structure. With an optimal tree, we can create decision rules by merely
following the tree with new data.

Random Forest

One known problem with decision tree models is that they often include
much variance. Variance in an algorithm means that it is sensitive to small
changes in the training set. One method to reduce the variance is to use
Random Forest.

Random forests are a combination of tree predictors such that each
tree depends on the values of a random vector sampled independently
and with the same distribution for all trees in the forest [7]. It is a
supervised ML strategy and can be useful for both classification and
regression learning.

For example, if we want to get movie recommendations using ML,
using one decision tree will most likely be insufficient. Just think what
happens when we ask a friend for movies to watch. What that friend
recommends is purely based on movies we like ourselves and what the
friend likes. We might be lucky and find our next favorite movie, but most
likely, asking multiple people for recommendations is going to yield better
results. The same goes for ML, and decision trees will most likely give a
better answer if we combine them in a Random Forest.

2.4.2 Deep Neural Networks

The general idea of ML with neural networks is to make the computer
think like a human, inspired by the way biological neural networks in
the human brain process information [26]. There are a lot of different
neural network architectures, but all of them share the same underlying
layer-based architecture, where data get passed between layers where
computation happens. The first layer is the input layer, which passes
the data to the next layer, which is the hidden layers. The number of
hidden layers is entirely up to the model and the programmer, and this
is where the intermediate processing/computation is done before the data
get passed to the output layer where we perform an activation function to
define the output [26].

Figure 2.1 is a visual representation of a neural network with the input
layer on the left, one hidden layer in the middle and the output layer on
the right-hand side. For each layer, we have fully connected nodes, which
means that each node has a connection to all nodes in the next layer.

If we have multiple hidden layers in a neural network, we call it a deep
neural network (DNN). DNNs can be useful for anything, and only the
programmer’s creativity sets the limit. Two common ways to use DNNs

13

Figure 2.1: Neural network visualization. The inputs on the left side are
passed into the neurons in the hidden layer in the middle, which passes
the values to the output layer.

are Recurrent Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs). These two have their use cases, which we will describe further.

Recurrent Neural Network (RNN)

RNNs are useful for predicting something based on a sequence of data,
like for example predicting words in a sentence, which can be especially
useful for typing on the phone. Also making predictions based on
historical data, speech and language, are tasks an RNN can do effectively
[26].

One downside to RNNs used on large sequences of data is that the
prediction will most likely be off if a word written at the beginning of a
long text is a dependency for a prediction four chapters later, for example,
the home location of the main character. The workaround for this is
something called Long Short-Term Memory Recurrent Neural Network (LSTM
RNN), and is the idea of having additional logic to avoid the prediction
model forgetting essential facts [26].

14

Convolutional Neural Network (CNN)

A CNN can be used for identifying patterns in data, which then is the
underlying calculations for either prediction or classification. They are
designed to process data in different array shapes [26]. A common use case
for CNNs is image recognition. In image recognition, we train our models
to be good at identifying objects in images, for example, the difference
between cats and dogs. Then we can input a completely different image
to the model, and it will output whether the image is of a cat or a dog.

This type of CNN is two-dimensional because an input image is a
two-dimensional array of pixels, so the network also needs to have two
dimensions in the convolutional layers. Another way of constructing a
CNN is one-dimensionally, which can be useful for one-dimensional data,
for example, sensor data from gyroscopes or accelerometers [26].

A 1D CNN is very effective when you expect to derive interesting
features from shorter (fixed-length) segments of the overall dataset
and where the location of the feature within the segment is not of high
relevance. This applies well to the analysis of time sequences of sensor
data (such as data from gyroscopes or accelerometers). [20]

For this reason, we decided on implementing one-dimensional CNNs
to achieve the objectives of our goal. Also, the results are important, as
no researchers have applied CNNs on motor activity measurements in the
field of mental health yet to our knowledge.

2.5 Related work

In this section, we mention several research papers that are related to these
two topics Mental Health Monitoring Systems (MHMS) and CNNs.

2.5.1 Mental Health Monitoring Systems

In the field of MHMS, research has already been done by many. In this
subsection, we describe some earlier research about depression/bipolar
disorder, where they also applied machine learning to their study.

E. Garcia-Ceja et al. surveyed some of the recent research works
in machine learning for MHMS [14]. They gave the different works
labels: study type (association/detection/forecasting), study duration
(short-term or long term), and sensor types (wearable/external/software
or social media).

Association studies were those who help understand the relationships
between variables, and the methods include linear regression, correlation
analysis, t-tests and analysis of variance. Detection studies have a goal to
detect/recognize the mental state, often using methods like classification

15

models. Forecast studies aim to predict events about patients, for example,
epileptic seizures. The wearable sensor types include smart-watches
and smartphones, external sensors could, for example, be cameras or
microphones installed in an institution where the participants were
patients. Some studies, where the sensor type was software or social
media used services like Instagram to collect their data [14].

To find relevant work for this thesis, we had a look into some of
the studies included, which studied depression and bipolar disorder.
One study by O’Brien, J.T. et al. [32] was an association study about
depression, where the participants wore accelerometers on their wrists.
Twenty-nine adults with depression and 30 healthy adults participated,
and the goal was to study the possibility that physical activity has an
impact on depression (referred to as Late Life Depressions (LLD) in the
paper). They found that the physical activity of participants with LLDs
was significantly lower, which is highly relevant for this thesis because
our dataset contains physical activity data.

Grünerbl, A. et al. had a detection type study about bipolar disorder
[16]. The participants consisted of ten bipolar patients in Austria between
18 and 65 years old. In this study, the recorded data was phone calls
and microphone data and achieved average recognition accuracy of 76%
and precision and recall of over 97% of bipolar state detection. They also
used the accelerometer and GPS as input data and achieved recognition
accuracy of 70% (accelerometer) and 80% (GPS).

In a study by Maxhuni, A. et al. [27], they used the same participants
as the previous example. The difference was that in addition to using
accelerometer and microphone data, they introduced questionnaires to
the participants. For the results, they applied different machine learning
algorithms, and their best average accuracy was 85.57%.

Faurholt-Jepsen, M. et al. had an association type study about bipolar
disorder [12]. The participants were 29 bipolar patients, and actions on
their smartphones like daily usage, the number of incoming calls, the
number of text messages sent and received. They found correlations
between the mental state of the patients and the recorded information.

Andrew G. et al. applied machine learning to photos posted on
Instagram [34]. They had 166 participants, who posted a total of
43,950 photos. By extracting statistical features using colors analysis,
metadata and face detection, they achieved models that outperformed the
average practitioner’s success rate when diagnosing depression (70% of
all depressed cases identified). Research on social media usage in the field
of mental health is interesting because, for many, those are the platforms
that they use to express their feelings.

Mowery, D. et al. did another study based on social media [31], but
instead of Instagram, they used Twitter. For a tweet, they classified
whether or not it contained evidence of depression, and there was
evidence of depression, they classified one of three symptoms (mood,

16

disturbed sleep or loss of energy). The features they extracted from
each tweet included syntax (usage of first/third person pronouns),
emoticons usage (happy/sad), and sentiment (whether the text was
subjective/objective and positive/negative). They achieved the best
performance when classifying that a tweet had no evidence of depression,
and their other models performed significantly worse.

The authors of the paper mentioned first surveying different machine
learning research in MHMS, Garcia-Ceja, E. et al., also released a paper on
motor activity based classification of depression in unipolar/bipolar pa-
tients [15]. They applied machine learning for classifying depressed/non-
depressed participants using Random Forest and a DNN. The dataset is
the same as we used here in this thesis (described in detail in the next
chapter), and they achieved an F1-score of 0.73 with Random Forest and
0.7 with the DNN. Since one of our objectives is to do the same classifica-
tion as in this paper, it was worth mentioning.

The main difference between earlier research within MHMS and our
work is that we aim to apply a CNNs to achieve our goal. CNN is a type
of machine learning that is more sophisticated than the ones used in the
mentioned research papers. We know that motor activity measurements
can be related to mental health issues (from Garcia-Ceja, E. et al. [15]).
However, the best methods for extracting this type of knowledge is not
known. With our experiments, we want to find if CNNs can do this job
effectively.

2.5.2 Convolutional Neural Networks

In most of the papers previously mentioned, the complexity of the
machine learning models has not been the area of focus, but rather
comparing different algorithms like decision trees and Naïve Bayes. A
study by Kiranyaz, S. et al. used a 1-D CNN on real-time patient-specific
ECG (electrocardiogram) classification [24]. While this paper is not in the
field of mental health, we found exploring how others have created CNNs
helpful for us when building our models. Kiranyaz, S. et al. achieved
superior classification performance comparing it to most of the state-of-
the-art methods, and concluded with the fact that after training a CNN
dedicated to a patient, it can be solely responsible for classifying their ECG
records.

Human activity recognition (HAR) is another field of study where
machine learning has shown its value. Ronao, C. A. et al. presented a
deep convolutional network [35] for classifying human activity (walking,
sitting, standing and laying) based on a 1-D time-series of measurements
from smartphone sensors. The accuracy they achieved on their test set
(95.75%) outperformed the previous state-of-the-art models.

The usage of convolutional networks is, of course, not limited to the

17

medical field. Ince, T. et al. published a paper on real-time motor fault
detection using a 1-D CNN [19]. They used raw signal data as input to the
model, and a model that only has to be trained once for each motor they
achieved an accuracy of detecting motor faults above 97%.

All of the mentioned CNNs have high performance, which is a
promising indication for our results. The type of data that we apply our
CNN to is very similar to the HAR study by Ronao, C. A. et al. [35], but we
use it in the detection of mental health issues instead of human activity.

2.6 Summary

In this chapter, we described background information and related work
for our goal. We mentioned different mental health problems, but we
focused on depression. Within the topic of depression, we described a
rating system called MADRS and then gave an introduction to bipolar
disorder. Furthermore, we discussed ML: how one can get started using
the Keras ML framework in Python, and different ML strategies and
approaches. At the end of the chapter, we discussed related work within
the topics of MHMS and CNNs.

We learned about how MADRS provides a systematic way of telling
how depressed patients are, which is essential to know as we use
the MADRS score of participants in objective two and three. Bipolar
disorder was also necessary to gain knowledge about because some of the
participants have the diagnosis. From the topic of ML, we are going to
apply a supervised learning strategy, with a DNN approach, and more
specifically a CNN type network to achieve our goal.

Before we can train a CNN, we need to structure the input and
output data. In the next chapter, we present a description of the dataset,
then discuss our methods of how the system fulfills the objectives by
preprocessing the input and output data, and evaluate performance after
training has completed.

18

Part II

Methodology

19

Chapter 3

Planning and Preparing Data

Trained CNN
attempts to

detect correct
labels

Depressed

Non-
depressed

Participant

Create segments
and labels

Establish
most detected

participant
group

Send segments
to the CNN

Figure 3.1: Diagram of how we detect whether a participant is depressed
or not (first objective) after we have trained the CNN.

As described in chapter 1, our objectives in this thesis include creating
three CNN models:

• Detect whether a participant is depressed or not.

• Detect whether a participant has no depression, mild depression,
moderate depression or severe depression.

• Predict a participant’s MADRS score.

We also implemented a linear regression model that trained explicitly on
the demographic data. The reason for this experiment, which does not
include a CNN, was to see if we could learn from any column whether the
participants are depressed or not. This experiment is further explained in
chapter 4.

For our CNNs, the input data is processed into time-sliced segments of
motor activity measurements. Then we send the segments to the CNNs,
which attempts to detect the correct value for each segment. During the
training process, correct values have to be visible to the model for it to
learn (because we use a supervised learning strategy). After training

21

the models, they should be able to classify/predict the correct value
depending on the objective. Because we split the measurements of a
participant into segments, we needed to gather all of the detected value
so that we could return one final detection. Majority voting is the method
used for this, which means that we use the most popular detection (label
with most votes). How the system works from A to Z detecting whether a
participant is depressed or not is visualized in figure 3.1.

We implemented one-dimensional CNNs that were able to take the
segments of activity data as input. Also, we wanted the neural network
models to be as similar as possible. With few changes in the layers
(preferably only the last few layers), we could use a model on another
objective. It was, however, only possible for the first two objectives, as
they are both about classification and we only changed the number of
units in the output layer. We changed more layers for the third objective.
We describe of all neural network models in detail in chapter 4.

In this chapter, we describe the structure of the dataset, how we use the
dataset to create activity segments, and how we can test and evaluate the
performance of machine learning models.

3.1 The dataset

Figure 3.2: The 5 first and the 5 last rows in demographic dataset
(scores.csv). The displayed participants are from the condition group
(above) and control group (below).

In this thesis, we used a dataset (called Depresjon after the Norwegian
word for depression) containing motor activity measurements from par-
ticipants wearing an Actiwatch (model AW4 from Cambridge Neurotech-
nology Ltd, England). The dataset was collected originally for a study

22

0 5000 10000 15000 20000
0

500

1000

1500

2000

2500

3000

3500 activity

0 5000 10000 15000 20000
0

500

1000

1500

2000

2500

3000 activity

Figure 3.3: Motor activity measurements for a participant in the condition
group (above) and control group (below). The condition group participant
is male between 35 and 39 years old, diagnosed with unipolar depression.
The control group participant is female between 45 and 49 years old.
The number on the X-axis corresponds to the minute throughout the
measurement period, and the number on the Y-axis is the activity levels.

about behavioral patterns in schizophrenia vs. major depression [4]. The
participants we focus on are 23 bipolar/unipolar patients and 32 non-
depressed contributors, removing the participants with schizophrenia. We
will refer to the bipolar/unipolar group as the condition group, and the non-
depressed group as the control group. Garcia-Ceja et al. also follows this
convention in their work [15].

The dataset is in two parts. One part includes the demographics of
each participant (see figure 3.2), where the fields are:

• number: a unique id for each participant

• days: number of days of data collection

• gender: 1 = female and 2 = male

23

• age: age of the participant (grouped by four years)

• afftype: affliction type, where 1 is for bipolar type II, 2 equals
unipolar depressive, and 3 for participants with bipolar type I

• melanch: 1 means a participant has melancholia, 2 means no
melancholia

• inpatient: whether the patient is inpatient (1) or outpatient (2)

• edu: how many years of education the participant has completed
(grouped by four years)

• marriage: married/cohabiting (1) or single (2)

• work: whether the participant is working/studying (1) or not (2)

• madrs1: MADRS score before activity measurement started

• madrs2: MADRS score after activity measurements ended

The second part of the dataset includes motor activity measurements
about participants in the condition group and control group, as one file
for each participant. These files are placed in two folders for the two
groups respectively, and there is one file for each participant with filename
as "GROUP_X.csv" where X is their id and GROUP is either condition or
control. Inside each file, we can find a list of motor activity measurements
for every minute of the data collection period.

Looking at example participants from both groups (figure 3.3), we can
not immediately tell with our eyes that they are different. However, by
feeding the data into a CNN, we aimed to find patterns that were specific
to the two participant groups.

3.2 Data Preprocessing

We wrote a function (see source code in appendix A.1), which was
responsible for preparing the data before we sent it into the neural
network. We started by defining a segment length (L), which is how much
data (minutes) we want inside each segment. We experiment with the
value of L in chapter 5. Next, we needed a value for how many indexes
to step after each iteration, S. We kept this value at one hour, meaning
S = 60. Between the different objectives, this function will only be
different in how it yields the labels.

• First we read the global dataset, where we find each participant and
whether they are in the control or condition group. As there is no
afftype value for non-depressed participants, we set this to 0. Other
possible values are 1, 2 and 3. We do the same for the madrs2 column.

24

• Then we iterate over the participants:

– Build segments and labels arrays for current participant:

* Append a segment that is of length L to the list of segments.

* Append a value to labels depending on the objective (see
the subsection about output data).

* Increase the index by S, then repeat until we have added all
segments for the current participant.

– Example element in segments and labels for a participant in the
condition group:
segments[i] = [[0], [143], [0], [20], [166], [160], [306], [277]]
labels[i] = [[1], [1], [1], [1], [1], [1], [1], [1]]

• Make the list of labels into a categorical 2D matrix (see table 3.1) with
a 1 in only one of the columns, instead of a single-dimensional list.
This is only needed in the first two objectives.

Control group Condition group
0 1
1 0
0 1
1 0
1 0
0 1
0 1
1 0

Table 3.1: Categorical Labels. A 0 and a 1 (first row) means that the
participant is in the condition group.

The output data was an array with a value for each segment,
corresponding to the objective and the participant. After creating it, we
used a helper function from Keras called to_categorical to transform the
array into a categorical matrix instead of a list of labels. Table 3.1 is an
example of how a categorical matrix looks. The value we used to build
this array was based on the objective:

• For classifying control/condition group, this list was built to contain
the values 0 or 1 for the labels CONTROL and CONDITION, which
was chosen according to the group the participants were in. For
example, labels[i] = [0, 1], meaning that segment i is labeled as
CONDITION group.

25

• To classify depression classes, we used MADRS scores divided into
four classes by some cutoff-points:

– 0-6: normal

– 7-19: mild depression

– 20-34: moderate depression

– 34-60: severe depression

So instead of labelling the segments as CONTROL or CONDITION,
we labeled them as NORMAL, MILD and MODERATE (we ignored
severe depression as there are no participants with MADRS scores
this high). An example element in this array after applying
to_categorical() is labels[i] = [0, 1, 0], which means that segment i is
labeled as MILD depression.

• For predicting MADRS scores, we built the array of the MADRS
score of the participants. Example: scores[i] = [18].

3.3 Performance

When finishing with a training session for a machine learning model, we
need to use different metrics to be able to tell how the model performed
based on some testing data. For prediction models, we only consider the
value returned by the loss function, but evaluation of classification models
can be presented with several metrics. In this section we present loss
functions and optimizers, and how we evaluate the performance of our
models using classification metrics and different ways of splitting up into
training and testing data.

3.3.1 Loss functions and Optimizers

After defining a machine learning model, we compile it so that it was ready
to be fit to the dataset. Compiling a model requires a loss function and an
optimizer. The loss function is the function that evaluates how well the
model models the given data [8], and the optimizer is the function that
attempts to lower the output of the loss function.

For the first two objectives in this thesis, we use the loss function
categorical cross-entropy, which calculates a probability over the number
of classes supplied (number of classes equals the number of neurons in
the output layer) [10]. In the third objective, we use a loss function called
Mean Squared Error (MSE), which is measured as the average (mean) of
squared difference between predictions and actual observations [8]. The
formula below is used to calculate the MSE, where n is number of training

26

samples, i describes the current element in the samples, yi is true label for
the current sample and ŷi is the predicted label for the current sample.

MSE =
∑n

i=1(yi − ŷi)
2

n

When choosing an optimizer, there are many different options avail-
able, but we chose an optimizer called Adam for training all of our models.
Adam is an algorithm for efficient stochastic gradient-based optimization
[23], and it is available as an optimizer function within the Keras frame-
work [22]. The reason for choosing Adam is, as described by Kingma, D.
P. et al. [23], efficient both considering memory usage and computation-
ally. The hyper-parameters also require minimal tuning. Using a different
optimizer can make the model fit the dataset at a different pace, which is
something we experiment with in chapter 5 (for the third objective).

3.3.2 Classification metrics

In classification, accuracy is a metric that is commonly used. It makes
sense to the human brain; telling a friend that has no experience in
machine learning or data science that we have made our computer able
to classify something with 98% accuracy is something that they would
understand. Other metrics include precision, recall, specificity and F1 score
[15], which will be described below.

Confusion matrix

Figure 3.4 shows a confusion matrix. It is a visual metric for classification
models in machine learning and is the basis for the other performance
metrics. It can tell how well our model is performing by having correlation
values for the different classes. Let us say we have 200 samples in our test
data to use on our model that classifies control vs. condition group.

A confusion matrix for a good model would look like figure 3.4, with
high numbers in True Positive (TP) and True Negative (TN) and as
low numbers as possible in False Positive (FP) and False Negative (FN).
Having a high number in True Positive means that the model can classify
that a participant is in the condition group if he or she is, and having
a high number in True Negative means that the model can classify that
a participant is in the control group if this is the case. The other cases,
False Positive and False Negative, are where the model made a wrong
classification, and therefore as close these numbers are to zero the better
our model is.

27

Positive Negative
Predicted Label

Po
sit

iv
e

Ne
ga

tiv
e

Tr
ue

 L
ab

el
95 5

7 93

Confusion Matrix

15

30

45

60

75

90

Figure 3.4: Confusion Matrix Example: 95 True Positives, 93 True
Negatives, 7 False Positives and 5 False Negatives

Accuracy

‘Accuracy is a good measure when the target variable classes in the
data are nearly balanced.’ ([33])

TP + TN
TP + TN + FN + FP

When calculating the accuracy, we sum up the correct predictions and
divide that with the total number of predictions. For our example (3.4),
the accuracy would be 93+95

93+95+5+7 = 0.94. It is a good metric to use for
our example because the number of samples for each variable class is well
balanced (93 + 5 = 98 samples where condition group was the correct
option, and 7 + 95 = 102 samples where control group was correct).

Terrible use of the accuracy metric would be when one of the classes
strongly dominates the samples. For example, if a model predicts cancer
vs. no cancer, and the samples contain five people with cancer, and the
95 remaining people do not. The model would be terrible at predicting
cancer and still have an accuracy score of 0.95 [33].

28

Precision

TP
TP + FP

Precision operates entirely on the predicted positives, and it tells us
how many true positives there is among predicted positives [33].

This performance metric is better to use on unbalanced classes than
accuracy. The cancer vs no cancer example, assuming it predicts no-one to
have cancer, would yield a precision score of 5

5+95 = 0.05. And our control
vs condition example would result in a precision score of 93

93+7 = 0.93.

Recall

TP
TP + FN

Recall is another useful performance metric. It tells us the relationship
between true positives and actual positives, for example how many
participants classified to be in the condition group there were among total
participants in the condition group.

The calculation of recall is done by dividing true positives by true
positives + false negatives, which translates into 93

93+5 ≈ 0.95 (using the
confusion matrix) 3.4.

Choosing a metric to use from precision or recall depends on your goal.
Try to achieve close to 1.0 recall if you want to reduce false negatives, and
likewise with precision if you want to reduce false positives [33].

Specificity

TN
TN + FP

As recall operates on actual positives, specificity is the exact opposite
metric. It tells us the relationship between true negatives and actual
negatives. So if your goal is to reduce false positives, specificity is a
valid choice. Specificity is calculated by dividing true negatives by true
negatives + false positives. For the confusion matrix 3.4, the specificity
score equals 95

95+7 ≈ 0.93.

29

F1 Score

The metrics that we have described in this section are all useful when
determining whether our classification model is good enough. However,
the relationship between recall and precision and knowing when to use
which can be confusing, at least if the different classes are somewhere
between entirely unbalanced and perfectly balanced (for example a 35%
split).

Therefore another metric called F1 Score was created, which gives us
a balanced value combining recall (R) and precision (P). The basic idea
is to return the mean value of the two scores (P+R

2), but that would not
be balanced if one score is much lower than the other. F1 score uses
harmonic mean instead of the standard arithmetic mean, and is calculated
as 2 · P·R

P+R [33]. Following this formula, the F1 score for confusion matrix
3.4 becomes:

F1 = 2 · P · R
P + R

= 2 · 0, 93 · 0, 95
0, 93 + 0, 95

≈ 0.94

3.3.3 Training and testing data

Dataset evaluation split

Training
data

Validation
data

Evaluation
data

Figure 3.5: Visualization of a dataset evaluation split. Training and
evaluation data are subsets of the dataset, and the validation data is a
subset of the training data.

It is common to split the inputs and output data into multiple parts,
where some of the data is used to test the model. Testing of the model

30

can happen at different times: after training sessions (evaluation) and in
between epochs (validation). See figure 3.5 for a visual representation of a
dataset evaluation split.

Before starting a model training session, we split the dataset into
training and evaluation data, where the first part is what the model
is trained to fit, and evaluation data is kept aside until the training is
complete. Then we use it to check the performance of the trained model.
Metrics used here is the value of the loss function (for example mean
squared error) for value prediction, or classification metrics described in
the previous subsection.

Validation data and is useful to include when we are developing
the model, as we regularly see how the model is performing after each
epoch. The metric used is usually the value of the loss function or the
accuracy score, depending on the objective of the model. When the
model is good enough for the desired task, we do not need validation
data. We pass the validation split into the function that starts the model’s
training as either the validation_split or the validation_data parameter.
If the validation_split parameter is used (a number between 0 and 1),
the validation data is calculated automatically before training starts. If,
however, we want to use specific samples as validation data, we use the
validation_data parameter instead.

The function train_test_split from the sklearn package (see code 3.1) is
useful to split up the dataset into training and evaluation data. We input
dataset (X, y), plus how large we want the training and test sets to be
(number between 0 and 1, which determines the size of the test partition).
The function also randomizes the data, preventing model to accidentally
learn something correct for segments in a row that also are chronologically
in order. After calling the function, you end up with two arrays for input
data (X_train, X_test), and two arrays for output data (y_train, y_test). In
this case the test_size is set to 0.4, meaning that the test set contains 40% of
the total dataset and the remaining 60% are in the training set.

1 from sklearn.model_selection import train_test_split
2

3 X_train, X_test, y_train, y_test = train_test_split(X, y,
4 test_size=0.4)

Code 3.1: Sklearn train and test split. After calling this function we end up
with training and testing sets for both inputs and outputs.

31

Cross-validation

1 from sklearn.model_selection import StratifiedKFold
2

3 X, y = load_data(...)
4

5 skf = StratifiedKFold(n_splits=3, shuffle=True)
6

7 for train_index, test_index in skf.split(X, y):
8 X_train, X_test = X[train_index], X[test_index]
9 y_train, y_test = y[train_index], y[test_index]

10

11 model = create_model(...)
12 model.fit(X_train, y_train, ...)
13 results = model.evaluate(X_test, y_test)
14

15 # do something with results...

Code 3.2: StratifiedKFold from sklearn. The dataset is split in 3 parts
(n_splits on line 5), then training and evaluation happens for each of the
parts.

Training
data

Testing
data

Training
data

Testing
data

Training
data

Testing
data

Fold 1

Fold 2

Fold K

...

Figure 3.6: K-fold cross-validation visualized. For each fold, a testing set
is defined, and the rest of the data is a training set.

Another popular choice is to use a technique called K-fold cross-
validation. It works by splitting the dataset into K train and test sets, and

32

for each of them, train the model on the training set and validate on the test
set (visualized in figure 3.6). Cross-validation is a good way of checking
if your model’s performance truly is independent on which data samples
it trained on. The higher number of splits (K) means fewer data samples
to test on, so you need to keep that in mind (the same for train_test_split
if you set the test_size too low). Sklearn has an implementation of K-fold,
called StratifiedKFold. An example of how it can be used is shown in code
3.2, where we perform a 3-fold cross-validation (K = 3).

Performance testing of a model sometimes happens with both
train/test-split and cross-validation. We set aside a small part of the data-
set for evaluation and generating folds for the rest, then within each fold,
we train and validate the model, and evaluate it against the part of the
dataset that we set aside at the beginning. We note loss/accuracy scores
for each fold and calculate the mean value which is the overall perform-
ance result.

Another way of using cross-validation to test the performance of a
model is by leaving N participants out of the dataset. We do this by
generating training data for the rest of the participants and evaluation data
for the N participants left out. We log the performance scores for each fold,
and then we find the overall average.

In this thesis, we will use all described methods of splitting training
and testing data. Simple train/test splitting is what we begin with during
the development of the models. Then we perform cross-validation to
verify that the models are consistent, and finally, we leave participants out
one by one. The latter is essentially the same as 55-fold cross-validation,
and it is a way of comparing our work to the work of Garcia-Ceja, E. et al.,
where they also evaluated their models by leaving participants out one by
one [15].

3.4 Summary

In this chapter, we introduced the general idea and flow of how the system
detects the objectives of our goal, which for the first objective is visualized
in figure 3.1. We presented the dataset in two parts, one containing
demographic data and another one with motor activity measurements for
each participant. Then, we described in detail how the data preprocessing
algorithm works, which is responsible for translating the dataset into
segments we could input to the CNN, and labels used for supervised
learning. Finally, we introduced how we evaluate the performance of
our CNN, in which we described the terminology of loss functions and
optimizers, classification metrics, and training/testing data splits.

Now that we have defined how everything around the CNN works,
we can proceed to describe how we implemented the CNNs, which is the
topic of the next chapter.

33

34

Chapter 4

Implementation of Machine
Learning Models

The previous chapter showed that we structured the dataset into segments
and labels so that we can apply supervised learning to it. The type of
data in the dataset is activity measurements recorded from a smart-watch,
which can have a high potential for analysis through ML. In this chapter,
we provide a layer-by-layer description of how implemented our CNNs
and linear regression model.

4.1 Linear Regression

Linear Regression is used a lot in statistics, where its primary purpose is
to predict a target value based on independent predictors and is useful to
find cause and effect relationships between variables [28]. Before getting
started on convolutional neural networks, we wanted to see if these
problems were solvable with linear regression. The idea was to use the
columns from the demographics dataset (see figure 3.2). We did not expect
high performance from this, as there are only 55 rows of participants.
Anyone having a little bit of experience with machine learning will know
that this is not nearly enough data. We wanted to do it regardless, to see
how a linear regression model performed.

Not all of the columns are relevant, for example, number is unique for
each participant, so it does not make sense to use. The column melanch
also does not make sense to use, as there is only one participant with
Melancholia. Inpatient cannot be used because the participants in the
control group are not patients, and cannot be either inpatient or outpatient.
The same goes for edu, work and marriage, but we do not have these data
values for control group participants. We do not have their afftype or any
of the MADRS scores either, but we already know them: afftype should
be 0 (no depression) and both MADRS scores should be 0.

We used the afftype column as a target in the regression. This way

35

we could classify whether a participant is in the control or the condition
group, by setting the afftype value to either 0 or 1 instead of 0, 1, 2
or 3 (values above 1 reduced to 1), and ran the regression on all of the
remaining columns one by one:

• Gender

• Age

• Days

• MADRS1

• MADRS2

The model for this task is straightforward. We created a sequential
model (source code in appendix A.2) with one input layer and one output
layer. The input is a dense layer which takes one value (the value of the
current column), activates using relu and outputs 5 neurons. In the output
layer, we activate using a linear function (default activation function when
none are specified) and return one value: the prediction. We compiled the
model with the loss function Mean Squared Error and the optimizer Adam.

Since we were predicting the afftype of a participant, which is a binary
value (0 or 1) and a prediction from the model yields a value between
0 and 1, we rounded the prediction value to the nearest integer after
running predictions on the test data. Doing it this way instead of making
a classification model, makes the loss value more useful as a metric while
training rather than accuracy.

When testing the model, we wanted to achieve an accuracy of 100%
when using the MADRS scores. The task should be easy because of
how easy it is using a simple check: if the MADRS score is 0, then the
participant is in the control group. If not, the participant is in the condition
group. We did not need to use machine learning on these columns but
was interesting to train the model to find this relationship without telling
it the simple rule. For the other columns, we did not know what to expect;
maybe there was a relationship, maybe not.

4.2 1D Convolutional Neural Network

4.2.1 Convolution

The main ingredients in a CNN are convolutional layers and pooling layers
[26]. The convolutional layers are responsible for the convolution process,
which in mathematics is a function derived from two given functions by
integration which expresses how the shape of one is modified by the other
[9].

36

Figure 4.1: Feature Detector / Filter "sliding" over input data

The convolutional layer in machine learning consists of filters, which
are the sliding windows that go through the input data (see figure 4.1).
They are also called feature detectors, and using 100 of them means that the
layer can detect 100 features. The size of a filter is called kernel size. The
output of the convolutional layer is a matrix with one column for each
filter, and one row for each step in the convolution. How many steps there
are, is given by the length of the input data (also called height) minus the
kernel size plus 1.

4.2.2 Creating the Model

We built three CNN models. The models for the first two objectives were
built for classification similarly, and for the third objective we came up
with another model built for prediction. To make a CNN, we need some
convolutional and pooling layers. Which layers added in between and the
ordering of them, together with the parameters passed to the layers, is
what makes the model perform differently.

Classification

The following model was used to achieve our first two objectives;
classifying whether a participant belongs to the control or condition
group, and classifying the participant’s depression class. The only
difference between these two objectives is the number of classes we are
trying to classify, and therefore only the output layer needs to be changed.
Full source code can be found in the appendix (A.3).

1. We started by defining a Sequential model. This is easy to
understand and readable way of defining a model. Alternatively, we
could have used a functional model, which would give more control
of inputs and outputs of the layers. A functional model would also
be useful if we wanted to debug and optimize each layer within the
model.

2. Reshape: In the first layer we needed to reshape the input data so
that it becomes an X by 1 matrix, where X is the length of each

37

Figure 4.2: The architecture of our convolutional neural network for the
first objective. The segment length is 480 in this example. We can see the
output shape underneath each layer.

38

segment. The reason for the reshape step is because the next layer
(Conv1D) requires the input to contain the parameters batch, steps
and channels. Batch will be set to None, steps will be the segments,
and channels will be 1 (because we only have one measurement value
for each minute).

3. Conv1D: This is the first convolutional layer, where the required
parameters are how many filters wanted, and how big the kernel
should be. We used 100 filters and a kernel size of 10. Having less
or more filters might have an impact on the performance, but we did
not want to over-complicate the model yet. There are many different
parameters that we can use on a layer like this, for example, padding
and strides, but using the default values was a good choice for now.
The output of this layer results in a (X − 10+ 1)× 100 matrix, where
X is the length of each segment here as well. The activation function
for all convolutional layers in this model is ReLU (Rectified Linear
Unit).

4. Conv1D: The second convolutional layer looks exactly like the first
one, and the output is a (X − 10 + 1 − 10 + 1)× 100 matrix.

5. MaxPooling1D: Pooling is important in a convolutional neural
network to reduce complexity, and its role is to merge semantically
similar features into one [26]. Max pooling works by reducing to only
the maximum value for each window of size N × N. We used 2 as
window size (N), resulting in matrix that is half the size of the input:
X−10+1−10+1

2 × 100. Pooling may also help reduce overfitting, which is
when the model learns its training data too well and performs worse
on unseen data.

6. Conv1D: Two more convolutional layers were added, and after
these, the input to the next layer will be a matrix of size(

X−10+1−10+1
2 − 10 + 1 − 10 + 1

)
× 160.

7. GlobalAveragePooling1D: Another type of pooling layer was ad-
ded, which takes the average of weights within the network instead
of the maximum. The output of the global average pooling layer is a
matrix of size 1 × 160.

8. Dropout: A dropout layer is used to reduce overfitting, by randomly
ignoring units in the neural network [36].

9. Dense: The final layer in the model is a dense layer (fully connected)
which reduces the matrix from 160 values to either 2 or 3 (for
objective one and two), with the activation function softmax. Then
the output (a 1 in one of the neurons) is mapped to the corresponding
label.

39

Prediction

To make the model work for our third objective, where we predicted the
value of participant’s MADRS score, we had to change a few layers. We
removed two of the Conv1D layers and applied the following after the
global average pooling layer:

8. Flatten: The matrix was required to be flat (one dimensional) before
proceeding to the final layers.

9. Dense: A dense layer with 10 neurons was added, with ReLU as the
activation function.

10. Dense: The output layer is a dense layer of size 1, because we are
predicting one value. Also, the activation function is linear instead of
softmax.

Source code for this model can also be found in the appendix (A.4).

4.3 Optimizing the models

Out of the box, we did not think that the models were going to perform
perfectly. Therefore we needed to experiment with each parameter that
we passed to the models and find the best ones. We had some ideas of
what to change:

• Use different segment lengths

• Tweak hyper-parameters

The first idea, using different segment lengths, was the one we thought
was going to impact the results the most. Having more data inside each
segment will give the neural network more opportunities to learn features,
and then be better at its job of either classifying or predicting the outcome.
Having longer segments also means that each epoch of training would
take more time because each layer has to process more data. In chapter 5,
we describe the process of finding the optimal segment lengths for each
objective.

Hyper-parameters are all the higher-order parameters we compile/train
the model with. These are the bells and whistles of the learning algorithm
[3], and they are different from the parameters learned by training the
model and need to be fixed for one session of model training. Finding
the perfect ones can be crucial for a well-performing model. Hyper-
parameters that we use in our models include:

40

• Optimizer and learning rate
The optimizer function (as discussed earlier) is essential to lower the
loss value when fitting the dataset to the model. Different optimizers
have different input parameters, and the learning rate is one that all
optimizers use. Tweaking the learning rate can yield better results,
but the default learning rate for the chosen optimizer is always a
good starting point because it is what the author of the optimizer set
as default.

• Epochs
Defines how many iterations of training that are to be executed, and
in most cases more epochs yield better results up to a certain point.

• Batch size
This is how much data that is processed at the same time each epoch,
and the best batch size to use can be completely different on two
different models.

• Train/test split size
When building a neural network, we want as much data as possible
to both train and to test on afterward. We cannot use all the data in
both cases, so the most balanced split needs to be determined.

4.4 Summary

In this chapter, we explained how we implemented our linear regression
and CNN models. We built a linear regression model able to train on one
column in the demographics dataset at a time so that we could compare
the performance afterward. Then, we built our one-dimensional CNNs
for our primary objectives, explaining each layer and how the data flows
through the network (output matrix shape for each layer). We described
the main differences between our classification models and our MADRS
prediction model. Finally, we defined how we wanted to optimize the
CNN models after initial training.

With our CNN models implemented, we can proceed to the next
chapter, where we explain the training process for each of the models,
including linear regression. We evaluate the performance of each model,
and for the CNNs, we attempt to optimize hyper-parameters and the
segment length.

41

42

Chapter 5

Training the models

For training deep neural networks, we often need expensive hardware if
we want to do it on our own. The way to do it these days is to use cloud
services such as Google or Amazon to run the ML once we have prepared
the dataset and the model. We often pay for these services paid by the
hour, but they are not expensive as long as we remember to shut them
down after use, and only use them when we need to.

Our dataset, however, only contains 55 participants and only a few
days of activity measurements for each participant, so using a service to
train the model would not be necessary. We decided to train them on one
of our personal computers, with an Nvidia GTX 1070 which should be
enough in terms of performance.

This chapter is where we walk through the process of training the
CNN and linear regression models. The performance of the models are
evaluated, and we attempt to optimize them by tweaking the segment
length and other hyper-parameters.

5.1 Linear Regression

We ended up training the regression model for 1000 epochs using a batch
size of 16. Because of the simplicity of the model, a thousand epochs did
not take that much time, and the training loss graph (figure 5.1) shows that
more epochs will not yield any better results. The loss does not reduce
any more after the first 100 epochs for any of the columns. As we said
earlier, we wanted the model to predict flawlessly based on the MADRS
scores, and the loss results from training these are better than for the other
columns.

We used the train_test_split function to create training and testing
data, and because of how few rows there are in this dataset, we used an
80/20 split for training and testing data. 20% of the dataset in the test data
seemed to be good enough for this experiment because we wanted to train
on as many rows as possible. Note that the data elements that were in the

43

Figure 5.1: Regression Training Loss (MSE) by Epoch. The MADRS scores
of participants tell more about their condition than gender, age and days.

test and train splits were different for each column.

5.1.1 Results

The confusion matrices (figure 5.2) display the results when running the
prediction on the test data (and then using them as classifications). We
said we wanted 100% on all metrics for the MADRS score columns, and
this we can see that this is achieved because the model guessed everything
right. The other columns have these performance scores (using condition
as positive and control as negative):

Accuracy

A = TP+TN
TP+TN+FN+FP

- Gender: 7+0
7+0+4+0 = 7/11 ≈ 63%

- Age: 6+1
6+1+3+1 = 7/11 ≈ 63%

- Days: 5+0
5+0+6+0 = 5/11 ≈ 45%

44

Figure 5.2: Confusion Matrices for Regression. For both MADRS1 and
MADRS2, detections were perfect.

45

Precision

P = TP
TP+FP

- Gender: 7
7+0 = 7/7 = 100%

- Age: 6
6+1 = 6/7 ≈ 86%

- Days: 5
5+0 = 5/5 = 100%

Recall

R = TP
TP+FN

- Gender: 7
7+4 = 7/11 ≈ 63%

- Age: 6
6+3 = 6/9 ≈ 67%

- Days: 5
5+6 = 5/11 ≈ 45%

Specificity

S = TN
TN+FP

- Gender: 0
0+0 = 0/0

- Age: 1
1+1 = 1/2 = 50%

- Days: 0
0+0 = 0/0

F1 Score

F1 = 2 · P·R
P+R

- Gender: 2 · 1·0,63
1+0,63 ≈ 77%

- Age: 2 · 0,86·0,67
0,86+0,67 ≈ 75%

- Days: 2 · 1·0,45
1+0,45 ≈ 62%

Looking away from the results of madrs1 and madrs2, the performance
scores tell us that the model is good at predicting that someone is in the
condition group (precision). Other than that, we cannot learn that much

46

from them. Also, we have undefined specificity for both gender and days
because we do not have any predictions for the values required to calculate
them.

However, we learned a lot about ML and linear regression doing this
experiment, and we looked at it more like a warmup for the more complex
models that we built for the next objectives.

5.2 1D CNN: Control vs Condition groups

5.2.1 Training and finding the optimal segment length

Next up was our objective to classify whether a participant belongs to the
control group or the condition group. As we said in the section about
optimizing the model, the segment length is what we thought was going
to impact the result the most. To test this theory, we trained the model to
fit input data created with segment lengths of 1, 2, 4, 8, 16, 24, 48 and 96
hours.

The input data was split using train_test_split so that the training data
was 80% of the total and the rest was going to be used for testing after the
training was complete. We used 40% the training data as validation data,
which made it easy for us to tell if the model was learning from epoch to
epoch or not.

We did the training for each of the eight different input sets for ten
epochs. We used a batch size of 16 and the Adam optimizer with a default
learning rate of 0,001 throughout this experiment. The primary goal here
was to find the best segment length to use, and not to train the models to
be perfect, so these hyper-parameters seemed fine for this purpose. Our
guess before we started with the experiment was that the more hours of
data we used, the better, meaning that 96 hours of data in each segment
was going to give us the best model (from what was possible with only
ten epochs).

Looking at the training history graphs (figure 5.3) for how the training
went epoch by epoch, we noticed that the results were better when
increasing the number of hours up to 48, and then it did not seem to be
any better for 96 hours. This was the case for both training and testing, as
the evaluation graphs (results after testing the model with the test-split -
figure 5.4) also show straight lines from 48 hours to 96 hours. The question
was whether 48 hours was our optimal length, or if we just needed to train
it more.

To find the best segment length, we needed to experiment with more
epochs. We reran the same experiment for 50 epochs, with 48, 72 and 96
hour long segments. However, from the training graph (figure 5.5), we can
see that nothing more was achieved with segments longer than 48 hours.

47

The evaluation data classifications from the model trained to fit 48-
hour segments seen in the confusion matrix (figure 5.6) are close to
perfect. The additional 40 epochs of training reduced the false negative
classifications by a little bit, which was worth the time in our opinion as we
want the value of wrong classifications to be as close to 0 as possible. The
model scored above 0.99 on all classification performance metrics (table
5.1), which is promising.

Accuracy Precision Recall Specificity F1
0.996 0.996 0.998 0.992 0.997

Table 5.1: Performance metrics for control vs condition group classifier.

5.2.2 Cross-validation

To ensure that our model is not overfitting and did not get lucky when
classifying the samples from the testing set, we proceeded to use 3-fold
cross-validation. First, we split the dataset in two like before, into a train
and test set (80/20 split here as well). Then we generated three folds
containing training and validation parts, where for each fold a model was
trained to fit the inputs. Each epoch the model was validated against the
validation split. After training a model for a fold, we evaluated them
by looking at the mean accuracy/loss against the global test split. If the
accuracy was still high and the loss was still low, the model would have a
good chance of doing correct classifications on unseen data.

Fold Loss Accuracy
1 0.06 0.98
2 0.07 0.98
3 0.06 0.98
Mean 0.063 0.98

Table 5.2: 3-Fold Cross validation. Mean accuracy was 0.98 and mean loss
was 0.06.

To make this process quick, we trained the model for each fold only
for ten epochs. The goal was to prove consistency in the model and not
achieve high performance, so it seemed enough. As one can see in the
cross-validation results (table 5.2), we have a mean loss of 0.06 and a mean
accuracy of 0.98, which means that the model is consistently correct in
most classifications.

48

Figure 5.3: Graphs for training loss and accuracy, where we can see the
model’s performance for different segment lengths throughout 10 epochs
of training.

49

Figure 5.4: Evaluation loss and accuracy. We can see how the model
performed when tested against evaluation data. The performance did not
seem to improve with segments longer than 48 hours.

50

Figure 5.5: Graphs for training loss and accuracy, where we can see the
model’s performance for different segment lengths throughout 50 epochs
of training. Using 48 hours long segments was still the best option
(performance did not improve much for longer segments).

51

Control Condition
Predicted Label

C
on

di
tio

n
C

on
tro

l
Tr

ue
 L

ab
el

13 1677

3122 5

Confusion Matrix

600

1200

1800

2400

3000

Figure 5.6: Confusion matrix for testing the classifier on unseen data. After
training the model for 50 epochs, it was able to correctly classify 3122
control group and 1677 condition group segments.

5.2.3 Leaving one participant out

However, the above results were for each segment and label, and not
specific to any participant. Even though we reduced the chance of
overfitting by keeping aside randomized training and testing data, there is
a high chance that the training data contains samples from all participants.
Garcia-Ceja, E. et al. did leave one participant out validation in their paper
[15], which means that for each participant in the dataset, keep them
outside the training data, train on the rest of the participants, then make
predictions on the participant that was left out. Each prediction for the left
out participant can be different, so to determine the final label they used
majority voting (using the most common predicted label).

We proceeded to do the same experiment as Garcia-Ceja, E. et al., as
it would be a good way of comparing our work. For each participant,
we generated input data that did not contain any activity data from the
participant. Then we created a model and trained it to fit the input data
for ten epochs (any more would take too much time considering we had
to train 55 models), and made predictions using majority voting.

Earlier results were almost perfect, so we expected the results of this
experiment to be better than what we can see in the confusion matrix
(figure 5.7). The model did an excellent job of detecting true negatives
(where the correct label and the predicted label is control, but the number
of false positives and false negatives were a bit too high. We could train

52

Control Condition
Predicted Label

C
on

di
tio

n
C

on
tro

l
Tr

ue
 L

ab
el

9 14

25 7

Confusion Matrix

9

12

15

18

21

24

Figure 5.7: Confusion matrix containing detected classes after leave one
participant out experiment. The model was best at classifying participants
in the control group.

Label Accuracy Precision Recall Specificity F1
Control 0.71 0.74 0.78 0.61 0.76
Condition 0.71 0.67 0.61 0.78 0.64
Mean 0.71 0.71 0.70 0.70 0.70

Table 5.3: Performance metrics for leave one participant out experiment.

the models for more than ten epochs and hope for better results, but we
assume it would not be much better because of how little training loss and
accuracy changed after the first ten epochs (as seen in the training graph -
figure 5.5).

5.3 1D CNN: Depression Classes

5.3.1 Training and finding the optimal segment length

The next neural network we trained was for classifying how depressed
the participants were. Depression classes are, as we said before, based on
their MADRS score which is 0 for participants in the control group and
differs between 11 and 28 in the condition group (figure 3.2). We labeled
participants with MADRS score 0 as not depressed, between 11 and 19 as
mildly depressed, and above 20 as moderately depressed.

53

Figure 5.8: Training loss and accuracy for different segment lengths. After
50 epochs we can see that loss and accuracy continues to be better with
longer segments.

54

Figure 5.9: Evaluation loss and accuracy for different segment lengths.
Unlike for the first objective, we continue to gain performance when
increasing the segment length.

55

Figure 5.10: After training the model on 96 hour long segments for 50
epochs, classification on test-data segments is perfect.

Using what we previously discovered from classifying control vs.
condition groups, we knew how we wanted to satisfy this objective. First,
find the optimal segment length, then use the best segment length in cross-
validation, and guarantee that the performance is consistent.

In the previous experiment, there was a clear threshold after segment
lengths of 24 hours where the performance did not improve that much if
increased more (figure 5.3). The results were just a little bit better for 48
than 24 hours and worse for longer segments. The question was whether
the threshold existed for depression classes also, or if we could use longer
segments to achieve better results.

We experimented the same way as before, except that we went straight
for 50 epochs and skipped the shortest segments of 1, 2, 4 and 8 hours, as
we were positive these segments would not be any good. We proceeded
to train segment lengths of 16, 24, 48, 72 and 96 hours. Looking at the
training and testing graphs (figure 5.8), we can see that the results for 96-
hour segments were outstanding. We achieved an accuracy of 100% on the
testing set. The confusion matrix (figure 5.10) shows not a single error in
classification.

5.3.2 Cross-validation

To make sure this was not just lucky, we needed to cross-validate here as
well. We split the dataset into a training and testing set (80%/20%), then
did three-fold cross-validation on the training set, just as before. If all three

56

Fold Loss Accuracy
1 0.04 0.989
2 0.01 0.998
3 0.05 0.985
Mean 0.033 0.991

Table 5.4: 3-Fold Cross validation for this experiment to verify consistency
of the model. All three folds perform well.

folds had similar accuracy and loss, and the mean values were good (close
to 1.0 for accuracy and close to zero for loss), we had achieved a consistent
model, and the model would be fit perfectly, at least for the 55 participants
in the dataset.

We trained the three models for 15 epochs each. We knew that was not
enough to give us 1.0 accuracy (need around 50 epochs for that), but we
aimed for somewhere around 0.98-0.99 for all folds. Looking at the cross-
validation results (table 5.4), we can see that the lowest accuracy was 0.985
and the highest was 0.998. The mean accuracy for all three folds was 0.99,
which is what we wanted to see.

5.3.3 Leaving one participant out

Normal Mild Moderate
Predicted Label

M
od

er
at

e
M

ild
N

or
m

al
Tr

ue
 L

ab
el

7 5 0

9 1 1

31 1 0

Confusion Matrix

0

6

12

18

24

30

Figure 5.11: Confusion matrix containing detected classes after leave one
participant out experiment. The model was only good for detecting
normal participants.

57

Label Accuracy Precision Recall Specificity F1
Normal 0.69 0.66 0.97 0.30 0.79
Mild 0.70 0.14 0.09 0.86 0.11
Moderate 0.76 0.0 0.0 0.98
Mean 0.72 0.30 0.35 0.71 0.30

Table 5.5: Performance metrics for leave one participant out experiment.

We repeated the same experiment from the end of the previous
objective, where we trained on all participants except one that we left for
testing afterward. Looking at the confusion matrix (figure 5.11), the model
seemed to be good at detecting non-depressed participants (F1-score of
0.79), and terrible at everything else (F1-score of 0.11 for mild depression
and the model did not detect any participant with moderate depression).
Overall, we calculated a mean F1-score of 0.30 for this model (see table
5.5).

5.4 1D CNN: MADRS Score Prediction

Now that we have models for classifying both whether a participant
belongs to the control group or the condition group and how depressed
participants are, we can get started on our last objective which is
predicting the MADRS score of our participants.

Training a prediction model is significantly more computationally
heavy than training a classification model. We noticed this as soon as
we started the training when the loss started on around 100 which is
very high, and prediction on test data after a few epochs was poor. In
classification, we were used to training and validation loss between 1 and
0 and reaching a high accuracy after only a few epochs. We had to train for
some epochs to compare segment lengths, which would only show which
are best in the first epochs.

5.4.1 Segment length

The plan was to perform 100 epochs of training for different segment
lengths. We used the same segment lengths as we did for the previous
model: 16, 24, 48, 72 and 96 hours. Since the two classification experiments
had a different optimal segment length, it was an interesting question
whether this was the case for MADRS prediction as well.

After finding the best segment length, we used the one with the most
promising results to train the model for a more extended period. We
wanted to see how good performance we could achieve if we increased
the number of epochs by a lot and let it learn overnight.

58

Fold Mean Squared Error
1 30.18
2 33.61
3 30.40
Mean 31.40

Table 5.6: 3-Fold Cross validation for the prediction model. Only small
variation between the folds tells us that the model is consistent enough.

5.4.2 Cross-validation

Before training the model to be as perfect as possible, we did cross-
validation to check its consistency. Just as we had done before, we
performed 3-fold cross-validation. For each fold, we trained the model
for 100 epochs to fit the corresponding training data and validated on
the corresponding validation data. Then, after a model had completed its
training, it was evaluated against the global test data (same procedure as
the two previous experiments). Finally, the Mean Squared Error for each
fold was saved and compared with other folds to see how they averaged.

5.4.3 Hyper-parameters

From the training and evaluation graphs (figure 5.12), it seemed like the
best was to use 48-hour segments. We do not know what is best for
training the model further, but this was what we settled on using.

Also, unlike the classification experiments, we experimented more
with hyper-parameters. The Adam optimizer with default learning rate
did the job for classification, but now that we had to train for thousands
of epochs, these parameters had the potential to affect the results by a
lot. We proceeded to compare three different optimizers: Adam, SGD,
and Nadam. We had to change the learning rate to get SGD to work
(the default which is 0.01 [22] resulted in NAN MSE for some reason).
All optimizers were set to use a learning rate of 0.0001. The optimizer
comparison graph (figure 5.13) shows that Adam was the best choice for
MADRS prediction as well.

5.4.4 Training the model

To summarize, this model was trained to fit segments of length 48 hours
(2880 minutes). It was trained with the optimizer Adam using a learning
rate of 0.0001. We did not change the batch size; we kept this at 16. We
split the dataset into 60% training data and 40% testing data. Based on the
time it took to train each of the 100-epoch experiments, we calculated that
around 2700 epochs of training would be a realistic amount.

59

Figure 5.12: Training the MADRS prediction model for 100 epochs with
different segment lengths. The model trained on 48-hour segments
performed best.

60

Figure 5.13: Training the models with 48-hour segments for 100 epochs,
comparing different optimizers. The Adam optimizer performed signific-
antly better than SGD and Nadam.

When we checked for results the next day, we could see the training
had resulted in a mean squared error approximately at 4.0 (on validation
data). The training graph (figure 5.14) shows that further training would
not necessarily give any better results. Predictions on the test data (figure
5.15) looked very promising. The graph shows correct MADRS scores in
the x-axis and the predicted MADRS scores in the y-axis. Each blue dot is
a prediction, and the dotted black line is a linear guideline for the perfect
predictions (where the predicted and correct scores are the same).

61

0 500 1000 1500 2000 2500
Epoch

0

10

20

30

40

50

60

70

80

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Loss

Figure 5.14: MADRS Prediction: Training history throughout 2700 epochs.
The MSE is approximately 4.0 after 2000 epochs.

0 5 10 15 20 25
Correct

10

0

10

20

30

Pr
ed

ict
ed

MADRS Score Prediction

Figure 5.15: Running the MADRS prediction model on unseen segments.
The predictions are not perfect, but they somewhat follow the line where
predictions and correct MADRS scores are the same.

62

5.5 Summary

In this chapter, we have presented how we trained each of our ML
models. With linear regression, we got the model to detect with 1.0
accuracy whether participants are depressed or not when training on the
madrs1 and madrs2 values. We did not learn much from training on other
columns from the demographic dataset, other than the fact that the model
was good at detecting that participants were depressed when it was also
the correct label (precision).

From the CNN detecting control/condition groups, we learned that 48-
hour long segments (2880 minutes) resulted in the highest performance
with an F1-score of 0.997 when evaluated against the test-split of the
dataset. Leave one participant out evaluation resulted in an F1-score of
0.70. The difference between the performance before and after this type
of evaluation is a topic for the discussion in the next chapter.

The optimal segment length was different for the CNN that detects
depression classes. We achieved 1.0 evaluation accuracy after 50 epochs
of training on segments of length 96 hours (5760 minutes). However, in
with the leave one participant out experiment, we achieved only an average
accuracy of 0.72 and F1-score of 0.30.

MADRS score prediction happened with a different CNN model, but
it was similar to the first objective when it came to the optimal segment
length of 48 hours. For this model, we also compared optimizers, finding
that Adam was the best choice. We achieved a validation and evaluation
loss (MSE) of approximately 4.0 after training the model.

63

64

Part III

Conclusion

65

Chapter 6

Discussion

6.1 Convolutional neural networks for mental
health detection

We have evaluated how CNNs performed on motor activity measure-
ments from bipolar and unipolar depressed patients (condition group) to-
gether with non-depressed control participants. We completed our object-
ives of creating classification models for detecting whether a participant
belongs to the control group or the condition group, the depression class
of a participant (not depressed, mild depression or moderately depressed),
and finally a prediction model for estimating the MADRS score of parti-
cipants.

We did not leave one participant out on the last model, because it had
to be trained for at least 1500 epochs before the mean squared error was
acceptable (see figure 5.14). Training took several hours, and multiplying
that with 55 (one training session for each participant), the experiment
would take days. We consider this to be a weakness in our work and it
makes the MADRS prediction model less trustworthy.

6.1.1 Limited number participants

The dataset consists of only 55 participants, which is very limited. It was a
good set of data for us in our thesis, but in order to use it in the real world,
more participants is a requirement. Measurements from more people and
different ethnicities and age groups around the world would significantly
increase the viability of the dataset. We suggest collecting more data before
applying this research anywhere in the real world.

We think that the number of participants is the main issue that
made the classifier only decent when leaving one participant out. The
difference between people is far too big for our CNNs to handle with a
dataset containing such few participants. We divided the participants into
control/condition group. The condition group itself contains participants

67

who suffer from one type of depression, regardless of which type of
bipolar disorder (or unipolar depressed) they are diagnosed with. With
data from more people, the network could potentially pick up and learn
more similarities between people within the same group, and be able to
classify with higher performance.

6.1.2 Input data and hyper-parameters

Detecting control/condition group was our first experiment, and we
found that for our dataset the optimal amount of data inside each segment
was 2880 (48 hours in minutes). Following our calculations, the optimal
segment length was 5760 (96 hours in minutes) for the next experiment
where the objective was to detect depression classes. When we predicted
MADRS scores, the optimal segment length was 2880 once again.

We are aware of the fact that our calculations only apply to the
specific segment lengths tested, and testing the performance using longer
segments may have resulted with something else. However, we did not
prioritize to do more of such experiments, as the training time would
increase too much if we were to continue using the hardware that we used
in our other experiments.

It is also possible to tweak hyper-parameters more than we ended
up doing. In the first two experiments, we did not touch anything else
than the length of the input segments and the number of epochs. It was
first in the prediction model that we started experimenting with different
optimizers and the learning rate parameter.

We suggest that future research experiment more with hyper-
parameters. However, it is difficult to know whether tweaking hyper-
parameters is a potential fix to the poor performance in the leave one par-
ticipant out experiment. We assume it would not help that much because
the training accuracy always ended up above 0.99.

6.1.3 Compared to earlier research

Earlier research on the topic of classifying depression is different from
this thesis, as most of them compare how different types of ML performs
classification. In contrast, we focused on one specific type of supervised
learning: CNNs, which we used to complete the different objectives.
Instead of creating baseline models and comparing our results to them,
we compare our work to what Garcia-Ceja, E. et al. achieved on the same
dataset [15] (we only focus on our first objective in this comparison, as it
is the only experiment they also performed).

Overall, we achieved an F1-score of 0.70 for classifying control/condi-
tion group, which is slightly better than the F1-scores from the research
of Garcia-Ceja, E. et al. ([15]) without oversampling. They achieved 0.66

68

for the deep neural network and 0.67 for the random forest. When us-
ing SMOTE as a technique for generating more data, they increased their
random forest F1-score to 0.73. A suggestion for future experiments is to
attempt using the same sampling strategies as Garcia-Ceja, E. et al. on the
data passed into our CNN, and check if the performance gets any better.

Our CNN performed a little bit better than the random forest and the
deep neural network of Garcia-Ceja, E. et al. ([15]), but it was not as good
as we hoped considering the results of other experiments. The question
of whether CNNs as a ML approach is a reliable option to use in mental
health remains unanswered, as our results were only promising and not
anywhere close to perfect. Nonetheless, our opinion is that it was a step in
the right direction, and we hope researchers continue to explore this type
of ML.

Garcia-Ceja, E. et al. also suggested future research to explore
classification based on the MADRS scale, which we implemented for
our second objective. The results were similar to our first experiment;
not so good performance overall but able to classify most non-depressed
participants correctly.

6.2 Real world applications

The field of mental health is still at an early stage when it comes to ML.
Several researchers have done research comparing different approaches
and algorithms to see which of them work better than others for detecting
mental diagnoses. The results of these research papers are promising,
but further work is necessary as the goal is to trust the decisions of ML
someday.

The performance was better when training with data from all patients
(accuracy scores above 0.99), which tells us that the models were able to
pick up features successfully. However, we learned from the leave one
participant out experiment that the difference between people’s activity
behavior is too significant for those in the condition group (F1-score was
only 0.64).

Because of this, personal activity datasets is possibly a better way of
using CNNs. If we continuously save motor activity for each participant
and train a model specific to each participant, then the network can learn
all there is to know about one person and for example, be used to detect
bipolar state changes. Combined with the research of Grünerbl, A. et al.,
where they managed to identify state changes with an accuracy of 0.76
using phone call logs and microphone data [16], development of more
accurate detection systems could be possible.

69

6.2.1 Privacy and ethical concerns

When research in the field of MHMS is where we want it, and starts to get
used in hospitals and institutions, we need to take the storing procedures
of the data into account. Inputs and outputs of these systems are sensitive
data, and we should treat them in the same way as any other health record.
Unauthorized access to this kind of data can have severe consequences for
patients, and also for whoever responsible for storing it.

ML technology is getting better and better with improved hardware
and continuous research. However, the use cases of it are not only those
with a legitimate purpose. We believe sophisticated cyber attackers are
going to start using Artificial Intelligence for their cause, which makes the
task of keeping data safe sound more complicated than it is today.

Personal activity measurements are sensitive data, as one can use
them to gain knowledge about the participants. Daily routines like sleep
schedules and at which times someone leaves for work, what time of the
day they go to the gym are all examples of data we would not like to have
in the hands of a potential stalker. The current mental state of a bipolar
patient can be advantageous to know for doctors and psychiatrists, but
also for someone trying to exploit their weaknesses.

A question is whether we should trust a machine when it predicts that
a person has a mental illness. Until the day machines are proven better at
this kind of work, we think doctors should use such predictions as a tool
to decrease their workload, so that they can help more people. ML based
tools created should not be the only factor of diagnoses, although they will
make the difference between each doctor/institution less significant, as
they will most probably contain more data than each doctor’s individual
experience.

70

Chapter 7

Conclusion and Future work

7.1 Summary

We presented both a medical and technical background in chapter 2, in
addition to mentioning related work to our thesis. We described both
bipolar disorder and Montgomery-Åsberg Depression Rating Scale as part
of the medical background. It was essential to gain knowledge about
these topics because as students in Computer Science, our knowledge was
limited. The technical background contains an introduction to ML, which
is both theoretical and practical. In both the examples in this part and
our model implementations, we used Keras, a ML framework in Python,
because of its simplicity.

In chapter 3, we described the dataset, our primary objectives and how
we structured our data so that a CNN would be able to learn from it. The
input data consisted of time-sliced segments mapped to the corresponding
element in the output data. The output data contained one of three target
values (from the demographics part of the dataset), which depended on
the objective. We also touched upon different performance metrics that
we used later in classification experiments.

In chapter 4, we introduced a regression test to see if we could learn
something from any column in the demographics dataset. As we expected,
only the MADRS score had a relation to whether a participant was in the
control or condition group. Then we proceeded to implement our CNNs.
We built three different models for our three primary objectives (the first
two models were very similar, as only the number of output possibilities
changed - depression level instead of control/condition). The last model
was different in several layers, as it was built to predict MADRS values.

We presented the training results in chapter 5. For each objective
(including linear regression), we described the hyper-parameters we used
when training the models. For the CNNs, we started out finding the
optimal segment length for the input data before we trained the models.
Then, we calculated performance scores for the trained models and

71

did cross-validation to ensure the consistency of the models. For the
classifiers, we also did a final experiment where we left participants out
one by one and tested the models’ capabilities to detect that particular
participant.

We discussed our work in chapter 6 and came up with several issues
that explain why our models performed the way they did. The number of
participants is limited, which is the main issue that we think reduces the
detection capabilities of the models when it comes to testing on completely
untouched participants. Further improvements can be experimenting
more with the segment lengths (input data) and other hyper-parameters.

We compared our work to the research Garcia-Ceja, E. et al. performed
on the same dataset ([15]) and found that the difference between their
decision tree and neural network and our CNN was not that significant
as we thought it would be. We discussed real-world use cases for CNNs
in mental health. The excellent performance from when we included
data from all participants in training suggests that this kind of ML would
perform better in detection within personal datasets.

7.2 Contributions and Conclusions

In this thesis, we have presented applied CNNs to the detection of
depression, and our goal was to find whether CNNs as a type of ML
applied on motor activity data is a valid approach to this. The dataset
we applied ML to is called Depresjon [13], and is a minute by minute
log of motor activity for 23 depressed and 32 non-depressed participants.
Furthermore, we divided our goal into three objectives, and we built a
CNN for each of them.

For the first objective, we created a CNN model that can classify with
promising performance (F1-score of 0.70) whether a participant belongs
to the condition group (bipolar and unipolar depressed patients) or the
control group (healthy participants).

Another CNN, for the second objective, detects one of three different
levels of depression based on MADRS scores with the same data as
input. We labeled participants in the control group as non-depressed
and divided participants in the condition group into mildly depressed
(MADRS between 7 and 19) and moderately depressed (MADRS between
20 and 34). Then we trained the model to detect this label for participants.
We achieved an overall F1-score of 0.3 for this objective, which has a
significant room for improvement.

For the third objective, we built a prediction model that predicts the
MADRS score of participants, again using the same motor activity dataset
as input. We did not leave one participant out to test on as we did in
the other objectives, as we did not have the computing power to train
the model 55 times. Instead, we trained one model for 2700 epochs and

72

achieved a mean squared error of approximately 4.0.
We found that our models performed almost flawlessly (F1-scores

above 0.99 for classification and mean squared error of approximately 4.0
for MADRS prediction) when training on data that included participants
that we also tested on. There is a significant difference between these
results and the leave one participant out experiments. The difference
indicates that CNNs can be more usefully applied to personal motor
activity datasets, where the goal is, for example, to detect current mental
states of bipolar patients.

Usage of our depression detection system as it is today needs to happen
together with experts in mental health. However, with the promising
results supporting the first objective (F1-score of 0.70), we believe a better
performing system with the same CNN can be developed if the dataset is
optimized and collected further.

7.3 Future work

First and foremost, leaving participants out of training one by one, as we
did for the first two objectives, is something we want future researchers
to also use as a performance evaluation. It is arguably the most accurate
way of checking the consistency of a trained model. However, it may also
be time-consuming depending on the complexity of the model and input
data (as previously stated about our MADRS prediction model). In those
cases, we suggest leaving multiple participants out instead of one (K-fold
cross-validation on participants).

We did not find that CNNs were any better than decision trees on the
kind of data that we provided to the models. Because the complexity of a
CNN is higher, we want future researchers to make deeper CNN models
and experiment with hyper-parameters.

Researchers have experimented with different kinds of data in the
field of mental health. Motor activity data [15, 32], Instagram images
[34], Twitter posts [31], phone call logs [12, 16], text messages and voice
data from microphones [16] are examples of data used in earlier research.
Diversity in the type of data is something we want to see in future research
as well. We suggest including more participants, which we think would
improve the performance significantly.

It can be useful to explore and compare different ML approaches with
CNNs. Garcia-Ceja, E. et al. mentioned classification algorithms such as
recurrent neural networks and hidden Markov models to be investigated
in future research [15]. We did not use these algorithms in this thesis, and
therefore leave them as a suggestion to future researchers.

73

74

Bibliography

[1] Matthias C Angermeyer and Herbert Matschinger. ‘Social represent-
ations of mental illness among the public’. In: The image of madness:
The public facing mental illness and psychiatric treatment (1999), pp. 20–
28.

[2] R.H. Belmaker. ‘Bipolar Disorder’. In: New England Journal of
Medicine 351.5 (2004). PMID: 15282355, pp. 476–486. DOI: 10.1056/
NEJMra035354. eprint: https://doi.org/10.1056/NEJMra035354. URL:
https://doi.org/10.1056/NEJMra035354.

[3] James Bergstra and Yoshua Bengio. ‘Random search for hyper-
parameter optimization’. In: Journal of Machine Learning Research
13.Feb (2012), pp. 281–305.

[4] Jan O Berle et al. ‘Actigraphic registration of motor activity reveals a
more structured behavioural pattern in schizophrenia than in major
depression’. In: BMC research notes 3.1 (2010), p. 149.

[5] Bipolar 1 Disorder and Bipolar 2 Disorder: What Are the Differences?
Accessed: 14.03.2018. URL: https://www.healthline.com/health/bipolar-
disorder/bipolar-1-vs-bipolar-2.

[6] Bipolar disorder statistics. Accessed: 14.03.2018. URL: https : / /www .
statisticbrain.com/bipolar-disorder-statistics/.

[7] Leo Breiman. ‘Random forests’. In: Machine learning 45.1 (2001),
pp. 5–32.

[8] Common Loss functions in machine learning. Accessed: 01.03.2019. URL:
https ://towardsdatascience.com/common- loss- functions- in-machine-
learning-46af0ffc4d23.

[9] Convolution - Oxford Definition. Accessed: 02.04.2019. URL: https://en.
oxforddictionaries.com/definition/convolution.

[10] Pieter-Tjerk De Boer et al. ‘A tutorial on the cross-entropy method’.
In: Annals of operations research 134.1 (2005), pp. 19–67.

[11] Decision Tree. Accessed: 08.05.2018. URL: http://www.saedsayad.com/
decision_tree.htm.

75

http://dx.doi.org/10.1056/NEJMra035354
http://dx.doi.org/10.1056/NEJMra035354
https://doi.org/10.1056/NEJMra035354
https://doi.org/10.1056/NEJMra035354
https://www.healthline.com/health/bipolar-disorder/bipolar-1-vs-bipolar-2
https://www.healthline.com/health/bipolar-disorder/bipolar-1-vs-bipolar-2
https://www.statisticbrain.com/bipolar-disorder-statistics/
https://www.statisticbrain.com/bipolar-disorder-statistics/
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://en.oxforddictionaries.com/definition/convolution
https://en.oxforddictionaries.com/definition/convolution
http://www.saedsayad.com/decision_tree.htm
http://www.saedsayad.com/decision_tree.htm

[12] Maria Faurholt-Jepsen et al. ‘Behavioral activities collected through
smartphones and the association with illness activity in bipolar
disorder’. In: International Journal of Methods in Psychiatric Research
25.4 (2016), pp. 309–323. DOI: 10 . 1002 /mpr . 1502. eprint: https : / /
onlinelibrary. wiley. com/doi / pdf / 10 . 1002 /mpr . 1502. URL: https : / /
onlinelibrary.wiley.com/doi/abs/10.1002/mpr.1502.

[13] Enrique Garcia-Ceja et al. ‘Depresjon: a motor activity database of
depression episodes in unipolar and bipolar patients’. In: Proceedings
of the 9th ACM Multimedia Systems Conference on - MMSys ’18 (2018),
pp. 472–477. DOI: 10.1145/3204949.3208125. URL: http://dl.acm.org/
citation.cfm?doid=3204949.3208125.

[14] Enrique Garcia-Ceja et al. ‘Mental health monitoring with mul-
timodal sensing and machine learning: A survey’. In: Pervasive and
Mobile Computing 51 (2018), pp. 1–26. ISSN: 1574-1192. DOI: https :
//doi.org/10.1016/j.pmcj.2018.09.003. URL: http://www.sciencedirect.
com/science/article/pii/S1574119217305692.

[15] Enrique Garcia-Ceja et al. ‘Motor Activity Based Classification of
Depression in Unipolar and Bipolar Patients’. In: Proceedings -
IEEE Symposium on Computer-Based Medical Systems 2018-June (2018),
pp. 316–321. ISSN: 10637125. DOI: 10.1109/CBMS.2018.00062.

[16] A. Grünerbl et al. ‘Smartphone-Based Recognition of States and
State Changes in Bipolar Disorder Patients’. In: IEEE Journal of
Biomedical and Health Informatics 19.1 (Jan. 2015), pp. 140–148. ISSN:
2168-2194. DOI: 10.1109/JBHI.2014.2343154.

[17] N. Herrmann et al. ‘The Sunnybrook Stroke Study’. In: Stroke 29.3
(1998), pp. 618–624. DOI: 10 .1161/01 .STR.29 .3 .618. eprint: https :
//www.ahajournals . org/doi /pdf /10 . 1161/01 .STR .29 . 3 . 618. URL:
https://www.ahajournals.org/doi/abs/10.1161/01.STR.29.3.618.

[18] Wenjian Hu, Rajiv R. P. Singh and Richard T. Scalettar. ‘Discovering
phases, phase transitions, and crossovers through unsupervised
machine learning: A critical examination’. In: Phys. Rev. E 95 (6 June
2017), p. 062122. DOI: 10.1103/PhysRevE.95.062122. URL: https://link.
aps.org/doi/10.1103/PhysRevE.95.062122.

[19] T. Ince et al. ‘Real-Time Motor Fault Detection by 1-D Convolutional
Neural Networks’. In: IEEE Transactions on Industrial Electronics 63.11
(Nov. 2016), pp. 7067–7075. ISSN: 0278-0046. DOI: 10.1109/TIE.2016.
2582729.

[20] Introduction to 1D Convolutional Neural Networks. Accessed: 07.12.2018.
URL: https://blog.goodaudience.com/introduction-to-1d-convolutional-
neural-networks-in-keras-for-time-sequences-3a7ff801a2cf.

76

http://dx.doi.org/10.1002/mpr.1502
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mpr.1502
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mpr.1502
https://onlinelibrary.wiley.com/doi/abs/10.1002/mpr.1502
https://onlinelibrary.wiley.com/doi/abs/10.1002/mpr.1502
http://dx.doi.org/10.1145/3204949.3208125
http://dl.acm.org/citation.cfm?doid=3204949.3208125
http://dl.acm.org/citation.cfm?doid=3204949.3208125
http://dx.doi.org/https://doi.org/10.1016/j.pmcj.2018.09.003
http://dx.doi.org/https://doi.org/10.1016/j.pmcj.2018.09.003
http://www.sciencedirect.com/science/article/pii/S1574119217305692
http://www.sciencedirect.com/science/article/pii/S1574119217305692
http://dx.doi.org/10.1109/CBMS.2018.00062
http://dx.doi.org/10.1109/JBHI.2014.2343154
http://dx.doi.org/10.1161/01.STR.29.3.618
https://www.ahajournals.org/doi/pdf/10.1161/01.STR.29.3.618
https://www.ahajournals.org/doi/pdf/10.1161/01.STR.29.3.618
https://www.ahajournals.org/doi/abs/10.1161/01.STR.29.3.618
http://dx.doi.org/10.1103/PhysRevE.95.062122
https://link.aps.org/doi/10.1103/PhysRevE.95.062122
https://link.aps.org/doi/10.1103/PhysRevE.95.062122
http://dx.doi.org/10.1109/TIE.2016.2582729
http://dx.doi.org/10.1109/TIE.2016.2582729
https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf
https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf

[21] Anthony F Jorm et al. ‘“Mental health literacy”: a survey of the
public’s ability to recognise mental disorders and their beliefs about
the effectiveness of treatment’. In: Medical journal of Australia 166.4
(1997), pp. 182–186.

[22] Keras documentation. Accessed: 15.03.2018. URL: https://keras.io.

[23] Diederik P Kingma and Jimmy Ba. ‘Adam: A method for stochastic
optimization’. In: arXiv preprint arXiv:1412.6980 (2014).

[24] S. Kiranyaz, T. Ince and M. Gabbouj. ‘Real-Time Patient-Specific
ECG Classification by 1-D Convolutional Neural Networks’. In:
IEEE Transactions on Biomedical Engineering 63.3 (Mar. 2016), pp. 664–
675. ISSN: 0018-9294. DOI: 10.1109/TBME.2015.2468589.

[25] Sotiris B Kotsiantis, I Zaharakis and P Pintelas. ‘Supervised machine
learning: A review of classification techniques’. In: Emerging artificial
intelligence applications in computer engineering 160 (2007), pp. 3–24.

[26] Yann LeCun, Yoshua Bengio and Geoffrey Hinton. ‘Deep learning’.
In: nature 521.7553 (2015), p. 436.

[27] Alban Maxhuni et al. ‘Classification of bipolar disorder episodes
based on analysis of voice and motor activity of patients’. In:
Pervasive and Mobile Computing 31 (2016), pp. 50–66. ISSN: 15741192.
DOI: 10.1016/j.pmcj.2016.01.008. URL: http://dx.doi.org/10.1016/j.
pmcj.2016.01.008.

[28] Douglas C Montgomery, Elizabeth A Peck and G Geoffrey Vining.
Introduction to linear regression analysis. Vol. 821. John Wiley & Sons,
2012.

[29] S.A. Montgomery and Marie Åsberg. ‘A New Depression Scale
Designed to be Sensitive to Change’. In: Br J Psychiatry 134 (May
1979), pp. 382–389.

[30] Peter Morgan. ‘Building Artificial General Intelligence’. In: InfoQ
(Apr. 2019). URL: https://www.infoq.com/presentations/general-ai-ml.

[31] Danielle Mowery et al. ‘Towards Automatically Classifying De-
pressive Symptoms from Twitter Data for Population Health’. In:
Proceedings of the Workshop on Computational Modeling of People’s
Opinions, Personality, and Emotions in Social Media (PEOPLES) (2016),
pp. 182–191. URL: http://liwc.wpengine.com/.

[32] J. T. O’Brien et al. ‘A study of wrist-worn activity measurement
as a potential real-world biomarker for late-life depression’. In:
Psychological Medicine 47.1 (2017), pp. 93–102. DOI: 10 . 1017 /
S0033291716002166. URL: https : / / www . cambridge . org / core /
journals / psychological - medicine / article / study - of - wristworn - activity -
measurement-as-a-potential-realworld-biomarker-for-latelife-depression/
FDED5263F0CA73D6CCFA7A9E08AD159F.

77

https://keras.io
http://dx.doi.org/10.1109/TBME.2015.2468589
http://dx.doi.org/10.1016/j.pmcj.2016.01.008
http://dx.doi.org/10.1016/j.pmcj.2016.01.008
http://dx.doi.org/10.1016/j.pmcj.2016.01.008
https://www.infoq.com/presentations/general-ai-ml
http://liwc.wpengine.com/
http://dx.doi.org/10.1017/S0033291716002166
http://dx.doi.org/10.1017/S0033291716002166
https://www.cambridge.org/core/journals/psychological-medicine/article/study-of-wristworn-activity-measurement-as-a-potential-realworld-biomarker-for-latelife-depression/FDED5263F0CA73D6CCFA7A9E08AD159F
https://www.cambridge.org/core/journals/psychological-medicine/article/study-of-wristworn-activity-measurement-as-a-potential-realworld-biomarker-for-latelife-depression/FDED5263F0CA73D6CCFA7A9E08AD159F
https://www.cambridge.org/core/journals/psychological-medicine/article/study-of-wristworn-activity-measurement-as-a-potential-realworld-biomarker-for-latelife-depression/FDED5263F0CA73D6CCFA7A9E08AD159F
https://www.cambridge.org/core/journals/psychological-medicine/article/study-of-wristworn-activity-measurement-as-a-potential-realworld-biomarker-for-latelife-depression/FDED5263F0CA73D6CCFA7A9E08AD159F

[33] Performance Metrics for Classification problems in Machine Learning.
Accessed: 07.02.2019. URL: https : / / medium . com / greyatom /
performance -metrics - for - classification - problems - in -machine - learning -
part-i-b085d432082b.

[34] Andrew G Reece and Christopher M Danforth. ‘Classification:
Psychological and Cognitive Sciences Computer Science’. In: (2017),
pp. 1–34. ISSN: 21931127. DOI: 10 . 1140/epjds / s13688 - 017 - 0110 - z.
arXiv: 1608.03282. URL: https://arxiv.org/ftp/arxiv/papers/1608/1608.
03282.pdf.

[35] Charissa Ann Ronao and Sung-Bae Cho. ‘Human activity recogni-
tion with smartphone sensors using deep learning neural networks’.
In: Expert Systems with Applications 59 (2016), pp. 235–244. ISSN: 0957-
4174. DOI: https://doi .org/10.1016/j .eswa.2016.04.032. URL: http:
//www.sciencedirect.com/science/article/pii/S0957417416302056.

[36] Nitish Srivastava et al. ‘Dropout: a simple way to prevent neural
networks from overfitting’. In: The Journal of Machine Learning
Research 15.1 (2014), pp. 1929–1958.

[37] D. Steinkraus, I. Buck and P. Y. Simard. ‘Using GPUs for machine
learning algorithms’. In: Proceeding of Eighth International Conference
on Document Analysis and Recognition (ICDAR’05). Aug. 2005, 1115–
1120 Vol. 2. DOI: 10.1109/ICDAR.2005.251.

[38] ‘The burden of depression’. English. In: Nature 515.7526 (2014).
Copyright - Copyright Nature Publishing Group Nov 13, 2014; Last
updated - 2017-11-21; CODEN - NATUAS, p. 163. URL: https : / /
search-proquest-com.ezproxy.uio.no/docview/1628572489?accountid=
14699.

[39] Eric J Topol. ‘High-performance medicine: the convergence of
human and artificial intelligence.’ In: Nature medicine 25.1 (2019),
pp. 44–56. ISSN: 1546-170X. DOI: 10.1038/s41591-018- 0300-7. URL:
http://www.ncbi.nlm.nih.gov/pubmed/30617339.

[40] A. M. Turing. ‘On computable numbers, with an application to the
entscheidungsproblem. a correction’. In: Proceedings of the London
Mathematical Society s2-43.1 (1938), pp. 544–546. ISSN: 1460244X. DOI:
10.1112/plms/s2-43.6.544.

[41] Xiaojin Zhu and Andrew B Goldberg. ‘Introduction to semi-
supervised learning’. In: Synthesis lectures on artificial intelligence and
machine learning 3.1 (2009), pp. 1–130.

78

https://medium.com/greyatom/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
https://medium.com/greyatom/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
https://medium.com/greyatom/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
http://dx.doi.org/10.1140/epjds/s13688-017-0110-z
http://arxiv.org/abs/1608.03282
https://arxiv.org/ftp/arxiv/papers/1608/1608.03282.pdf
https://arxiv.org/ftp/arxiv/papers/1608/1608.03282.pdf
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2016.04.032
http://www.sciencedirect.com/science/article/pii/S0957417416302056
http://www.sciencedirect.com/science/article/pii/S0957417416302056
http://dx.doi.org/10.1109/ICDAR.2005.251
https://search-proquest-com.ezproxy.uio.no/docview/1628572489?accountid=14699
https://search-proquest-com.ezproxy.uio.no/docview/1628572489?accountid=14699
https://search-proquest-com.ezproxy.uio.no/docview/1628572489?accountid=14699
http://dx.doi.org/10.1038/s41591-018-0300-7
http://www.ncbi.nlm.nih.gov/pubmed/30617339
http://dx.doi.org/10.1112/plms/s2-43.6.544

Appendices

79

Appendix A

Source code

Source code used in the thesis is hosted at https://github.com/joakimif/
conv1d-depression. However, simplified versions of the code are presented
on the next pages.

81

https://github.com/joakimif/conv1d-depression
https://github.com/joakimif/conv1d-depression

A.1 Create segments and labels

1 def create_segments_and_labels(segment_length, output_classes=2, step=60):
2 scores = pd.read_csv(’scores.csv’)
3 scores[’afftype’].fillna(0, inplace=True)
4

5 segments = []
6 labels = []
7

8 for person in scores[’number’]:
9 p = scores[scores[’number’] == person]

10 df_activity = pd.read_csv(f’{person}.csv’)
11

12 for i in range(0, len(df_activity) - segment_length, step):
13 segment = df_activity[’activity’].values[i : i + segment_length]
14 segments.append([segment])
15

16 if p[’afftype’].values[0] == 0:
17 labels.append(0)
18 else:
19 labels.append(1)
20

21 segments = np.asarray(segments).reshape(-1, segment_length, 1)
22 segments = segments.reshape(segments.shape[0], segment_length)
23

24 labels = to_categorical(np.asarray(labels), output_classes)
25

26 return segments, labels

Code A.1: This function reads scores.csv, and generates one list of time
sliced sequences and one list (labels) of the corresponding participants
group (control/condition). It also makes the list of labels into a categorical
array so that it can be used in classification.

82

A.2 Linear regression model

1 def regression_model():
2 model = Sequential()
3 model.add(Dense(5, input_dim=1, activation=’relu’))
4 model.add(Dense(1))
5

6 model.compile(loss=’mse’, optimizer=’adam’, metrics=[’mse’])
7 return model

Code A.2: Linear Regression Model using Keras. The model contains two
dense layers; one for the inputs and another for the outputs.

83

A.3 Classification CNN

1 def create_classification_model(L, n_output_layers):
2 model = Sequential()
3

4 model.add(Reshape((L, 1), input_shape=(L,)))
5 model.add(Conv1D(100, 10, activation=’relu’, input_shape=(L, 1)))
6 model.add(Conv1D(100, 10, activation=’relu’))
7 model.add(MaxPooling1D(2))
8 model.add(Conv1D(160, 10, activation=’relu’))
9 model.add(Conv1D(160, 10, activation=’relu’))

10 model.add(GlobalAveragePooling1D())
11 model.add(Dropout(0.5))
12 model.add(Dense(n_output_layers, activation=’softmax’))
13

14 model.compile(loss=’categorical_crossentropy’,
15 optimizer=’adam’,
16 metrics=[’accuracy’])
17

18 return model

Code A.3: 1D CNN Model for Classification. A total of four convolutional
layers together with pooling compiled with Categorical Crossentropy
enables the model to classify.

84

A.4 Prediction CNN

1 def create_prediction_model(L):
2 model = Sequential()
3

4 model.add(Reshape((L, 1), input_shape=(input_shape,)))
5 model.add(Conv1D(128, 2, activation=’relu’, input_shape=(L, 1)))
6 model.add(MaxPooling1D(pool_size=2, strides=1))
7 model.add(Conv1D(64, 2, activation=’relu’))
8 model.add(GlobalAveragePooling1D())
9 model.add(Flatten())

10 model.add(Dense(10, activation=’relu’))
11 model.add(Dense(1))
12

13 model.compile(loss=’mean_squared_error’,
14 optimizer=’adam’,
15 metrics=[’mse’])
16

17 return model

Code A.4: 1D CNN Model for Prediction. The layers are changed to be
able to predict a value instead of performing classification. The model
is compiled with the loss function Mean Squared Error, and uses the
optimizer Adam

85

	I Introduction
	Introduction
	Motivation
	Thesis Overview
	Thesis outline

	Background
	Mental health
	Depression Rating: MADRS
	Bipolar Disorder

	Machine learning
	Machine learning strategies
	Supervised learning
	Unsupervised learning
	Semi-supervised learning

	Machine learning approaches
	Decision tree learning
	Deep Neural Networks

	Related work
	Mental Health Monitoring Systems
	Convolutional Neural Networks

	Summary

	II Methodology
	Planning and Preparing Data
	The dataset
	Data Preprocessing
	Performance
	Loss functions and Optimizers
	Classification metrics
	Training and testing data

	Summary

	Implementation of Machine Learning Models
	Linear Regression
	1D Convolutional Neural Network
	Convolution
	Creating the Model

	Optimizing the models
	Summary

	Training the models
	Linear Regression
	Results

	1D CNN: Control vs Condition groups
	Training and finding the optimal segment length
	Cross-validation
	Leaving one participant out

	1D CNN: Depression Classes
	Training and finding the optimal segment length
	Cross-validation
	Leaving one participant out

	1D CNN: MADRS Score Prediction
	Segment length
	Cross-validation
	Hyper-parameters
	Training the model

	Summary

	III Conclusion
	Discussion
	Convolutional neural networks for mental health detection
	Limited number participants
	Input data and hyper-parameters
	Compared to earlier research

	Real world applications
	Privacy and ethical concerns

	Conclusion and Future work
	Summary
	Contributions and Conclusions
	Future work

	Appendices
	Source code
	Create segments and labels
	Linear regression model
	Classification CNN
	Prediction CNN

