
Brief Announcement: Sparse Tensor Transpositions
Suzanne Mueller

MIT CSAIL
suzmue@csail.mit.edu

Willow Ahrens
MIT CSAIL

willow@csail.mit.edu

Stephen Chou
MIT CSAIL

s3chou@csail.mit.edu

Fredrik Kjolstad
Stanford University

kjolstad@stanford.edu

Saman Amarasinghe
MIT CSAIL

saman@csail.mit.edu

ABSTRACT
We present a new algorithm for transposing sparse tensors called
Quesadilla. The algorithm converts the sparse tensor data struc-
ture to a list of coordinates and sorts it with a fast multi-pass radix
algorithm that exploits knowledge of the requested transposition
and the tensors input partial coordinate ordering to provably mini-
mize the number of parallel partial sorting passes. We evaluate both
a serial and a parallel implementation of Quesadilla on a set of
19 tensors from the FROSTT collection, a set of tensors taken from
scientific and data analytic applications. We compare Quesadilla
and a generalization, Top-2-sadilla to several state of the art ap-
proaches, including the tensor transposition routine used in the
SPLATT tensor factorization library. In serial tests, Quesadilla
was the best strategy for 60% of all tensor and transposition com-
binations and improved over SPLATT by at least 19% in half of
the combinations. In parallel tests, at least one of Quesadilla or
Top-2-sadilla was the best strategy for 52% of all tensor and trans-
position combinations. A full version is on arXiv [4].

CCS CONCEPTS
• Mathematics of computing → Mathematical software per-
formance; • Theory of computation → Sorting and search-
ing; • Software and its engineering → Source code generation.

KEYWORDS
Sparse Tensors, Transposition, Sorting, COO, Radix Sort
ACM Reference Format:
Suzanne Mueller, Willow Ahrens, Stephen Chou, Fredrik Kjolstad, and Saman
Amarasinghe. 2020. Brief Announcement: Sparse Tensor Transpositions.
In ACM/IEEE Joint Conference on Digital Libraries in 2020 (SPAA ’20), July

15–17, 2020, Virtual Event, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3350755.3400245

1 INTRODUCTION
Tensors generalize vectors and matrices to any number of dimen-
sions. Tensors used in computation are often sparse, or mostly zero,
necessitating specialized storage formats which can compress the
zero entries. These formats range from a simple list of coordinates

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’20, July 15–17, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6935-0/20/07.
https://doi.org/10.1145/3350755.3400245

(COO) to complicated data structures such as Compressed Sparse
Fiber (CSF) [7]. These formats have a natural ordering of their di-
mensions that provides a lexicographical ordering of the tensor
nonzeros. In a sorted list of coordinates, the order of the sorting
keys determines this lexicographic ordering.

Tensor algebra is used to compute with data stored in tensors.
These multidimensional computations need to access the nonzero
entries in one or more tensors, compute, and store the results. Ac-
cessing the nonzero entries requires some traversal of the tensor.
However, unlike for dense tensors, traversing the nonzeros of a
sparse tensor in different lexicographical orderings may be asymp-
totically more expensive than the natural lexicographical ordering.
Therefore, it is often faster to first transpose input tensors by re-
ordering their dimensions before executing tensor expressions. This
way, the tensor can be accessed naturally in the expression itself.

Tensor transposition is ubiquitous in data processing. Anytime
multiple tensor expressions are composed and the output of one
expression must be used as an input to the next, with a different
index ordering and possibly a different sparse format, we need to
transpose. Element-wise operation between tensors without match-
ing index orderings (thus requiring transposition as a bottleneck) is
listed as one of the five benchmark operations in the Parallel Sparse
Tensor Algorithm Benchmark Suite (PASTA) [3].

The Coordinate (COO) sparse tensor format simply stores the
tensor as a list of nonzero coordinates together with their nonzero
values. If the coordinates are ordered lexicographically, adjacent
coordinates may share the same indices in the first several modes.
The Compressed Sparse Fiber (CSF) format [7] compresses these
duplicate nonzeros using a tree-like storage format. In CSF, nodes
represent indices, leaves represent nonzeros and paths from root to
leaf represent coordinates. The children of each node are ordered.
The matrix case of CSF is called Compressed Sparse Row (CSR).
Both of these formats induce a natural lexicographic ordering of
the dimensions; iteration in the natural order is efficient.

The current approach to transposing sparse tensors involves
converting the sparse tensor into Coordinate format, sorting the list
of coordinates, and finally packing the coordinates into the desired
output sparse tensor format [7]. This reduces tensor transposition to
sorting coordinates. The resulting lists of coordinates often contain
partial orderings we can use to accelerate the sorting step.

As an example, consider row-major to column-major sparse ma-
trix transposition. To transpose the matrix, the column coordinates
must be ordered lexicographically before the row coordinates. This
could be accomplished by sorting with the column coordinate as
the primary key and the row coordinate as the secondary key, but
we can do better. The coordinates are already sorted on the rows. A

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

559 Most up-to-date version: 11/08/2023

https://doi.org/10.1145/3350755.3400245
https://doi.org/10.1145/3350755.3400245
https://doi.org/10.1145/3350755.3400245
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3350755.3400245&domain=pdf&date_stamp=2020-07-09

stable sort on just the column coordinates would achieve the desired
result, and a simple histogram sort can get the job done in linear
time. We have just described the famous HalfPerm algorithm for
sparse matrix transposition due to Gustavson [2]. In this paper, we
will generalize this optimization to arbitrary tensor transpositions.

The main contributions of this work are:
(1) A decomposition of tensor transposition into parallelizable

partial sorts (one of the two partial sorts is novel) that op-
tionally respect previous partial orderings.

(2) An algorithm that uses partial orderings in the original
sparse tensor format to minimize the number of partial sorts
required by the transposition algorithm. This relates the par-
allel span of radix sorting to partial orderings in the input.

(3) A parallel implementation that demonstrates this transpo-
sition algorithm is competitive with, and often faster than,
state of the art approaches.

A complete manuscript (containing proofs) is available on the
arXiv [4]. Algorithms, figures, and theorems are numbered to match.

2 ALGORITHMS
A tensor of rank r is a multidimensional array associating r -tuples
of indices (referred to as coordinates) with values, or entries. We
refer to the kth position in a coordinate as mode k . The size of a
tensor is an r -tuple n of dimensions, where each index ik is an
integer in the range 1 ≤ ik ≤ nk . Let N be the number of nonzero
entries in our tensor. We define lexicographic ordering on r -tuples
with a tuple σ of modes in the order they should be considered. We
describe the (1, 2, ..., r) ordering of k-tuples as simple.

A naive algorithm for sparse tensor transposition uses compar-
ison sort on a coordinate list. It takes O(r) time to compare two
coordinates of an r -tensor. Thus, a comparison based coordinate
sort would run in O(rN logN) time. However, since the indices
are bounded by the dimensions, we can use the stable, linear time
histogram sort (referred to as counting sort in [1]) to sort the coordi-
nates on a single mode k inO(rN +nk) time. If we use r histogram
sorts (a radix sort on r -digit numbers), we can sort our coordinate
list inO(r2N +

∑
k nk) time, an asymptotic improvement over com-

parison sort when the dimensions are small. This algorithm can be
improved further; for some transpositions, we do not need to use
all r sorts. For example, HalfPerm uses only one histogram sort to
prioritize the second dimension in the new ordering [2].

In this work, we formalize and generalize this idea to produce
the Quesadilla tensor transposition algorithm, which provably
performs the minimal number of partial histogram sorts. We pro-
pose two types of partial sorts, Algorithm 1 and Algorithm 2, which
can be understood as two separate cases of the same function Par-
tialSort. When l = 0 (Algorithm 1), PartialSort is a simple
histogram sort, bringing the kth mode to the top of an ordering.

When l > 0 (Algorithm 2), we describe PartialSort as “buck-
eted,” since it sorts within fixed buckets, or groups of contiguous
coordinates which agree on the first l modes in the current ordering.
A naive implementation of Algorithm 2 which comparison sorts
each bucket would incur a logarithmic overhead. If we histogram
sort each bucket, we incur an unacceptable O(nτk) cost per bucket.
Our solution is to first discover and store the buckets that each
coordinate belongs to, stably sort on our desired mode with a single

Algorithm 1 and 2: PartialSort(A, (τ1, . . . ,τl),τk)
Input: A is a rank-r tensor of dimension n with N nonzeros

stored in COO, sorted under the ordering τ . Our goal
is to sort A on τk while maintaining the ordering
(τ1, . . . ,τl). Algorithms 1 and 2 refer to when l = 0
and l > 0, respectively. We require that l < k .

Output: A sorted copy of A under the ordering

(τ1, . . . ,τl ,τk ,τl+1, . . . ,τk−1,τk+1, . . . ,τr).

histogram sort, and then reimpose order on the first l modes by
stably sorting on the bucket numbers themselves. This second sort
on the buckets is similar to a histogram sort, but we can avoid some
work by reusing information computed during the initial bucket dis-
covery. Since there are at most N buckets, it also runs in linear time.
Note that the input must be sorted under (τ1, . . . ,τl) to discover
the buckets in linear time by examining adjacent coordinates.

While extensive research has been devoted to parallel implemen-
tations of histogram sort [5, 7], our “bucketed” variant is novel.
Notice that the buckets limit the travel of coordinates between in-
put and output orderings; coordinates do not escape their buckets.
Therefore, running Algorithm 2 on a contiguous region of input
buckets will compute the corresponding region of the output order-
ing. This gives our chosen parallel algorithm where we assign to
each processor the buckets which begin in their region, and each
processor simply runs Algorithm 2 locally on their section.

We are ready to state Algorithm 3, which sorts the coordinates
using a minimal number of calls to PartialSort, avoiding bucketed
sorts. We will use a function f (τ ,p) defined on an ordering τ as the
set {τk+1, . . . ,τr } where τk = p, or the set of modes which follow
p in the ordering τ . For example, f ((1, 3, 2, 4), 3) = {2, 4}.

Algorithm 3: QuesadillaSort(A,σ)
Input: A is any simply ordered list of r -coordinates, σ is an

ordering with r distinct modes.
Output: A, sorted in σ order.

1 l ← 0
2 while l < r do
3 k ← l

4 while k + 1 < r and f (σ ,σk+1) ⊈ f ((1, 2, . . .),σk+1) do
5 k ← k + 1
6 l ′ ← k + 1
7 while k > l do
8 A← PartialSort(A, (σ1, . . . ,σl),σk)
9 k ← k − 1

10 l ← l ′

11 return A

Theorem 2. Given a target ordering σ ,QuesadillaSort(σ) uses
the minimum-length sequence of calls to PartialSort required to

sort any simply ordered list of r -coordinates to σ order.

Theorem 3. Among minimum-length sequences of PartialSort

calls that sort simply ordered lists of r -coordinates to target ordering

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

560

σ , the sequence used by QuesadillaSort(σ) minimizes the number

of bucketed partial sorts.

Although the two sorting primitives presented are both his-
togram sort variants, they could be replaced with any stable sort
such as quicksort or merge sort. However, if a comparison sort is
used at some levelk where the current ordering isτ and (τ1, . . . ,τl) =
(σ1, . . . ,σl), it makes more sense to completely sort each bucket
(equivalence class under (τ1, . . . ,τl)) to σ order.

Thus, we also propose the Top-K-sadilla algorithm, which uses
Quesadilla to sort the tensor to (σ1, . . . ,σK) order, then sorts
each bucket using quicksort. The best choice of the value K will
be investigated in our experiments, since it depends both on the
permutation and on the dimension of the tensor.

3 EVALUATION
We evaluate Quesadilla and Top-K-sadilla sort, showing that
our technique outperforms various state of the art approaches for
sparse tensor transposition. We compare against SPLATT [7], a
high-performance C++ toolkit for sparse tensor factorization that
uses a combination of histogram sort, quicksort, and insertion sort
to sort tensors in COO. We also evaluate against sparse tensor
transposition routines that sort nonzeros with (least significant
digit) radix sort (using Algorithm 1 for each pass) or glibc’s qsort.

We ran all experiments on a 2.5 GHz Intel Xeon E5-2680 v3
machine with 24 cores, 30 MB of L3 cache and 128 GB of main
memory. The machine runs Ubuntu 18.04.3 LTS with glibc 2.27. We
compiled the benchmarks using GCC 7.4.0. We ran each experiment
100 times and report minimum execution times.

We transpose real-world tensors obtained from the FROSTT Ten-
sor Collection [6]. Specifically, we used “flickr-3d,” “nell-1,” “nell2,”
“vast-2015-mc1-3d,” “chicago-crime-comm,” “delicious-4d,” “enron,”
“flickr-4d,” “nips,” “uber,” “lbnl-network,” and “vast-2015-mc1-5d.”We
measured normalized running times of SPLATT, qsort,Top-K-sadilla,
Quesadilla, and radix sort for transposing each tensor from its
initial ordering σ = (1, ..., r) to every r ! possible ordering. Figure 3
shows the results of these experiments aggregated over all 408
possible combinations of input tensors and output orderings.

In serial tests, these results demonstrate that Quesadilla out-
performs SPLATT, radix sort, and qsort on 60% of the sparse tensor
transpositions. On half of all combinations, Quesadilla is at least
1.19× faster than SPLATT, 1.68× faster than radix sort, and 2.76×
faster than qsort. In parallel tests, at least one of Quesadilla or
Top-2-sadilla (our two novel algorithms) was the best strategy for
52% of all tensor and transposition combinations.

When K = 1, Top-K-sadilla reduces to the Top-1-sadilla al-
gorithm that is similar to what SPLATT implements for sorting
COO tensors, which we summarize in Section 2.2. Unlike SPLATT,
which uses a custom hand-optimized implementation of quicksort,
Top-1-sadilla uses qsort from C stdlib to sort nonzeros within
each bucket created by the initial histogram sort. As Figure 3 shows,
SPLATT outperforms Top-1-sadilla for most tensor transpositions
in our experiments, thereby demonstrating that SPLATT’s custom
implementation of quicksort is more efficient than qsort. This per-
formance difference suggests we can improve Top-K-sadilla’s per-
formance by using more optimized implementations of comparison
sort to sort each bucket.

spla
tt (s

eria
l)

1-sa
dilla

(ser
ial)

2-sa
dilla

(ser
ial)

que
sad

illa
(ser

ial)

spla
tt (p

aral
lel)

1-sa
dilla

(par
alle

l)

2-sa
dilla

(par
alle

l)

que
sad

illa
(par

alle
l)

0.01

0.1

1 qsort

N
or
m
al
iz
ed

ex
ec
ut
io
n
tim

e

Figure 3: Normalized execution times of sparse tensor trans-
position with various algorithms, aggregated over all 408
possible combinations of test tensors and output orderings.
Time is normalized to quicksort (horizontal line). 1-sadilla
and 2-sadilla denote Top-K-sadilla with K = 1 and K = 2.

4 CONCLUSION
As sparse tensor representations receive increasing study, diversity
in tensor formats will increase and applications will more frequently
convert between formats. Sparse tensor transposition is the most
basic instance of sparse format conversion, and an important sub-
routine in several format conversions. We have provided evidence
that naive algorithms for sparse tensor transpositions can be im-
proved substantially, and hope to inspire further improvements.

ACKNOWLEDGMENTS
This work was supported by a grant from the Toyota Research
Institute, DARPA PAPPA Grant HR00112090017, and a DOE CSGF
Fellowship DE-FG02-97ER25308.

REFERENCES
[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to algorithms (3rd ed ed.). MIT Press, Cambridge, Mass.
[2] Fred G. Gustavson. 1978. Two Fast Algorithms for Sparse Matrices: Multiplication

and Permuted Transposition. ACM Transactions on Mathematical Software (TOMS)

4, 3 (Sept. 1978), 250–269.
[3] Jiajia Li, Yuchen Ma, Xiaolong Wu, Ang Li, and Kevin Barker. 2019. PASTA:

a parallel sparse tensor algorithm benchmark suite. CCF Transactions on High

Performance Computing 1, 2 (Aug. 2019), 111–130.
[4] Suzanne Mueller, Willow Ahrens, Stephen Chou, Fredrik Kjolstad, and Saman Ama-

rasinghe. 2020. Sparse Tensor Transpositions. The arXiv (2020).
[5] Omar Obeya, Endrias Kahssay, Edward Fan, and Julian Shun. 2019. Theoretically-

Efficient and Practical Parallel In-Place Radix Sorting. In The 31st ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA ’19). Association for Com-
puting Machinery, Phoenix, AZ, USA, 213–224.

[6] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu,
and George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse
Tensors and Tools.

[7] Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George Karypis.
2015. SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication. In
Proceedings of the 2015 IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS ’15). IEEE Computer Society, Washington, DC, USA, 61–70.

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

561

	Abstract
	1 Introduction
	2 Algorithms
	3 Evaluation
	4 Conclusion
	Acknowledgments
	References

