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A SENSITIVITY TO MISSPECIFICATIONS
We theoretically estimate the impact of misspecifications on the

severity of externalities. For that, we use influence functions from

the toolkit of robust statistics [1].

We assume that the utility functionsU , B, and B̂ are strictly con-

cave and twice-differentiable; and we strengthen the ideal property

of the fair-by-design provider. Besides picking the Pareto-optimal

solution that maximizes their model of social utility, we now assume

the near-optimality of the social-utility objective for this solution:

∇B̂(θ∗) ≈ 0. That is, the system θ∗ is close to the ideal solution for

the social-utility objective B̂(θ ) [2].
Consider a partially corrected optimization objective:

max

θ ∈Θ
{U (θ ), B̂(θ ) − εB̂(θ ) + εB(θ )},

where we move a pointmass ε away from the provider’s model of

the social utility to its “god’s view” value. Let us take its a Pareto-

optimal solution θ∗ε that has highest benefit. We define the influence
function of ∆B as follows:

IFε ≜
d

dε
[B(θ∗ε ) − B(θ∗)] .

This models how fast the magnitude of the externality grows as

more weight is given to the corrected B in the optimization problem.

Let us restate a known property of Pareto-optimal solutions due

to Kuhn and Tucker [3]:

Theorem A.1 ([3]). Let θ∗ be a Pareto-optimal solution to the
optimization problem of the form:

max

θ ∈Θ
{U (θ ),B(θ )}

Then there exists λ ∈ [0, 1], such that the following holds:

λ∇U (θ∗) + (1 − λ)∇B(θ∗) = 0

Let us denote by Hf (x) the Hessian matrix of f at x , and for

convenience set Hθ,λ := λHU (θ ) + (1 − λ)HB̂(θ ). Additionally,
denote by ∆θ := θ∗ε −θ

∗
the difference in system parameters coming

from the corrected and the original optimization problems. We can

now present our estimate for the influence function.

Statement A.1. Using linearization techniques, we can obtain the
following approximation for the influence function for some λ ∈ [0, 1]:

IFε ≈ −∇B(θ∗)⊺[Hθ ∗,λ]
−1∇B(θ∗)

Derivation. Using Theorem A.1, we can say there exists λ ∈ [0, 1]

such that:

λ∇U (θ∗ε ) + (1 − λ)
(
∇B̂(θ∗ε ) − ε∇B̂(θ∗ε ) + ε∇B(θ

∗
ε )
)
= 0 (A.1)

We now rewrite Eq. A.1 in terms of the original system parame-

ters θ∗ using a first-order Taylor approximation:

0 = λ∇U (θ∗) + (1 − λ)
(
∇B̂(θ∗) − ε∇B̂(θ∗) + ε∇B(θ∗)

)
+
[
λHU (θ∗) + (1 − λ)

(
HB̂(θ∗) − εHB̂(θ∗) + εHB(θ∗)

)]
· ∆θ

We can rearrange and further approximate following Koh and

Liang [4], keeping in mind that ε is small:

∆θ ≈ −ε[Hθ ∗,λ]
−1∇[B(θ∗) − B̂(θ∗)]

≈ −ε[Hθ ∗,λ]
−1∇B(θ∗)

We now approximate the influence function using its first-order

Taylor expansion and the obtained expression for ∆θ :

IFε =
d

dε
[B(θ∗ε ) − B(θ∗)] ≈

d

dε

[
B(θ∗) + ∇B(θ∗) · ∆θ

]
= ∇B(θ∗) ·

d

dε
∆θ

= −∇B(θ∗)⊺[Hθ ∗,λ]
−1∇B(θ∗)

□

Statement A.2. Given the assumptions onU ,B, B̂ and θ∗, our lin-
ear approximation for the influence function of ∆B is asymptotically
lower bounded as follows:

IFε = Ω(∥ ∇B(θ∗) ∥2)

Proof. AsHθ ∗,λ is negative-definite by the concavity assump-

tion and the fact that convex combinations preserve concavity, so

is its inverse. Hence, −[Hθ ∗,λ]
−1

is positive-definite. By a lower

bound of a symmetric positive-definite quadratic form we have:

d

dε
∆B ≈ ∇B(θ∗)⊺[HJ (θ∗)]−1∇B(θ∗)

= Ω(∥ ∇B(θ∗) ∥2)

□

For concave functions, ∥ ∇B(θ∗) ∥ can serve as a measure of

error of the solution θ∗ [5], which confirms our intuition.
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B DETAILS FOR THE TRAFFIC THWARTING
CASE STUDY

B.1 MILP Formulation
With a simple reparameterization, it is possible to formulate the

optimization problem as follows:

min

µ(·)∈{0,1}

∑
(x,y)∈E

c(x ,y) · µ(x ,y)

s.t.

∑
(x,y)∈e

[t(x ,y) + µ(x ,y) · ∆t(x ,y)] ≥ t∗

for any path e from a to b,

(B.1)

In this form, the optimization problem is the shortest-path inter-

diction problem [6, 7], and can be solved as an MILP [8, 9]:

min

µ(·)∈{0,1}

∑
(x,y)∈E

c(x ,y) · µ(x ,y)

s.t. π (t) − π (s) ≥ t∗

π (y) − π (x) ≤ t(x ,y) + µ(x ,y) · ∆t(x ,y) ∀(x ,y) ∈ E
π (v) ∈ R ∀v ∈ V,

(B.2)

where π (v) are additional vertex-potential variables that represent
the smallest time cost for getting from a to v in graph G′

.

Assume that each edge (x ,y) is associated with a length defined

by s(x ,y), and a speed limit v(x ,y). In the case of changing the

speed limits through ∆v , ∆t(x ,y) can be obtained from s , v and ∆v
as follows:

∆t(x ,y) =
s(x ,y) · ∆v(x ,y)

v(x ,y)2 −v(x ,y) · ∆v(x ,y)
(B.3)

B.2 Evaluation Details for Fremont, California
The graph for Fremont, CA, USA, is much larger than for the other

towns considered in our evaluation, with a total of 9,215 nodes

and 19,313 edges. The normal time from a to b in the town is 8.5

minutes. Figure 1 shows the optimal set of roads to lower the speed

limit on for t∗ = 15.25, using a 75% decrease in time for the allowed

road changes.

C DETAILS FOR THE LOAN APPROVAL CASE
STUDY

We detail the heuristic algorithm we use to solve the optimization

problem of the POT in Algorithm 1. To compute the scores, we

retrain a classifier for each example (x ,y) ∈ Xpool. In our case of

the logistic regression as the bank’s model, retraining is inexpen-

sive. For more complex models, approximation techniques can be

used [10].
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Figure 1: Solution for Fremont, California (in black)
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