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Abstract

Social media monitoring by law enforcement is becoming common-
place, but little is known about what software packages for it do. Through
public records requests, we obtained log files from the Corvallis (Oregon)
Police Department’s use of social media monitoring software called Dig-
italStakeout. These log files include the results of proprietary searches
by DigitalStakeout that were running over a period of 13 months and
include 7240 social media posts. In this paper, we focus on the Tweets
logged in this data and consider the racial and ethnic identity (through
manual coding) of the users that are therein flagged by DigitalStakeout.
We observe differences in the demographics of the users whose Tweets are
flagged by DigitalStakeout compared to the demographics of the Twitter
users in the region, however, our sample size is too small to determine
significance. Further, the demographics of the Twitter users in the region
do not seem to reflect that of the residents of the region, with an apparent
higher representation of Black and Hispanic people. We also reconstruct
the keywords related to a Narcotics report set up by DigitalStakeout for
the Corvallis Police Department and find that these keywords flag Tweets
unrelated to narcotics or flag Tweets related to marijuana, a drug that
is legal for recreational use in Oregon. Almost all of the keywords have
a common meaning unrelated to narcotics (e.g. broken, snow, hop, high)
that call into question the utility that such a keyword based search could
have to law enforcement.

As social media monitoring is increasingly used for law enforcement
purposes, racial biases in surveillance may contribute to existing racial
disparities in law enforcement practices. We are hopeful that log files
obtainable through public records request will shed light on the operation
of these surveillance tools. There are challenges in auditing these tools:
public records requests may go unfulfilled even if the data is available,
social media platforms may not provide comparable data for comparison
with surveillance data, demographics can be difficult to ascertain from
social media and Institutional Review Boards may not understand how
to weigh the ethical considerations involved in this type of research. We
include in this paper a discussion of our experience in navigating these
issues.
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1 Introduction

Law enforcement use of social media monitoring software has been in the news
for several years, and usually it is not good news. The ACLU of Northern
California reported that MediaSonar, used by the Fresno Police Department,
encouraged police to track #BlackLivesMatter and related hashtags to identify
“threats to public safety”[34]. After it was revealed that MediaSonar mar-
keted itself as a way for police to “avoid the warrant process,” Twitter cut
off the company’s access to their enterprise API[36]. Twitter also cut Snap-
Trends’ API access after the release of details of law enforcement use of their
software; SnapTrends closed shop shortly thereafter[15]. Geofeedia was notably
used during the Freddie Gray uprisings to “arrest [protesters] directly from the
crowd” aided by social media posts and face recognition technology[23]; shortly
after this revelation from the ACLU of Northern California, Facebook, Twitter
and Instagram all revoked API access from Geofeedia[35]. Both SnapTrends
and Geofeedia are known to have enabled “undercover” accounts that befriend
Facebook super-users in order to bypass users’ privacy settings[15]. During a
trial period of DigitalStakeout, an agent of the Oregon Department of Justice
searched for #BlackLivesMatter, discovered that an Oregon DOJ attorney was
tweeting support and wrote a memo describing the posts as “possible threats

2



towards law enforcement” – the agent who wrote the memo was later found to
be in violation of state law[14].

The usefulness of social media monitoring has been called into question.
Conarck reports that social media monitoring in Jacksonville, FL by Geofeedia
“included largely protected free-speech activity and useless miscellanea”[12].
Relevant to the monitoring of social media in Corvallis, OR, in February 2018,
an individual was arrested for Tweets threatening a shooting on the Oregon
State University’s Corvallis campus. However, the Tweets were not discovered
through surveillance of social media but through an anonymous tip line[43].
Indeed, our work echoes that of Conarck, uncovering that DigitalStakeout uses
simple keyword search, at least on the topic of Narcotics, and that almost all
the keywords have benign drug meanings that uncover “useless miscellanea.”

Police increasingly utilize social media. A 2015 survey of over 500 US po-
lice departments found that 94% of agencies had used social media in some
capacity—to notify the public, recruit employees, gather intelligence, manage
reputations, or other. The survey found that 89% of agencies had used social
media tools to further criminal investigations[24]. Further, a 2016 report by
the Brennan Center for Justice identified 151 local and state law enforcement
agencies in the United States that have subscribed to social media monitor-
ing services. These jurisdictions partner with a variety of private firms that
deliver the monitoring service, including Geofeedia, Media Sonar, Snaptrends,
Dataminr, DigitalStakeout, and Babel Street[40]. What is known about so-
cial media monitoring technology is mostly gleaned from documents obtained
through public records requests but these documents are often limited to mar-
keting and training materials. Meanwhile, the technologies are proprietary, and
details of the underlying algorithms are unknown.

In this paper, we seek to understand how social media surveillance soft-
ware may place certain groups of users under undue scrutiny. Pew Research
reports on the racial and ethnic, gender and age biases across the many social
media platforms[1]. Sloan and Morgan report further demographic differences
(in terms of gender, age, class and language) that exist among Twitter users as
to whether they opt to geotag their tweets[45]. We ask: Do these biases com-
bine to unduly focus attention on certain users? Does the software introduce
biases that cannot be explained by a disparity in how different groups use social
media? We find that the demographics of the users whose Tweets are flagged
by DigitalStakeout are representative of the demographics of the Twitter users
in the region, but may not reflect that of the residents of the region, with an
apparent higher representation of Black and Hispanic people.

To understand law enforcement monitoring of social media, we made public
records requests to agencies asking for logs from social media monitoring tools.
We show that it is possible to reverse engineer the operation of keyword-based
social media monitoring using log files. We also show that we can audit the
software[42], using the limited log files, for potential demographic disparities
from the use of social media monitoring. Because the data size is small and
comes from a single jurisdiction, we are limited in the scope of questions we can
answer. However, this study provides a proof of concept and highlights areas

3



for future study.

1.1 Overview: From data to defining the research ques-

tions

In the summer of 2017, we sent public records requests to 10 agencies listed
by the Brennan Center as having (had) access to DigitalStakeout: Allentown
Police Department, Alpharetta City Police Department, Corvallis Police De-
partment, Fort Worth Police Department, Georgia Bureau of Investigation,
Hillsboro County Sheriff’s Office, Indiana State Police, Oregon State Police,
Scottsdale Police Department, and Yakima Police Department. We chose Dig-
italStakeout as a case study because it is a social media monitoring software
package that was not reported to be subject to API restrictions by social me-
dia platforms (as MediaSonar, SnapTrends and Geofeedia were), is still actively
used and had the largest number of listed subscribing agencies in the Brennan
Center report. Initially these requests were not made with a specific research
question in mind, but more generally seeking to understand the use of social
media monitoring software. As part of the public records request, we asked for
“logs of searches that have been input into DigitalStakeout” and “debug logs
produced by DigitalStakeout.”

Several departments have claimed criminal investigatory material exemp-
tions to public records laws (for which we are still seeking research exemptions
to that exemption) and at least two agencies did not have records to release:
Oregon DOJ did not subscribe to DigitalStakeout after their trial run (and now
reports a policy of not subscribing to social media monitoring software) and the
Yakima Police Department reports that their officers did not use the software
and no longer subscribe. The Corvallis Police Department did furnish logs in
the form of .csv files which consist of 7240 links to social media posts, with some
additional meta-data. We describe the data in more detail in Section2.

Upon initial examination of the data, we observed that: more people of color
seemed to be represented in the collected social media posts than in Corvallis,
and the collected social media posts largely did not seem to be relevant to law
enforcement. These observations lead to the research questions:

1. Are the demographics of the social media users identified by DigitalStake-
out representative of social media users or of the target population? (Sec-
tion4)

2. How are the social media posts being identified by DigitalStakeout? (Sec-
tion5)

At this point, we sought guidance from our IRB on how to responsibly pursue
these questions. We describe our procedure for demographic coding in Section3.
An analysis of the racial and ethnic demographics are given in Section4. A look
at the keywords used to flag social media posts is given in Section5. We describe
our navigation of the ethical issues of this work in Section6.
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1.2 Related work

While the extent of social media monitoring has been reported in the news, there
is little work in the academic literature on the impacts of this. The University of
Chicago Crime Lab’s report on using information gathered via social media to
identify high school students for social service intervention is an exception, but
it is not clear how they are monitoring social media[48]. As far as we know, no
work in analyzing the actual tools used for monitoring social media has appeared
in the academic literature. The closest related work to ours is that which seeks
to understand the algorithms and tools used for predictive policing, recidivism
prediction, and face recognition. We discuss work related to the demographic
coding of social media users (which we do in this study) in Section3.

Platforms for predictive policing may incorporate social media (such as
Palantir[7]), but the impact of social media in predictive policing decisions has
not been studied. A simpler system for predictive policing, PredPol (whose basic
algorithm is known and takes as input arrest data and reported incidents) has
been the object of academic study. Lum and Isaac demonstrate the existence
and describe the potential consequences of feedback loops in PredPol[33] and
Ensign etal. prove why these loops occur and suggest ways to prevent them[18].

More closely related to our work is that of understanding COMPAS, a tool
used to predict recidivism and used in parole decisions. COMPAS hit the media
after a ProPublica expose argued bias against black defendants[27]. ProPublica
published their full data set of defendants, their demographics and abbreviated
arrest history, and COMPAS scores, which they obtained through public records
requests. This data set allowed several academic teams to follow up with more
in-depth statistical analyses and explanations (both supporting and criticiz-
ing the original analysis)[10, 16] and the development of theoretically-grounded
models to explain and further understand the data[2, 21].

Others have studied face recognition algorithms (which are increasingly be-
ing used in policing[11]) and have shown lower accuracies for younger, dark-
skinned, or feminine faces[29, 8].

Similar to these studies, we examine how software may introduce bias into
law enforcement. However, whereas the previous studies relied on data derived
from administrative records and physical appearance, the present study consid-
ers how social media users’ online actions may expose them to more or less law
enforcement attention. In particular, this study relies on public Twitter data.
Such data are necessarily consciously curated by individual users, and the re-
sulting public presentations may convey varying degrees of information. Thus,
while social media monitoring presents one new method of surveilling citizens
(perhaps differentially), it poses new challenges for how to define individual
group membership and subsequently measure aggregate levels of surveillance
among different sub-populations.
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Figure 1: Number of posts per week in the DigitalStakeout search logs from
the Corvallis Police Department categorized by social media platform (total in
brackets).

2 Description of the Data

The search logs used in our audit contain the results of automated searches
defined by DigitalStakeout (rather than the police department). They consist
of 7240 links to social media posts, with some additional meta-data, over a
period of 13 months (with a 3 month gap); see Figure1. Also furnished by
the Corvallis Police Department were additional use logs documenting officer-
initiated inquiries in DigitalStakeout. Our IRB denied our request to address
research questions towards these additional use logs. However, the use logs show
that the Corvallis Police Department used DigitalStakeout infrequently and did
not access the results of the automated searches defined by DigitalStakeout.

DigitalStakeout did not respond to our request for a demonstration, but
the Corvallis Police Department did describe the system to us. DigitalStakeout
is provided as a subscription software that the Corvallis Police Department
accesses through a web portal. It provides three main ways to navigate social
media, all within the predefined geographic region: (1) a map of the region with
pins corresponding to recent posts of interest, (2) a search box for searching by
name or screen name, and (3) an “intelligence discovery” tool that presents links
referencing the geographic region of interest from the last hour. A drop down
menu gives access to posts captured by automated searches. The use logs show
that the Corvallis Police Department did not access the results of the automated
searches.

As we see from Figure1, DigitalStakeout seems to inconsistently access all
social media platforms except for Twitter. From colleagues at the Brennan
Center, we understand that the access to the Facebook API was pulled for all
social-media monitoring platforms in Spring of 2017.
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Figure 2: Number of Tweets per week in the DigitalStakeout search logs from the
Corvallis Police Department categorized by search term set (total in brackets).

2.1 Description of the search logs

The data furnished by the Corvallis Police Department that we study here
consists of 83 spreadsheets in comma-separated form, broken into 3 groups cor-
responding to different sets of search terms: LE (Law Enforcement) Terms,
Terror Report, Narcotics. The explanation accompanying the records request
was that these are the results of search terms and (according to the Corvallis
Police Department) “all the search terms are preset proprietary lists of terms
[DigitalStakeout] searches for.” The columns of each spreadsheet include URL

and TIME. From July through early September, the Narcotics search logs in-
clude keywords for each social media post. (We describe this in more detail in
Section5.)

We note that for LE Terms and Terror Report, in many weeks exactly 100
search results are listed (Figure2). Indeed, in each of these weeks, the search
logs seem to indicate that the search process collects social media posts until
100 results are returned then deactivates for the remainder of the week.

The vast majority of the social media posts are “unprotected,” arising from
public accounts, so we believe DigitalStakeout to only be accessing publicly
available data. (We posit that those accounts that are currently not publicly
available were made protected in the time since the posts were collected by
DigitalStakeout.) Herein, we focus on the subset of 2932 social media posts
in the search logs that originate from Twitter, as Twitter’s API allows us to
sample comparative data sets (as we describe in Sections2.3 and5.1). We only
analyze data that is available on the date that we collect comparative samples
(Table1).
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# tweets # users
available available

# tweets 07/12/19 # users 05/31/18

Terror 192 101 86 74
Narcotics 653 549 225 195
LE Terms 2073 1442 774 595

Table 1: Available data for analysis. We only use data that is publicly available
on the date that we collect comparative samples.

2.2 Geography of the DigitalStakeout Tweets

In conversation with the Corvallis Police Department, we learned that Digital-
Stakeout was calibrated to search social media posts originating from Benton
County, Oregon (where Corvallis is located), but returned results outside of this
county, notably from Benton County, Washington.

We examined the geotags of the Tweets and profile locations of the corre-
sponding users. All the Tweets in the Narcotics and Terror Report sets are
geotagged with coordinates which lie within the 5 mile radius of Corvallis. We
presume that for these searches, DigitalStakeout is limiting the search of Twit-
ter to Tweets with coordinate geotags in this region. (Note that Tweets can
also be tagged with a “place”, which is a more general geographic region.)

On the other hand, the Tweets in the LE Terms data set seem to be collected
with Twitter’s “place” search. The argument to a place search is either an ID
or a place name. A place ID is a precise identifier for a unique geographic
region. Given an ID, Twitter’s place search will return Tweets: with geotags
in that region; tagged with a place within that region; or, from a user with
a profile location within that region if the Tweet has no place or coordinate
geotag. On the other hand, a place name is imprecise and Twitter will match
that name to any geographic region that closely matches it. It appears that the
LE Terms search was configured with a descriptor relating to Benton County
as the LE Terms data set contains Tweets with place and profile locations in
Benton City, Washington and Bentonville, Arkansas. Further, the LE Terms
data set includes many “retweets”, which in the past had geotags, but no longer
do. The current Twitter API will not pull retweets through a place search. The
poor configuration of the LE Terms search and change in the Twitter API has
prevented us from being able to reproduce DigitalStakeout’s geographical query
for the LE Terms search.

2.3 A comparative dataset of Corvallis Geotagging Tweet-

ers

To understand the demographics of the users whose Tweets appear in the Dig-
italStakeout data, we collect a sample of Tweets geotagged within the 5 mile
radius of Corvallis, OR, matching the inferred geographical constraint for the
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Narcotics and Terror Report DigitalStakeout search results. We were restricted
to doing so with the public Twitter API, as our our interest in studying the de-
mographics of the account users violates Twitter’s Premium API agreements.1

Twitter’s public API geotag filter takes as input an input polygon and re-
turns any Tweet whose geotag intersects that polygon. The geotag of a Tweet
is either a point (e.g. a GPS coordinate) or a polygon (rectangular, bounding a
city, state or country, for example). For our filter, we used the smallest rectangle
encompassing Benton Co., OR. We refiltered the collected tweets to those whose
geotags were points within Corvallis’s 5 mile radius, and matching the behavior
of the Twitter Premium API geotag filter we infer was used to curate the Dig-
italStakeout data for the Narcotics and Terror Report searches. We collected
1961 Tweets between March 6, 2018 and May 22, 2018. From this, we sampled
a set of 949 Twitter accounts to use in our comparative analysis2; each account
was selected for this final set with probability proportional to their frequency of
Tweeting. We call this set of accounts the Corvallis Geotagging Tweeters. Of
these 949 Twitter accounts, 102 accounts also appeared in the DigitalStakeout
data set.

3 Demographic coding

There is a body of literature on extracting demographic information from social
media users in support of sociological and public health research that would be
possible from the wealth of information available on social media platforms[49].
Cesare, Grant and Nsoesie discuss in detail many of the issues involved in infer-
ring the demographic information from social media users, including the issue
we dealt with most prominently: “One challenge associated with the prediction
of race and ethnicity is the need to create a clear, bounded definition. Racial
and ethnic identity is complex and evaluations by others may not match an
individuals self-identification.”[9]

Cesare etal. also review 60 studies aimed at automatic detection of demo-
graphics, either using simple data detection (e.g. from profile descriptions) or
matching (e.g. to user names) or machine learning techniques. However, these
techniques often limit the metadata they use to just profile photos or names
in order predict demographics, and doing so limits the fraction of profiles for
which demographics would be determinable. For example, those methods that
use profile photos to infer demographics only classify users with a profile photo

1Twitter’s Master License Agreement which one needs to sign to gain access to the Twitter
Premium API “may not be used [...] to target, segment, or profile individuals based on health
(including pregnancy), negative financial status or condition, political affiliation or beliefs [...]
racial or ethnic origin”. Of course, Twitter’s current Master License Agreement also seems to
preclude social media monitoring itself: “may not be used by [...] any public sector entity (or
any entities providing services to such entities) for surveillance purposes, including but not
limited to: (a) investigating or tracking Twitters users or their Content; and, (b) tracking,
alerting, or other monitoring of sensitive events (including but not limited to protests, rallies,
or community organizing meetings).”

2Initially we sampled 1000 accounts with Tweets within Benton Co.’s bounding box and
readjusted the sample upon observing the different configuration for the LE Terms search.
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containing a single face that they presume to be the profile owner. In doing so,
An and Weber discard 50% of profiles[25] and Messias, Vikatos, and Benevenuto
discard 68% of profiles[37]. In our case, since we are dealing with limited data
and wish to avoid introducing any biases that may exist in users opting to use
a profile photo that is of themself, these approaches are not appropriate.

The automatic detection methods that rely on machine learning techniques
need a training set of data to seed the work. In some cases this is generated from
an external source (such MySpace’s self-reported names and ethinicites[26] or
mugshots.com arrest records[44]), or through using a secondary machine learn-
ing algorithm as a black box (such as Face++[37]), or through manual coding
much like we describe below. While some groups perform in-house manual de-
mographic coding similar to our own[5, 17], McCormick et al.recommend using
Amazon Mechanical Turk for this task (and report on the reliability of doing
this)[49]. However, since our IRB determined that our work was human sub-
jects’ research and requested a high level of data security, passing our data to
MTurk workers would violate our approved protocols.

In the time since we completed our demographic coding, Preotiuc-Pietro and
Unger presented a method which infers race and ethnicity from social media text
and only require 100 posts from an account to predict demographics[39]. Their
model was robustly trained on a data set the authors built of users who self-
report their race/ethnicity through a survey. While the accuracy claims are
quite strong, the authors have not responded to a request for access to their
method.

3.1 Protocol

We coded all the DigitalStakeout accounts and Corvallis Geotagging Tweeters
using the following protocol. Before coding, we mixed the two data-sets, re-
moved duplicates, and randomized the order of the accounts. We did this for
two reasons. First, this would eliminate any bias that may be introduced from
knowing that an account is or is not in the surveilled data. Second, this provides
some amount of privacy for the account holder from research scrutiny resulting
from having been picked up by a surveillance tool. We discuss this second point
further in Section6.

We used the following publicly-available information to classify the gender
and race of users with unprotected Twitter accounts:

• Name on the account (Twitter handle and profile name)

• Profile and banner photo

• Biography section (including links to external pages)

• Recent tweets

• Photos and videos available via the left sidebar
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Using this information, coders first indicated whether the account belonged to
an individual or an organization (e.g., company, band, school, group, etc.).

For individual accounts, coders classified the users’ gender using the cate-
gories {Female, Male, Other (for users who self-identify as non-binary, gender
fluid, transgender, genderqueer, or third gender), Don’t know (if there is no
image or text to indicate gender)}.

Coders then classified the users’ race using the categories: {White; Hispanic;
Latino, or Spanish; Black or African American; Asian; American Indian or
Alaska Native; Middle Eastern or North African; Native Hawaiian or Other
Pacific Islander; Other (including users who self-identify as multiracial); Don’t
know (if there is no image or text to indicate race or ethnicity)}.

In our protocol, coder’s looked first for positive evidence, such as self-identification,
and then relied on photos or language in the absence of self-identification.

As shown below, several demographic categories appeared rarely, if at all,
in the Twitter data. For the sake of more robust statistical comparisons, some
analyses below collapse these race categories to, for example, {White; Black;
Hispanic; Other; Don’t Know}.

Gender and race are fluid and socially constructed categories, and there
are other possible ways of categorizing the gender and race of users. However,
we believe these categories provide a reasonable, though necessarily simplified,
reflection of race and gender divisions in the US. Importantly, we determined
that different coders following this protocol could reliably classify the race and
gender of users. Our protocol is similar to that used in other studies[5, 17, 49].
We established the reliability of our coding protocol using multiple coders and
measuring the inter-rater reliability, achieving a substantial level of agreement
using Krippendorff’s alpha measure. Details are in the appendix.

4 Demographics: Race and Ethnicity

Corvallis
Geotagging DigitalStakeout

Tweeters Narc. Terr. N+T

n 788 148 47 180

White 71.8% 78.4% 83.0% 78.9%
Black 6.5% 7.4% 4.3% 7.2%
Hispanic 11.7% 7.4% 10.6% 7.8%
Other 10.0% 6.8% 2.1% 6.1%

p - 0.23 0.25 0.13

Note: 15 users appear in both Narc and Terr.

Table 2: Coded Demographics—Narc. & Terr.
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n 242

White 84.3%
Black 4.1%
Hispanic 5.8%
Other 6.0%

Table 3: Coded Demographics—LE Terms

We report on our coded demographics for race and ethnicity for the Corvallis
Geotagging Tweeters and those in the DigitalStakeout data who were coded as
“Individuals” in our protocol. We do not include users for whom there were
neither images nor text to indicate race or ethnicity in these counts (which
were coded “Don’t know” according to our protocol). In Table2, we reduce
the number of categories of race and ethnicity since the number of users coded
in several categories were very small; in Table2, “Other” encompasses several
under-represented minorities: {Asian, American Indian or Alaska Native, Mid-
dle Eastern or North African, Native Hawaiian or Other Pacific Islander, Other
(including users who self-identify as multiracial)}. The full table of demograph-
ics is in AppendixB. We summarize gender demographics in AppendixC.

Users in the DigitalStakeout Narcotics and Terror Report data sets are drawn
from Twitter in the same way as Corvallis Geotagging Tweeters. We ask, are
the users in the Narcotics and Terror Report data sets representative samples
of Twitter users who geotag in Corvallis? The p-values reported correspond to
a Pearson Chi-squared test between CVI and Narc, Terr, N+T, respectively, for
the race categories given in Table2. In each comparison, the race distributions
differ, with white users appearing at higher rates in the DigitalStakeout sample
than in the Corvallis Geotagging Tweeter sample. However, these differences are
not statistically significant, a fact due in part to the small number of users in the
DigitalStakeout samples. We assume that the demographic distribution of geo-
tagging Twitter users in Corvallis has not changed significantly from when the
DigitalStakeout data was collected to when the Corvallis Geotagging Tweeters
were sampled.

As described above, the DigitalStakeout LE Terms data set seems to be
drawn in a more general way that includes profile locations, and due to presumed
poor configuration, includes users that seem to be from outside of Corvallis, OR.
Using the Twitter API, we examined the geotags of the Tweets in the LE Terms
data set (if available) and user-described profile locations (as recorded on May
31, 2018 through the Twitter API). We classified interpretable account profile
locations according to whether they correspond to locations within Corvallis,
OR or not. (A profile location is non-interpretable if they did not correspond
to mappable locations (such as the moon or bliss).) The coded demographics of
the accounts in the LE Terms data set that have Tweets geotagged or profile
locations in Corvallis, OR are given in Table3 (for the reduced set of categories –
full data given in AppendixB). These accounts would represent the same search,
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but configured for the Corvallis Police Department’s region of interest.

4.1 Demographics of the local population

The demographics represented in Table2 are notably different from that of the
Corvallis, OR (pop. 54,462) given in Table4. The census considers race orthog-
onal to ethnicity. We give the fraction of the population that identifies as a
single given race (column “only”), the fraction of the population that identifies
as a given race (alone or in combination with any other race), and the fraction
of the population that identifies as Hispanic as well as any single given race.

Corvallis is also home to Oregon State University (OSU), with Spring 2018
enrollment of 28,568 students, 4,916 of which attended via e-campus alone. OSU
reports demographics of their domestic students, but not of the 11.72% of the
students who are international[38]. The demographics of the domestic students
at OSU is similar to that of Corvallis demographics.

Arrests made by local police represent another relevant point of comparison,
as they represent the population of local residents who are formally brought into
the criminal justice system. According to data published by Lanfear[32], the
demographics of arrests roughly mirror the demographics of the population. In
particular, nearly 90% of arrests made by Corvallis Police Department or Benton
County Sheriff’s Office from 2007-12 involved a White suspect (see Table5).3

4.2 Differences between Twitter users and the broader

population

We wish to comment on the apparent difference in demographics between Twit-
ter users and (Table2 and3) and Corvallis residents (Table4). It is impossible to
determine the source of these differences, as there are many reasons to expect
the differences we see in the demographics of these populations as (i) race is a

3The data omit Oregon State Police, which has jurisdiction over the Oregon State Univer-
sity campus.

only
only or

in combo.
Hispanic

White 83.8% 87.5% 3.9%
Black 1.1% 1.8% 0.1%
Native American 0.7% 1.8% 0.2%
Asian 7.3% 9.3% -
Native HI/Pac. Isl’r 0.3% 0.8% -
some other race 2.8% 3.2% 2.6%
two or more races 4.0% N/A 0.6%

Total 100.0% N/A 7.4%

Table 4: Corvallis 2010 Census Demographics
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significant factor for explaining difference in behavior, (ii) externally assigned
(coded) demographics are a highly imperfect proxy for self-identified demo-
graphics, and (iii) the demographic categories we used for coding Twitter users
are not perfectly comparable to Census categories.

To comment further on the first point, we refer to relevant literature and
surveys which aim to quantify the demographic factors that play a role in social
media use.

There are racial and ethnic differences in what social media platform people
use. For example: 28% of Black U.S. adults use LinkedIn versus 13% of Hispanic;
49% of Hispanic U.S. adults use WhatsApp versus 14% of White[1]. while Pew’s
report that 24% of White people, 26% of Black people, and 20% of Hispanic
people use Twitter does not explain the differences in the demographics of the
populations we observe[1], there are two further considerations: First, Pew’s
survey is nationwide, and there may be regional differences that compound
racial and ethnic differences in social media use. Second, Pew’s survey does
not drill down into how people interact with a given social media platform. In
particular, there could be racial and ethnic differences in whether people opt
to geotag their Tweets. Very few Tweets have geotags (measured at 0.85%
in 2013[46]), and Sloan and Morgan show that prevalence of geotagging varies
among users depending on their gender, age, class and language[45].

There are significant differences in Twitter use according to age: 45% of 18-
24 year-olds use Twitter compared to only 14% of those over 50[1]. In a college
town like Corvallis, this issue will be compounded.

Finally, we note that the Twitter users represented in Table2 are gathered
purely based on geotags and that geotags will pick up Tweets from users who
are simply visiting the area and not resident in Corvallis.

5 Keywords

In order to understand how the social media posts are being identified by Dig-
italStakeout, we attempt to reverse engineer the search. We do so only for the
“Narcotics” search. Of the 101 Tweets that are still available (not deleted) in
the “Terror Report” data set, 25 contain videos or images and 57 contain urls

n (arrests) 22,875

White 89.4%
Black 3.5%
American Indian 0.8%
Asian 1.7%
Unknown 4.6%

Total 100.0

Table 5: Benton County arrests, 2007-2012
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– one Tweet contains only an image. Given the limited and type of data and
the likelihood that this search is not simply defined by a keyword search, we are
not able to explain how the “Terror Report” is generated. For “LE Terms”, as
previously noted, we are unable to reproduce the geographic filter.

The Narcotics dataset includes partial meta-data that suggests a simple
keyword search is being employed: for the first 2 months of Narcotics search
results, each social media post is accompanied by a set of keywords that match
or closely match a word in the Tweet. This seems to employ Twitter’s keyword
search which is more general than exact keyword matching: e.g., searching
Twitter for “hop” will return Tweets containing the word “hopped” but not
“hope”. We cluster keywords into keyword variant groups if they are variants
of each other such as rock, rocked, rocking, rocks. We use the simplest version in
the group as a “root” representative (although it may not be a formal linguistic
root).

There are 39 known keywords across 36 variant groups (listed in Table6)
that appear in the meta-data of the Narcotics dataset. The known keywords
explain 68% of the available “Narcotics” Tweets. We aim to uncover keywords
that explain the remaining Tweets and develop a process that would reliably
identify keywords should such meta-data not be available.

5.1 A comparative dataset of historical Tweets

To understand how DigitalStakeout identifies Tweets in their Narcotics search,
we collected the historical Tweets geotagged within the 5 mile radius of Corvallis
over the same time period as the DigitalStakeout data using Twitter’s Premium
API. The DigitalStakeout search logs suggest that there are time periods when
the searches are not active in addition to the 3 month period for which we
have no DigitalStakeout data such a gaps in time between search log files. To
most conservatively represent the possible input accessed by DigitalStakeout,
we down-sample the set of historical tweets to those with time-stamps between
the first and last time stamps in a given search log for the Narcotics search.
This is imperfect, as there may be times during the creation of a search log in
which the DigitalStakeout software is not active or in which the Twitter API is
down.

5.2 Reverse engineering keywords

In order to reverse engineer the keywords used by DigitalStakeout, we compare
the the (presumed) input to DigitalStakeout to the output from DigitalStakeout:

Tin The set of Tweets obtained with the same (presumed) geographical filter
over the same period of time as the DigitalStakeout Narcotics search (as
described in Section5.1).

Tout The set of Tweets in the DigitalStakeout Narcotics search log that are still
publicly available.
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Let P be the set of words that appear only in DigitalStakeout Tweets; that is,
words that appear in a Tweet of Tout but not in a Tweet of Tin \ Tout. P is the
set of possible keywords. If the search is active for all the periods of time that
cover Tin and keywords are matched consistently, then a keyword must be in P .
Unfortunately, data is rarely perfect. We find that 4 of the 39 known keywords
(“yay”, “broken”, “trip”, “tracks”) are not in P . “Broken” is in 4 Tweets of
Tin \ Tout; “yay”, “trip”, and “tracks” are each in 1 Tweet of Tin \ Tout. This
could be explained by the Twitter API or DigitalStakeout’s services being down
during this time period and not making data available for collection at the time
of DigitalStakeout’s collection. That a Tweet with the word “broken” is missed
4 times is not surprising, as “broken” is overall a very high frequency word;
indeed, “broken” is contained in 34% of the available Narcotics Tweets.

Each Tweet in the Narcotics set contains at least one word of P . For a Tweet
in the Narcotics set that contains exactly one word w from P , we presume that
w is the keyword that returned this Tweet. We call the set of all such words
in P the set of necessary keywords and denote it N . Given perfect data and
exact keyword matching, all words in N must be keywords. For more general
keyword matching but otherwise perfect data, all words in N must be keywords
(or variants of keywords).

We call the set of Tweets in the Narcotics set that do not contain a word
or variant of a word in N the set of unexplained Tweets. Each Tweet in this
set contains at least two words from P and at least one word from P \ N .
Determining which words in P \N are keywords or derived from keywords is an
impossible task. The problem is a hitting set problem: find a subset K of P such
that every Tweet contains a word ofK. There may be multiple feasible solutions,
and no objective to decide between feasible solutions will necessarily correctly
reverse engineer the set of keywords (or variants of keywords). However, by
examining the frequencies of words across the entire Narcotics dataset, we can
determine a set of likely keywords: words that appear with higher frequency are
more likely to have been keywords for the search.

We aim for an automated and reproducible method for identifying a set L
of likely keyword variant groups as follows. For each unexplained tweet, let
W ∈ P \ N be a subset of words with a common root (a variant group) with
highest frequency in the Narcotics dataset. We let L be the union of such variant
groups that explain at least 2 DigitalStakeout Tweets (Tout) that are not already
explained by N . We use a threshold of 2 to provide some confidence; a higher
threshold could be used with a larger data set.

For the Narcotics data, |P | = 607, |N | = 28, and |L| = 21, where size
measures the number of variant groups (e.g. rock, rocked, rocking, and rocks
count as 1 variant group). N and L explain 62% of the Tweets in the Narcotics
set. We give the root form of the words in N and L in Table6 along with their
frequency: the number of Tweets in Tout that these words (and their variants)
appear in. The full list of variants corresponding to these roots are given in the
Appendix.
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Table 6: Reverse-engineered and known keywords for the Narcotics search.
Necessary

Root f Root f Root f Root f

snow 54 face 11 trip 4 waste 2
hop 45 cheese 8 burger 4 gang 2
high 40 bag 8 cook 3 hustle 2
line 22 jack 7 dope 3 rip 2
party 22 treat 6 blow 3
smoke 14 blast 5 load 3
bowl 13 fried 4 wreck 3
rock 11 crystal 4 bake 3

Likely

Root f Root f Root f

pie 8 indica 4 growweed 2
pot 6 mash 4 burn 2
zone 6 dank 4 keg 2
bud 6 hip 4 malt 2
fade 5 jam 4 melt 2
dabpro 5 angel 3
bang 5 addict 3
deal 5 roll 3

Missed Known

Root f

broken 184
yay 3
hookup 1
stuck 1
munchies 1
stash 0
track 0
tweed 0

Bold words are roots of known keywords. Frequency f is the number of available Narcotics Tweets; f = 0 implies the
corresponding Tweets are now deleted. Missed Known words are those that were not discovered by reverse engineering.

5.3 Understanding the keywords

Our method of reverse engineering is relatively robust for the following reasons:

• While N and L only explain 62% of the Narcotics Tweets, N ∪ L ∪
{“broken′′} explains 91% of the Narcotics Tweets. With a larger corpus of
data, more noise-resistant methods would be able to capture missed words
such as “broken” that were excluded as a possible keyword by relaxing the
definition of necessary.

• All but 3 of the keywords (keg, malt, melt) in N and L are drug terms,
according to the DEA Drug Slang list[3] and the Urban Dictionary4. Since
our methods were oblivious to the meaning of the words, the words we
uncover are quite likely to have been keywords.

• N and L correctly identify 28 of 36 known keyword variant groups. Of
the remaining 8, 3 were not discoverable because they do not appear in

4https://www.urbandictionary.com/
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any available Tweets, 3 have frequency 1 (so a lack of data make them
difficult to discover) and the remaining 2 appeared in both Tin and Tout

as discussed above.

• Further of the words in Tout that do not appear in N ∪L, the only obvious
drug term is “marijuana” which appeared in only one Tweet as part of
a hashtag compounded with other words; this Tweet also contained a
necessary keyword.

Note that all the keywords are English-language words or slang. This may
bias the search toward English-language users. Among Twitter users geotagging
in Corvallis, the effect is not large: 96.0% of the Tweets in Tin and 98.9% of the
Tweets in Tout are labeled English-language by Twitter.5

Given these keywords, we feel that the Narcotics search results are unlikely
to be useful for either risk assessment or sentiment analysis. Of the 56 known,
necessary and likely keyword variant groups, 15 are related to marijuana[3] and
that recreational marijuana has been legal in Oregon for the entire period of
DigitalStakeout data collection for the Corvallis Police Department. Many of the
Tweets containing marijuana-related keywords are from one of the many state-
regulated marijuana dispenseries in Corvallis. Many of the keywords, although
drug-related, are sufficiently general that they pick a lot of Tweets that are
unrelated to narcotics. For example, “broken” picks up 178 Tweets from a
weather bot that reports “broken clouds” as the forecast (and only 6 other
Tweets). Variants of the word “hop” (which pertain to drug use) exclusively
pick up Tweets from local breweries (of which Corvallis is home to many).
Likewise “bowl” exclusively flags Tweets about the game of bowling or bowls of
food. Finally, “party” picks up the variants “#kidsparty”, “#pizzaparty”, and
“#birthdayparty” which are unlikely to be related to narcotics.

6 Research ethics

When we initially made our public records requests we didn’t know if we would
receive any data, never mind what form that data would take, or whether it
would include personally identifiable information (PII). Upon receiving the data
(which includes PII in the form of links to social media posts that are created
by individuals, many of whom associate their account with their real identity)
and formulating our research questions, we embarked on gaining IRB approval
for our research. We did so prior to pulling comparative data sets through the
Twitter API.

Discussions with colleagues regarding this work received mixed opinions as to
whether this research is Human Subjects Research at all, with opinions seeming
to fall along disciplinary lines. In fact, our IRB took one full-board meeting
to decide that question alone. In deciding whether the proposed work falls

598.0% of the Terror Report Tweets and 98.6% of the LE Terms Tweets are labeled English-
language by Twitter.
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under Human Research Protection, consider the Office for Human Research
Protections’ guidelines for deciding “Is an Activity Research Involving Human
Subjects?”6 Although our work does not involve intervention or interaction with
individuals, the information does include PII. Deciding whether this research is
Human Subjects Research thus comes down to deciding if this information is
private: “About behavior that occurs in a context in which an individual can
reasonably expect that no observation or recording is taking place, or provided
for specific purposes by an individual and which the individual can reasonably
expect will not be made public.”

Although by the letter of the law, the data we used (both collected from
Twitter and obtained from the Corvallis Police Department) is public (or was
at the time of collection) and so may be considered exempt from IRB oversight,
one also needs to consider whether someone would expect their data (and the
association of their data with a given commercial/state surveillance dataset)
to be used for research. While many people are aware of the extent of digital
surveillance[41], few would expect their public social media posts to be collected
by private company, furnished to a police department and logged, made the
subject of a public records request to finally end up in the hands of a researcher.
Indeed, Fiesler and Proferes report that “few [Twitter] users were previously
aware that their public tweets could be used by researchers, and the majority
felt that researchers should not be able to use tweets without consent.”[20]

Along these lines, our IRB determined that our research is Human Subjects
Research. The permission to pursue our research is under expedited categories
5 & 7 (minimal risk to adults and minimal risk to children – §46.404). We
obtained a waiver of informed consent, but only by agreeing to the highest level
of data protections.

6.1 Waiver of informed consent

We argue that the importance of shedding light on proprietary software being
used for policing outweighs the risk to an individual user that may (unknow-
ingly) participate in this research. We also argue that this research would not
be possible if informed consent was required. Not only would it likely reduce the
available data significantly and introduce more biases, the very act of seeking
out consent from people whose Tweets were collected by DigitalStakeout makes
a data breach much more likely. We do respect users explicit choices by ignoring
accounts marked as protected although these accounts still display name, profile
location, profile banner and profile photos.

One cannot forget that Twitter and other social media users are not informed
that they are being monitored by DigitalStakeout – it is far from common
knowledge that the Corvallis Police Department subscribes to DigitalStakeout.
Publication of this and similar research serves as one means of communicating
this fact.

6https://www.hhs.gov/ohrp/regulations-and-policy/decision-charts/index.html#c1
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6.2 Data protections

In order to obtain a waiver of consent, in balancing risk and benefit, our IRB
required the highest level of data protections. This involves storing information
in a manner that provides access only to authorized individuals. Our data is
stored on encrypted drives and shared between the study staff via end-to-end
encrypted channels. Prior to demographic coding, DigitalStakeout data was
randomly mixed with the Corvallis Geotagging Tweeters data. The demograph-
ically coded PII (social media user names) was kept separate from indicators as
to their source. All this was to minimize the risk of leaking that a given user was
included in a surveillance data set. However, this does preclude sharing the data
more broadly for further study: the demographic data with search type (e.g.
Narcotics) but without PII (the social media user name) may be enough infor-
mation to de-anonymize users in the small community of Corvallis, much like
the famed ZIP, gender, DOB de-anonymizing observation of Sweeney[47]. Of
course, another researcher could request the same information from the Corvallis
Police Department as we did. Alternatively, we will work with other researchers
in collaboration with our IRB to ensure that further research can be pursued.
As part of our currently approved IRB research protocols, we can only share
aggregate data and keywords, but not precise Tweets. Although the keywords
could be used to reproduce DigitalStakeout “Narcotics” searches, since the Dig-
italStakeout searches were not running continuously and we are not publishing
precise times during which the searches were active, it is impossible to perfectly
reproduce the output of the DigitalStakeout search logs.

7 Conclusion

This study has shown that we can indeed use log files to audit social media
monitoring software and address our research questions. First, we find small
but non-significant differences in the race distribution of users flagged by Dig-
italStakeout and users geotagging their Tweets in Corvallis. Second, we were
able to, for the Narcotics search, able to reverse engineer the keywords most
likely used and show that this method is robust by comparing to a subset of
keywords available through the metadata.

Racial disparities exist throughout the justice system, including in polic-
ing. Research has found that non-whites are more likely than whites to be
arrested or stopped, net of legally relevant factors like crime type and pres-
ence of witnesses[22, 6, 19, 30]. These disparities in police contact contribute
to a severe overrepresentation of people of color in US prisons [4, 50]. Given
this, we argue that it is important to be able to audit tools used in the justice
system (such as has been done for recidivism prediction, face recognition, and
predictive policing) for racial disparities. Social media monitoring is simply an-
other avenue for creating disparities, and there are many points at which an
inequity could be introduced: including access to social media, adoption of a
particular social media platform, interacting with the platform in a way that
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gives access to monitoring software, and using certain keywords. We have shown
that geotagging or setting a profile location are choices that result in access by
DigitalStakeout for monitoring. Others have shown that such choices are likely
to correlate with demographics[46]. We have also shown that many keywords
flag benign Tweets, at least from a risk-assessment perspective; this could draw
undue attention from law enforcement.

Whether the purpose of social media monitoring by police is for sentiment
analysis or risk assessment, unless the population that is affected mirrors that
of the police jurisdiction, the bias will result in a skewed view of the population
(if used for sentiment analysis) or undue attention on one subpopulation over
another (in the case of risk assessment).

The use of log files is useful in gaining insight into the proprietary tools.
We would recommend that log files be required and available for research or
other independent evaluation to ensure transparency of the algorithms that are
reshaping law enforcement. Policy could help overcome the difficulties of this
audit, including lack of data, poorly or incompletely logged data and inacces-
sibility of data (from all entities involved, including law enforcement agencies,
social media monitoring software houses and social media platforms).
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A Inter-rater reliability

We established the reliability of the coding protocol using a sub-sample of 99
accounts from the randomly ordered, mixed data set. Three coders (the au-
thors and an undergraduate research assistant) applied the protocol to this
sub-sample.

We measure the reliability of our coding protocol by measuring the inter-
rater reliability of our three coders using Krippendorff’s alpha. Krippendorff’s
α = 1 − Do/De where Do is the observed disagreement between the coders
and De is the disagreement that would be expected by chance. We evaluated
the resulting reliability measures using the benchmarking method proposed by
Gwet[28] (as implemented in Stata by Klein[13]), indicating which of the Landis
and Koch[31] levels of agreement are met with probability at least 95%. As
indicated in Table7, our coders achieved at least a substantial level of agreement
on the Landis and Koch scale for all our coding dimensions.

The levels of inter-rater reliability are reported in Table7. In coding Twit-
ter accounts, the coders used a single label with three choices: {Not accessi-
ble (protected, deleted, or suspended), Individual, Organization}. The first of
these three choices can be done programmatically, but as we have observed,
accounts become inaccessible or accessible over time as accounts are suspended
and reinstated or made protected over time. Since coding was not completed
simultaneously, we opted to include “Not accessible” in the first feature, with
“Individual” and “Organization”. However, the choices for this first feature im-
pact our measure of inter-rater reliability for gender and race/ethnicity. When
measuring inter-rater reliability for gender and race/ethnicity, we included all
subjects that had at least two coders select “Individual” for the first feature. In
order to understand the reliability of coding for race and ethnicity, in addition
to considering the full set of 7 categories, we also considered a collapsed set of
categories consisting of {White, Not White, Don’t Know} where “Not White”
consists of all remaining race and ethnicity categories.

Indiv? Gender Race & Ethnicity

# categories 3 4 7 3
# subjects 99 70 70 70
α 0.940 0.884 0.703 0.785

reliability almost perfect substantial

Table 7: Inter-rater reliability

With the inter-rater reliability established, one of the three test coders (an
undergraduate research assistant), coded the full, randomized, mixed data set.
These codes serve as the basis for the analyses below.
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B Full Race and Ethnicity Demographics

Corvallis
Geotagging DigitalStakeout

Tweeters Narc. Terr. N+T

n 788 148 47 180

White 71.8% 78.4% 83.0% 78.9%
Black 6.5% 7.4% 4.3% 7.2%
Native American - - - -
Asian 2.8% 1.4% - 1.1%
Native HI/Pac. 0.4% 0.7% - 0.6%
Middle Eastern 4.6% 2.7% - 2.2%
Other 2.3% 2.0% 2.1% 2.2%
Hispanic 11.7% 7.4% 10.6% 7.8%

Table 8: Coded Demographics: Narcotics & Terror Report

n 242

White 84.3%
Black 4.1%
Native American -
Asian 2.1%
Native HI/Pac. -
Middle Eastern 1.2%
Other 2.5%
Hispanic 5.8%

Total 100.00%

Table 9: Coded Demographics: LE Terms
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C Demographics: Gender

In Table10, we report on the gender ratios of Twitter users in our various data
sets as described in the previous section. Across the entire data set, CT and
DS, only three users were coded “Other”. We removed these users from Ta-
ble10. We did pairwise comparisons between Narc and CVI and Terr and CVI,
but not between LE and CVI as described in Section4, with Chi-squared sig-
nificance values in Table10. As with race and ethnicity, we find that users in
the DigitalStakeout data are representative of the Corvallis Geotagging Twitter
users.

Corvallis
Geotagging DigitalStakeout

Tweeters Narc. Terr. LE

n 788 148 47 241

M 47.5% 53.0% 47.8% 56.8%
F 52.5% 47.0% 52.2% 43.2%

p - 0.25 1 -

(LE collected in a different way from Corvallis Geotagging Tweeters, Narc.,
and Terr.)

Table 10: Coded Gender: Twitter Users

In Table11 we give the gender distribution of the residents of Corvallis,
OR and of Oregon State University students. Chi-squared tests indicate that
DigitalStakeout data may be representative of Corvallis residents (p = 0.11), but
are not representative of Oregon State University students (p = 0.0022). The
latter comparison may be more valid given that Twitter use is more prevalent
among the young (student-aged), but OSU’s demographics also include those of
online students who may not Tweet from Corvallis.

OSU Corvallis

M 52.9% 50.3%
F 47.1% 49.7%

Table 11: Gender distribution: Oregon State University and Corvallis (Census)
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D Keyword roots and their variants

Table 12: Necessary keyword roots and the variants that appear in Digital-
Stakeout Tweets.

Root Variants

snow #snow, snow, #crouchingtigerhiddensnowman,
#snowboard, #snowday, #snowinmarch

hop hop, hopping, hops, hopped, #hops
high high, highland, #highcbd, skyhigh
line line, lining
party party, #monkeysparty, #kidsparty, #party,

#pizzaparty, #birthdayparty, #partyfoul
smoke smoke, smoking, smoked
bowl bowl, bowling, bowls
rock rock, rocked, rocking, rocks
face face, facing, faces, faced
cheese cheese, cheesy
bag bag, bags
jack jack, jacked
treat treat, treats
blast blast, blasted
fried fried, fries
crystal crystal, crystals
trip tripped, tripping, trips
burger burger, burgers
cook cooked, cooking
dope dope, #dopeman
blow blowing, blow, blower
wreck wrecking, wreck
bake baking, bake
waste wasted, wasting
gang gang, #canongang
hustle hustled, hustle
rip rip, #ripmicrophone
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Table 13: Likely keyword roots and the variants that appear in DigitalStakeout
Tweets.

Root Variants

pie pie, #pieeatingcontest
pot pot, #pot, #pothead, #potfarm
zone zone, calzone
bud bud, budtender, buds, #budtenders
fade fades, faded, #functionfades, #faded
dabpro #thedablab, dabpro
bang bang, banged
deal deal, dealers, deals, dealt
indica #indica, indica
mash mash, mashed, mashing
dank dank, #danksgiving
hip hip, hippie, hipster
jam jam, #ujam, jamming
angel angel, angeles
addict addicts, addict, #slapaddictz
roller roller, #rollpipps, rolled
#growweed #growweed, #weedagram
burn burn, burning
keg kegs, keg
malt malt, malts
melt melt, melting
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Table 14: Known keyword roots and the variants that appear in DigitalStakeout
metadata.

Root Variants

angel angel, angeles
blast blast , blasted
blow blow, blowing, blower
bowl bowl, bowling, bowls
broken broken,
burn burned, burn, burning
cheese cheese, cheesy
cook cooked, cooking
crystal crystal, crystals
dope dope, #dopeman
face faced, face, facing, faces
fade faded, fades, #functionfades, #faded
fried fried, fries
high high, highland, #highcbd, skyhigh, highness
hookup hookup,
hop hopped, hop, hops, hopping, #hops
indica indica, #indica
line line, lining
load loaded, loading
mash mashed, mash, mashing
munchies munchies, munchys
party party, #monkeysparty, #kidsparty, #party,

#pizzaparty, #birthdayparty, #partyfoul
pied pied, pie, #pieeatingcontest
pot pot, #pot, #pothead, #potfarm
rock rock, rocked, rocking, rocks
smoke smoke, smoking, smoked
snow snow, #snow, #crouchingtigerhiddensnowman,

#snowboard, #snowday, #snowinmarch
stash stash,
stuck stuck,
track tracks, track, tracked
trip trip, tripped, tripping, trips
tweed tweed,
waste wasted, wasting
wreck wreck, wrecking, wrecked
yay yay,
zone zoned, zone, calzone
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