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ABSTRACT
Person re-identification (re-id) remains an important task that aims
to retrieve a person’s images from an image dataset, given a probe
image. The lack of cross-view (pose variations) training data and
significant intra-class (domain) variations across different cameras
make re-id more challenging. To solve these issues, this work pro-
poses a Domain and Pose Invariant Generative Adversarial Network
(DPI-GAN) to generate images for both domain and pose variations
capture. It is based on a CycleGAN structure in which the gener-
ator networks are conditioned on a new pose. Identity and pose
discriminators networks are used to monitor the image genera-
tion process. These generated images are used for learning domain
and pose invariant features to improve the performance of person
re-identification.
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variations, camera to camera translation

1 INTRODUCTION
One of the most important and challenging problem in the field
of video surveillance is person re-identification (re-id) which aims
to match person images with the same identity across non over-
lapping camera views. In this task, person image encouters many
changes independent of the person’s identity. These changes in-
clude appearance, background (domain variations), viewpoint, pose
variations, lightning and occlusions. Wide range of deep learning
methods have been proposed to improve the performance of re-id.
Generative adversarial network (GAN) [2] is gaining popularity
in image generation to increase the re-id performance. Existing
GAN based methods consider either domain variations [6] or pose
variations [4] to generate new images.

In this work, we propose Domain and Pose Invariant Generative
Adversarial Network (DPI-GAN) to generate images by changing
both domain and pose in a pair of cameras. The proposed DPI-
GAN uses CycleGAN [7] approach to translate images from one
domain to another. The generators are conditioned on a new pose
to generate image in new domain with given pose. Identity and
pose discriminators are used with each generator to preserve the
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identity and conversion to new pose in the generated images. For
each of the two training cycles, the proposed framework trains the
two generators and two discriminators. The images are generated
from one camera’s domain to other camera’s domain with a new
pose and returning back to original domain with a new pose.

The next section explains the proposed DPI-GAN framework.
Section 3 describes experimental results and parameters. Acknowl-
edgement and conclusion are included in last two sections.

2 DOMAIN AND POSE INVARIANT
GENERATIVE ADVERSARIAL NETWORK

Our proposed DPI-GAN aims to generate an image with new pose
and domain from an input image and a skeleton pose image. Skele-
ton pose images are calculated using human pose estimator [1].
Input image and skeleton pose image are concatenated and fed into
the generator network to generate the image into given pose. We
used CycleGAN [7] approach to train the network for capturing
the domain changes between pair of cameras. First Cycle of our
framework is shown in Figure 1 which is transferring an image
from camera A to camera B and then reconstruct that image back to
camera A with a different pose. Second Cycle is the same with start-
ing from camera B to A and the reconstruct to Camera B. With this,
we are training the two generators which are generating images
from domain A to B and vice versa. Identity and pose discriminators
are used to identify real and fake generated images.

2.1 Training
Assume we have

{
ami ,xm

}m=1...M
i=1...Mi and

{
bnj ,yn

}n=1...N
i=1...N j persons

images in domain A and B respectively, where M and N are the
number of images in both domains. i and j are the pose indexes
from the total poses Mi and Nj of a person. The skeleton pose
images are denoted as Pi and Pj for ith and jth pose respectively.
xm and yn are the persons identities and for every training sample
xm = yn . The full loss function is denoted as:

L = argmin
G

max
D

λ1LGAN + λ2Lcycle + λ3Lidentity (1)

where
LGAN = Ea,ai ∈ρ,pi ∈ρp log(Dp (Pi ,ai ).Di (a,ai ))

+ Ea∈ρ,pi ∈ρP , âi ∈ρ̂ log[(1 − Dp (Pi , âi )).(1 − Di (a, âi ))]
(2)

Lcycle = | |âi − ai | |1 + | |b̂j − bj | |1 (3)

Lidentity = | |GAB (b, Pj ) − bj | |1 + | |GBA(a, Pi ) − ai | |1 (4)

LGAN is the adversarial loss for first cycle and is calculated in the
same way for the other cycle. As we are using two discriminators
with each generator so the final output of these discriminators are
multiplied to get the final score. ρ,ρ̂ and ρP denote the distributions
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Figure 1: Overview of our framework. Gen A-B and Gen B-A are the generators to transfer from domain A to B and from B to
A respectively. Dp and Di are the pose and identity discriminators. C is symbol for concatenation

for real,fake and skeleton pose images. We use least square loss
which is more stable [7]. In Lcycle , âi and b̂j are the reconstructed
images as shown in figure 1. ai and bj are the ground truth im-
ages for skeleton poses Pi and Pj . Identity mapping loss is used to
preserve the color composition between input and output [7].

(a) (b)

(c) (d)

Figure 2: Results generated by the two generators. (a) and (c)
are the ground truths from camera 1 (A domain) and camera
6 (B domain) respectively. (b) shows the output of generator
B −A. The output of generator A − B is shown in (d).

3 EXPERIMENTAL RESULTS
We select camera 1 and camera 6 images from Market-1501 [5]
dataset and all the images are resized into 256 x 128. Adam optimizer
is used with β1 = 0.5 and β2 = 0.999. Learning rates for generator
and discriminator are 0.0002 and 0.0001 respectively. Generator
consists of encoder decoder network with 9 ResNet basic blocks
and PatchGAN [3] structure is used for all discriminators

3.1 Quantitative Results
The qualitative results of the proposed method are shown in figure
2. Generated images between two camera domains and their ground
truths are shown. The inputs are from opposite domain and having
different poses in each case.

4 CONCLUSION
We have proposed an image generation method which captures
both domain and pose changes for re-id. In contrast with the pre-
vious approaches the proposed method merge both these varia-
tions in a single network. Generated images with the proposed
approach provide domain and pose invariant features for person
re-identification. Experimental results prove the image generation
with above mentioned variations.
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