
Brief Announcement:

Feasibility of Cross-Chain Payment with Success Guarantees
Rob van Glabbeek

Data61, CSIRO and

UNSW

rvg@unsw.edu.au

Vincent Gramoli

University of Sydney and

EPFL

vincent.gramoli@sydney.edu.au

Pierre Tholoniat

University of Sydney and

École Polytechnique

pierre.tholoniat@polytechnique.edu

ABSTRACT
We consider the problem of cross-chain payment whereby cus-

tomers of different escrows—implemented by a bank or a blockchain

smart contract—successfully transfer digital assets without trusting

each other. Prior to this work, cross-chain payment problems did

not require this success, or any form of progress. We demonstrate

that it is possible to solve this problem when assuming synchrony,

in the sense that each message is guaranteed to arrive within a

known amount of time, but impossible to solve without assuming

synchrony. Yet, we solve a weaker variant of this problem, where

success is conditional on the patience of the participants, without

assuming synchrony, and in the presence of Byzantine failures. We

also discuss the relation with the recently defined cross-chain deals.

1 INTRODUCTION AND RELATEDWORK
With the advent of various payment protocols comes the problem

of interoperability between them. A simple way for users of differ-

ent protocols to interact is to do a cross-chain payment whereby
intermediaries can help customer Alice transfer digital assets to

Bob even though Alice and Bob own accounts in different banks

or blockchains. To implement a payment between customers of

different banks, it helps if the two banks have ways to transfer

assets to each other, and moreover trust each other. The problem

becomes more interesting when this is not the case. Thomas and

Schwartz [4] propose two cross-chain payment protocols: (i) the

universal protocol requires synchrony [1]; (ii) the atomic protocol

merely requires partial synchrony [1]. Herlihy, Liskov and Shrira [3]
represent a cross-chain payment as a deal matrix M where Mi, j
characterises a transfer of some asset from participant i to partic-

ipant j. They offer a timelock protocol that requires synchrony,

and a certified blockchain protocol that requires partial synchrony.

However, the synchronous solutions of [4] and [3] do not consider

clock drift, and for their partially synchronous solutions no success

guarantees are established.

In this brief announcement, we formally define the time-bounded
cross-chain payment problem, and show that, assuming synchrony,

there exists an algorithm that solves it. Our solution is the universal

protocol of [4], but fine-tuned to work correctly in the presence

of clock drift. We also prove that this problem cannot be solved

when merely assuming partial synchrony, even if we relax the

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6935-0/20/07.

https://doi.org/10.1145/3350755.3400264

problem statement by merely requiring eventual (instead of time-

bounded) termination. Moreover, inspired by earlier work on the

transaction commit problem [2], we define a weaker variant of our

problem that relaxes the liveness guarantee to be solvable with

partial synchrony. Contrary to the problem statements in [4] and

[3], a protocol where all participants always abort is not permitted

by our problem specification.

2 MODEL AND DEFINITIONS
We assume n banks or escrows e0, . . . , en−1 and n+1 customers
c0, . . . , cn . These 2n+1 processes are called participants. An escrow

is a specific type of process that can handle values for other par-

ties in a predefined manner. Customer c0 is Alice and cn is Bob.

The customers c1, . . . , cn−1 are intermediaries in the interaction

between Alice and Bob; we call them connectors, named Chloei .

Customers ci−1 and ci have accounts at escrow ei−1, and trust this

escrow (i = 1, . . . ,n). We do not assume any other relations of trust.

c0

e0

c1

e1

. . . cn−1

en−1

cn

Figure 1: Customers and escrows.

We assume that value can be transferred directly only between

customers of the same escrow. Moreover, any transfer between two

customers of an escrow can be modelled as two transfers: one from

the originating customer to the escrow, and one from the escrow

to the receiving customer. Thus, the connections from Figure 1

describe both the relations of trust and the possible transfers.

Two customers may make a deal with an escrow to place value

from the first customer “in escrow”, and, after a predefined period,

depending onwhich conditions aremet, either complete the transfer

to the second customer, or return the value to the first one.

We suppose that the participants have already agreed upon the

value they expect to transfer. As Chloe helps out transferring value

from Alice to Bob, it is only reasonable that she is paid a small com-

mission. Hence the value transferred from Alice to Chloe might be

larger than the value transferred from Chloe to Bob. Additionally,

these values may be expressed in different currencies, or they may

be objects. Deciding which values to transfer may thus be an in-

teresting problem. However, it is entirely orthogonal to the matter

discussed here, and hence we shall not consider it any further.

We consider the classic Byzantine model with authentication.

ar
X

iv
:2

00
7.

08
15

2v
1 

 [
cs

.D
C

] 
 1

6 
Ju

l 2
02

0

https://doi.org/10.1145/3350755.3400264


SPAA ’20, July 15–17, 2020, Virtual Event, USA Rob van Glabbeek, Vincent Gramoli, and Pierre Tholoniat2

3 FEASIBILITY OF CROSS-CHAIN PAYMENTS
A cross-chain payment protocol prescribes a behaviour for each

of the participants in the protocol, the escrows and the customers.

Let χ be a certificate signed by Bob saying that Alice’s obligation

to pay him has been met.

Definition 1. A protocol is a time-bounded cross-chain pay-
ment protocol (resp. an eventually terminating cross-chain pay-
ment protocol) if it satisfies the following properties:

C Consistency. For each participant in the protocol it is

possible to abide by the protocol.

T Time-bounded (resp. eventual) termination. Each
customer that abides by the protocol, and either makes

a payment or issues a certificate, terminates within an

a priori known period (resp. terminates eventually),

provided her escrows abide by the protocol.

ES Escrow security. Each escrow that abides by the pro-

tocol does not lose money.

CS Customer security.
CS1 Upon termination, if Alice and her escrow abide by

the protocol, Alice has either got her money back or

received the certificate χ .
CS2 Upon termination, if Bob and his escrow abide by

the protocol, Bob has either received the money or

not issued certificate χ .
CS3 Upon termination, each connector that abides by

the protocol has got her money back, provided her

escrows abide by the protocol.

L Strong liveness. If all parties abide by the protocol,

Bob is paid eventually.

Requirement C (consistency of the protocol) is essential. In the

absence of this requirement, any protocol that prescribes an im-

possible task for each participant would be a correct cross-chain

payment protocol (since it trivially meets T, ES, CS and L).

Requirements ES and CS (the safety properties) say that if a

participant abides by the protocol, nothing really bad can happen

to her. These requirements do not assume that any other participant

abides by the protocol, and should hold no matter how malicious

the other participants turn out to be. The only exception to that is

that the safety properties for a customer (CS) are guaranteed only

when the escrow(s) of this customer abide by the protocol.

Property L, saying that the protocol serves its intended purpose,

is the only one that is contingent on all parties abiding by the

protocol. The proofs of the following results are presented in [5].

Theorem 1. If communications and computations are synchro-
nous, there exists a time-bounded cross-chain payment protocol.

Theorem 2. If communications are partially synchronous, there
is no eventually terminating cross-chain payment protocol.

In view of this impossibility result we propose to weaken the

liveness guarantee as indicated in Def. 2. In [5] we present a proto-

col in which each customer can, at any moment of their choice, lose

patience and abort the transaction, without a risk of losing value. In

case none of them exercises this option nor fails, a successful out-

come is guaranteed. This solution involves an external transaction
manager, that can issue an abort or commit certificate. Properties

CC and CS2 together guarantee that the commit certificate can be

used by Alice as a proof that Bob has been paid. The transaction

manager could be a single external party trusted by all, or a smart

contract running on a permissionless blockchain shared by every

customer. It can also be a collection of notaries appointed by the

participants in the protocol, of which less than one-third is assumed

to be unreliable. They would run a consensus algorithm for partial

synchrony such as the one from Dwork, Lynch & Stockmeyer [1].

Definition 2. A protocol is a cross-chain payment protocol
with weak liveness guarantees if it satisfies properties C, ES
and CS3, as well as:

CC Certificate consistency. An abort and a commit cer-

tificate can never be issued both.

T Termination. Each customer that abides by the proto-

col terminates eventually, provided her escrows abide

by the protocol.

CS Customer security.
CS1 Upon termination, if Alice and her escrow abide by

the protocol, Alice has either got her money back or

received the commit certificate χc .
CS2 Upon termination, if Bob and his escrow abide by

the protocol, Bob has either received the money or
the abort certificate χa .

L Weak liveness. If all parties abide by the protocol and
if the customers wait sufficiently long before and after

sending money, then Bob is eventually paid.

Theorem 3. There exists a cross-chain payment protocol with
weak liveness guarantees.

4 A TIME-BOUNDED PROTOCOL
In Figure 2 we present the protocol from Thm. 1 formalised as an

Asynchronous Network of Timed Automata (ANTA), a specification

formalism introduced in [5]. There is one automaton for each par-

ticipant in the protocol, that is, for each escrow ei (i = 0, . . . ,n−1)
and each customer ci (i = 0, . . . ,n). Each automaton is equipped

with a unique identifier, in this case ei and ci . It has a finite number

of states, depicted as circles, and transitions between them.

Each automaton keeps an internal clock, whose value, a real

number, is stored in the variable now. In case a transition occurs

that is labelled by an assignment x := now, the variable x will

remember the point in time when the transition took place.

An automaton spends a bounded amount of time calculating

in each grey (output) state, and leaves it by performing the action

s(id,m) of sending messagem to participant id . We consider three

kinds ofmessages: (i) certificate χ , signed by Bob, (ii) the value $ that
is transmitted from one participant to another, and (iii) promises

made by escrow ei to its customers ci and ci+1, respectively:

G(d) := “I guarantee that if I receive $ from you at my local timew ,

then I will send you either $ or χ by my local timew + d .”

P(a) := “I promise that if I receive χ from you at my time v , with
v < now +a, then I will send you $ by my local time v + ε .”

When an automaton is in a white (input) state, it stays there
(possibly forever) until one of its outgoing transitions becomes

enabled; in that case that transition will be taken immediately. The



Feasibility of Cross-Chain Payment with Success Guarantees 3

ei : Escrow i (i = 0, . . . , n−1)

s(ci , G(di ))

r (ci , $)

s(ci+1, P (ai ))
u := now

now ≥ u + ai

r (ci+1, χ )

s(ci , χ )
s(ci+1, $)

s(ci , $)

ci : Customer i (i = 1, . . . , n−1); Chloei

s(ei , $)

r (ei , $)

r (ei , χ )

s(ei−1, χ )

r (ei−1, $)

r (ei−1, P (ai−1))

r (ei , G(di ))

c0 : Customer 0; Alice

r (e0, G(d0)) s(e0, $)

r (e0, $)

r (e0, χ )

cn : Customer n; Bob

r (en−1, P (an−1)) s(en−1, χ ) r (en−1, $)

Figure 2: Automata representing escrows and customers

time-out transition now ≥ u + ai is enabled when this formula

evaluates to true. An input transition r (id,m) is triggered by the

receipt of messagem from the automaton id in the network.

The automata of Figure 2 can be informally described as follows:

An escrow ei first sends promiseG(di ) to its (upstream) customer ci .
Here “upstream” refers to the flow ofmoney. The precise values ofdi
are calculated in [5]; here they are simply parameters in the design

of the protocol. Then it awaits receipt of the money/value from

customer ci . If the money does arrive, the escrow issues promise

P(ai ) to its downstream customer ci+1. It remembers the time this

promise was issued as u. Then it awaits receipt of the certificate χ
from customer ci+1. If χ does not arrive by time u + ai , a time-out

occurs, and the escrow refunds the money to customer ci . If it does
arrive in time, the escrow reacts by forwarding the certificate to

customer ci , and forwarding the money to customer ci+1.
A connector Chloei starts by awaiting promises G(di ) from her

downstream escrow ei , and P(ai−1) from her upstream escrow ei−1.
Then she proceeds by sending the money to escrow ei . After send-
ing the money, Chloei waits for escrow ei to send her either the

certificate χ or the money back. In the latter case, her work is done;

in the former, she forwards the certificate to escrow ei−1 and awaits
for the money to be sent by escrow ei−1. The automata for Alice

and Bob are both simplifications of the one for Chloei .

5 RELATIONWITH CROSS-CHAIN DEALS
In Herlihy, Liskov and Shrira [3], a cross-chain deal is given by a

matrixM whereMi, j is listing an asset to be transferred from party

i to party j. It can also be represented as a directed graph, where

each vertex represents a party, and each arc a transfer; there is

an arc from i to j labelled v iff Mi, j = v , 0. They present two

protocols for implementing such a deal, while aiming to ensure:

• Safety. For every protocol execution, every compliant party

ends up with an acceptable payoff.

• Termination.1 No asset belonging to a compliant party is

escrowed forever.

• Strong liveness. If all parties are compliant and willing to

accept their proposed payoffs, then all transfers happen.

Here a payoff is acceptable to a party i in the deal if party i either
receives all assetsMj,i while parting with all assetsMi, j , or if party

i loses nothing at all; moreover, any outcome where she loses less

and/or gains more then an acceptable outcome is also acceptable.

Each entry Mi, j contains a type of asset and a magnitude—for

instance “5 bitcoins”. For each type of asset a separate blockchain is

assumed that acts as escrow. The programming of these blockchains

is assumed to be open source, so that all parties can convince them-

selves that all escrows abide by the protocol. With this in mind, their

Termination requirement corresponds with ours, while Safety
is the counterpart of our Customer security. Our requirement

of Escrow security is left implicit in [3]; since blockchains do

not possess any assets to start with, they surely cannot lose them.

Finally, their Strong liveness property is the counterpart of ours.

Herlihy, Liskov and Shrira [3] offer a timelock commit protocol

that requires synchrony, and assures all three of the above correct-

ness properties. They also offer a certified blockchain commit pro-

tocol that requires partial synchrony and a certified blockchain, and

ensures Safety and Termination; no protocol can offer Strong
liveness in a partially synchronous environment. For both proto-

cols the correctness is proven for so-called well-formed cross-chain

deals: those whose associated directed graph is strongly connected.

In [5] we show that the cross-chain payment cannot be seen as

a special kind of cross-chain deal, nor vice versa.

Acknowledgements. This research is supported by ARC Discov-

ery Project 180104030: “Taipan: A Blockchain with Democratic

Consensus and Validated Contracts” and ARC Future Fellowship

180100496: “The Red Belly Blockchain: A Scalable Blockchain for

Internet of Things”.

REFERENCES
[1] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. 1988. Consensus

in the presence of partial synchrony. J. ACM 35, 2 (1988), 288–323. https:

//doi.org/10.1145/42282.42283

[2] Vassos Hadzilacos. 1990. On the Relationship Between the Atomic Commitment

and Consensus Problems. In Proc. AsilomarWorkshop on Fault-Tolerant Distributed
Computing (LNCS). Springer, 201–208. https://doi.org/10.1007/BFb0042336

[3] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. 2019. Cross-Chain Deals and

Adversarial Commerce. Proceedings of the VLDB Endowment 13, 2 (Oct. 2019),

100–113. arXiv:1905.09743v5

[4] Stefan Thomas and Evan Schwartz. 2015. A Protocol for Interledger Payments.

Available at https://interledger.org/interledger.pdf.

[5] Rob van Glabbeek, Vincent Gramoli, and Pierre Tholoniat. 2019. Cross-Chain

Payment Protocols with Success Guarantees. http://arxiv.org/abs/1912.04513

1
In [3], this property is called “weak liveness”. We rename it here, to avoid confusion

with our own weak liveness property, which is of a very different nature.

https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://doi.org/10.1007/BFb0042336
http://arxiv.org/abs/1905.09743v5
https://interledger.org/interledger.pdf
http://arxiv.org/abs/1912.04513

	Abstract
	1 Introduction and Related Work
	2 Model and definitions
	3 Feasibility of Cross-Chain Payments
	4 A time-bounded protocol
	5 Relation with cross-chain deals
	References

