
Explaining Machine Learning Classifiers through Diverse
Counterfactual Explanations

Ramaravind K. Mothilal
Microsoft Research India
t-rakom@microsoft.com

Amit Sharma
Microsoft Research India
amshar@microsoft.com

Chenhao Tan
University of Colorado Boulder
chenhao.tan@colorado.edu

ABSTRACT
Post-hoc explanations of machine learning models are crucial for
people to understand and act on algorithmic predictions. An intrigu-
ing class of explanations is through counterfactuals, hypothetical
examples that show people how to obtain a different prediction.
We posit that effective counterfactual explanations should satisfy
two properties: feasibility of the counterfactual actions given user
context and constraints, and diversity among the counterfactuals
presented. To this end, we propose a framework for generating
and evaluating a diverse set of counterfactual explanations based
on determinantal point processes. To evaluate the actionability
of counterfactuals, we provide metrics that enable comparison of
counterfactual-based methods to other local explanation methods.
We further address necessary tradeoffs and point to causal implica-
tions in optimizing for counterfactuals. Our experiments on four
real-world datasets show that our framework can generate a set of
counterfactuals that are diverse and well approximate local decision
boundaries, outperforming prior approaches to generating diverse
counterfactuals. We provide an implementation of the framework
at https://github.com/microsoft/DiCE.

CCS CONCEPTS
• Applied computing→ Law, social and behavioral sciences.
ACM Reference Format:
Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining
Machine Learning Classifiers through Diverse Counterfactual Explanations.
In Conference on Fairness, Accountability, and Transparency (FAT* ’20), Jan-
uary 27–30, 2020, Barcelona, Spain. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3351095.3372850

1 INTRODUCTION
Consider a person who applied for a loan and was rejected by the
loan distribution algorithm of a financial company. Typically, the
company may provide an explanation on why the loan was rejected,
for example, due to “poor credit history”. However, such an expla-
nation does not help the person decide what they should do next to
improve their chances of being approved in the future. Critically,
the most important feature may not be enough to flip the decision
of the algorithm, and in practice, may not even be changeable such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FAT* ’20, January 27–30, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6936-7/20/02. . . $15.00
https://doi.org/10.1145/3351095.3372850

as gender and race. Thus, it is equally important to show decision
outcomes from the algorithm with actionable alternative profiles, to
help people understand what they could have done to change their
loan decision. Similar to the loan example, this argument is valid for
a range of scenarios involving decision-making on an individual’s
outcome, such as deciding admission to a university [40], screening
job applicants [33], disbursing government aid [3, 5], and identify-
ing people at high risk of a future disease [11]. In all these cases,
knowing reasons for a bad outcome is not enough; it is important to
know what to do to obtain a better outcome in the future (assuming
that the algorithm remains relatively static).

Counterfactual explanations [39] provide this information, by
showing feature-perturbed versions of the same person who would
have received the loan, e.g., “you would have received the loan
if your income was higher by $10, 000”. In other words, they pro-
vide “what-if” explanations for model output. Unlike explanation
methods that depend on approximating the classifier’s decision
boundary [32], counterfactual (CF) explanations have the advan-
tage that they are always truthful w.r.t. the underlying model by
giving direct outputs of the algorithm. Moreover, counterfactual ex-
amples may also be human-interpretable [39] by allowing users to
explore “what-if” scenarios, similar to how children learn through
counterfactual examples [6, 7, 41].

However, it is difficult to generate CF examples that are actionable
for a person’s situation. Continuing our loan decision example, a CF
explanation may suggest to “change your house rent”, but it does
not say much about alternative counterfactuals, or consider the
relative ease between different changes a person may need to make.
Like any example-based decision support system [18], we need a
set of counterfactual examples to help a person interpret a complex
machine learning model. Ideally, these examples should balance
between a wide range of suggested changes (diversity), and the
relative ease of adopting those changes (proximity to the original
input), and also follow the causal laws of human society, e.g., one
can hardly lower their educational degree or change their race.

Indeed, Russell [34] recognizes the importance of diversity and
proposes an approach for linear machine learning classifiers based
on integer programming. In this work, we propose a method that
generates sets of diverse counterfactual examples for any differen-
tiable machine learning classifier. Extending Wachter et al. [39], we
construct an optimization problem that considers the diversity of
the generated CF examples, in addition to proximity to the original
input. Solving the optimization problem requires considering the
tradeoff between diversity and proximity, and the tradeoff between
continuous and categorical features which may differ in their rela-
tive scale and ease of change. We provide a general solution to this
optimization problem that can generate any number of CF examples
for a given input. To facilitate actionability, our solution is flexible

607

https://github.com/microsoft/DiCE
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1145/3351095.3372850
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3351095.3372850&domain=pdf&date_stamp=2020-01-27

FAT* ’20, January 27–30, 2020, Barcelona, Spain Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan

enough to support user-provided inputs based on domain knowl-
edge, such as custom weights for individual features or constraints
on perturbation of features.

Further, we provide quantitative evaluation metrics for evalu-
ating any set of counterfactual examples. Due to their inherent
subjectivity, CF examples are hard to evaluate. While we cannot
replace behavioral experiments, we propose metrics that can help in
fine-tuning parameters of the proposed solution to achieve desired
properties of validity, diversity, and proximity. We also propose a
second evaluation metric that approximates a behavioral experi-
ment on whether people can understand a ML model’s decision
given a set of CF examples, assuming that people would rationally
extrapolate from the CF examples and “guess” the local decision
boundary of an ML model.

We evaluate our method on explaining ML models trained on
four datasets: COMPAS for bail decision [4], Adult-Income for in-
come prediction [20], German-Credit for assessing credit risk [2],
and a dataset from Lending Club for loan decisions [1]. Compared
to prior CF generation methods, our proposed solution generates
CF examples with substantially higher diversity for these datasets.
Moreover, a simple 1-nearest neighbor model trained on the gener-
ated CF examples obtains comparable accuracy on locally approxi-
mating the original ML model to methods like LIME [32], which are
directly optimized for estimating the local decision boundary. No-
tably, our method obtains higher F1 score on predicting instances
in the counterfactual outcome class than LIME in most configura-
tions, especially for Adult-Income and COMPAS datasets wherein
both precision and recall are higher. Qualitative inspection of the
generated CF examples illustrates their potential utility for making
informed decisions. Additionally, CF explanations can expose biases
in the original ML model, as we see when some of the generated
explanations suggest changes in sensitive attributes like race or
gender. The last example illustrates the broad applicability of CF
explanations: they are not just useful to an end-user, but can be
equally useful to model builders for debugging biases, and for fair-
ness evaluators to discover such biases and other model properties.

Still, CF explanations, as generated, suffer from lack of any causal
knowledge about the input features that they modify. Features do
not exist in a vacuum; they come from a data-generating process
which constrains their modification. Thus, perturbing each input
feature independently can lead to infeasible examples, such as sug-
gesting someone to obtain a higher degree but reduce their age. To
ensure feasibility, we propose a filtering approach on the generated
CF examples based on causal constraints.

To summarize, our work makes the following contributions:
• We propose diversity as an important component for actionable
counterfactuals and build a general optimization framework that
exposes the importance of necessary tradeoffs, causal implica-
tions, and optimization issues in generating counterfactuals.

• We propose a quantitative evaluation framework for counter-
factuals that allows fine-tuning of the proposed method for a
particular scenario and enables comparison of CF-based methods
to other local explanation methods such as LIME.

• Finally, we demonstrate the effectiveness of our framework through
empirical experiments on multiple datasets and provide an open-
source implementation at https://github.com/microsoft/DiCE.

2 BACKGROUND & RELATEDWORK
Explanations are critical for machine learning, especially as ma-
chine learning-based systems are being used to inform decisions in
societally critical domains such as finance, healthcare, education,
and criminal justice. Since many machine learning algorithms are
black boxes to end users and do not provide guarantees on input-
output relationship, explanations serve a useful role to inspect
these models. Besides helping to debug ML models, explanations
are hypothesized to improve the interpretability and trustworthi-
ness of algorithmic decisions and enhance human decision making
[13, 23, 25, 38]. Belowwe focus on approaches that provide post-hoc
explanations of machine learning models and discuss why diversity
should be an important component for counterfactual explanations.
There is also an important line of work that focuses on developing
intelligible models by assuming that simple models such as linear
models or decision trees are interpretable [9, 24, 26, 27].

2.1 Explanation through Feature Importance
An important approach to post-hoc explanations is to determine
feature importance for a particular prediction through local approx-
imation. Ribeiro et al. [32] propose a feature-based approach, LIME,
that fits a sparse linear model to approximate non-linear models
locally. Guidotti et al. [16] extend this approach by fitting a decision-
tree classifier to approximate the non-linear model and then tracing
the decision-tree paths to generate explanations. Similarly, Lund-
berg and Lee [28] present a unified framework that assigns each
feature an importance value for a particular prediction. Such expla-
nations, however, “lie” about the machine learning models. There
is an inherent tradeoff between truthfulness about the model and
human interpretability when explaining a complex model, and so
explanation methods that use proxy models inevitably approximate
the true model to varying degrees. Similarly, global explanations
can be generated by approximating the true surface with a simpler
surrogate model and using the simpler model to derive explana-
tions [10, 32]. A major problem with these approaches is that since
the explanations are sourced from simpler surrogates, there is no
guarantee that they are faithful to the original model.

2.2 Explanation through Visualization
Similar to identifying feature importance, visualizing the decision
of a model is a common technique for explaining model predictions.
Such visualizations are commonly used in the computer vision
community, ranging from highlighting certain parts of an image to
activations in convolutional neural networks [29, 42, 43]. However,
these visualizations can be difficult to interpret in scenarios that
are not inherently visual such as recidivism prediction and loan
approvals, which are the cases that our work focuses on.

2.3 Explanation through Examples
The most relevant class of explanations to our approach is through
examples. An example-based explanation framework is MMD-critic
proposed by Kim et al. [18], which selects both prototypes and crit-
icisms from the original data points. More recently, counterfactual
explanations are proposed as a way to provide alternative perturba-
tions that would have changed the prediction of a model. In other
words, given an input feature x and the corresponding output by

608

https://github.com/microsoft/DiCE

Diverse Counterfactual Explanations FAT* ’20, January 27–30, 2020, Barcelona, Spain

ML model (f) The trainedmodel obtained from the training data.
Original input (x) The feature vector associated with an instance

of interest that receives an unfavorable decision
from the ML model.

Original outcome The prediction of the original input from the
trained model, usually corresponding to the unde-
sired class.

Original outcome class The undesired class.
Counterfactual exam-
ple (c i)

An instance (and its feature vector) close to the
original input that would have received a favor-
able decision from the ML model.

CF class The desired class.
Table 1: Terminology used throughout the paper.

a ML model f , a counterfactual explanation is a perturbation of
the input to generate a different output y by the same algorithm.
Specifically, Wachter et al. [39] propose the following formulation:

c = argmin
c

yloss(f (c),y) + |x − c |, (1)

where the first part (yloss) pushes the counterfactual c towards a
different prediction than the original instance, and the second part
keeps the counterfactual close to the original instance.

Extending their work, we provide a method to construct a set
of counterfactuals with diversity. In other domains of information
search such as search engines and recommendation systems, multi-
ple studies [15, 22, 35, 45] show the benefits of presenting a diverse
set of information items to a user. Our hypothesis is that diversity
can be similarly beneficial when people are shown counterfactual
explanations. For linear models, a recent paper by Russell [34]
develops an efficient algorithm to find diverse counterfactuals us-
ing integer programming. In this work, we examine an alternative
formulation that works for any differentiable model, investigate
multiple practical issues on different datasets, and propose a general
quantitative evaluation framework for diverse counterfactuals.

3 COUNTERFACTUAL GENERATION ENGINE
The input of our problem is a trained machine learning model,
f , and an instance, x . We would like to generate a set of k coun-
terfactual examples, {c1,c2, . . . ,ck }, such that they all lead to a
different decision than x . The instance (x) and all CF examples
({c1,c2, . . . ,ck }) are d-dimensional. Throughout the paper, we as-
sume that the machine learning model is differentiable and static
(does not change over time), and that the output is binary. Table 1
summarizes the main terminologies used in the paper.

Our goal is to generate an actionable counterfactual set, that
is, the user should be able to find CF examples that they can act
upon. To do so, we need individual CF examples to be feasible with
respect to the original input, but also need diversity among the
generated counterfactuals to provide different ways of changing the
outcome class. Thus, we adapt diversity metrics to generate diverse
counterfactuals that can offer users multiple options (Section 3.1).
At the same time, we incorporate feasibility using the proximity
constraint fromWachter et al. [39] and introduce other user-defined
constraints. Finally, we point out that counterfactual generation is
a post-hoc procedure distinct from the standard machine learning
setup, and discuss related practical issues (Section 3.3).

3.1 Diversity and Feasibility Constraints
Although diverse CF examples increase the chances that at least
one example will be actionable for the user, examples may end
up changing a large set of features, or maximize diversity by con-
sidering big changes from the original input. This situation could
be worsened when features are high-dimensional. We thus need a
combination of diversity and feasibility, as we formulate below.
Diversity via Determinantal Point Processes. We capture di-
versity by building on determinantal point processes (DPP), which
has been adopted for solving subset selection problems with di-
versity constraints [21]. We use the following metric based on the
determinant of the kernel matrix given the counterfactuals:

dpp_diversity = det(K), (2)

where Ki , j = 1
1+dist (c i ,c j) and dist(ci ,c j) denotes a distance met-

ric between the two counterfactual examples. In practice, to avoid
ill-defined determinants, we add small random perturbations to the
diagonal elements for computing the determinant.
Proximity. Intuitively, CF examples that are closest to the original
input can be the most useful to a user. We quantify proximity as
the (negative) vector distance between the original input and CF
example’s features. This can be specified by a distancemetric such as
ℓ1-distance (optionally weighted by a user-provided custom weight
for each feature). Proximity of a set of counterfactual examples is
the mean proximity over the set.

Proximity = −
1
k

k∑
i=1

dist(ci ,x). (3)

Sparsity. Closely connected to proximity is the feasibility prop-
erty of sparsity: how many features does a user need to change to
transition to the counterfactual class. Intuitively, a counterfactual
example will be more feasible if it makes changes to fewer number
of features. Since this constraint is non-convex, we do not include
it in the loss function but rather handle it through modifying the
generated counterfactuals, as explained in Section 3.3.
User constraints. A counterfactual example may be close in fea-
ture space, but may not be feasible due to real world constraints.
Thus, it makes sense to allow the user to provide constraints on
feature manipulation. They can be specified in two ways. First, as
box constraints on feasible ranges for each feature, within which
CF examples need to be searched. An example of such a constraint
is: “income cannot increase beyond 200,000”. Alternatively, a user
may specify the variables that can be changed.

In general, feasibility is a broad issue that encompasses many
facets. We further examine a novel feasibility constraint derived
from causal relationships in Section 6.

3.2 Optimization
Based on the above definitions of diversity and proximity, we con-
sider a combined loss function over all generated counterfactuals.

C(x) = argmin
c 1, ...,c k

1
k

k∑
i=1

yloss(f (ci),y) +
λ1
k

k∑
i=1

dist(ci ,x)

− λ2 dpp_diversity(c1, . . . ,ck) (4)

609

FAT* ’20, January 27–30, 2020, Barcelona, Spain Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan

where ci is a counterfactual example (CF), k is the total number
of CFs to be generated, f (.) is the ML model (a black box to end
users), yloss(.) is a metric that minimizes the distance between
f (.)’s prediction for ci s and the desired outcome y (usually 1 in
our experiments), d is the total number of input features, x is the
original input, and dpp_diversity(.) is the diversity metric. λ1 and
λ2 are hyperparameters that balance the three parts of the loss
function.
Implementation. We optimize the above loss function using gra-
dient descent. Ideally, we can achieve f (ci) = y for every counter-
factual, but this may not always be possible because the objective
is non-convex. We run a maximum of 5,000 steps, or until the loss
function converges and the generated counterfactual is valid (be-
longs to the desired class). We initialize all ci randomly.

3.3 Practical considerations
Important practical considerations need to be made for such coun-
terfactual algorithms to work in practice, since they involve multi-
ple tradeoffs in choosing the final set. Here we describe four such
considerations. While these considerations might seem trivial from
a technical perspective, we believe that they are important for sup-
porting user interaction with counterfactuals.
Choice of yloss. An intuitive choice of yloss may be ℓ1-loss
(|y − f (c)|) or ℓ2-loss. However, these loss functions penalize the
distance of f (c) from the desired y, whereas a valid counterfactual
only requires that f (c) be greater or lesser than f’s threshold (typi-
cally 0.5), not necessarily the closest to desired y (1 or 0). In fact,
optimizing for f (c) to be close to either 0 or 1 encourages large
changes to x towards the counterfactual class, which in turn make
the generated counterfactual less feasible for a user. Therefore, we
use a hinge-loss function that ensures zero penalty as long as f (c)
is above a fixed threshold above 0.5 when the desired class is 1
(and below a fixed threshold when the desired class is 0). Further, it
imposes a penalty proportional to difference between f (c) and 0.5
when the classifier is correct (but within the threshold), and a heav-
ier penalty when f (c) does not indicate the desired counterfactual
class. Specifically, the hinge-loss is:

hinдe_yloss =max(0, 1 − z ∗ loдit(f (c))),

where z is -1 when y = 0 and 1 when y = 1, and loдit(f (c)) is the
unscaled output from the ML model (e.g., final logits that enter a
softmax layer for making predictions in a neural network).
Choice of distance function. For continuous features, we define
dist as the mean of feature-wise ℓ1 distances between the CF exam-
ple and the original input. Since features can span different ranges,
we divide each feature-wise distance by the median absolute devi-
ation (MAD) of the feature’s values in the training set, following
Wachter et al. [39]. Deviation from the median provides a robust
measure of the variability of a feature’s values, and thus dividing by
the MAD allows us to capture the relative prevalence of observing
the feature at a particular value.

dist_cont(c,x) =
1

dcont

dcont∑
p=1

|cp − xp |

MADp
, (5)

where dcont is the number of continuous variables and MADp is
the median absolute deviation for the p-th continuous variable.

For categorical features, however, it is unclear how to define a
notion of distance. While there exist metrics based on the relative
frequency of different categorical levels for a feature in available
data [30], they may not correspond to the difficulty of changing a
particular feature. For instance, irrespective of the relative ratio of
different education levels (e.g., high school or bachelors), it is quite
hard to obtain a new educational degree, compared to changes in
other categorical features. We thus use a simpler metric that assigns
a distance of 1 if the CF example’s value for any categorical feature
differs from the original input, otherwise it assigns zero.

dist_cat(c,x) =
1

dcat

dcat∑
p=1

I (cp , xp), (6)

where dcat is the number of categorical variables.
Relative scale of features. In general, continuous features can
have a wide range of possible values, while typical encoding for
categorical features constrains them to a one-hot binary represen-
tation. Since the scale of a feature highly influences how much
it matters in our objective function, we believe that the ideal so-
lution is to provide interactive interfaces to allow users to input
their preferences across features. As a sensible default, however,
we transform all features to [0, 1]. Continuous features are simply
scaled between 0 and 1. For categorical features, we convert each
feature using one-hot encoding and consider it as a continuous
variable between 0 and 1. Also, to enforce the one-hot encoding in
the learned counterfactuals, we add a regularization term with high
penalty for each categorical feature to force its values for different
levels to sum to 1. At the end of the optimization, we pick the level
with maximum value for each categorical feature.
Enhancing Sparsity. While our loss function minimizes the dis-
tance between the input and the generated counterfactuals, an
ideal counterfactual needs to be sparse in the number of features it
changes. To encourage sparsity in a generated counterfactual, we
conduct a post-hoc operation where we restore the value of contin-
uous features back to their values in x greedily until the predicted
class f (c) changes. For this operation, we consider all continuous
features c j whose difference from x j is less than a chosen threshold.
Although an intuitive threshold is the median absolute distance
(MAD), the MAD can be fairly large for features with large vari-
ance. Therefore, for each feature, we choose the minimum of MAD
and the bottom 10% percentile of the absolute difference between
non-identical values from the median.
Hyperparameter choice. Since counterfactual generation is a
post-hoc step after training the ML model, it is not necessarily re-
quired that we use the same hyperparameter for every original input
[39]. However, since hyperparameters can influence the generated
counterfactuals, it seems problematic if users are given counter-
factuals generated by different hyperparameters.1 In this work,
therefore, we choose λ1 = 0.5 and λ2 = 1 based on a grid-search
with different values and evaluating the diversity and proximity of
generated CF examples.

1In general, whether the explanation algorithm should be uniform is a fundamental
issue for providing post-hoc explanations of algorithmic decisions and it likely depends
on the nature of such explanations.

610

Diverse Counterfactual Explanations FAT* ’20, January 27–30, 2020, Barcelona, Spain

4 EVALUATING COUNTERFACTUALS
Despite recent interest in counterfactual explanations [34, 39], the
evaluations are typically only done in a qualitative fashion. In this
section, we present metrics for evaluating the quality of a set of
counterfactual examples. As stated in Section 3, it is desirable that
a method produces diverse and proximal examples and that it can
generate valid counterfactual examples for all possible inputs. Ulti-
mately, however, the examples should help a user in understanding
the local decision boundary of the ML classifier. Thus, in addition
to diversity and proximity, we propose a metric that approximates
the notion of a user’s understanding. We do so by constructing a
secondary model based on the counterfactual examples that acts
as a proxy of a user’s understanding, and compare how well it can
mimic the ML classifier’s decision boundary.

Nevertheless, it is important to emphasize that CF examples are
eventually evaluated by end users. The goal of this work is to pro-
vide metrics that pave the way towards meaningful human subject
experiments, and we will offer further discussion in Section 7.

4.1 Validity, Proximity, and Diversity
First, we define quantitative metrics for validity, diversity, and
proximity for a counterfactual set that can be used to evaluate any
method for generating counterfactuals. We assume that a set C of
k counterfactual examples are generated for an original input.
Validity. Validity is simply the fraction of examples returned by a
method that are actually counterfactuals. That is, they correspond
to a different outcome than the original input. Here we consider
only unique examples because a method may generate multiple
examples that are identical to each other.

%Valid-CFs :
|{unique instances in C s.t. f (c) > 0.5}|

k

Proximity.We define distance-based proximity separately for con-
tinuous and categorical features. Using the definition ofdist metrics
from Equations 5 and 6, we define proximity as:

Continuous-Proximity : −
1
k

k∑
i=1

dist_cont(ci ,x), (7)

Categorical-Proximity : 1 −
1
k

k∑
i=1

dist_cat(ci ,x), (8)

That is, we define proximity as the mean of feature-wise distances
between the CF example and the original input. Proximity for a set
of examples is simply the average proximity over all the examples.
Note that the above metric for continuous proximity is slightly
different than the one used during CF generation. During CF gen-
eration, we transform continuous features to [0, 1] for reasons
discussed in Section 3.3, but we use the features in their original
scale during evaluation for better interpretability of the distances.
Sparsity. While proximity quantifies the average change between
a CF example and the original input, we also measure another
related property, sparsity, that captures the number of features that
are different. We define sparsity as the number of changes between
the original input and a generated counterfactual.

Sparsity : 1 −
1
kd

k∑
i=1

d∑
l=1

1
[c li,x

l
i]

(9)

where d is the number of input features. For clarity, we can also
define sparsity separately for continuous and categorical features
(where Categorical-Proximity is identical to Categorical-Sparsity).
Note that greater values of sparsity and proximity are desired.
Diversity. Diversity of CF examples can be evaluated in an analo-
gous way to proximity. Instead of feature-wise distance from the
original input, we measure feature-wise distances between each
pair of CF examples, thus providing a different metric for evalua-
tion than the loss formulation from Equation 2. Diversity for a set
of counterfactual examples is the mean of the distances between
each pair of examples. Similar to proximity, we compute separate
diversity metrics for categorical and continuous features.

Diversity :
1
C2
k

k−1∑
i=1

k∑
j=i+1

dist(ci ,c j),

where dist is either dist_cont or dist_cat.
In addition, we define an analagous sparsity-based diversity

metric that measures the fraction of features that are different
between any two pair of counterfactual examples.

Count-Diversity :
1

C2
kd

k−1∑
i=1

k∑
j=i+1

d∑
l=1

1
[c li,c

l
j]

It is important to note that the evaluation metrics used here are
intentionally different from Equation 4, so there is no guarantee that
our generated counterfactuals would do well on all these metrics,
especially on the sparsity metric which is not optimized explicitly
in CF generation. In addition, given the trade-off between diversity
and proximity, no method will be able to maximize both. Therefore,
evaluation of a counterfactual set will depend on the relative merits
of diversity versus proximity for a particular application domain.

4.2 Approximating the local decision boundary
The above properties are desirable, but ideally, we would like to
evaluate whether the examples help a user in understanding the
local decision boundary of the ML model. As a tool for explanation,
counterfactual examples help a user intuitively explore specific
points on the other side of the ML model’s decision boundary,
which then help the user to “guess” the workings of the model. To
construct a metric for the accuracy of such guesses, we approximate
a user’s guess with another machine learning model that is trained
on the generated counterfactual examples and the original input.
Given this secondary model, we can evaluate the effectiveness of
counterfactual examples by comparing how well the secondary
model can mimic the original ML model. Thus, considering the sec-
ondary model as a best-case scenario of how a user may rationally
extrapolate counterfactual examples, we obtain a proxy for how
well a user may guess the local decision boundary.

Specifically, given a set of counterfactual examples and the in-
put example, we train a 1-nearest neighbor (1-NN) classifier that
predicts the output class of any new input. Thus, an instance closer
to any of the CF examples will be classified as belonging to the
desired counterfactual outcome class, and instances closer to the
original input will be classified as the original outcome class. We
chose 1-NN for its simplicity and connections to people’s decision-
making in the presence of examples. We then evaluate the accuracy

611

FAT* ’20, January 27–30, 2020, Barcelona, Spain Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan

of this classifier against the original ML model on a dataset of sim-
ulated test data. To generate the test data, we consider samples of
increasing distance from the original input. Consistent with train-
ing, we scale distance for continuous features by dividing it by
the median absolute deviation (MAD) for each feature. Then, we
construct a hypersphere centered at the original input that has
dimensions equal to the number of continuous features. Within
this hypersphere, we sample feature values uniformly at random.
For categorical features, in the absence of a clear distance metric,
we uniformly sample across the range of possible levels.

In our experiments, we consider spheres with radiuses as multi-
ples of the MAD (r = {0.5, 1, 2}MAD). For each original input, we
sample 1000 points at random per sphere to evaluate how well the
secondary 1-NN model approximates the local decision boundary.
Note that this 1-NN classifier is trained from a handful of CF examples,
and we intentionally choose this simple classifier to approximate what
a person could have done given these CF examples.

4.3 Datasets
To evaluate our method, we consider the following four datasets.
Adult-Income. This dataset contains demographic, educational,
and other information based on 1994 Census database and is avail-
able on the UCI machine learning repository [20]. We preprocess
the data based on a previous analysis [44] and obtain 8 features,
namely, hours per week, education level, occupation, work class,
race, age, marital status, and sex. The ML model’s task is to classify
whether an individual’s income is over $50, 000.
LendingClub. This dataset contains five years (2007-2011) data
on loans given by LendingClub, an online peer-to-peer lending
company. We preprocess the data based on previous analyses [12,
17, 37] and obtain 8 features, namely, employment years, annual
income, number of open credit accounts, credit history, loan grade
as decided by LendingClub, home ownership, purpose, and the state
of residence in the United States. The ML model’s task is to decide
loan decisions based on a prediction of whether an individual will
pay back their loan.
German-Credit. This dataset contains information about individ-
uals who took a loan from a particular bank [2]. We use all the 20
features in the data, including several demographic attributes and
credit history, without any preprocessing. The ML model’s task
is to determine whether the person has a good or bad credit risk
based on their attributes.
COMPAS. This dataset was collected by ProPublica [4] as a part of
their analysis on recidivism decisions in the United States. We pre-
process the data based on previous work [14] and obtain 5 features,
namely, bail applicants’ age, gender, race, prior count of offenses,
and degree of criminal charge. The ML model’s task is to decide
bail based on predicting which of the bail applicants will recidivate
in the next two years.

These datasets contain different numbers of continuous and
categorical features as shown in Table 2. COMPAS dataset has a
single continuous feature, while Adult-Income, LendingClub and
German-Credit have 2, 4, and 5 continuous features respectively.
For all three datasets, we transform categorical features by using
one-hot-encoding, as described in Section 3. Continuous features
are scaled between 0 and 1. To obtain an ML model to explain,

Dataset Linear Non-linear Num cat Num cont
Adult-Income 0.82 0.82 6 2
LendingClub 0.67 0.66 4 4
German-Credit 0.73 0.77 15 5
COMPAS 0.67 0.67 4 1
Table 2: Model accuracy and feature information.

we divide each dataset into 80%-20% train and test sets, and use
cross-validation on the train set to optimize hyperparameters. To
facilitate comparisons with Russell [34], we use TensorFlow library
to train both a linear (logistic regression) classifier and a non-linear
neural network model with a single hidden layer. Table 2 shows
the test set accuracy on each dataset and the modelling details are
in Supplementary Materials.

4.4 Baselines
We employ the following baselines for generating CF examples.

• SingleCF: We follow Wachter et al. [39] and generate a single
CF example, optimizing for y-loss difference and proximity.

• MixedIntegerCF:We use themixed integer programmingmethod
proposed by Russell [34] for generating diverse counterfactual
examples. This method works only for a linear model.

• RandomInitCF: Here we extend SingleCF to generatek CF exam-
ples by initializing the optimizer independently with k random
starting points from [0, 1]d . Since the optimization loss function
is non-convex, one might obtain different CF examples.

• NoDiversityCF: This method utilizes our proposed loss function
that optimizes the set of k examples simultaneously (Equation 4),
but ignores the diversity term by setting λ2 = 0.

To these baselines, we compare our proposedmethod, DiverseCF,
that generates a set of counterfactual examples and optimizes for
both diversity and proximity. As with RandomInitCF, we initialize
the optimizer with random starting points. In addition, we con-
sider a variant DiverseCF-Sparse that performs post-hoc sparsity
enhancement on continuous features as described in Section 3.3.
Similarly, for RandomInitCF and NoDiversityCF, we include re-
sults both with and without the sparsity correction. For all methods,
we use the ADAM optimizer [19] implementation in TensorFlow
(learning rate=0.05) to minimize the loss and obtain CF examples.

In addition, we compare DiverseCF to one of the major feature-
based local explanation methods, LIME [32], on how well it can
approximate the decision boundary. We construct a 1-NN classifier
for each set of CF examples as described in Section 4.2. For LIME,
we use the prediction of the linear model for each input instance
as a local approximation of the ML model’s decision surface. Note
that our 1-NN classifiers are based on only k ≤ 10 counterfactuals,
while LIME’s linear classifiers are based on 5,000 samples.

5 EXPERIMENT RESULTS
In this section, we show that our approach generates a set of more
diverse counterfactuals than the baselines according to the proposed
evaluation metrics. We further present examples for a qualitative
overview and show that the generated counterfactuals can approx-
imate local decision boundaries as well as LIME, an explanation
method specifically designed for local approximation.

612

Diverse Counterfactual Explanations FAT* ’20, January 27–30, 2020, Barcelona, Spain

0

20

40

60

80

100
Ad

ul
t-I

nc
om

e

0.0

0.2

0.4

0.6

0.8

1.0

0
1
2
3
4
5
6

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

−5

−4

−3

−2

−1

0

0.0

0.2

0.4

0.6

0.8

1.0

0

20

40

60

80

100

Le
nd

in
gC

lu
b

0.0

0.2

0.4

0.6

0.8

1.0

0
1
2
3
4
5
6

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

−5

−4

−3

−2

−1

0

0.0

0.2

0.4

0.6

0.8

1.0

0

20

40

60

80

100

Ge
rm

an
-C

re
di

t

0.0

0.2

0.4

0.6

0.8

1.0

0
1
2
3
4
5
6

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

−5

−4

−3

−2

−1

0

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 6 8 100

20

40

60

80

100

CO
M

PA
S

#CFs

% Valid CFs

1 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

#CFs

Categorical-Diversity

1 2 4 6 8 100
1
2
3
4
5
6

#CFs

Continuous-Diversity

1 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

#CFs

Cont-Count-Diversity

1 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

#CFs

Categorical-Proximity

1 2 4 6 8 10−5

−4

−3

−2

−1

0

#CFs

Continuous-Proximity

1 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

#CFs

Continuous-Sparsity

DiverseCF
DiverseCF-Sparse

NoDiverseCF
NoDiverseCF-Sparse

RandomInitCF
RandomInitCF-Sparse

SingleCF

Figure 1: Comparisons of DiverseCF with baseline methods on %Valid CFs, diversity, proximity and sparsity (SingleCF only
shows up for k = 1). Ally-axes are defined so that higher values are better, while the x-axis represents the number of requested
counterfactuals. DiverseCF finds a greater number of valid unique counterfactuals for each k and tends to generate more
diverse counterfactuals than the baseline methods. For COMPAS dataset, none of the baselines could generate k > 6CF examples
for any original input, therefore we only show results for DiverseCF in COMPAS when k > 6.

5.1 Quantitative Evaluation
We first evaluate DiverseCF based on quantitative metrics of valid
CF generation, diversity, and proximity. As described in Section 3,
we report results with hyperparameters, λ1 = 0.5 and λ2 = 1
from Equation 4. Figure 1 shows the comparison with SingleCF,
RandomInitCF, and NoDiversityCF for explaining the non-linear
ML models, while Figure 2 compares with MixedIntegerCF for ex-
plaining the linear ML models. All results are based on 500 random
instances from the test set.

5.1.1 Explaining a non-linear ML model (Figure 1). Given that non-
linear ML models are common in real world applications, we focus
our discussion on explaining non-linear models.
Validity. Across all four datasets, we find that DiverseCF gener-
ates nearly 100% valid CF examples for all values of the requested
number of examples k . Baseline methods without an explicit diver-
sity objective can generate valid CF examples for k = 1, but their
percentage of unique valid CFs decreases as k increases. Among the
datasets, we find that it is easier to generate valid CF examples for
LendingClub (RandomInitCF also achieves ∼100% validity) while
COMPAS is the hardest, likely driven by the fact that it has only
one continuous feature—prior count of offenses. As an example, at
k = 10 for COMPAS, a majority of the CFs generated by the next best
method, RandomInitCF are either duplicate or invalid.

Diversity. Among the valid CFs, DiverseCF also generates more
diverse examples than the baseline methods for both continuous
and categorical features. For all datasets, Continuous-Diversity for
DiverseCF is the highest and increases as k increases, reaching
up to eleven times the baselines for the LendingClub dataset at
k = 10. Among categorical features, average number of different fea-
tures between CF examples is higher for all datasets than baseline
methods, especially for Adult-Income and LendingClub datasets
where Categorical-Diversity remains close to zero for baseline
methods. Remarkably, DiverseCF has the highest number of contin-
uous features changed too (Cont-Count-Diversity), even though
it was not explicitly optimized for this metric. The only excep-
tion is on COMPAS data where NoDiversityCF has a slightly higher
Cont-Count-Diversity for k <= 6, but is unable to generate any
valid CFs for higher k’s.
Proximity. To generate diverse CF examples, DiverseCF searches
a larger space than proximity-only methods such as RandomInitCF
or NoDiversityCF. As a result, DiverseCF returns examples with
lower proximity than other methods, indicating an inherent tradeoff
between diversity and proximity. However, for categorical features,
the difference in proximity compared to baselines is small, up to
∼30% of the baselines’ proximity. Higher proximity over continuous

613

FAT* ’20, January 27–30, 2020, Barcelona, Spain Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan

0

20

40

60

80

100

Ad
ul

t-I
nc

om
e

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

−5

−4

−3

−2

−1

0

0.0

0.2

0.4

0.6

0.8

1.0

0

20

40

60

80

100

Le
nd

in
gC

lu
b

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

−5

−4

−3

−2

−1

0

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 6 8 100

20

40

60

80

100

CO
M

PA
S

#CFs

% Valid CFs

1 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

#CFs

Categorical-Diversity

1 2 4 6 8 100

1

2

3

4

5

#CFs

Continuous-Diversity

1 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

#CFs

Cont-Count-Diversity

1 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

#CFs

Categorical-Proximity

1 2 4 6 8 10−5

−4

−3

−2

−1

0

#CFs

Continuous-Proximity

1 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

#CFs

Continuous-Sparsity

DiverseCF DiverseCF-Sparse MixedIntegerCF

Figure 2: Comparisons of DiverseCFwith MixedIntegerCF on %Valid CFs, diversity, proximity and sparsity on linearMLmodels.
For a fair comparison, we compute average metrics only over the original inputs where MixedIntegerCF returned the required
number of CF examples. Thus, we omit results when k > 4 for COMPAS since MixedIntegerCF could not find more than four
CFs for any original input. Results for German-Credit are in the Supplementary Materials.

features can be obtained by adding the post-hoc sparsity enhance-
ment (DiverseCF-Sparse), which results in higher sparsity than
DiverseCF for all datasets (but correspondingly lower count-based
diversity). Thus, this method can be used to fine-tune DiverseCF
towards more proximity if desired.

5.1.2 Explaining linear MLmodels (Figure 2). To compare our meth-
ods with MixedIntegerCF [34], we explain a linear ML model for
each dataset. Similar to the results on non-linearmodels, DiverseCF
outperforms MixedIntegerCF by finding 100% valid counterfactu-
als, and the gap with MixedIntegerCF increases as k increases. We
also find that DiverseCF has consistently higher diversity among
counterfactuals than MixedIntegerCF for all datasets. Importantly,
better diversity in the CFs from DiverseCF does not come at the
price of proximity. For Adult-Income and LendingClub datasets,
DiverseCF has better proximity and sparsity than MixedIntegerCF.

5.2 Qualitative evaluation
To understand more about the resultant explanations, we look
at sample CF examples generated by DiverseCF with sparsity in
Table 3. In the three datasets,2 the examples capture some intuitive
variables and vary them: Education in Adult-Income, Income in
LendingClub dataset, and PriorsCount in COMPAS. In addition, the
user also sees other features that can be varied for the desired
outcome. For example, in the COMPAS input instance, a person would
have been granted bail if they had been a Caucasian or charged
with Misdemeanor instead of Felony. These features do not really
lead to actionable insights because the subject cannot easily change
them, but nevertheless provide the user an accurate picture of
scenarios where they would have been out on bail (and also raise
2We skip German-Credit for space reasons.

questions about potential racial bias in the ML model itself). In
practice, we expect that a domain expert or the user may provide
unmodifiable features which DiverseCF can treat as constants in
the counterfactual generation process.

Similarly, in the Adult-Income dataset, the set of counterfactu-
als show that studying for an advanced degree can lead to a higher
income, but also shows less obvious counterfactuals such as getting
married for a higher income (in addition to finishing professional
school and increasing hours worked per week). These counterfac-
tuals are likely generated due to underlying correlations in the
dataset (married people having higher income). To counter such
correlational outcomes and preserve known causal relationships,
we present a post-hoc filtering method in Section 6.

These qualitative examples also confirm our observation regard-
ing sparsity and the choice of the yloss function. Continuous vari-
ables in counterfactual examples (e.g., income in LendingClub)
never change to their maximum extreme values thanks to the hinge
loss, which was an issue using other yloss metrics such as ℓ1 loss.
Furthermore, it does not require changing a large number of fea-
tures to achieve the desired outcome. However, based on the domain
and use case, a user may prioritize changing certain variables or
desire more sparse or more diverse CF examples. As we described
in Section 3.3, these variations can be achieved by appropriately
tuning weights on features and the learning rate for optimization.

Overall, these initial set of CF examples help understand the
important variations as learned by the algorithm. We expect the
user to engage their actionability constraints with this initial set to
iteratively generate focused CF examples, that can help find useful
variations. In addition, these examples can also expose biases or
odd edge-cases in the ML model, which can be useful for model
builders in debugging, or for fairness evaluators in discovering bias.

614

Diverse Counterfactual Explanations FAT* ’20, January 27–30, 2020, Barcelona, Spain

Adult HrsWk Education Occupation WorkClass Race AgeYrs MaritalStat Sex
Original input
(outcome: <=50K) 45.0 HS-grad Service Private White 22.0 Single Female

— Masters — — — 65.0 Married Male
Counterfactuals — Doctorate — Self-Employed — 34.0 — —
(outcome: >50K) 33.0 — White-Collar — — 47.0 Married —

57.0 Prof-school — — — — Married —

LendingClub EmpYrs Inc$ #Ac CrYrs LoanGrade HomeOwner Purpose State
Original input
(outcome: Default) 7.0 69996.0 4.0 26.0 D Mortgage Debt NY

— 61477.0 — — B — Purchase —
Counterfactuals 10.0 83280.0 1.0 23.0 A — — TX
(outcome: Paid) 10.0 69798.0 — 40.0 A — — —

10.0 130572.0 — — A Rent — —

COMPAS PriorsCount CrimeDegree Race Age Sex
Original input
(outcome: Will Recidivate) 10.0 Felony African-American >45 Female

— — Caucasian — —
Counterfactuals 0.0 — — — Male
(outcome: Won’t Recidivate) 0.0 — Hispanic — —

9.0 Misdemeanor — — —

Table 3: Examples of generated counterfactuals in Adult-Income, LendingClub and COMPAS datasets.

0.0

0.2

0.4

0.6

0.8

1.0

Ad
ul

t-I
nc

om
e

0.0

0.2

0.4

0.6

0.8

1.0

Le
nd

in
gC

lu
b

0.0

0.2

0.4

0.6

0.8

1.0

Ge
rm

an
-C

re
di

t

1 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

CO
M

PA
S

#CFs

0.5 MAD

1 2 4 6 8 10
#CFs

1 MAD

1 2 4 6 8 10
#CFs

2 MAD

DiverseCF: CF_class
NoDiverseCF: CF_class

RandomInitCF: CF_class
LIME: CF_class

(a) F1 score of the counterfactual class.

0.0

0.2

0.4

0.6

0.8

1.0
Ad

ul
t-I

nc
om

e

0.0

0.2

0.4

0.6

0.8

1.0

Le
nd

in
gC

lu
b

0.0

0.2

0.4

0.6

0.8

1.0

Ge
rm

an
-C

re
di

t

1 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

CO
M

PA
S

#CFs

0.5 MAD

DiverseCF: CF_class
NoDiverseCF: CF_class

RandomInitCF: CF_class
LIME: CF_class

(b) Precision.

0.0

0.2

0.4

0.6

0.8

1.0

Ad
ul

t-I
nc

om
e

0.0

0.2

0.4

0.6

0.8

1.0

Le
nd

in
gC

lu
b

0.0

0.2

0.4

0.6

0.8

1.0

Ge
rm

an
-C

re
di

t

1 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

CO
M

PA
S

#CFs

0.5 MAD

DiverseCF: CF_class
NoDiverseCF: CF_class

RandomInitCF: CF_class
LIME: CF_class

(c) Recall.
Figure 3: Performance of 1-NN classifiers learned fromcounterfactuals at different distances from the original input. DiverseCF
outperforms LIME and baseline CFmethods in F1 score on correctly predicting the counterfactual class, except in LendingClub
dataset. For Adult-Income and COMPAS datasets, both precision and recall is higher for DiverseCF compared to LIME.

5.3 Approximating local decision boundary
As a proxy for understanding how well users can guess the local
decision boundary of the ML model (see Section 4.2), we compare
classifiers based on the proposed DiverseCFmethod, baseline meth-
ods, and LIME. We use precision, recall, and F1 for the counterfactual
outcome class (Figure 3) as our main evaluation metrics because
of the class imbalance in data points near the original input. To

evaluate the sensitivity of these metrics to varying distance from
the original input, we show these metrics for points sampled within
varying distance thresholds.

Even with a handful (2-11) of training examples (generated coun-
terfactuals and the original input), we find that 1-NN classifiers
trained on the output of DiverseCF obtain higher F1 score than
the LIME classifier in most configurations. For instance, on the

615

FAT* ’20, January 27–30, 2020, Barcelona, Spain Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan

1 2 4 6 8 10
#CFs

0

20

40

60

80

100

%
 C

Fs
 F

ou
nd

All Education Levels

1 2 4 6 8 10
#CFs

Education={Masters, Prof-school, Doctorate}

Any Change in Education
Decrease in Education (infeasible)

Increase in Education (feasible)
Increase in Education (infeasible)

Figure 4: Post-hoc filtering of CF examples based on causal
constraints. The left figure shows that there are nearly 80%
CFs that include any change in education, out ofwhichmore
than one-third are infeasible. If we filter to only people with
higher degrees, almost half of the changes in educational
degrees are infeasible.

Adult-Income dataset, at k = 4 and 0.5MAD threshold, DiverseCF
obtains F1 = 0.44 while LIME obtains F1 = 0.19. This result stays
consistent as we increase k or the distance from the original input.
One exception is LendingClub at 0.5 MAD and k = 10 where
the F1 score for DiverseCF drops below LIME. Figures 3b and
3c indicate that this drop is due to low recall for DiverseCF at
this configuration. Still, precision remains substantially higher for
DiverseCF (0.61) compared to 0.19 for LIME. This observation is
likely because LIME predicts a majority of the instances as the CF
class for this dataset, whereas DiverseCF has fewer false positives.
On Adult-Income and COMPAS datasets, DiverseCF achieves both
higher precision and recall than LIME.

As for the difference between different methods of generat-
ing counterfactuals, DiverseCF tend to perform similarly with
NoDiversityCF and RandomInitCF in terms of F1, except in LendingClub.
An advantage of DiverseCF is that it can handle high values of k
for which NoDiversityCF and RandomInitCF cannot find k unique
and valid counterfactuals. Another intriguing observation is that
the performance improves and saturates very quickly as the number
of counterfactuals (k) increases, which suggests that two counter-
factuals may be sufficient for a 1-NN classifier to get a reasonable
idea of the data distribution around x in these four datasets. This
observation may also be why DiverseCF provides similar F1 score
compared to baselines, and merits further study on more complex
datasets.

Overall, these results show that examples from DiverseCF can
approximate the local decision boundary at least as well as local
explanation methods like LIME. Still, the gold-standard test will be
to conduct a behavioral study where people evaluate whether CF
examples provide better explanation than past approaches, which
we leave for future work.

6 CAUSAL FEASIBILITY OF CF EXAMPLES
So far, we have generated CF examples by varying each feature
independently. However, this can lead to infeasible examples, since
many features are causally associated with each other. For example,
in the loan application, it can be almost impossible for a person to

obtain a higher educational degree without spending time (aging).
Consequently, while being valid, diverse and proximal, such a CF
example is not feasible and thus not actionable by the person. In
this context, we argue that incorporating causal models of data
generation is important to prevent infeasible counterfactuals.

Here we present a simple way of incorporating causal knowledge
in our proposed method. Users can provide their domain knowledge
in the form of pairs of features and the direction of the causal edge
between them [31]. Using this, we construct constraints that any
counterfactual should follow. For instance, any counterfactual that
changes the cause without changing its outcome is infeasible. Given
these constraints, we apply a filtering step after CF examples are
generated, to increase the feasibility of the output CF set.

As an example, we consider two infeasible changes based on the
causal relationship between educational level and age, Education ↑

⇒ Age ↑, and on the practical constraint that educational level of a
person cannot be decreased, Education✁✁↓. As Figure 4 shows, over
one-third of the obtained counterfactuals that include a change in
education level are infeasible and need to be filtered: most of them
suggest an individual to obtain a higher degree but do not increase
their age. In fact, this fraction increases as we look at CF examples
for highly educated people (Masters, Doctorate and Professional): as
high as 50% of all CFs suggest to switch to a lower education degree.
Though post-hoc filtering can ensure feasibility of the resultant
CF examples, it is more efficient to incorporate causal constraints
during CF generation. We leave this for future work.

7 CONCLUDING DISCUSSION
Building upon prior work on counterfactual explanations [34, 39],
we proposed a framework for generating and evaluating a diverse
and feasible set of counterfactual explanations. We demonstrated
the benefits of our method compared to past approaches on be-
ing able to generate a high number of unique, valid, and diverse
counterfactuals for a given input for any machine learning model.

Here we note directions for future work. First, our method as-
sumes knowledge of the gradient of the ML model. It is useful to
construct methods that can work for fully black-box ML models.
Second, we would like to incorporate causal knowledge during the
generation of CF examples, rather than as a post-hoc filtering step.
Third, as we saw in §5.2, it is important to understand people’s pref-
erences with respect to what additional constraints to add to our
framework. Providing an intuitive interface to select scales of fea-
tures and add constraints, and conducting behavioral experiments
to support interactive explorations can greatly enhance the value of
CF explanation. It will also be interesting to study the tradeoff be-
tween diversity and the cognitive cost of making a choice (“choice
overload” [8, 36]), as the number of CF explanations is increased.
Finally, while we focused on the utility for an end-user who is the
subject of a ML-based decision, we argue that CF explanations can
be useful for different stakeholders in the decision making pro-
cess [38], including model designers, decision-makers such as a
judge or a doctor, and decision evaluators such as auditors.

Acknowledgments. We thank Brian Lubars for his insightful com-
ments and Chris Russel for providing assistance in running the
diverse CF generation on linear models. This work was supported
in part by NSF grant IIS-1927322.

616

Diverse Counterfactual Explanations FAT* ’20, January 27–30, 2020, Barcelona, Spain

REFERENCES
[1] [n.d.]. Lending Club Statistics. https://www.lendingclub.com/info/download-

data.action.
[2] Accessed 2019. German credit dataset . https://archive.ics.uci.edu/ml/support/

statlog+(german+credit+data).
[3] Monica Andini, Emanuele Ciani, Guido de Blasio, Alessio D’Ignazio, and Vi-

ola Salvestrini. 2017. Targeting policy-compliers with machine learning: an
application to a tax rebate programme in Italy. (2017).

[4] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. “Machine
bias: There’s software used across the country to predict future criminals. And
it’s biased against blacks”. https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing.

[5] Susan Athey. 2017. Beyond prediction: Using big data for policy problems. Science
355, 6324 (2017), 483–485.

[6] Sarah R Beck, Kevin J Riggs, and Sarah L Gorniak. 2009. Relating developments in
childrenś counterfactual thinking and executive functions. Thinking & reasoning.

[7] Daphna Buchsbaum, Sophie Bridgers, Deena Skolnick Weisberg, and Alison
Gopnik. 2012. The power of possibility: Causal learning, counterfactual reasoning,
and pretend play. Philosophical Trans. of the Royal Soc. B: Biological Sciences (2012).

[8] M Kate Bundorf and Helena Szrek. 2010. Choice set size and decision making:
the case of Medicare Part D prescription drug plans. Medical Decision Making 30,
5 (2010), 582–593.

[9] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie
Elhadad. 2015. Intelligible models for healthcare: Predicting pneumonia risk and
hospital 30-day readmission. In Proceedings of KDD.

[10] Mark Craven and Jude W Shavlik. 1996. Extracting tree-structured representa-
tions of trained networks. In Advances in neural information processing systems.

[11] Wuyang Dai, Theodora S Brisimi, William G Adams, Theofanie Mela, Venkatesh
Saligrama, and Ioannis Ch Paschalidis. 2015. Prediction of hospitalization due to
heart diseases by supervised learning methods. International journal of medical
informatics 84, 3 (2015), 189–197.

[12] Kevin Davenport. 2015. Lending Club Data Analysis Revisited with Python.
http://kldavenport.com/lending-club-data-analysis-revisted-with-python/.

[13] Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of inter-
pretable machine learning. arXiv preprint arXiv:1702.08608 (2017).

[14] Julia Dressel and Hany Farid. 2018. The accuracy, fairness, and limits of predicting
recidivism. Science advances 4, 1 (2018), eaao5580.

[15] Michael D Ekstrand, F Maxwell Harper, Martijn C Willemsen, and Joseph A
Konstan. 2014. User perception of differences in recommender algorithms. In
Proceedings of the 8th ACM Conference on Recommender systems. ACM, 161–168.

[16] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco
Turini, and Fosca Giannotti. 2018. Local rule-based explanations of black box
decision systems. arXiv preprint arXiv:1805.10820 (2018).

[17] JFdarre. 2015. Project 1: Lending Club’s data. https://rpubs.com/jfdarre/119147.
[18] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples are not

enough, learn to criticize! criticism for interpretability. In Proceedings of NIPS.
[19] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-

mization. In Proceedings of ICLR.
[20] Ronny Kohavi and Barry Becker. 1996. UCI Machine Learning Repository. https:

//archive.ics.uci.edu/ml/datasets/adult
[21] Alex Kulesza, Ben Taskar, et al. 2012. Determinantal point processes for machine

learning. Foundations and Trends® in Machine Learning 5, 2–3 (2012), 123–286.
[22] Matevž Kunaver and Tomaž Požrl. 2017. Diversity in recommender systems–A

survey. Knowledge-Based Systems 123 (2017), 154–162.
[23] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfac-

tual fairness. In Advances in Neural Information Processing Systems. 4066–4076.
[24] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. 2016. Interpretable

decision sets: A joint framework for description and prediction. In Proc. KDD.
[25] Zachary C Lipton. 2016. The mythos of model interpretability. arXiv preprint

arXiv:1606.03490 (2016).
[26] Yin Lou, Rich Caruana, and Johannes Gehrke. 2012. Intelligible models for

classification and regression. In Proceedings of KDD.
[27] Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. 2013. Accurate

intelligible models with pairwise interactions. In Proceedings of KDD.
[28] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model

predictions. In Proceedings of NIPS.
[29] Aravindh Mahendran and Andrea Vedaldi. 2015. Understanding deep image

representations by inverting them. In Proceedings of CVPR.
[30] PAIR. 2018. What-If Tool. https://pair-code.github.io/what-if-tool/.
[31] Judea Pearl. 2009. Causality. Cambridge university press.
[32] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i

trust you?: Explaining the predictions of any classifier. In Proceedings of KDD.
[33] Jonah E Rockoff, Brian A Jacob, Thomas J Kane, and Douglas O Staiger. 2011.

Can you recognize an effective teacher when you recruit one? Education finance
and Policy 6, 1 (2011), 43–74.

[34] Chris Russell. 2019. Efficient Search for Diverse Coherent Explanations. In
Proceedings of FAT*.

[35] Mark Sanderson, Jiayu Tang, Thomas Arni, and Paul Clough. 2009. What else is
there? search diversity examined. In European Conference on Information Retrieval.
Springer, 562–569.

[36] Benjamin Scheibehenne, Rainer Greifeneder, and Peter M Todd. 2010. Can there
ever be too many options? A meta-analytic review of choice overload. Journal of
consumer research 37, 3 (2010), 409–425.

[37] S Tan, R Caruana, G Hooker, and Y Lou. 2017. Distill-and-compare: Auditing
black-box models using transparent model distillation. (2017).

[38] Richard Tomsett, Dave Braines, Dan Harborne, Alun Preece, and Supriyo
Chakraborty. 2018. Interpretable to Whom? A Role-based Model for Analyzing
Interpretable Machine Learning Systems. arXiv preprint arXiv:1806.07552 (2018).

[39] Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual
explanations without opening the black box: Automated decisions and the GDPR.

[40] Austin Waters and Risto Miikkulainen. 2014. Grade: Machine learning support
for graduate admissions. AI Magazine 35, 1 (2014), 64.

[41] Deena S Weisberg and Alison Gopnik. 2013. Pretense, counterfactuals, and
Bayesian causal models: Why what is not real really matters. Cognitive Science
(2013).

[42] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In Proceedings of ECCV.

[43] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. 2018. Interpretable
basis decomposition for visual explanation. In Proceedings of ECCV.

[44] Haojun Zhu. 2016. Predicting Earning Potential using the Adult Dataset. https:
//rpubs.com/H_Zhu/235617.

[45] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005.
Improving recommendation lists through topic diversification. In Proceedings of
the 14th international conference on World Wide Web. ACM, 22–32.

617

https://www.lendingclub.com/info/download-data.action
https://www.lendingclub.com/info/download-data.action
https://archive.ics.uci.edu/ml/support/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/support/statlog+(german+credit+data)
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://kldavenport.com/lending-club-data-analysis-revisted-with-python/
https://rpubs.com/jfdarre/119147
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://pair-code.github.io/what-if-tool/
https://rpubs.com/H_Zhu/235617
https://rpubs.com/H_Zhu/235617

	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Explanation through Feature Importance
	2.2 Explanation through Visualization
	2.3 Explanation through Examples

	3 Counterfactual Generation Engine
	3.1 Diversity and Feasibility Constraints
	3.2 Optimization
	3.3 Practical considerations

	4 Evaluating counterfactuals
	4.1 Validity, Proximity, and Diversity
	4.2 Approximating the local decision boundary
	4.3 Datasets
	4.4 Baselines

	5 Experiment Results
	5.1 Quantitative Evaluation
	5.2 Qualitative evaluation
	5.3 Approximating local decision boundary

	6 Causal feasibility of CF Examples
	7 Concluding Discussion
	References

