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ABSTRACT
Many modern applications require real-time processing of large

volumes of high-speed data. Such data processing needs can be

modeled as a streaming computation. A streaming computation is

specified as a dataflow graph that exposes multiple opportunities

for parallelizing its execution, in the form of data, pipeline and

task parallelism. On the other hand, many important applications

require that processing of the stream be ordered, where inputs are

processed in the same order as they arrive. There is a fundamental

conflict between ordered processing and parallelizing the stream-

ing computation. This paper focuses on the problem of effectively

parallelizing ordered streaming computations on a shared-memory

multicore machine.

We first address the key challenges in exploiting data parallelism

in the ordered setting. We present a low-latency, non-blocking

concurrent data structure to order outputs produced by concur-

rent workers on an operator. We also propose a new approach to

parallelizing partitioned stateful operators that can handle load

imbalance across partitions effectively and mostly avoid delays due

to ordering. We illustrate the trade-offs and effectiveness of our

concurrent data-structures on micro-benchmarks and streaming

queries from the TPCx-BB [16] benchmark. We then present an

adaptive runtime that dynamically maps the exposed parallelism

in the computation to that of the machine. We propose several in-

tuitive scheduling heuristics and compare them empirically on the

TPCx-BB queries. We find that for streaming computations, heuris-

tics that exploit as much pipeline parallelism as possible perform

better than those that seek to exploit data parallelism.

KEYWORDS
stream processing systems, streaming dataflow graph, continuous

queries, data parallelism, partitioned parallelism, pipeline paral-

lelism, dynamic scheduling, ordered processing, runtime, concur-

rent data structures

1 INTRODUCTION
Stream processing as a computational model has a long history

dating back to Petri Nets in the 1960s, Kahn Process Networks and

Communicating Sequential Processes in the 1970s, and Synchro-

nous Dataflow in the 1980s [39]. Practical applications of stream

processing were, for a long time, limited to audio, video and dig-

ital signal processing that typically involves deterministic, high-

performance computations. Several languages and compilers such

as StreamIt [22], Continuous Query Language(CQL) [9] and Imag-

ine [28] were designed to specify and optimize the execution of

such programs on single and shared-memory architectures.

The emergence of sensors and similar small-scale computing

devices that continuously produce large volumes of data led to the

rise of many new applications such as surveillance, fraud detection,

environment monitoring, etc. The scale and distributed nature of

the problem spurred the interest of several research communities

that further gave rise to large scale distributed stream processing

systems such as Aurora [2], Borealis [1], STREAM [11] and Tele-

graphCQ [19].

In today’s highly connected world, data is of utmost value as it

arrives. The advent of Big Data has further increased the impor-

tance of realtime stream processing. Several modern use-cases like

shopping cart abandonment analysis, ad serving, brand monitoring

on social media, and leader board maintenance in online games

require realtime processing of large volumes of high-speed data.

In the past decade, there has been a tremendous increase in the

number of products (e.g. IBM Streams [37], Millwheel [5], Spark

Streaming [41], Apache Storm [8], S4 [35], Samza [7], Heron [29],

Microsoft Stream Insight [32], TRILL [18]) that cater to such data

processing needs and is evidence of its ever-growing importance.

In this paper, we focus on scaling stream processing on the

shared-memory multicore architecture. We consider this an im-

portant problem for several reasons. Streaming pipelines generally

have a low memory footprint as most of the operators are either

stateless or have a small bounded state. With increasing main mem-

ory sizes and prevalence of multi-core architectures, the bandwidth

and parallelism offered by a single machine today is often sufficient

to deploy pipelines with large number of operators [37]. So, most

streaming workloads can be efficiently handled in a single multicore

machine without having to distribute it over a cluster of machines.

In fact, systems like TRILL [18] run streaming computations en-

tirely on a single multicore machine at scales sufficient for several

important applications. This is unlike batch processing systems,

where the input, intermediate results and output data are often

large and hence the pipeline needs to be split into many stages.

Even in workloads where distribution across a cluster is impor-

tant (e.g. for fault tolerance), typically the individual nodes in the

cluster are shared-memory multicores themselves. Most distributed

streaming systems [8, 41] today assume each core in a multicore

node as an individual executor and fail to exploit the advantages

of low overhead communication offered by shared-memory. We

believe that considering a multicore machine as a single powerful

node rather than as a set of independent nodes can help better

exploit shared-memory parallelism. A streaming computation can

be split into multiple stages and each stage can be deployed on a

shared-memory node [37]. Most prior work in this area have not

studied the shared-memory multicore setting in depth - they either

focus on the single core [10, 17, 27] or distributed shared-nothing

architectures [1, 5, 6, 8, 29, 41].
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Further, we are interested in ordered stream processing. The

stream of events/tuples usually have an associated notion of tempo-
ral ordering such as in user click-streams from an online shopping

session or periodic sensor readings. In many scenarios the applica-

tion logic depends on this temporal order. For example, clustering

click-streams into sessions based on timeouts between two con-

secutive events and computing time-windowed aggregates over

streams of data. Implementing such logic on systems that do not

provide ordered semantics is complicated and often turns out to be

a performance bottleneck.

Ordered processing also enables our parallelization framework

to be deployed easily on individual multicore nodes in a distributed

stream processing cluster. This guarantee is important especially

when a large stream processing query is divided into sub-queries,

each allotted to a multicore node and one of them contains a non-

commutative operation. Moreover, fault tolerance techniques such

as active replication depend on state of the pipeline on two repli-

cas being the same and it cannot be guaranteed without ordered

processing.

Many stream processing systems today provide mechanisms

to support ordered stream processing. Most of them based on a

micro-batch architecture [1, 5, 18, 41], in which the input stream is

broken down into streams of smaller batches and each batch is pro-

cessed like in a batch processing system such as Map Reduce [20]

or Apache Spark [40]. They support order sensitive pipelines by

periodically sending watermarks denoting that all events less than a

specific timestamp have been received. However, These techniques

are not suitable for latency critical applications mainly due to the

batching delays. We show that it is possible to achieve this guaran-

tee at much lower latencies without constraining execution of the

pipeline excessively.

1.1 Background and Challenges
A streaming computation can be specified as a dataflow graph, where

each vertex is associated with an operator and directed edges rep-

resent flow of input into and out of the operators. At runtime,

every vertex receives a stream of values (which we refer to as tuples
henceforth) along each of its incoming edges. These tuples are then

processed by the operator to produce zero or more output tuples

that are then sent along its outgoing edges.

A unary operator processes an input (of some type Tin ) and
produces a sequence of zero or more outputs (of some type Tout ).
Every vertex with a single incoming edge has an associated unary

operator that specifies the computation to be performed at that ver-

tex. map, filter and windowed-aggregate are examples of such

unary operators. A vertex with n edges abstractly represents an

n−ary operator, with n inputs of types T1,T2, ...,Tn . In the stream-

ing setting, the semantics of an n-ary operator too can be specified

as a function that maps a tuple on a (specified) incoming edge to a

sequence of zero or more output tuples.

Some operators are pure functions that do not have any state

associated with its computation and hence called stateless operators.
Some operators have an internal state that is accessed and updated

during the computation - for example, windowed-count maintains

the count of tuples in the current window as internal state. Such

operators are called stateful operators . In some cases, the operator

accesses only a part of the state during the computation, which is

pre-determined by a key associated with every input tuple. These

are called partitioned stateful operators, as the state can be parti-

tioned by the key. windowed-group-by-count is an operator of

this type.

1.1.1 Opportunities for Parallelization. A streaming dataflow

graph exposes various opportunities for parallelizing the compu-

tation efficiently. We elucidate this using an example: figure 1 rep-

resents an algorithm to detect high-mobility fraud using call data

records as a streaming dataflow graph.

Call data records (CDR) are generated by every call between two

mobile phones and it contains information such as time, duration

of the call, location and phone number of the caller and the callee.

In the detection algorithm, a CDR is first filtered (1, fig. 1) on the

interested area code and the caller/callee’s time and location infor-

mation is projected (2) as a record. These location records are then

grouped by phone number to compute (3) the speed at which a user

must have traveled between locations. Phone numbers that have a

speed greater than T , are then filtered (4), and the number of such

cases in a given time window are counted (5).

An operator is said to be data parallel, if its inputs can be pro-

cessed concurrently. Stateless operators such as (1, 2, 4) in the

example are data parallel. On the other hand, inputs to a parti-

tioned stateful operator can be processed in parallel only if they

belong to different partitions. Hence, they are said to exhibit parti-
tioned parallelism. In our example, computing the speed based on

location records (3) for two different phone numbers can be done

in parallel. Non-commutative stateful operators do not exhibit any

data parallelism.

Further, when two operators are connected to each other such

that the output of one forms the input to another, they are said to

exhibit pipeline parallelism. In that case, these two operators can be

processed concurrently. For example, one worker can compute the

speed (3) for a particular phone number, while another filters (4)

some phone numbers based on the speed already computed and sent

to be filtered. Finally, a dataflow graph also exposes task parallelism.

If two operators are not connected to each other via an input-

output relationship, directly or indirectly, they can be processed

concurrently. For example, operators on two sibling nodes in a DAG

exhibit this kind of parallelism.

1.1.2 Ordered Processing. Ordered processing specifies that pro-
cessing of inputs to a streaming pipeline must be semantically

equivalent to executing them serially one at a time in the order of

their arrival. We achieve this by ensuring that each individual oper-

ator implementation guarantees ordered processing and hence by

extension any pipeline built by composing these implementations

provide the ordering guarantee.

There is a fundamental conflict between data parallelism and

ordered processing. Data parallelism seeks to improve the through-

put of an operator by letting more than one worker operate on the

inputs from the worklist concurrently. On the other hand, ordered

processing requires to process them in the order of their arrival. The

key observation here is that depending on the type of the operator,

a concurrent execution might still be semantically equivalent to a

serial single-threaded execution.

2



Figure 1: Algorithm for high-mobility fraud detection expressed as a streaming dataflow graph.

Ordered processing for a stateful operator is straightforward as

its maximum allowed degree of parallelism is 1. In case of state-

less and partitioned stateful operators, however, multiple workers

process inputs concurrently and so they need special constructs

to ensure that their concurrent execution is equivalent to a serial

single-threaded execution.

There are essentially two kinds of ordering requirements that

must be handled correctly. The first kind is processing order: for
some operators we need to ensure that the processing logic of the

operator is executed on the inputs in the same order as they arrive.

This is a key requirement for non-commutative stateful operators.

On the other hand, there is no such constraint for stateless operators.

Partitioned stateful operators present an interesting middle-ground

where it is enough to guarantee that tuples with the same key are

processed in their arrival order.

The second kind of requirement is output ordering, which spec-

ifies that the outputs of an operator are sent to the downstream

operator in the same order as its inputs. In particular, even when

inputs i1 and i2 can be processed concurrently (when they belong

to different partitions or when the operator is stateless), we still

need to ensure that the outputs o1 and o2 produced by these in-

puts respectively are sent out in the right order. We guarantee this

property for both stateless and partitioned stateful operators using

special concurrent data structures. We describe a low-overhead,

non-blocking solution to this problem in Sec. 3.

Output ordering is innately a blocking constraint: even if o2 is
produced before o1, it gets blocked until o1 is produced and sent

downstream. This manifests as an implicit advantage for paral-

lelization schemes that processes inputs from the worklist almost
in the order of their arrival even though the semantics does not

impose a restriction on this order. For stateless operators, having a

shared worklist directly enables this execution pattern. However, it

is non-trivial to achieve this for partitioned stateful operators. We

present an adaptive partitioning scheme that supports this notion

of almost ordered processing in Sec. 4.

1.2 Contributions
In this paper, we make the following contributions:

(1) (Sec. 3) We present a low-overhead non-blocking reordering

scheme to order outputs of an operator that are produced con-

currently. We observe that it scales better than a standard lock-

based scheme and overall provides better throughput for long

pipeline queries.

(2) (Sec. 4) We propose a novel scheme for exploiting partitioned

parallelism in the ordered setting. We observe that our scheme

achieves better speedup than the predominantly used strategy

for partitioned parallelism during partition-induced skews and

mostly avoids delay due to ordering constraints leading to much

lower latencies.

(3) (Sec. 6) We propose several intuitive scheduling heuristics that

can be used to dynamically schedule operators at runtime. We

identify a single heuristic that produces the best throughput and

near best latency.

(4) (Sec. 7) We evaluate our runtime on streaming queries from

TPCx-BB[16] and demonstrate that we can provide a throughput

of millions of tuples per second on some queries with latency in

the order of few milliseconds.

2 SOLUTION OVERVIEW
A generalized solution model for executing a stream processing

query comprises of two components: a compiler and a runtime. The
compiler is responsible for static optimizations, while the runtime

takes this compiled representation and executes it on the machine,

potentially with dynamic optimizations.

The relative roles of the compiler and runtime are determined

by the type of streaming computation. For example, the streaming

computations in signal processing are deterministic, and operator

characteristics (such as per-tuple processing cost, selectivity) are

known a priori. Such workloads provide more opportunities for

static compiler optimizations, and the runtime is a straightforward

execution of the produced scheduling plan. This model is exempli-

fied by systems like StreamIt [22] and Brook[15]. In other appli-

cations like monitoring, fraud detection or shopping cart analysis

there is little to no information about the operator characteristics

at compile-time and hence the scope of static optimizations are

fewer. So, systems like Borealis[1] and STREAM [11] designed for

these workloads rely heavily on dynamic optimizations. However,

even in such dynamic workloads there is some scope for static

optimizations like coarsening of operators, pushing up filters. Refer

[26] for a detailed catalog of such optimizations.

In our system, we target dynamic workloads to support use-cases

that have risen in many new Big Data applications. We assume that

a stream processing query is initially compiled into an optimal

pipeline using some of the known techniques. We then deploy

this optimal version of the pipeline on a runtime that seeks to

efficiently parallelize its execution with the ordered processing

guarantee. Here we focus only on the design of runtime, as the

compilation stage is quite well studied in earlier works. We limit

our discussion to linear chain pipelines, which is the predominant

structure present in most stream processing queries. We believe

our ideas can be generalized to other DAG structures as well, but

we do not specifically address them here.

3



2.1 Problem Definition
The system accepts a pipeline that consists of operators connected

to each other as a linear chain. The operators are specified to be

either of stateless, stateful or partitioned stateful type. In case of

partitioned stateful operators, the user also specifies a key selector

that can be used to associate tuples with keys and a partitioning

strategy such as hash or range partitioning to further map keys to

partitions. The goal of the runtime is to execute this linear pipeline

efficiently on a shared-memory multicore machine by exploiting

various forms of parallelism as described in Sec. 1.

There are two dimensions of performance for a stream processing

system that we are interested in. First is the throughput, by which

we refer to the number of tuples processed to completion every

second. The second dimension is latency. There are two notions

of latency prevalent in the literature: end-to-end latency, which is

the time duration between entry at ingress and exit at egress, and

processing latency, which is the time since the first operator begins

processing a tuple until exit at egress. The difference between them

is that end-to-end latency includes the time spent by the tuple in

the input queue for the overall pipeline. In the rest of this paper,

we refer to processing latency when we say latency. The objective

here is to maximize the throughput to handle high-speed data while

minimizing the latency to process them in realtime.

2.2 Runtime Design
Our runtime is based on an asynchronous model of execution. We

first decouple the pipeline into individual operators and compile

them to independently schedulable units, one for every operator.

We do this by associating every operator with a worklist(s). Inputs

to an operator are simply added to its worklist instead of executing

the operator logic synchronously. When the operator is scheduled,

it obtains inputs from the worklist, processes them and adds the

outputs to the worklist of the downstream operator.

The goal of the runtime is to choose which operator to choose,

at what time and on which core? The two essential components

of our runtime are worker threads and the scheduler data structure.
The worker threads are the work horses of our runtime and re-

sponsible for advancing the progress of operators. Worker threads

periodically query the scheduler for work. A worker, when allotted

to an operator, dequeues an input from the operator’s worklist,

performs the operation and adds the output(s) produced to worklist

of the next operator in the pipeline. A worker is specified with the

maximum number of tuples to process in an operator and when

allotted it processes as many tuples before deciding which operator

to work on next. The worker additionally collects runtime infor-

mation about each operator such as number of inputs consumed,

outputs produced, time taken to process them. This is then used to

estimate operator characteristics like average per-tuple processing

cost and average selectivity.

Scheduling decisions regarding which operator must be sched-

uled next are made by a central scheduler data structure. This

decision is made using estimated operator characteristics, current

worklist sizes, and possibly observed throughput and latency mea-

surements. We achieve this using scheduling heuristics - we discuss

several of them in Sec. 6. When a heuristic chooses to schedule two

different operators on different cores, it seeks to exploit pipeline

parallelism. When it schedules the same operator on different cores

it exploits data parallelism ingrained in the operator. Overall the

goal of the scheduler is use to dynamically determine an ideal

combination of data and pipeline parallelism among operators to

achieve optimal performance.

The scheduler in our runtime can dynamically schedule more

than one worker on an operator. This is applicable only to data or

partition parallel operators as the maximum degree of parallelism

allowed by a stateful operator is 1. The implementation of these

operators internally handle the required concurrency control to

ensure correct and ordered processing (refer Sec. 5). This is unlike

many other architectures [37], where a single logical operator is

replicated into a statically determined number of physical operators

that are then scheduled independently.

3 REORDERING SCHEME
In this section, we handle the problem of ordering outputs produced

by concurrent workers before they are sent to downstream oper-

ator(s). Most prior solutions to this problem are restricted to the

micro-batching architecture: the input tuple stream is considered

as a stream of batches, where tuples in a batch are executed in

parallel and their outputs are finally sorted before sending them

downstream. The notion of batching has some advantages including

amortizing the cost involved in sorting, admitting columnar-based

and operator-specific batch optimizations. However, these solutions

are predominantly known to trade off latency for throughput. Our

approach seeks to perform this reordering incrementally using low

overhead non-blocking concurrent data structures.

For stateless and partitioned stateful operators, multiple workers

can consume inputs from their worklist producing outputs con-

currently. Each input is associated with a unique serial number

(starting from 1) denoting its arrival order into the worklist of the

operator. This serial number is assigned using an atomic counter

at the time of enqueueing them to the worklist(s) of the operator.

In some cases, a single input can produce more than one outputs.

However, they are considered together as one unit and is associated

with a single serial number. The schemes we describe below are

concerned only with ordering outputs based on this serial number.

Specifically, the ordering constraint requires that for all t , the
output ot produced by a tuple it be sent downstream (either to an

operator or egress) only after o1,o2, ...,ot−1 are sent downstream.

Since, these outputs are produced by concurrent workers, they are

produced in no predetermined order. So, ot+1 might be produced

before ot and in that case ot+1 has to wait until ot is produced and

sent. We first describe a lock-based solution that implements this

waiting scheme. We show that such a straight-forward design could

lead to sub-optimal performance. Then, we present our improved

low-latency, non-blocking solution.

3.1 Lock-Based Solution.
A standard approach would be to use a waiting buffer and a counter.

The counter keeps track of the serial number of next output to

be sent. Whenever the corresponding output is available it is sent

downstream immediately and the counter incremented. If an output

is not the next one to be sent, we simply add it to the waiting buffer

and return to process more inputs. So, when an output is sent, we
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1 void send(ot ) {

2 lock ();

3 if (t == next) {

4 send_downstream(ot );
5 next ++;

6 while(buffer has onext ) {

7 send_downstream(onext );
8 next ++;

9 } } else {

10 add ot to buffer

11 }

12 unlock ();

13 }

Figure 2: Lock-based Scheme: The global lock used
here induces unnecessary blocking behavior

O7 O3 O2

T1 T2 T3 T4

O6 O4

O8 O1

Blocked Active

Figure 3: Unnecessary Blocking:T1,T2 andT3 are blocked
until T4 sends outputs O1,O2 and O3 downstream.

must check the waiting buffer for the next output and if present,

send that to the downstream operator and repeat. Further, we do

not want multiple workers to send the output(s) downstream or

increment the counter concurrently as that will violate our ordering

guarantee. So, we protect the overall logic using a global lock to

ensure correctness and progress. This scheme is listed in fig. 2

However, this scheme results in sub-optimal performance due

to unnecessary blocking of workers. Consider the scenario shown

in fig. 3: worker threadT4 producesO1, which is the next output to

send downstream, obtains the lock and keeps sending outputs O2

and O3 as they are already available in the waiting buffer. Mean-

while, workers T1,T2,T3 that produced outputs O4, O6and O8 re-

spectively get blocked trying to acquire the lock. However, we

know that outputs have pre-allotted serial numbers. So, adding

them to the waiting buffer can be totally independent of sending

them downstream. Ideally, workers T1,T2 must be able to add their

outputs to the waiting buffer while another worker is sending out-

puts downstream and return back to do useful work.

3.2 Non-Blocking Solution
We improve this version by replacing the lock with an atomic

flag, essentially to provide try_lock semantics. This scheme is

listed elaborately in fig. 4. Any workerw seeking to send an output

downstream, first tries to add it in a bounded circular buffer. The

buffer is used to store available outputs that are not yet ready to be

sent. This step can either fail or succeed based on the size of buffer

and current value of the next counter. If it fails, the worker tries
again with the same output, after it exits the send function.

Before exiting, irrespective of success or failure in the add step,

w tries to send pending outputs in the buffer to downstream opera-

tor(s). It can do so only when it can test_and_set a global atomic

flag. If it cannot set the flag, it means that another workerw ′
is per-

forming this step. In that case,w simply exits the function instead

of getting blocked, unlike in the lock-based scheme.

Ifw can set the flag, it has exclusive access to send the buffered

outputs. First, it obtains the current value of next counter and the

corresponding value from the buffer array. If this value is not

EMPTY, it sends the output downstream, increments the counter and

repeats this again for the new value of next. If the obtained value is
EMPTY then,w clears the flag and exits the loop. Further, to ensure

that every output is sent downstream as soon as it is ready to be,

w checks the buffer array again and retries to send the previously

unavailable output, if it is available now. This ensures that there

is no ready-to-send output in the buffer, when there are no active

workers inside send.

Theorem 3.1 (Correctness of Non-Blocking Reordering

Scheme). If all concurrent workers allotted to an operator send out-
puts to operators downstream by invoking the send procedure (fig. 4),
then output ot (with serial number t ) is sent downstream (by invoca-
tion of send_downstream) only after all outputs o1,o2, ...,ot−1 are
sent.

Proof. The outputs are sent downstream only inside the send-

pending-outputs procedure, in which lines L27-36 (referred to as

exit section) are protected from concurrent access by the atomic flag

variable flag. Since this makes the exit section a critical section,

at most one worker increments the next counter and sends the

pending outputs in the buffer to the operator downstream. It is

quite clear from the control flow in the exit section, that whatever

non-EMPTY output is present in buffer[i], it is sent downstream
as the output with serial number n, where i = n mod s . Now, it
suffices to prove that if the value of next is n and o is the value

obtained by loading buffer[i] as in fig. 4, then the following two

conditions hold:

(1) If on has not been added to the buffer, then o is EMPTY

(2) If o is not EMPTY, then the value of o is on

In order to prove this, we first define Tk to be the time at which

the next counter is atomically incremented from k to k + 1. For

simplicity of explanation, we assumeTk , fork < 0, to be some global

initialization time when buffer array is initialized with EMPTY.
The condition at L16 (referred as entry condition) determines

whether an output ot (with serial number t ) can be added to the

buffer at i = (t mod s) or not. This condition enforces that ot
can be added only when next ∈ (t − s, t], which in turn can happen

only during the time interval (Tt−s ,Tt ).
Since all updates to the global data fields are atomic, they are

sequentially consistent. So, the value of buffer[i] (where i = t
mod s) is set to EMPTY in the exit section beforeTt−s . We also know

that this will definitely remain EMPTY until Tt−s . This is because
5



1 //data fields

2 atomic_long next;

3 atomic <output*> buffer[s ];
4 atomic_flag flag;

5

6 // invoked by workers

7 bool send(ot ) {

8 bool success = try_add(ot );
9 send_pending_outputs ();

10 return success;

11 }

12

13 // helper functions

14 bool try_add(ot ) {

15 n = next.load ();

16 if(t ≥ n and t < n + s) {

17 i = t mod s;
18 buffer[i ].set(ot );
19 return true;

20 } else {

21 return false;

22 } }

23

24 void send_pending_outputs () {

25 if (not flag.test_and_set ()) {

26 //send as many outputs as possible

27 while(true) {

28 n = next.load ();

29 i = n mod s;
30 o = buffer[i ].load ();
31 if (o is not EMPTY) {

32 send_downstream(o);
33 buffer[i ].set(EMPTY);
34 next.fetch_add (1);

35 } else {

36 flag.clear ();

37 break;

38 } }

39 //re -check if next output is available

40 o = buffer[i ].load ();
41 if (o is not EMPTY) {

42 send_pending_outputs ();

43 } } }

Figure 4: Non-blocking Reordering Scheme

the only valid output that can be added at i during that intermittent

time is ot−s due to the entry condition. But, we know ot−s has

already been added once and by uniqueness of serial numbers, we

can assert it will not be added again. From just afterTt−s , this value
will still remain EMPTY until some worker adds an output into that

slot. Again, the entry condition now ensures that only ot can be

added to buffer[i] during (Tt−s ,Tt ). Hence, (1) holds.
Further, control flow in the exit section necessitates that ot , if

available, is read into o before Tt . This together with the entry

condition, ensures that ot is not overwritten before being read back

from buffer[i]. Hence, (2) holds. Both conditions (1) and (2), in

addition with the guarantee that next cannot have a value k + 1
before k , we can assert that the outputs are indeed sent downstream
in the serial order. □

Progress. In the above scheme, none of the concurrent workers

get blocked due to another worker sending outputs. However, a

worker can get blocked due to limited size of the waiting buffer:

when it tries to send an output that corresponds to input with a

serial number much higher than the current value of next, it can
potentially get blocked trying and failing repeatedly to add the

output. This is because the entry condition prevents this output to

be added until some earlier outputs are sent and the buffer makes

space for this output. Meanwhile, this worker repeatedly tries to

send it and fails.

One simple way to handle this would be to use a non-blocking

concurrent map instead of a bounded array. However, the overheads

in a simple array are much lesser compared to the alternatives

and hence we chose such a design. Even though, we can never

eliminate this scenario with a bounded buffer, we can try to avoid

its occurrence as much as possible. One could use an appropriately

sized waiting buffer. Further, we could employ design strategies

such that concurrent workers working on a data parallel operator

would produce outputs almost in-order of their serial numbers. This

is a key design strategy in exploiting partitioned parallelism in the

ordered setting, which we present in the next section.

4 PARTITIONED PARALLELISM
The essence of partitioned parallelism is that every input to be

processed has a key, and the state required to process inputs with

different keys are disjoint. This allows us to process tuples with

different keys in parallel, though those with the same key must be

processed sequentially, in order.

The key space can be statically partitioned into many disjoint

buckets based on a strategy such as range or hash partitioning. The

system treats tuples belonging to the same bucket as potentially

having the same key and processes them sequentially. If the num-

ber of buckets is p, it limits the degree of parallelism to p. Ideally,
we would like to have as many buckets as the number of keys to

exploit as much parallelism as possible even during load imbalance

induced by the partitioning strategy. But, scheduling overheads and

complexities in the key space force us to have a fewer, fixed number

of buckets. However, a more fine-grained partitioning strategy is

still preferable, given the overheads are admissible. Profiling data

gathered from sample runs can be used to determine both p and

the partitioning of key space into p buckets.

Further, we would like to design a flexible scheme where work-

ers can be dynamically allotted to operators. This is necessary to

support a dynamic scheduling based runtime that allots workers

to operators based on current status of the pipeline. As we saw in

Sec. 3, we would also like the processing order of inputs belonging

to different buckets to be as close to arrival order as possible. This

is because reordering of outputs will lead to unnecessary blocking

if processed too much out-of-order. In the rest of this section, we

describe the concurrent data-structure and strategy we employ to

achieve ordered partition parallelism. We first describe two simpler
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Figure 5: Shared-Queue Approach: Each worker must de-
queue the tuple and obtain a lock on the tuple’s bucket
atomically, otherwise a concurrent execution might vio-
late the processing order constraint as shown above.

Figure 6: Partitioned-Queue Approach: Since no worker is
allotted to the last bucket which contains tuple t2, t3, the
outputs of tuples t4 to t12 will get blocked from flowing to
the downstream operator, limiting pipelined parallelism.

strategies for implementing such an operator before presenting our

approach.

4.1 Shared-Queue Approach.
In the first approach, which we refer to as the shared-queue ap-
proach, the producers (preceding operators in the dataflow graph)

enqueue their outputs to a single queue (the worklist), and all con-

current workers extract tuples from the same queue and process

them. This is a fairly straightforward strategy when the operator is

stateless. We can use any linearizable concurrent queue to support

multiple producers and consumers.

A partitioned operator, however, introduces a key challenge: we

need to ensure that the items with same key are processed sequen-

tially and in order. A naive approach would be as follows: Each

worker first dequeues an item t and then acquires a lock (or use

any equivalent mechanism to ensure isolation) on the item’s key so

that two items with the same key are not processed concurrently.

However, these two actions must be performed atomically: other-
wise, two workers could concurrently dequeue items t1 and t2 with
the same key k , but end up acquiring the lock on k out-of-order and

thus process them out-of-order as shown in fig. 5. This necessitates

quite complex and expensive concurrency control. Furthermore,

this also introduces potentially blocking behavior when one worker

waits for another, which is processing an input tuple with the same

key. A naive implementation could aggravate this, causing all work-

ers to be blocked, if a global lock is used to ensure the atomicity of

the sequence of these two actions.

4.2 Partitioned-Queue Approach.
The second approach, which we refer to as the partitioned-queue
approach avoids this problem.We use separate queues (worklist) for

each bucket and the producers enqueue each tuple into the queue

corresponding to the tuple’s key. Different workers process different

queues and hence there is no need for explicit concurrency control.

However, this approach has its own set of drawbacks: Consider the

scenario shown in figure 6, where the number of workers assigned

to an operator is less than p (number of buckets). In this case, the

workers may make progress processing a subset of the p queues.

However, the outputs produced by these workers will be blocked by

the reordering scheme that merges the outputs produced from the

p queues in order. This can cause further sub-optimal performance

downstream as this behavior limits available pipelined parallelism

between this and the downstream operator.

4.3 Hybrid-Queue Approach
We propose a hybrid approach that combines techniques from both

these strategies. We use separate queues, one for each bucket as

described above. In addition, we utilize a master queue which is

analogous to the single queue of the former approach. Actual tuples

are stored in individual bucket queues while, the master queue

stores the key of each tuple. We list the execution model in fig. 7.

Every workerw dequeues a key k from the master queue, and

then tries to gain exclusive access to the queueQk that corresponds

to k . If some other workerw ′
already has exclusive access to queue

Qk , then workerw delegates the responsibility of processing the

corresponding tuple tow ′
, by incrementing a concurrent counter

countk associated with the key k . The counter countk denotes the

number of tuples fromQk to be processed before the active worker

of key k (w ′
in this case) tries to dequeue the next key from master

queue. The same counter is used to provide exclusive access to the

queue Qk . Having delegated the responsibility of processing the

dequeued tuple tow ′
, workerw can return to process the next key

from the master queue.

If, on the other hand, workerw gains exclusive access to queue

Qk , it dequeues the next tuple from Qk and processes it. However,

after processing it, the worker needs to check if there are any

delegated tuples that it needs to process from the same queue

Qk . As long as the concurrent counter countk indicates there are

delegated items, the worker continues to dequeue tuples from Qk
and processes them. When the counter becomes zero, the worker

returns to processing the master queue. We prove the correctness

of this scheme in the theorem below.

Theorem 4.1 (Correctness of hybrid-qeue algorithm). If
inputs to a partitioned stateful operator o are added using the addInput
(fig. 7) procedure andworkers allotted to o, consume inputs by invoking
the consumeInputs procedure (fig. 7), then the following properties
hold:
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1 // invoked by producers

2 void addInput(tuple) {

3 p = getPartition(tuple);

4 partitionQueues[p]. enqueue(msg);
5 masterQueue.enqueue(p);
6 }

7 // invoked by workers

8 void consumeInputs () {

9 while(masterQueue.tryDequeue(p)) {

10 if(count[p]. fetch_add (1) == 0) {

11 do {

12 partitionQueues[p]. tryDequeue(tuple);
13 operate(tuple);

14 } while(count[p]. fetch_sub (1) > 1) ;

15 } } }

Figure 7: Hybrid Queue Approach: The addInput procedure
is invoked by upstream operators and consumeInputs proce-
dure is invoked by workers allotted to the partitioned state-
ful operator

(1) No two workers can operate on tuples having the same key k
concurrently

(2) All tuples that have the same key k are processed exactly once
and in the order of their arrival

Proof. Any worker allotted to the operator first dequeues a

partition p from the master queue. The condition at L10 in fig. 7

ensures that a worker can obtain a tuple from the partition queue

for p only when value of count[p] (counter for p) is zero before the
atomic increment. Now, to prove (1), it is enough to assert that the

value of count[p] is never zero when a tuple belonging top is being
actively processed by a worker. In the do-while loop (L11-14), the

counter is decremented only after the dequeued tuple is processed

completely. Note that the control flow in the addInput procedure
ensures that tryDequeue at L12 always succeeds. Since the counter
is decremented only at L14, it is clear that only the active worker

of p can reduce the value to zero, after which any other worker

can enter L11-14. The atomic decrement and the condition at L14

ensures that the current active worker does not process any more

tuples when count[p] becomes zero. Hence, at most one worker

operates on tuples belonging to the same key.

Further, the FIFO guarantee of the linearizable concurrent queues

in partitionQueues and the constraint that at most one worker

can enter L11-14 for a particular p (proved above) ensure that tuples

belonging to the same key are processed exactly once and in order

of their arrival into partitionQueues[p]. □

Progress. No worker can get blocked in the hybrid-queue ap-

proach. Adding inputs happen only by a single worker (of the

operator upstream) due to the execution model employed in the re-

ordering scheme. When consuming inputs, a worker that dequeues

a tuple with same key as one being concurrently processed by an-

other worker will simply delegate it to the active worker. So, this

worker does not get blocked and moves on to the next key in the

master queue. In this approach, outputs are also produced almost

in their arrival order, which avoids blocking of outputs (sometimes

workers themselves) by the reordering scheme.

5 CORRECTNESS OF IMPLEMENTATION
In this section, we describe how we use the concurrent data struc-

tures described in Sec. 3 and 4 to implement the operators and prove

that our implementation in combination with the runtime always

guarantees ordered processing.

We start by defining the notion of correctness on the concurrent

execution resulting from any implementation of the streaming

computation.

Definition 5.1 (Ordered execution). A concurrent execution E
of a streaming computation on any input sequence i1, i2, i3, ... is
ordered, if and only if, the output sequence o1,o2,o3, ... produced by
the execution is the same output sequence produced by a sequential

execution of the pipeline on i1, i2, i3, ....

We would like to ensure our implementation of the streaming

computation is correct with respect to the above definition of or-

dering. An implementation of a streaming computation is said to

be ordered, if and only if, any concurrent execution of the imple-

mentation is ordered.

There are three types of operators supported in our system: state-

ful, stateless and partitioned stateful operators. The implementation

of a stateful operator is straight-forward. A worker of the upstream

operator adds an input tuple to its worklist(a single-producer single-

consumer concurrent queue). Only a single worker is allotted to a

stateful operator at any time and this worker consumes these inputs

serially and adds the corresponding outputs to the worklist of the

downstream operator. A stateless operator is built using a shared-

worklist (a multi-producer multi-consumer concurrent queue) and

our non-blocking reordering buffer (Sec. 3). Input tuples are added

to the shared-worklist and every tuple is allotted a unique serial

number using an atomic counter. Worker(s) allotted to this state-

less operator dequeue an input from this worklist and process it to

produce output, which are then sent to the downstream operator

by invoking the send method of the reordering buffer(fig. 4). If it

fails, the worker tries again until it successfully adds the output to

this buffer.

We implement the partitioned stateful operator by composing

the hybrid partitioning scheme we described in Sec. 4 with our non-

blocking reordering buffer. Inputs are allotted a unique increasing

serial number in the order of their arrival and added by invok-

ing the addInput method (fig. 7). Workers alloted to this operator

consumes inputs using the consumeInputs method and invokes

the send method of our reordering buffer (fig. 4) to send outputs

downstream.

Theorem 5.2 (Correctness of pipeline implementation). Any
pipeline built by composing the above operator implementations and
executed using our dynamic runtime only allows ordered executions.

Proof. It is easy to see that the above theorem holds for a

pipeline composed only of a single stateful operator. For a pipeline

composed only of a stateless operator, even though i1, i2, i3... may

be processed in any order, the corresponding output produced for

it is ot since the operator is stateless. The reordering buffer (sec. 3)

guarantees that reordered sequence sent out is o1,o2,o3....
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Now, let us consider a pipeline composed only of a partitioned

stateful operator. For any two inputs ik and il (k < l), if they belong
to different keys, then irrespective of the order in which they are

processed the corresponding outputs produced will be ok and ol .
When they have the same keys, the hybrid scheme guarantees

that ik will be processed before il and hence the outputs produced

will be ok and ol . So, the output produced for it is ot . Similar to

a stateless operator pipeline, reordering scheme ensures that the

output sequence produced is o1,o2,o3, ....
Since each of these single operator pipelines lead to correct exe-

cutions, it is straightforward to see any linear composition of these

operators will always lead to correct executions in our runtime. □

6 DYNAMIC SCHEDULING
Our system consists of many workers that consume inputs from

the worklist(s) of an operator to produce outputs using the user-

specified operator logic. The number of such workers is the same as

number of cores available on the multicore machine. Each worker

queries a central scheduler data structure to obtain some work and

returns back for more, after it finishes the work allotted previously.

The scheduler is responsible for answering two questions: (1) which

operator to work on and (2) how many tuples to process from its

worklist(s) before returning back. In this section, we propose some

scheduling heuristics to perform this dynamic work allotment to

worker threads.

We say an operator is schedulable, if the currently allotted num-

ber of workers is less than its maximum allowed degree of par-

allelism and its worklist is not empty. The theoretical maximum

degree of parallelism of a stateful operator is 1, of a partitioned

stateful operator is the number of partitionsp, and that of a stateless
operator is ∞ (essentially the number of available cores n). In all

the heuristics we discuss below, we consider only those operators

that are schedulable at the time we make the scheduling decision.

A worker when allotted to an operator, operates on it for a con-

stant time slice s . The maximum number of tuples that must be

processed by the worker can be computed using this constant s and
ci , the cost of processing a single input tuple by oi . If the worklist of
an allotted operator becomes empty before processing the specified

number of tuples, the worker does not get blocked; instead returns

back to query the scheduler for more work.There are several al-

ternatives for choosing the time for which an operator should be

scheduled. However, we focus on constant time slices in order to

study characteristics of the heuristics we propose without inter-

ference from these changes. Nevertheless, one has to be careful in

choosing s . Higher the value of s , lower the contention for querying

the scheduler and better amortization of scheduling overheads. On

the other hand, a larger value of s impedes the responsiveness of

the system to dynamic changes, as it can get stuck on a previous

scheduling decision for a long time.

We first propose some intuitive heuristics based on the idea of

orchestrating the flow of tuples through a pipeline. There are two

simple ways to enable this flow: one is to provide a thrust from

ingress towards egress or use a suction pressure from egress to pull

items from ingress. The following two heuristics are based on this

key idea.

6.1 Queue-size-throttling (QST)
In this heuristic, we push tuples from the entry point towards the

exit point and try to focus on one operator at a time. We schedule

an operator until it generates enough inputs for the downstream

operators and then go on to schedule the next one in the pipeline.

We implement this scheme using queue throttling: each operator

has an upper bound on its output queue (worklist of the downstream

operator) size and is not scheduled if current size is higher than this

threshold. In short, the heuristic always picks the earliest operator

in the pipeline that has current output queue size less than its

threshold.

Further, each operator oi has a selectivity, denoted by si , which
is the average number of outputs produced by oi on processing a

single input tuple. For example, selectivity is 1 for a map operator
that maps each input tuple to a single output tuple, while it is less

than 1 for a filter and more than 1 for flat-map, which maps a

single input tuple to more than one output tuples. Due to difference

in selectivities, having a uniform threshold for all operators could

potentially create a slack in the pipeline. So, we set the output queue

size threshold Ti for an operator oi as follows, where csi is the
cumulative selectivity of operator oi since ingress (csi =

∏i
k=1 sk )

and C is a constant that can be imagined as capacity of the system.

Ti =
C ∗ csi∑n
i=1 csi

(1)

Note that Ti is proportional to the expected number of tuples pro-

duced by oi as input to oi+1, when
C∑n

i=1 csi
tuples are processed in

the overall pipeline.

6.2 Last-in-pipeline (LP)
This heuristic is based on the complementary idea of pulling tu-

ples from the exit point. In contrast to QST, this heuristic seeks

to schedule operators later in the pipeline. Whenever an operator

is not schedulable, this heuristic moves to its upstream operator

and schedules that. This scheme depends entirely on the imminent

dataflow between the operators and not on any of the operator

characteristics. So, LP chooses the latest operator in the pipeline

that has a non-empty input queue. An alternative could be to have a

minimum worklist size, in which case only operators with worklist

at least as big as this threshold would be considered for scheduling.

But, in our empirical evaluation we consider only the simpler case

where this threshold is 1.

The next set of heuristics take a slightly different approach to

scheduling by prioritizing operators based on a certain measure of

priority. This priority is computed using operator characteristics

and current status of the pipeline. Essentially, these heuristics an-

swer the question: which operator in the pipeline currently needs

the most worker time to reach our performance goals? We discuss

two heuristics designed using this strategy below.

6.3 Estimated-time (ET)
In this heuristic, we prioritize operators based on the estimated

time it would take to process its current worklist, if we allot a new

worker to it. We compute priority pi of an operator oi , as follows,
where Ii denotes the current size of its worklist, ci denotes the
cost of processing a single tuple by oi , wi denotes the number of
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workers currently assigned to oi , andMi is its maximum allowed

degree of parallelism:

pi =

{
Ii ∗ci
wi+1

ifwi < Mi

0 otherwise

(2)

This strategy is based on the intuition that an operator that needs

more worker time will lag behind and have a worklist that will take

longer to complete.

6.4 Current-throughput (CT)
The key idea here is to choose the operator with the lowest through-

put, as it is likely to be the bottleneck in the pipeline. We have to

normalize the throughput to account for non-unit selectivities. We

divide the time dimension into windows of sizew and compute the

effective number of tuples processed by an operator in that time

window as a measure of its throughput. The effective number of

tuples nwi that would be processed in the current window under

current allocation of workers can be computed approximately as

follows:

nwi =
Twi +wi ∗ s

ci ∗ csi
(3)

where, Twi is the total worker time spent on oi in the current win-

doww ,wi is the number of workers alloted to oi currently and s is
the time slice for which each of the wi workers are allotted to oi .
CT chooses the operator with the lowest nwi value. Another critical

issue in the above heuristic is deciding on the window size w . It

is possible for the scheduler to make sub-optimal decisions if the

window sizew is too low. Ideally, we would like to use a window

size that would have same nwi for all the operators at the end of the

window. This is similar to the period of a static schedule.

We evaluate these heuristics on real-world streaming queries

from the TPCx-BB benchmark and discuss the pros and cons of

choosing one over another in the next section.

7 EVALUATION
In this section, we present results of evaluation of the different

scheduling heuristics and highlight benefits of our design of the

parallelization framework for ordered stream processing empiri-

cally.

Experimental Setup. We perform all our experiments on Intel

Xeon E5 family 2698B v3 series which runs the Windows Server

2012 R2 Datacenter operating system. It has 16 physical cores, with

L1, L2 and L3 cache of size 32 KB, 256 KB and 40 MB. We imple-

mented our research prototype in C++ on Windows using standard

library implementations of concurrent queues and other atomic

primitives. We measure throughput and latency by sending marker

wrappers over tuples at equal tuple intervals, which carry informa-

tion about entry and exit times. We ran all experiments for 2-10

mins and report the mean over 3 runs. For measurements, we con-

sider only markers in the 20th to 80th percentile range, to eliminate

starting up and shutting down interferences. Average throughput

is computed by obtaining the ratio of number of tuples to the total

time taken to process them and latency by averaging the processing

latency of each marker in the range.

Benchmark. We use queries from the TPCx-BB benchmark[16],

which is a modern Big Data benchmark that covers various cat-

egories of data analytics. We use all queries (Q1, Q2, Q3, Q4 and

Q15) that correspond to stream processing workloads from TCxBB

to compare our heuristics and evaluate various aspects of the run-

time design. These queries and their implementation details are

summarized in table 1. Web clickstreams are generated by every

click made by a user on the online shopping portal and every item

purchase in a retail store generates a store sales tuple.

7.1 Comparison of scheduling heuristics
We discussed several heuristics for dynamically scheduling opera-

tors in a stream processing pipeline in Sec. 6, namely normalized-

current-throughput (CT), estimate-completion-time (ET), last-in-

pipeline (LP) and queue-size-throttling (QST). We present results of

experiments comparing their performance in terms of throughput

and latency for the above queries in figures 8a and 8b respectively.

We increase the number of cores until peak throughput of the best

heuristic, beyond which the performance drops when the over-

heads of parallelization outweigh its benefits. We can use existing

techniques in the literature [37] to identify this break-even point

automatically. So, we do not focus on that aspect here.

Throughput. We observe that heuristic CT scales almost lin-

early up to 16 cores for Q1, 12 cores for Q15 and 8 cores for Q2, Q3

and Q4. It achieves a peak throughput of approximately millions

of web clickstreams and store sales tuples per second. We observe

that this is the best possible throughput based on the per-tuple

processing costs and selectivities of operators in the pipeline for

corresponding degrees of parallelism. Among other heuristics, LP

performs as well as CT for queries Q1 and Q15, but achieves sub-

optimal performance for the others. Both ET and QST are observed

to follow a similar trend in speedup achieved, however, they do not

perform as well as CT or LP in terms of absolute throughput.

Latency. LP is the best heuristic for low-latency processing,

followed closely by CT. It achieves latencies as low as a few mil-

liseconds, which is the best known for stream processing systems.

CT, which yields the best throughput, also processes tuples with

such low latencies in many cases while it shoots up to 100s of mil-

liseconds in some cases. Note that this is still quite low compared

to other stream processing systems, which are based on batched

stream processing [18, 41]. On the other hand, ET and QST have

quite high latencies. This increase in latency for QST maybe due to

a higher value ofM (refer Sec. 6), while ET is heavily influenced by

the throughput of input stream to the overall pipeline.

Analysis. From our analysis of the experimental results, we ob-

serve that there is a difference in performance among the heuristics

even when their worker time distribution (ratio of total worker time

spent on each operator in the pipeline) is almost similar. Heuristics

that distribute workers across operators in the pipeline simultane-

ously tend to establish a continuous pipelined flow and are seen to

yield much better throughput and latency. Those that focus on a

single operator by exploiting maximum data parallelism at a time

lead to increased per-tuple processing cost due to overheads at

higher degrees of parallelism.
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Pipeline Brief Description
1 SS→ SL → PS→ PS→ SF Find top 100 pairs of items that are sold together frequently in the retail stores every hour

2 WC→ SL → PS→ SL → PS→ SF Find top 30 products that are viewed together online. Viewed together relates to a click-

session of a user with session time-out of 60 mins

3 WC→ SL → PS→ PS Find top 30 list of items (sorted by number of views) which are the last 5 products (in the

past 10 days) that are mostly viewed before an item was purchased online

4 WC→ SL → PS→ SL → SF Shopping cart abandonment analysis: For users who added products in their shopping cart

but did not check out, find average number of pages they visited during their session

15 SS→ SL → SL→ PS Find item categories with flat or declining sales for in-store purchases

Table 1: Summary of streaming queries in TPCx-BB. In the above table, WC = web clickstreams, SS = store sales, SL = stateless,
PS = partitioned stateful and SF = stateful operator
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Figure 8: Performance of the runtime when using different scheduling heuristics over TPCx-BB queries (We increase number
of cores until peak throughput of the best heuristic - performance drops after that due to overheads of parallelization.)

CT and LP seem to be exploiting this dichotomy quite efficiently.

Choosing the operator with lowest estimated normalized through-

put in the current window easily establishes this pipelined flow and

hence uses an ideal combination of data, partitioned and pipeline

parallelism. LP, that aims to always schedule operators later in the

pipeline also establishes this continuous flow as follows: Initially, it

is forced to schedule earlier operators in the pipeline as later ones

are not schedulable; as they are scheduled it generates inputs for

later operators and any worker that exits this operator is scheduled

immediately on the next while some others are still processing

the earlier operator. However, LP over-allots workers to operators

later in the pipeline when they are schedulable which leads to sub-

optimal performance in some queries above. The QST heuristic

focuses on one operator at a time by design, similar to batched

stream processing, thereby scheduling operators one-by-one along

the pipeline. ET seems to be highly influenced by the input stream

throughput as priority of the first operator depends on this. Hence,

for a value of throughput higher than current system throughput,

ET focuses mainly on the earliest operator and leads to sub-optimal

performance as is evident from the results.

In the next two sub-sections, we discuss certain aspects of our

parallelization framework that handles concurrent workers allot-

ted to the same data or partitioned parallel operator. We designed

parametric operators that can be used to create stateless and par-

titioned stateful operators with different computation profiles to

help analyze their scalability in our framework. These operators

are based on matrix computations on the input tuple. The per-tuple
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processing cost, input tuple size, state size (for partitioned state-

ful) and selectivity can be varied by initializing these parametric

operators with appropriate parameters.

7.2 Comparison of Partitioning Schemes
Now, we compare the two partitioning schemes we described in Sec.

4, PARTITIONED-QUEUE and HYBRID-QUEUE, that help achieve

partitioned parallelism. Specifically, we compare their performance

during load imbalance and in terms of latency with the constraint

of ordered processing. Both schemes behave similarly in terms of

per-operator throughput under uniform distribution, but hybrid

scheme performs better in longer pipeline queries as it is more

amenable to pipeline parallelism.

7.2.1 Load Balancing. Skewed distribution is known to highly

limit partitioned parallelism. It is especially important to be able

to balance load across workers in the stream processing setting
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as they are expected to be long running continuous queries. In

this experiment, we provide empirical evidence that the HYBRID-

QUEUE approach can handle load imbalance much better than the

PARTITIONED-QUEUE approach. In order to systematically in-

duce skew in the distribution, we do range partitioning on keys

sampled from a Gaussian distribution. We scale values in [−1, 1]
generated by N(0,σ ) appropriately to fit the key space. We vary

the value of σ to vary the skew across partitions - higher the value

of σ , closer the distribution is to a uniform distribution. The maxi-

mum number of partitions for PARTITIONED-QUEUE is limited

to the number of workers, while the number of partitions in the

HYBRID-QUEUE allows finer partitions and so is set to 100. The

results of this experiment are presented in figure 9. We observe

that both schemes perform similarly when the distribution is al-

most uniform. However, as we increase skew in the distribution,

HYBRID-QUEUE performs consistently while scalability of the

PARTITIONED-QUEUE approach drops heavily. This is because

HYBRID-QUEUE admits finer partitions and hence leads to better

load balancing.

7.2.2 Latency. We now compare the average processing latency

in either schemes - the time between start of processing an in-

put to the time at which its outputs exit the operator through the

reordering scheme. We observe this for operators with various

per-tuple processing costs (10, 100, 1000 and 10000 micro seconds)

and a uniform distribution of tuples across partitions - the results

are presented in figure 10. We can see that the average process-

ing latency is much higher for PARTITIONED-QUEUE, while for

HYBRID-QUEUE it is close to the corresponding operator’s per-

tuple processing cost. This is because the outputs produced through

the PARTITIONED-QUEUE approach has to wait longer in the re-

ordering buffer for outputs with earlier serial numbers. We do not

report throughput comparisons between the two schemes here

as both yield similar throughputs due to a uniformly random dis-

tribution of keys. However, this difference in individual operator

processing latency leads to throughput differences in larger pipeline

queries as we will see in the next experiment.

7.2.3 Pipeline queries. We compare performance of the two

approaches on the TPCx-BB queries we described above. We use the

CT scheduling heuristic, which yields the best performance among

all the heuristics, and change only the partitioning scheme keeping

the rest of the framework same. Peak throughput and latencies are

reported in figure 11 as we vary the number of workers from 2 to 16.

HYBRID-QUEUE is able to achieve much higher throughput than
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Figure 11: Peak throughput (left) and latency (right) of the
two partitioning schemes on TPCx-BB queries

PARTITIONED-QUEUE in all queries. As expected, the difference

is higher for queries that have more partitioned stateful operators.

Query 15 contains only one such operator and is partitioned on

item category id, where the total number of item categories in

TPCx-BB is 10. It does not support higher degrees of parallelism

and so the difference is unclear. HYBRID-QUEUE performs better

than PARTITIONED-QUEUE also in terms of latency in 3 out of 5

queries, which have more partitioned stateful operators and almost

similar for the rest.

7.3 Comparison of Reordering Schemes
We report the results of our empirical evaluation comparing the

NON-BLOCKING scheme (fig. 4) and the LOCK-BASED scheme

(fig. 2) in this subsection. We specifically highlight scenarios which

are seen to be important in real-world queries from TPCx-BB using

micro-benchmark experiments and also support it by evaluating

them on the pipeline queries themselves.

7.3.1 Light-weight Operators. When the per-tuple processing

cost of a stateless or partitioned-stateful operator is large and its

computation profile is amenable to parallelization, the overhead

of reordering outputs is relatively smaller and hence does not im-

pede scalability of the operator. However, when this quantity is

small, reordering could potentially become a huge bottleneck. We

demonstrate that our NON-BLOCKING strategy minimizes this

overhead leading to better scalability of such operators. We de-

signed a stateless parametric operator with a per-tuple processing

cost in the order of 10s of microseconds on a single core serial

execution. Now, we varied the degree of parallelism of this operator

and observed the increase in average per-tuple processing cost and

the corresponding speedup achieved (fig. 12). Higher the reordering

overhead, higher the average per-tuple processing cost and lower

the speedup achieved. The results show that NON-BLOCKING re-

ordering scheme scales better than the LOCK-BASED scheme. As

expected, the average per-tuple processing cost of the operator,

which includes the time for which a worker is blocked, increases

more steeply for the LOCK-BASED strategy due to unnecessary

blocking of workers when another worker is sending outputs down-

stream. This is avoided in our improved non-blocking design.

7.3.2 High Selectivity Operators. Similarly, when these oper-

ators have a huge selectivity (number of outputs per input), the

amount of serial overhead involved in reordering is higher. In such

cases, NON-BLOCKING strategy performs better in comparison to

LOCK-BASED, even for operators with larger computation sizes

. To illustrate this, we construct a pipeline that consists of two
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Figure 12: (a) Speedup and (b) average processing cost for a
light-weight operator
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Figure 13: (a) Speedup of the pipeline and (b) average pro-
cessing cost of the first operator with LOCK-BASED and
NON-BLOCKING reordering schemes
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Figure 14: Peak throughput comparison of the reordering
schemes on TPCx-BB queries

operators, a parametric stateless operator that is followed by a par-

titioned stateful operator. We use operators with a processing cost

of approximately 100µs and the stateless operator has a selectivity

of 50. Such high selectivity is not uncommon in real workloads. For

example in query Q2, all clickstreams in a session are analyzed to

produce a large number of item pairs viewed together. We report

the average per-tuple processing cost and speedup achieved for

this pipeline query in figure 13. Every tuple in the batch of out-

puts generated by the stateless operator has to be added into the

appropriate queue of the partitioned stateful operator. To ensure

ordering constraints, this operation is performed serially, which

leads to blocking of workers in LOCK-BASED strategy, while in

our scheme this is avoided.

7.3.3 Pipeline Queries. To further validate the benefits of our

non-blocking reordering scheme, we compare it against the LOCK-

BASED scheme on TPCx-BB queries. We report the peak through-

put of the runtime for each of the queries using the best heuristic

(CT) and by varying just the reordering scheme in fig. 14. We can

clearly see that NON-BLOCKING scheme consistently yields a bet-

ter throughput than the LOCK-BASED strategy. They do not differ

much in processing latency and hence we do not present them

here.

8 RELATEDWORK
In this section, we review prior work related to concurrent data

structures that we designed for ordered processing and scheduling

of streaming computations.

8.1 Concurrent Data Structures
Our system uses several non-blocking concurrent data structures

that have been proposed in the literature [25] such as single-producer

single-consumer FIFO queues and multi-producer, multi-consumer

queues. The reordering scheme we presented has very specific re-

quirements (non-blocking, low-latency buffering), which are not

directly met by any other data structure. The pre-allotted monoton-

ically increasing serial numbers enabled further optimizations that

would be inaccessible to a generic data structure such as concurrent

priority queues.

Most partitioned parallelism implementations are based on the

partitioned-queue approach we presented in Sec. 4, initially pro-

posed in the Volcano [23] model of query evaluation for databases.

In such a design, the degree of parallelism associated with the

operator is determined statically and cannot be controlled by a

dynamic scheduler. In case of shared-nothing architectures, some

techniques [38] exist that adaptively repartitions the query dur-

ing runtime. The trade-offs with respect to communication and

repartitioning overheads are very different in a shared-memory

architecture, so those techniques do not apply here directly. In

addition, we address partition parallelism in the presence of order-

ing constraints, which to the best of our knowledge, none of the

existing concurrent data structures address.

8.2 Static Scheduling
Static schedulers assume that the per-tuple processing cost and se-

lectivity of the operators are known at compile time. Early stream-

ing systems designed for applications from the digital signal pro-

cessing domain focused on compiling down synchronous dataflow

graphs (SDF), to single and multicores [12, 14]. For their application

domain a purely static solution is not unreasonable as operator char-

acteristics are largely fixed. There is a huge body of literature on

scheduling SDF graphs to optimize various metrics such as through-

put, memory and cache locality [4, 34, 36]. StreamIt [22], Brook

[15] and Imagine [28] are some of the early systems designed based

on this model of execution. However, none of these works address

the case when operator characteristics change during runtime.

8.3 Dynamic Solutions
Aurora [2], its distributed counterpart, Borealis [1] and STREAM

[11] are some of the early prototypes of stream processing en-

gines that make dynamic scheduling decisions. Many recent stream

processing engines (NaiagraST [31], Nile [24], Naiad [33],Spark

Streaming[41], Storm [8], S4 [35]) also scheduling decisions during
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runtime. All these systems either focus on single core or shared-

nothing architectures. Even distributed solutions composed of indi-

vidual shared-memory multicores consider each core as a separate

executor and hence fail to exploit the advantages of a fast shared-

memory.

IBMStreams [37] is one of the systems that target shared-memory

architecture. Their runtime focuses on two issues: First, they design

a mechanism to dynamically determine the maximum number of

cores needed by a pipeline. This work is orthogonal to our work

and can be easily adapted to our system. Second, they design a

scalable scheduler that can schedule a large pipeline on a multicore;

the focus is on scalability of the scheduler (number of scheduling

decisions made) and not necessarily overall performance of the

pipeline as they assume manual fine-tuning. Another key differ-

ence is that their scheduler works on an expanded pipeline, where

each logical operator is duplicated a number of times specified

through user annotations. This limits the flexibility of scheduler

while also increasing the scheduling overhead. Their system also

does not natively support totally ordered processingmaking a direct

comparison infeasible.

Other systems such as TRILL [18] and Spark Streaming [41] are

based on the micro-batch architecture. The idea is to execute a batch

of inputs on an operator to completion before starting the next op-

erator, thus relying primarily on the (data) parallelism within an

operator. At any given time, a bulk of the workers are involved

in executing instances of a single operator. Batching of streams

is known to increase latency. We believe that such systems can

be built on top of our parallelization and scheduling framework

without much effort. We also note that several architectural pro-

posals [3, 13, 21, 30] exist in the literature for a shared-memory

streaming parallelization framework, but none of them address

dynamic scheduling in the ordered setting or compare different

scheduling heuristics empirically, which is a key contribution of

this paper.

The approach we present in this paper is based on dynamic

scheduling. Process/thread scheduling in operating systems is an

example of this type of scheduling. We seek to develop a customized

solution for the streaming setting taking advantage of the extra

information available in the form of a dataflow graph. Further in

a typical task graph, total amount of work to be done is fixed and

the scheduler just needs to pick the right order once whereas in a

streaming setting the scheduler has to continuously choose based

on the status of pipeline. So, classical notions like work stealing do

not apply to our setting [37].

9 CONCLUSIONS AND FUTUREWORK
We presented a new design for a dynamic runtime that executes

streaming computations on a shared-memory multicore machine,

along with the guarantee of ordered processing of tuples. We em-

pirically demonstrated that our runtime is able to achieve good

throughput (inmillions of tuples per second) without compromising

on the latency (a few milliseconds) on some TPCx-BB queries. We

presented a couple of concurrent data structures that help achieve

data and partitioned parallelism in the ordered setting, proved their

correctness and showed their usefulness empirically using micro-

benchmarks and on TPCx-BB queries.

In our current scheme, we assume all worker threads are uni-

form. However, in reality a worker is closer to some workers than

others due to the hierarchical cache architecture and more so in

modern non-uniform memory access (NUMA) architectures. An

important extension to our work is to design scheduling heuristics

that discriminate workers based on their spatial distribution.
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