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We address the problem of code generation for DSP systems on a chip. In such systems, the
amount of silicon devoted to program ROM is limited, so application software must be
sufficiently dense. Additionally, the software must be written so as to meet various high-
performance constraints, which may include hard real-time constraints. Unfortunately, cur-
rent compiler technology is unable to generate high-quality code for DSPs, whose architec-
tures are highly irregular. Thus, designers often resort to programming application software
in assembly—a time-consuming task.

In this paper, we focus on providing support for one architectural feature of DSPs that makes
code generation difficult, namely multiple data memory banks. This feature increases memory
bandwidth by permitting multiple data memory accesses to occur in parallel when the
referenced variables belong to different data memory banks and the registers involved
conform to a strict set of conditions. We present an algorithm that attempts to maximize the
benefit of this architectural feature. While previous approaches have decoupled the phases of
register allocation and memory bank assignment, thereby compromising code quality, our
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1. INTRODUCTION

It is a well-known fact that the quality of compilers for embedded DSP
systems is generally unacceptable with respect to code density and perfor-
mance—compilation techniques for general-purpose architectures do not
adapt well to the irregularity of DSP architectures. Consequently, most
application software for such systems is hand-written—a very time-con-
suming, error-prone, and non-portable task.

Our research aims to overcome the limitations of current compilation
techniques for DSPs [Liao et al. 1996]. We would like to identify all
architectural characteristics of DSPs that make code generation difficult
and provide specific solutions for each of these. We would then like to
integrate these solutions so as to provide a high-quality, retargetable code
synthesis environment. In this paper, we focus on providing support for one
particular architectural feature, namely multiple data memory banks. This
feature, found in the Motorola DSP56000 and NEC 77016 DSPs, increases
memory bandwidth by permitting multiple data memory accesses to occur
in parallel when the referenced variables belong to different banks and the
registers involved conform to a strict set of conditions. Furthermore, the
instruction set architectures (ISAs) of these DSPs require the programmer
to encode in a limited number of long instruction words all data memory
accesses that are to be performed in parallel, thus assisting in the genera-
tion of dense code. We will use the DSP56000 [Motorola 1990] as our
experimental vehicle in this research.

We present an algorithm that attempts to maximize the benefit of this
architectural feature. While previous approaches decoupled the phases of
register allocation and memory bank assignment, thereby compromising
code quality, our algorithm performs these two phases simultaneously. Our
algorithm is based on graph labelling, whose objective is to find an optimal
labelling of a constraint graph representing conditions on the register and
memory bank allocation. Since optimal labelling of this graph is an NP-
hard problem, we use the well-known hill-climbing algorithm simulated
annealing to find a good labelling. Although simulated annealing is compu-
tationally expensive, we find its use completely acceptable because of the
high quality of results obtained from it.

This paper is organized as follows: Section 2 gives an overview of the
DSP56000 architecture; Section 3 describes previous work in this area;
Section 4 describes our graph labelling algorithm; Section 5 provides
experimental results; finally, we present our conclusions in Section 6.

2. MOTOROLA DSP56000 ARCHITECTURE

The DSP56000 architectural units of interest are the Data Arithmetic/Logic
Unit (Data ALU), Address Generation Unit (AGU), and X/Y data memory
banks:

—Data ALU: This unit, shown in Figure 1, contains hardware specialized
for performing fast multiply-accumulate operations. Other arithmetic
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and logical operations can also be performed efficiently. The data ALU
consists of four 24-bit input registers called X0, X1, Y0, and Y1, and two
56-bit accumulators, A and B. The source operands for all ALU opera-
tions must be input registers or accumulators, and the destination
operand must always be an accumulator. Two 24-bit buses XDB and YDB
permit two input registers or accumulators to be read or written in
conjunction with the execution of an ALU operation. Hence, three opera-
tions may be executed simultaneously in one instruction cycle.

—AGU: This unit, shown in Figure 2, contains two sets of 16-bit register
files, one consisting of address registers R0 through R3 and offset
registers N0 through N3, and the other consisting of address registers R4
through R7 and offset registers N4 through N7. Associated with each set
is an address ALU which, on each cycle, can post-increment or post-
decrement a single address register Ri by (i) the constant one or (ii) the
contents of the corresponding offset register Ni. Two multiplexers permit
two effective addresses to be generated each cycle—at most one address
per set may be generated, and these addresses must point to locations in
different data memory banks. The source of each effective address may
be an address register (for register-indirect addressing) or the output of
the address ALU (for indexed addressing). The AGU also features two
files of 16-bit modifier registers (not shown) which may be used to
perform modulo arithmetic.

—X/Y data memory banks: This unit, also shown in Figure 2, consists of
two 512-word x 24-bit data memory banks, which allow a total of two
data memory accesses to occur in parallel. When indirect or indexed
addressing is used, the effective addresses are generated by the AGU.
Alternatively, a 16-bit immediate that is generated as part of the
instruction word may be used for absolute addressing.

The DSP56000 ISA assists in the generation of dense, high-bandwidth
code by requiring the programmer to encode in either one or two 24-bit
instruction words all operations that are to execute in parallel during each
instruction cycle. Specifically, up to two move operations and one Data ALU
operation may be encoded in these words, where a move refers to a memory
access (load or store), register transfer (moving of data from an input
register to an accumulator, or vice-versa), or immediate load (loading of a
24-bit constant into an input register or accumulator). However, due to the
nature of the DSP56000 microarchitecture, only the following pairs of move
operations may be performed in parallel:

—two memory accesses may be performed in parallel.

—a memory access and register transfer may be performed in parallel.

—a register transfer and immediate load may be performed in parallel.

Additionally, several Data ALU operations may not be encoded in the
same instruction word(s) with move operations. Furthermore, two move
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operations may execute simultaneously only if the allocation of the associ-
ated registers and memory banks meets a set of requirements. Consider the
following parallel move specification which simultaneously (i) loads into X1
a datum from the X memory bank, whose address is stored in R0 and (ii)
loads into Y1 a datum from the Y memory bank, whose address is stored in
R4:

MOVE X:~R0!, X1 Y: ~R4!, Y1

Fig. 1. Data arithmetic/logic unit.

Fig. 2. Address generation unit and data memory banks.
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This parallel memory access specification is legal because certain register
and memory bank allocation constraints have been appropriately satisfied:

—the two operations access data in different data memory banks.

—the destination registers of the two moves are different.

—the X memory access loads into a restricted set of locations: X0, X1, A or
B.

—the Y memory access loads into a restricted set of locations: Y0, Y1, A or
B.

—both data memory accesses employ register-indirect addressing only, in
which the address registers specified belong to different AGU register file
sets.

Thus, the following parallel memory access specifications are not permit-
ted:

—MOVE X:(R0), X1 Y:(R4)1, X0
the Y memory access does not load into the allowable set of locations.

—MOVE X:(R0), X1 X:(R1)1, X0
both memory accesses are to the same bank.

—MOVE X:(R0), X1 Y:(R41N4), Y1
the second memory access uses indexed, rather than register-indirect
addressing.

—MOVE X:(R0), X1 Y:(R2), Y1
the specified address registers belong to the same AGU register file set.

Similar allocation restrictions exist for the other parallel move combina-
tions that are permitted by this architecture. Thus, given the nature of the
DSP56000 architecture, our intent is to develop an algorithm that takes
full advantage of the available parallelism.

3. PREVIOUS WORK

Much work has been done in the area of code generation (instruction
selection, register allocation, instruction scheduling) and optimization for
DSPs. Code is traditionally generated per basic block, where each basic
block is represented as a directed acyclic graph (DAG). Optimal code
generation for DAGs is a well-known NP-complete problem, and is gener-
ally tackled by dismantling the DAG into expression trees, thus potentially
sacrificing optimality, and then generating code for each tree. In Araujo
and Malik [1995], it is shown that optimal instruction selection, register
allocation, and instruction scheduling for trees can be performed in linear
time for a class of machines that satisfy a certain architectural property—
the Texas Instruments TMS320C25 [Texas Instruments 1993], but not the
DSP56000, satisfies this property. The basis of this optimal code generation
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algorithm is a combination of efficient tree-matching and dynamic pro-
gramming techniques [Aho et al. 1989; Fraser et al. 1992] that perform
optimal instruction selection for expression trees in linear time. Optimal
instruction selection for expression trees can also be performed in linear
time using trellis diagrams [Wess 1992]. Alternatively, instruction selec-
tion for expression DAGs may be performed exactly by means of a binate
covering formulation [Liao et al. 1995].

Various compaction algorithms exist that attempt to exploit available
instruction-level parallelism (ILP) in DSPs. The algorithm of Leupers and
Marwedel [1996] performs local compaction for those architectures in which
available ILP is encoded in the opcode itself (e.g., TMS320C25). The
method of Kafka [1990] performs global compaction for those microcoded
architectures in which available ILP is encoded in horizontal, rather than
vertical, instruction formats.

There has also been an increasing amount of work in retargetable DSP
code generation [Laneer et al. 1995; Paulin et al. 1994; Leupers et al. 1994].
Although these works discuss various code optimizations, the emphasis is
on techniques that facilitate retargetability. Our own efforts at developing
a retargetable optimizing DSP compiler are described in Liao et al. [1996].

Very few previous works have targeted code generation for the
DSP56000, and each of these works has decoupled the phases of register
allocation and memory bank assignment. In Wess [1991], dynamic pro-
gramming is used to translate the signal flow graph (SFG) representation
of the source program into uncompacted code. Only register allocation is
performed on this code, so all variable references are symbolic. This code is
then compacted into as few instructions as possible so as to not violate any
data-dependency or target machine constraints. Finally, the symbolic vari-
ables are assigned to memory banks and address registers based on the
current register allocation and compaction. If this results in the violation of
one or more parallel moves, then various code generation parameters are
modified, and the entire process is repeated, beginning with the generation
of uncompacted code. This sequence of steps is repeated until no further
improvements are possible.

In Powell et al. [1992], each block of the source program SFG maps onto a
segment of hand-optimized meta-assembly code, in which all register and
variable references are symbolic. Register allocation is first performed on
each block of code, then variables are assigned to memory banks in an
alternating fashion. Finally, the code is compacted into as few instructions
as possible without violating any constraints.

We find one major limitation of these two approaches: since the validity
of parallel moves is so highly dependent on both the register and memory
bank allocation, we believe that these two phases should be performed
simultaneously. By decoupling these phases, optimality is potentially com-
promised before code compaction occurs—due to target machine con-
straints, performing register and memory bank allocation prior to compac-
tion may lead to suboptimal compacted code.
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Code generation for multiple memory bank architectures is also ad-
dressed in Saghir et al. [1996]. However, a synthetic DSP model featuring a
large general-purpose register file is assumed. Consequently, register and
memory bank allocation are independent code generation phases for this
architecture. A greedy partitioning technique is used to perform memory
bank assignment, while conventional graph coloring techniques [Chaitin et
al. 1981] are used to perform register allocation.

In the parallel processing community, related work has focused on the
distribution of program data among the local memories of the individual
processing elements. In particular, a distribution of arrays and structures
among the memories is desired such that the total amount of inter-
processor communication required is minimized [Anderson and Lam 1993;
Li and Chen 1991].

4. TECHNIQUE FOR REGISTER AND MEMORY BANK ALLOCATION

Our algorithm for register and memory bank allocation, or reference alloca-
tion, is a post-pass optimization that occurs after instruction selection. We
assume the code generator generates optimized uncompacted assembly
code in which all register and variable references are symbolic (i.e.,
meta-assembly code). Our objective is to assign the symbolic registers to
physical registers and the symbolic variables to data memory banks such
that the benefit of dual data memory banks is maximized.

4.0.1 Generation of Uncompacted Code

Given the DAG for a basic block, we first dismantle it into expression trees,
transform each of these into an intermediate representation (IR), and then
translate each IR tree into uncompacted symbolic assembly code using the
Olive code-generator generator [Liao et al. 1996]. Olive takes as input a
grammar-based description of the target machine ISA, then automatically
constructs a code generator that performs, in linear time, optimal instruc-
tion selection for expression trees. An issue naturally arises as to how the
subtrees of an IR tree should be ordered for code generation: Does one
ordering result in better code than another? The answer lies in the fact that
upon request, a new symbolic register is generated to store a variable or
constant. Hence, all subtrees of an IR tree are pair-wise data-independent
with respect to symbolic registers, since no two define or use the same one.
Symbolic variables may only be used within subtrees—they may be defined
only at the root of the entire IR tree. Thus, all subtrees are pair-wise
data-independent with respect to symbolic variables also.

The data-dependency graph (DDG) is the primary data structure used by
our compaction algorithm (see Section 4). Due to the manner in which they
are constructed, the DDGs representing each possible subtree ordering are
isomorphic, since all subtrees are pair-wise data-independent. Hence, the
quality of the compacted code is not affected by the order in which subtrees
are translated.
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As previously mentioned, DAG dismantling generally results in loss of
optimality; it is possible that some DSP compiler users may wish to
sacrifice low compilation times and generate code directly from DAGs.
However, we strongly believe that Olive-based code generation techniques
should be employed for two reasons: first, the grammar-based input file to
Olive can be easily modified to generate code for a new architecture. We
find it acceptable to introduce some code inefficiencies due to dismantling if
retargetability is facilitated. Second, it has been shown that for a large
sample of DSP benchmarks, the majority of DAGs are in fact trees [Araujo
et al. 1996]. This result also favors tree-based code generation.

4.0.2 Reference Allocation Before or After Code Compaction

In Figure 3, we demonstrate why we delay reference allocation until after
the symbolic assembly code has been compacted. Consider the C and
corresponding uncompacted symbolic assembly code shown in Figure 3(a).
Figure 3(b) shows the compacted code that results when reference alloca-
tion is performed on this initial code sequence using the following greedy
approach. The memory bank assigned to a symbolic variable is the opposite
of the bank that was assigned to the symbolic variable last referenced.
Furthermore, if a load operation is encountered in which the referenced
variable has been allocated to the X (Y) bank, then preference is given to X0
and X1 (Y0 and Y1) when allocating the corresponding symbolic register.
Once reference allocation has been performed, the uncompacted code is
compacted into as few instructions as possible such that no constraints are
violated, and address registers are appropriately allocated to variables. For
sake of clarity, uses of register-indirect addressing are not shown in this
and subsequent figures, but should be assumed. Since variable f has been
allocated to the X memory bank by the greedy algorithm, it is not possible
to execute the move operation MOVE f, reg5 in parallel with other opera-
tions. The resulting compacted code has a total length of 6 instruction
words.

Figure 3(c) shows the code sequence that results when reference alloca-
tion is performed after the symbolic code has been compacted. The delaying
of reference allocation until this stage enables the compiler to first analyze
all memory accesses that may potentially be performed in parallel, and
then generate an allocation that satisfies a maximum number of these
parallel accesses. As one can see, the allocation of variable f to the Y bank
and the allocation of symbolic register reg5 to B permits the operation
MOVE f, reg5 to execute in parallel with two other operations. The length of
the resulting compacted code is now only 5 words.

By intelligently performing reference allocation and instruction selection
concurrently, a code generator could produce optimal uncompacted code.
For example, by realizing that a required variable x already resides in an
input register, the code generator could suppress generation of an unneces-
sary instruction to reload x. However, as demonstrated in Figure 3(b), it
appears unlikely that even a very clever code generator could produce
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optimal compacted code, since no prior knowledge of parallel move con-
straints exists while instruction selection is being performed.

4.0.3 Simultaneous Versus Decoupled Reference Allocation

Figure 4 shows why it is advantageous to perform the phases of reference
allocation simultaneously. Consider the C and corresponding uncompacted
symbolic assembly code shown in Figure 4(a). The compacted code that
results when reference allocation is decoupled using the approach described
in Powell et al. [1992] is shown in Figure 4(b). Since this approach allocated
variable d to the Y bank and symbolic register reg2 to X0, the operation
MOVE d, reg2 may not execute in parallel with other operations. The
resulting compacted code has a total length of 5 words.

The code that results when reference allocation is performed simulta-
neously after compaction is shown in Figure 4(c). The simultaneous execu-
tion of the reference allocation phases enables the compiler to first analyze
all interactions between symbolic registers and variables, and subsequently
generate an intelligent allocation. Since variable d and symbolic register
reg2 have been allocated to the Y bank and Y0, respectively, the operation
MOVE d, reg2 is now able to execute in parallel with two other operations.
The length of the resulting code is now only 4 words.

4.1 Assumptions in Reference Allocation

The following sections describe the key assumptions that we make in our
approach:

4.1.1 Allocation of Global Variables. To determine the optimal memory
bank assignment for a given global variable, the compiler would need to
observe its references over all procedures in the program. The fact that

Fig. 3. (a) C and uncompacted assembly code; (b) greedy allocation; (c) delayed allocation.
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code is normally generated on a per-procedure basis makes this a non-
trivial task. Hence, we assume that all global variables are statically
allocated in the X data memory bank and absolutely addressed. By per-
forming interprocedural data-flow analysis [Aho et al. 1986], the compiler
could determine this optimal memory bank assignment.

4.1.2 Allocation of Local Variables. In the C programming language,
local variables may be classified as being either automatic or static.
Automatic variables are variables that come into existence on procedure
entry and disappear on procedure exit. Static variables are local variables
that remain in existence throughout program execution. Static variables
are treated similarly to global variables—they are statically allocated and
absolutely addressed. However, we do not restrict static variables to be
allocated to the X bank, since the compiler can determine the optimal
memory bank assignment for them by performing an intraprocedural
analysis.

Meanwhile, we assume that automatic variables are dynamically allo-
cated on a stack frame. We also assume that the stack pointer and frame
pointer point to corresponding locations in the two data memory banks, so
that at any given point in time, two stack frames of identical size are
active. For the sake of simplicity, we assume that parameters are pushed
onto the stack frame of the X bank only. By analyzing the reference
patterns of the parameters in the callee procedure, the compiler could
optimally distribute the parameters across both frames. However, this
would again require the non-trivial task of interprocedural analysis. In
Section 4, we will discuss in detail the allocation of non-parameter auto-
matic variables.

Given the assumptions surrounding our technique, we now give a de-
tailed account of each phase of our algorithm. We begin by describing the
local compaction phase.

Fig. 4. (a) C and uncompacted assembly code; (b) decoupled allocation; (c) simultaneous
allocation.
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4.2 Step I: Local Compaction

The first phase of our algorithm compacts the symbolic uncompacted code.
Two move operations are scheduled into one or two long instruction words
if no data dependencies are violated and the parallel move combination is
permitted by the ISA. Additionally, an ALU operation O is scheduled with
up to two move operations if no data dependencies are violated and it is
permissible for O to be encoded in the same instruction word(s) with moves.
We use the list scheduling algorithm [Landskov et al. 1980] to perform code
compaction within basic blocks.

The first step in the list scheduling algorithm is to construct a data-
dependency graph (DDG) for each basic block. Each node Vx of this directed
graph corresponds to instruction Ix in the uncompacted code, and edge
e^Vi, Vj& exists if Ij has a data dependency on Ii. This edge specifies that in
the final compacted code, Ij must not be scheduled before Ii; otherwise,
program semantics may be adversely affected. Consider the C code se-
quence and corresponding uncompacted assembly code shown in Figure
5(a). The DDG for this code sequence is shown in Figure 5(b). The number
to the left of each node represents the priority of the node—this attribute is
required since nodes are scheduled in order of decreasing priority. The
priority function that has been implemented is distance-from-sink. By
definition, the sink node has a priority of zero, which implies that it will be
scheduled last.

Finally, the nodes of the DDG are scheduled as follows: until all nodes
have been scheduled, schedule into the current instruction word the node
whose priority is maximum and whose predecessors have already been
scheduled. Let us define an unscheduled DDG node to be ready if all of its
predecessors have been scheduled.

Fig. 5. (a) Original C and symbolic assembly code; (b) data dependency graph.
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Since register allocation has yet to be performed on the symbolic code, we
must exercise caution during compaction. We say a symbolic register R is
live at a given point in the program if it is subsequently used before being
redefined. The set of symbolic registers that are live at each point in the
program can be computed using the live-variable analysis data-flow equa-
tions [Aho et al. 1986]. Two symbolic registers that are simultaneously live
must be assigned to different physical registers, otherwise spill code must
be generated to save one of these values to memory after each definition
and to retrieve it from memory before each use. If the high-priority DDG
nodes correspond to operations that define symbolic registers, then it is
highly probable that at some point(s) in the compacted code, the number of
symbolic registers that are simultaneously live will exceed the number of
available physical registers. In this scenario, spill code must inevitably be
generated, hence, we have developed some scheduling heuristics that
attempt to reduce the register pressure at each point in the compacted
code. This may reduce the amount of spill code that must be generated. Our
modified list scheduling algorithm schedules nodes in the following order:

—a ready node whose corresponding operation contains one or more sym-
bolic register source operands. By scheduling such a node, we can only
decrease the number of points in the program at which these symbolic
registers are live. This possibly decreases register pressure and reduces
the amount of spill code required.

—a ready node of highest priority which, if scheduled, causes a node that
meets the above criteria for becoming ready.

—a ready node of highest priority.

Figure 6 shows the final compacted schedule that results when DDG nodes
are scheduled using our modified list scheduling algorithm. We also per-
form a final list scheduling pass after reference allocation has been com-
pleted. Although certain parallel move operations in the symbolic com-
pacted code may not be satisfied by the reference allocation, other
opportunities for compaction may arise. This final pass attempts to exploit
these opportunities.

4.3 Step II: Constraint Graph Creation

The process of performing reference allocation may be viewed as the
process of finding an appropriate labelling of an undirected constraint

Fig. 6. Compacted code generated by list scheduling..
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graph. For each symbolic register regx in the compacted code, there exists a
constraint graph vertex Rx. Similarly, for each symbolic variable vary in the
code, there exists a constraint graph vertex Vy. Each symbolic register
vertex Ri must be labelled X0, X1, Y0, Y1, A, or B, while each symbolic
variable vertex Vj must be labelled either X or Y. Also contained in a
constraint graph are different classes of edges, which represent constraints
on the labelling of vertices. Associated with each edge is a cost, or penalty,
that is incurred when the constraints represented by the edge are not
satisfied. A constraint graph is constructed on a per-procedure basis. This
construction proceeds with the insertion of red edges, which are now
described.

4.3.1 Red Edges. A red edge is inserted between vertices Rx and Ry if
regx and regy are simultaneously live. This edge specifies that Rx and Ry

must be labelled differently, or analogously, regx and regy must be assigned
to different physical registers. Otherwise, a definition of regx will overwrite
the value of regy, or vice versa, in which case spill code must be generated.

The amount of spill code required due to an unsatisfied red edge is
directly proportional to the number of times the spilled symbolic register is
defined and used. This number represents the cost, or penalty, of the
corresponding red edge.

For each compacted instruction containing two move operations, we add
a non-red edge to the constraint graph that specifies how the associated
symbolic register and variable nodes should be labelled in order for the
parallel move to be legal.

4.3.2 Green Edges. A green edge is inserted into the constraint graph
for each parallel move corresponding to a dual memory access. Assume that
symbolic register regi and symbolic variable vari are involved in one
memory access, while symbolic register regj and symbolic variable varj are
involved in the other. We then insert a green edge between vertices Ri and
Rj. This green edge includes pointers to vertices Vi and Vj. These pointers
specify that regi and vari constitute one move operation, while regj and varj

constitute the other.
Several constraints must be satisfied in order for this green edge to be

labelled appropriately and hence, for the parallel memory access to be
legal:

—Vi and Vj must be labelled differently.

—if Vi is labelled X (Y), then Ri must be labelled X0, X1, A or B (Y0, Y1, A,
B).

—if Vj is labelled X (Y), then Rj must be labelled X0, X1, A or B (Y0, Y1, A,
B).

If the current procedure consists of a single basic block, then each unsatis-
fied green edge incurs a cost of one. This represents the resulting increase
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in instruction words and cycles: a parallel move corresponding to an
unsatisfied green edge must be decomposed into two individual move
operations. If the current procedure is composed of multiple basic blocks,
then each unsatisfied green edge incurs a cost of basic-block-frequency,
where basic-block-frequency is an estimate of the number of times the
corresponding basic block is executed per procedure invocation—this infor-
mation is obtained from profiling analysis.

Since we perform a post-reference allocation compaction pass, the penal-
ties for unsatisfied green edges are actually conservative estimates. Sup-
pose green edges e1 and e2 are both unsatisfied after reference allocation. It
is possible that this final pass may compact a move operation of e1 with one
of e2. Thus, the cost contributed by these edges may be less than the
original cost of 2*basic-block-frequency.

4.3.3 Blue, Brown, and Yellow Edges. In a similar manner, we insert
other edges into the constraint graph based on the type of parallel move
operation encountered in the compacted code. Each of these edges has a set
of constraints that must be satisfied when labelling the graph, plus an
associated cost.

—Blue edges: inserted for each memory load and register transfer.

—Brown edges: inserted for each immediate load and register transfer.

—Yellow edges: inserted for each memory store and register transfer.

4.3.4 Black Edges. Each ALU operation in the DSP56000 ISA imposes
certain constraints on its operands. We already know that the source
operands of all ALU operations must be input registers or accumulators,
and the destination operand must always be an accumulator. However, in
most cases, the constraints are even more restrictive. Consider the multi-
plication operation:

MPY regi, regj, regk

The DSP56000 ISA restricts symbolic registers regi and regj to be input
registers only. Symbolic register regk must be an accumulator. We enforce
these restrictions in our constraint graph by introducing black edges, and
data-path vertices corresponding to the input registers and accumulators in
the Data ALU (see Section 2). A black edge between register vertex Rx and
data-path vertex DPy implies that Rx cannot be labelled with the physical
register associated with DPy . To enforce the restriction that regi must be
an input register, we add black edges between Ri and the data-path
vertices corresponding to the two accumulators. Figure 7 shows the com-
plete set of black edges required for this operation.

Each unsatisfied black edge incurs a cost of `, since the register
allocation implied by an illegally-labelled black edge cannot be supported
by ALU hardware.
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4.3.5 Address Register Allocation. Given a memory bank allocation, we
must now determine the form of effective addressing used to access the
automatic local variables. Each compacted instruction containing two mem-
ory references must use register-indirect addressing only. Compacted in-
structions containing a single memory reference may use indirect, absolute,
or indexed addressing. Each use of absolute addressing incurs a one word
penalty, however, since an extra word is required to store the 16-bit
address. Each use of indexed addressing may possibly require an additional
instruction to initialize the corresponding offset register. Since one of our
objectives is to generate high-density code, we choose to use register-
indirect addressing exclusively. Thus, all automatic variables are allocated
on a stack frame and accessed indirectly at an offset from the frame
pointer. We have allocated address registers R0 and R4 to be the frame and
stack pointers, respectively.

Now, each memory access may be performed only if an address register is
available that points to the correct memory location. Recall that associated
with the DSP56000 AGU are post-increment/decrement-by-one update
modes which may be used to efficiently move address registers between
adjacent storage locations. Rather than allocating an address register and
performing address arithmetic prior to each memory access, an intelligent
placement of variables within the stack frames of the two memory banks
could make use of this auto-increment arithmetic and thus, minimize the
number of required address arithmetic instructions. This is precisely what
the Offset Assignment Problem [Liao et al. 1995] (OA) attempts to perform.

The idea behind OA is that two automatic variables that are accessed
together frequently should be assigned to adjacent locations on the stack
frame. Consequently, an address register may move between these two
locations for free using auto-increment arithmetic. However, this may not
be possible for all pairs of variables. Hence, an attempt is made to assign
variables to stack locations in such a way that the total cost of the
assignment is minimized, where an assignment cost is equal to the number
of consecutive accesses of variables that are not assigned to adjacent stack
locations. In the event that consecutive accesses are to be made to non-
adjacent variables, address arithmetic instructions must be generated to

Fig. 7. Black edge construction for multiply operation.
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set an address register to point to the correct location. In the DSP56000,
this is accomplished by initializing an offset register and adding it to the
corresponding address register. Due to pipelining restrictions, a two-cycle
delay is required between the definition and use of an offset register. Thus,
following the post-reference allocation compaction pass, it may be neces-
sary to insert no-op instructions into the compacted assembly code so as to
satisfy these restrictions.

Various OA heuristics exist that allow variables on a stack frame to be
accessed using multiple address registers. Since parallel memory accesses
in the DSP56000 must employ address registers from different AGU file
sets, we have arbitrarily allocated registers R1 through R3 to the automatic
variables of the X-memory stack frame, and registers R5 through R7 to
those of the Y-memory stack frame. Offset assignment currently supports
scalar variables only. In Araujo et al. [1996], an algorithm is presented that
describes how auto-increment arithmetic may also be used to efficiently
access arrays.

4.4 Step III: Constraint Graph Labelling

The cost of a particular constraint graph labelling is equal to the cost due
to unsatisfied edges, plus the cost due to OA. A labelling of least cost is
desired, since such a labelling corresponds to a reference allocation that
maximally satisfies the constraints imposed by the compacted code. How-
ever, determining the optimal labelling of a constraint graph is an NP-hard
problem, because it subsumes three other problems that are either NP-
complete or NP-hard [Garey and Johnson 1979]:

—Graph K-Colorability Problem: this problem arises in optimal register
allocation for architectures that feature a homogeneous register set
[Chaitin et al. 1981].

—Maximum-Weighted Path Covering Problem: this problem arises in opti-
mal address register allocation for local variable accesses [Liao et al.
1995].

—Maximum Bipartite Subgraph Problem: this problem arises in optimal
vanilla memory bank allocation (i.e., no interactions exist between regis-
ter and memory bank allocation) [Garey and Johnson 1979].

Thus, a heuristic is required that will generate a low-cost labelling of the
constraint graph. Several observations can be made about constraint graph
labelling:

—Complex cost function: the cost function is difficult to optimize.

—Large solution space with hills and valleys: given m symbolic register and
n symbolic variable vertices, the total number of possible labellings is
6m* 2n, since each symbolic register vertex may be labelled in one of six
ways and each symbolic variable vertex may be labelled in one of two
ways. By changing the label of a single vertex, one can cause the cost
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function to change drastically in either direction, leading to many hills
and valleys in the solution space.

—Easy to determine solution cost: each edge is examined to determine
whether or not its constraints have been satisfied and the cost is updated
appropriately. Offset assignment heuristics are applied so as to deter-
mine the additional cost of allocating address registers to the automatic
variables. With an intelligent choice of data structures, computing the
cost of a solution can be done efficiently.

—Easy to generate new solution: the label of a randomly-chosen vertex is
changed.

These observations suggest that finding a low-cost labelling of the con-
straint graph is especially well-suited for simulated annealing [Kirkpatrick
et al. 1983]. Simulated annealing is a probabilistic hill-climbing algorithm
that has been used successfully in several design automation and combina-
torial optimization problems. As our results demonstrate in the next
section, simulated annealing does an excellent job of finding a low-cost
labelling of the constraint graph.

5. EXPERIMENTAL RESULTS

5.1 Improving the Quality of Compiled Code

We have implemented our code generation algorithm in the SPAM com-
piler, which is a retargetable code generation framework for embedded DSP
processors (Note: the SPAM compiler may be downloaded from http://
www.ee.princeton.edu/spam). For purposes of experimentation, we selected
a set of ANSI C benchmarks from the DSPstone benchmark suite [Zivojnović
et al. 1994]. The first set of benchmarks (adapt_quant, adpt_predict_1,
iadpt_quant, scale_factor_1, speed_control_2, and tone_detector_1) are pro-
cedures belonging to the adpcm application, which is a large speech-
encoding algorithm. The second set of benchmarks—complex_multiply,
convolution, fir, iir_biquad, least mean square, and matrix_multiply—are
small kernels representative of typical DSP algorithms.

All experiments were performed on a Sun Microsystems Ultra Enterprise
featuring eight UltraSPARC processors and 1016 MB of RAM. In the
results that follow, it should be noted that our algorithm was executed on
only one of these processors. Table I conveys the constraint graph sizes for
each of the benchmarks. The first column lists the benchmarks; the next
two columns specify the number of symbolic register and variable nodes,
respectively; finally, the last six columns specify the number of red, green,
blue, brown, yellow, and black edges, respectively.

In general, the constraint graphs for the adpcm benchmarks were much
larger than those for the kernel benchmarks. The largest constraint graph
belonged to speed_control_2 and was composed of 130 vertices and 338
edges. In comparison, the largest constraint graph for the kernel bench-
marks belonged to iir_biquad and was composed of 69 vertices and 243
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edges. Large constraint graph sizes directly translated into long simulated
annealing times, as the next table will show.

The impact of simultaneous reference allocation on code size is shown in
Table II: the benchmarks are listed in the first column; the second column
specifies the size (in instruction words) of the initial uncompacted assembly
code that was generated by the code generator; the third column specifies
the size (in instruction words) of the code that resulted from the application
of simultaneous reference allocation to the initial code; the fourth column
specifies the percentage improvement of each number in the third column
over the corresponding number in the second column; the fifth column
specifies the time (in seconds) that was required to perform simulated
annealing on the corresponding constraint graph; the final column specifies
the size (in instruction words) of the corresponding hand-written reference
code that was provided with DSPstone—no reference code was available for
adpcm. A fixed set of parameters was employed by the simulated annealing
algorithm: first, the temperature, which was initialized to 2000 degrees,
was decreased by 10% each iteration of the outer-most loop; second, a total
of vertex-count*80 moves were generated and evaluated at each tempera-
ture; third, the outer-most loop was terminated when the solution cost did
not change for three consecutive iterations.

It is apparent that the simulated annealing times were much higher for
those benchmarks that had large constraint graphs than for those that had
smaller ones. For instance, the benchmarks with the two largest constraint
graphs, adpt_predict_1 and speed_control_2, required 8,105 and 5,217
seconds, respectively. The benchmarks with the two smallest constraint
graphs, complex_multiply and convolution, required 2 and 308 seconds,
respectively. Although some of these times are quite high, we find the use
of simulated annealing completely acceptable because of our desire to
synthesize code of the highest quality.

The third and sixth columns of Table II show that there is a significant
discrepancy in the quality of code generated by simulated annealing and by

Table I. Constraint Graph Attributes for DSPstone Benchmarks

DSPstone Benchmark

Vertices Edges

Reg Var R G B1 Br Y Bk

adapt_quant 89 16 45 5 0 0 0 166
adpt_predict_1 92 23 66 13 1 0 0 197
iadpt_quant 30 7 24 3 0 0 0 66
scale_factor_1 27 7 24 2 0 0 0 62
speed_control_2 109 21 108 10 0 0 0 220
tone_detector_1 29 8 22 3 0 0 0 57
complex_multiply 10 6 14 0 0 0 0 28
convolution 19 8 18 5 0 0 0 39
fir 75 22 63 13 0 0 0 132
iir_biquad 53 16 120 13 0 0 0 110
least_mean_square 51 18 78 17 0 0 0 106
matrix_multiply 36 12 30 5 0 0 0 68
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hand. For instance, for the complex multiply benchmark, the code gener-
ated by our algorithm was 1.7 times larger than the corresponding hand-
written code. For the matrix multiply benchmark, the compiler-generated
code was 3.3 times larger than the corresponding hand-generated code.
Although these differences in code size are quite large, they are conserva-
tive because not all optimizations have been fully integrated into the SPAM
compiler. In particular, important machine-independent optimizations such
as global common-subexpression elimination and dead-code elimination
[Aho et al. 1986] are not performed. Additionally, pointer variable accesses
with post-increment/decrement are not directly translated into register-
indirect memory accesses with auto-increment. We are very confident that
once these optimizations are fully in place, the differences in code size will
be considerably lower.

5.1.1 Adapting to Other Architectures. Our approach has the advantage
that it can be efficiently adapted to more complex architectures, e.g., those
with four data memory banks. It is assumed the compiler writer (hence-
forth referred to as developer) will rewrite the input file that Olive uses to
generate uncompacted symbolic assembly code. We now describe how we
have generalized the following routines so that efficient code can be
generated for many of these architectures:

5.1.1.1 Compaction Routines. We have implemented a generalized list
scheduling interface that compacts an arbitrary number of ALU and move
operations. The developer must provide this interface a tabular specifica-
tion of all operations that may be performed concurrently by the target
machine. Each entry in this compaction table contains a sequence of
opcodes—this pattern specifies that it is permissible to compact a set of
operations whose opcodes match this sequence, provided that no data-
dependency constraints are violated. The first set of patterns must specify
all legal ALU operation combinations, while the second set must specify all
legal move combinations. Associated with each ALU pattern is a sequence

Table II. Impact of Simultaneous Reference Allocation on Code Size

DSPstone Size Size Code Size Time Size
Benchmark (orig) (sa) Improv (sec) (hand)

adapt_quant 235 16227 453.4% 54399 -
adpt_predict_1 231 209 9.5% 138105 -
iadpt_quant 85 81 4.7% 324 -
scale_factor_1 74 66 10.8% 266 -
speed_control_2 277 247 10.8% 5217 -
tone_detector_1 84 75 10.7% 536 -
complex_multiply 33 30 9.1% 2 18
convolution 49 45 8.2% 308 12
fir 178 158 11.2% 5482 25
iir_biquad 132 128 3.0% 1632 32
least_mean_square 115 102 11.3% 2776 49
matrix_multiply 89 85 4.5% 1011 26
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of links to move patterns. Each link specifies that it is legal to compact a
set of operations whose opcodes match the ALU and move patterns,
provided that no constraints are violated. The list scheduler uses the
compaction table to perform local compaction as follows. Suppose the
scheduler wishes to schedule a move operation M into an instruction C.
First, M is temporarily inserted into C. Next, a hash function is applied to
the opcodes of C representing ALU operations so as to find the correspond-
ing ALU pattern P1 in the table. This function is then applied to the move
opcodes of C to find the corresponding move pattern P2. The scheduler then
permanently schedules M into C if P2 exists and there exists a link from P1

to P2. The situation is analogous if M were to represent an ALU operation.

5.1.1.2 Constraint graph routines. Construction of a constraint graph
proceeds by first generating the set of symbolic register and variable
vertices directly from the current procedure’s compacted assembly code. We
classify the set of constraint graph edges according to their dependency on
the target machine. Red edges are machine-independent and must exist in
any constraint graph — these edges are generated automatically by per-
forming live-variable analysis on the compacted code. Other edges (e.g.,
parallel move edges, ALU constraint edges, etc.) are machine-dependent
and are generated as follows. First, the developer must declare and define
C11 classes corresponding to the various machine-dependent constraint
graph edges. Associated with each of these classes must be a cost method
which, when invoked, checks all involved constraint graph vertices in order
to determine whether all labelling constraints associated with the edge
have been appropriately satisfied, and then returns the incurred penalty.
Second, the developer must define and associate with each link in the
compaction table data structure a machine-specific edge insertion function.
This function must take as input a pointer to the current constraint graph
and a pointer to a compacted instruction whose opcodes match the corre-
sponding ALU and move patterns, and insert into the constraint graph the
appropriate machine-dependent edges. The compiler constructs the neces-
sary machine-dependent constraint graph edges by analyzing each assem-
bly instruction in the compacted code, determining the link in the compac-
tion table that corresponds to the instruction, and then invoking the
associated edge-insertion function.

5.1.1.3 Simulated annealing routines. We have implemented a general-
ized annealing framework that uses the parameters described in Section 5.
Two target-specific enumerations must be provided to this framework—
these specify the set of valid labellings for the symbolic register and
variable nodes, respectively, of the input constraint graph. Additionally, an
array must be provided, where the ith element specifies the number of
address registers available to access the automatic variables allocated to
the ith memory bank. At each step of the annealing process, a constraint
graph vertex is chosen at random, and a label from the appropriate
enumeration is randomly chosen for it. The cost method associated with
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each constraint graph edge e is then invoked, and returns the penalty, if
any, incurred by e. If a symbolic variable node is relabelled, offset assign-
ment is performed for those two memory banks whose variable allocation
has consequently changed.

5.2 Improving the Quality of Completely Referenced Code

We have also implemented our code generation algorithm as a stand-alone
program. Its input is an assembly file in which all register and variable
references are symbolic, and its output is an assembly file in which these
references are physical. This program has been used to improve the quality
of various completely referenced files, i.e., assembly files for which reference
allocation has already been performed.

In particular, we optimized two hand-written non-kernel benchmarks
that were obtained from Motorola’s public bulletin board: rvb1 and rvb2 are
unoptimized and optimized versions, respectively, of a reverberation algo-
rithm. The kernel benchmarks from this bulletin board were heavily
hand-optimized and left no room for improvement. However, rvb1 and rvb2
had much room for improvement—memory references were predominantly
addressed absolutely, thus resulting in increased code size. It is possible
that due to time constraints in developing these non-kernel benchmarks,
the assembly programmer chose to reference variables absolutely, rather
than manually performing offset assignment and referencing them indi-
rectly.

We first manually rewrote these two benchmarks so that all references
were symbolic, and then provided these files to our stand-alone. The results
of our experiments are described in Table III: the first column lists the
benchmarks; the next two columns specify the number of vertices and
edges, respectively, in the associated constraint graphs; the next two
columns specify the size (in instruction words) of the original hand-written
assembly code and the final optimized assembly code, respectively; the
sixth column specifies the percentage reduction of the numbers in the fifth
column over the numbers in the fourth column; the final column specifies
the time (in seconds) required to optimize each benchmark. It is apparent
that our stand-alone was very successful at improving the code quality of
these benchmarks—the code size of rvb1 was reduced from 120 words to 51
words, a 57.5% reduction, while the size of rvb2 was reduced from 88 words
to 41 words, a 53.4% reduction. This technique can be applied to any
completely referenced file that either has been generated by an unoptimiz-
ing compiler or has not been hand-optimized thoroughly.

Table III. Impact of Simultaneous Reference Allocation on Hand-Written Benchmarks

Hand-written
Benchmark Nodes Edges Initial Size Final Size

Code Size
Improv

Time
(s)

rvb1 76 186 120 51 57.5% 1872
rvb2 76 214 88 41 53.4% 1329
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6. CONCLUSIONS

Current compiler technology is unable to take advantage of the potential
increase in parallelism offered by multiple data memory banks. Conse-
quently, compiler-generated code is much inferior to hand-written code. We
have devised a graph labelling-based algorithm that attempts to maximize
the benefit of this architectural feature. A constraint graph is constructed
with a vertex for each symbolic register and variable in the compacted code,
and edges representing constraints that must be satisfied when labelling
these vertices. Each labelling of the constraint graph has an associated
cost, a lower cost implying a better labelling. Since optimal labelling is
NP-hard, we search for heuristics that will find a low-cost labelling.

We choose to use simulated annealing since our problem characteristics
match its criteria. Although it is computationally expensive, we find its use
acceptable since our intention is to synthesize code of the highest quality.
Simulated annealing is not guaranteed to find an optimal solution, but it
does work very well in practice. Experimental results demonstrate that our
algorithm not only generates high-quality compiled code, but also substan-
tially improves the quality of completely-referenced code. Our algorithm
can also be efficiently adapted to more complex architectures.
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