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ABSTRACT
The long-term impact of algorithmic decision making is shaped
by the dynamics between the deployed decision rule and individu-
als’ response. Focusing on settings where each individual desires
a positive classi�cation—including many important applications
such as hiring and school admissions, we study a dynamic learning
setting where individuals invest in a positive outcome based on
their group’s expected gain and the decision rule is updated to max-
imize institutional bene�t. By characterizing the equilibria of these
dynamics, we show that natural challenges to desirable long-term
outcomes arise due to heterogeneity across groups and the lack of
realizability. We consider two interventions, decoupling the deci-
sion rule by group and subsidizing the cost of investment. We show
that decoupling achieves optimal outcomes in the realizable case
but has discrepant e�ects that may depend on the initial conditions
otherwise. In contrast, subsidizing the cost of investment is shown
to create better equilibria for the disadvantaged group even in the
absence of realizability.
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1 INTRODUCTION
Automated decision-making systems that rely on machine learning
are increasingly used for high-stakes applications, yet their long-
term consequences have been controversial and poorly understood.
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On one hand, deployed decision making models are updated peri-
odically to assure high performance on the target distribution. On
the other hand, deployed models can reshape the underlying popu-
lations thus biasing how the model is updated in the future. This
complex interplay between algorithmic decisions, individual-level
responses, and exogeneous societal forces can lead to pernicious
long term e�ects that reinforce or even exacerbate existing social
injustices [13, 44]. Harmful feedback loops have been observed in
automated decision making in several contexts including recom-
mendation systems [7, 11, 38], predictive policing [18], admission
decisions [5, 35], and credit markets [1, 20]. These examples under-
score the need to better understand the dynamics of algorithmic
decision making, in order to align decisions made about people
with desirable long-term societal outcomes.

Automated decision-making algorithms rely on observable fea-
tures to predict some variable of interest. In a setting such as hiring,
decision making models assess features such as scores on standard-
ized tests, resume, and recommendation letters, to identify individ-
uals that are quali�ed for the job. However, equally quali�ed people
from di�erent demographic groups tend to have di�erent features,
due to implicit societal biases (e.g., letter writers describe compe-
tent men and women di�erently), gaps in resources (e.g., a�uent
students can a�ord di�erent extra-curriculars) and even distinct
tendencies in self-description (e.g., gender can be inferred from
biographies [16]). Therefore, a model’s ability to identify quali�ed
individuals can widely vary across di�erent groups.

The deployed model’s ability to identify quali�ed members of a
group a�ects an individual’s incentive to invest in their quali�cation.
This is because one’s decision to acquire quali�cation—not observed
directly by the algorithm—comes at a cost. Moreover, individuals
that are identi�ed by the model as quali�ed (whether or not they
are truly quali�ed) receive a reward. Consequently, people invest
in acquiring quali�cations only when their expected reward from
the assessment model beats the investment cost.

Rational individuals are aware that upon investing they would
develop features that are similar to those of quali�ed individuals
in their group, so they gauge their own expected reward from in-
vesting by the observed rewards of their group.1 If quali�ed people
from one group are not duly identi�ed and rewarded, fewer people
from that group are incentivized to invest in quali�cations in the
future. This reduces the overall fraction of quali�ed people in that
group, or the quali�cation rate. As the assessment model is updated
to maximize overall institutional pro�t on the new population dis-
tribution, it may perform even more poorly on quali�ed individuals

1Strong group identi�cation e�ects can also be seen in empirical studies [24].
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from a group with relatively low quali�cation rate, further reducing
the group’s incentive to invest.

To understand and mitigate the challenges to long-term welfare
and fairness posed by such dynamics, we propose a formal model
of sequential learning and decision-making where at each round
a new batch of individuals rationally decide whether to invest in
acquiring quali�cation and the institution updates its assessment
rule (a classi�er) for assessing and thus rewarding individuals. We
study the long-term behavior of these dynamics by characterizing
their equilibria and comparing these equilibria based on several
metrics of social desirability. Our model can be seen as an extension
of Coate and Loury [10]’s widely cited work to explicitly address
heterogeneity in observed features across groups. While Coate
and Loury [10]’s model focuses on a single-dimensional feature
space, i.e., scores, and assessment rules that act as thresholds on
the score, our model considers general, possibly high-dimensional,
feature spaces and arbitrary assessment rules, which are typical in
high-stakes domains such as hiring and admissions.

We �nd that twomajor obstacles to obtaining desirable long-term
outcomes are heterogeneity across groups and lack of realizability
within a group. Realizability—the existence of a (near) perfect way
to assess quali�cations of individuals from visible features—leads
to equilibria that are (near) optimal on several metrics, such as
the resulting quali�cation rates, their uniformity across groups,
and the institution’s utility. We study (near) realizability and the
lack thereof in Sections 3 and 5 respectively. Heterogeneity across
groups, i.e., lack of a single assessment rule that perfectly assesses
individuals from all groups, necessitates tradeo�s in the quality of
equilibria across di�erent groups. We study heterogeneity, as well
as interventions for mitigating its negative e�ects, in Section 4. In
Section 6, we empirically study a more challenging setting where
the groups are heterogeneous as well as highly non-realizable, via
simulations with a FICO credit score dataset [42] that has been
widely used for illustration in the algorithmic fairness literature.

Interventions. To mitigate the aforementioned tradeo�s, we con-
sider two common interventions: decoupling the decision policy by
group and subsidizing the cost of investment, especially when the
cost distribution inherently di�ers by group. Our model of dynam-
ics sheds a di�erent light on these interventions, complementary to
previous work. We show that decoupling [17]—using group-speci�c
assessment rules—achieves optimal outcomes when the problem
is realizable within each group, but can signi�cantly hurt certain
groups when the problem is non-realizable and there exist multiple
equilibria after decoupling. In particular, decoupling can hurt a
group with low initial quali�cation rate if the utility-maximizing
assessment rule for a single group is more disincentivizing to indi-
viduals than a joint assessment rule, thereby reinforcing the status
quo and preventing the group from reaching an equilibrium with
higher quali�cation rate.

We also study subsidizing individuals’ investment cost (e.g. sub-
sidizing tuition for a top high school), especially when the cost
distribution is varied across di�erent groups. We �nd that these
subsidies increase the quali�cation rate of the disadvantaged group
at equilibrium, regardless of realizability. We note that our sub-
sidies, which a�ect the quali�cation of individuals directly, are
di�erent than those studied under strategic manipulation [26] that
involve subsidizing individual’s cost to manipulate their features

Y

X

�
A

Figure 1: Causal graph for the individual investment model.
The individual intervenes on the node for quali�cation, Y—
this corresponds to do(Y = �))—which then a�ects the distri-
bution of their features X , depending on the group A.

without changing the underlying quali�cation (e.g. subsidizing SAT
exam preparation without changing the student’s quali�cation for
college) and could have adverse e�ects on disadvantaged groups.
Instead, our theoretical �ndings resonates with extensive empirical
work in economics on the e�ectiveness of subsidizing opportunities
for a disadvantaged group to directly improve their outcomes, such
as moving to better neighborhoods to access better educational and
environmental resources [8].

Related work. Our work is related to a rich body of work on
algorithmic fairness in dynamic settings [23, 25, 33, 37, 45], strate-
gic classi�cation [26, 31, 36], as well as statistical discrimination
in economics [2, 3, 10]. We present a detailed discussion of the
similarities and di�erences in Section 7.

2 A DYNAMIC MODEL OF ALGORITHMIC
DECISION MAKING

In this section we introduce a model of automated decision making
with feedback. We �rst introduce the notation used throughout
the paper and then describe the details of the interactions between
individuals and an institution, and the resulting dynamical system.

2.1 Notation
We consider an instance spaceX, whereX 2 X denotes the features
of an individual that are observable by the institution. We also
consider a label space Y = {0, 1} where Y = 1 indicates that an
individual has the quali�cations desired by the institution andY = 0
otherwise. We denote the set of all protected/group attributes by
A where A 2 A denotes an individual’s protected attribute. We
denote the group proportions by na B P(A = a) for all a 2 A.
Furthermore, we denote the quali�cation rate in group a 2 A by
�a B P(Y = 1 | A = a). An individual from group A = a who
has acquired label Y = � (to become quali�ed or not)2 receives
features X distributed according to P(X = x | Y = �,A = a). This
is illustrated in Figure 1.

We also consider a set of parameters� that are used for assessing
quali�cations. We use Ŷ� 2 Y parameterized by � 2 � to denote
the assessed quali�cation of an individual. We assume that Ŷ� only
depends on the features X , which may or may not contain A or its
proxies. In later sections, we will also discuss interventions that
allow us to use Ŷ� that explicitly depends on group membership A.
We respectively de�ne the true positive rate and false positive rate

2This can be seen as the individual performing a do-intervention on Y [see e.g., 39].
Thus we may write do(Y = 1) for making the decision to acquire quali�cations. Our
model (Figure 1) assumes that Y is not the child of any node, so we have P( · | do(Y =
� )) = P( · | Y = � ). Hence we drop the do-operator whenever we condition on Y .
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of � 2 � on group a 2 A by

TPRa (� ) = P(Ŷ� = 1 | Y = 1,A = a), and

FPRa (� ) = P(Ŷ� = 1 | Y = 0,A = a).

2.2 Model Description
Individual’s Rational Response. We consider a setting where an

individual decides whether to acquire quali�cations, that is, to
invest in obtaining label Y = 1, prior to observing their feature X .
The decision to acquire quali�cation depends on the quali�cation
assessment rule � 2 � currently implemented by the institution.We
will characterize the groups’ quali�cation rates as the best-response
to � by function �br (� ) = (�bra (� ))a2A .

To get label Y = 1 an individual has to pay a cost C > 0. In
any group, C is distributed randomly according to the cumulative
distribution function (CDF), G (·).3 After deciding whether to ac-
quire quali�cations, an individual gets features X and is assessed
by � . An individual (from any group and regardless of actual qual-
i�cation) receives a payo� of w > 0 if they are assessed to be
quali�ed and payo� of 0 otherwise. Therefore, the expected util-
ity an individual from group a receives from acquiring quali�ca-
tion Y = 1 is wP[Ŷ� = 1|Y = 1,A = a] � C = wTPRa (� ) � C
whereas the expected utility for not acquiring the quali�cation is
wP[Ŷ� = 1|Y = 0,A = a] = wFPRa (� ). Given the quali�cation
assessment parameter � 2 �, an individual from group a acquires
quali�cation if and only if the bene�t outweighs the costs, that is

w (TPRa (� ) � FPRa (� )) > C . (1)

Then each group’s quali�cation rate as a function of a quali�ca-
tion assessment parameter � is

�bra (� ) B P(Y = 1 | A = a) = P(C < w (TPRa (� ) � FPRa (� )))
= G (w (TPRa (� ) � FPRa (� ))).

Institution’s Rational Response We consider an institution that
has to choose a quali�cation assessment parameter for accepting
individuals to maximize its utility. We assume that the institution
gains pTP > 0 for accepting a quali�ed individual and loses cFP > 0
for accepting an unquali�ed individual. Then the expected utility
of the institution for applying parameter � is

pTPP(Ŷ� = 1,Y = 1) � cFPP(Ŷ� = 1,Y = 0)

= pTP
X

a2A
TPRa (� )�ana �

X

a2A
cFPFPRa (� ) (1 � �a )na .

This illustrates that the utility maximizing parameter is a function
of � = (�a )a2A , i.e., the rate of quali�cation in each group. We
denote this function by �br (� ), de�ned as follows:

�br (� ) := argmax
� 2�

pTP
X

a2A
TPRa (� )�ana�

X

a2A
cFPFPRa (� ) (1��a )na .

To ensure the above object (and the resulting dynamics) are well-
de�ned, when multiple parameters � achieve the optimal utility
we assume that �br (� ) is uniquely de�ned using a �xed and well-
de�ned tie-breaking function.

3For the rest of this work, unless otherwise stated, we assume that the distribution
of costs, G , is the same for every group. In Section 4.3 and 6, we will consider the
implications of having di�erent cost distributions by group.

Throughout this paper we assume that the institution has exact
knowledge of many quantities such as TPRa (� ), FPRa (� ), and na .
In a nutshell, we assume that we have in�nitely many samples from
the underlying distributions. We discuss this further in Section 8,
and leave the �nite sample version of these results to future work.

Although we choose not to focus on game-theoretical aspects
in this work, we note that our model can be thought of as a large
game [27] or a game with a continuum of players [41].

Dynamical System and Equilibria. We are primarily interested in
the evolution of quali�cation rate, � , over time. Given a current rate
of quali�cation � the assessment parameter used by the institution
in the next step is �br (� ), which in turn leads to a quali�cation rate
of �br (�br (� )) in the next step. Therefore, we de�ne a dynamical
system for a given initial state � (0) such that at time t we are in
state � (t ) = �(� (t � 1)), where � = �br � �br .

We say that the aforementioned dynamical system is at equi-
librium if � = �(� ). Equivalently, we are at an equilibrium if
� = limn!1 �n (� (0)) is well-de�ned for some � (0), where �n is
an n-fold composition of �. We call such values of � equilibria, or
equivalently, �xed points of �.

In general, � may have multiple �xed points that demonstrate
di�erent characteristics. We therefore compare the �xed points of
� on several metrics of societal importance.
(1) Stability: We say that an equilibrium �⇤ is stable if there is a

non-zero measure set of initial states � (0) 2 [0, 1] for which
�⇤ = limn!1 �n (� (0)). In particular, if there exists a neighbor-
hood around �⇤ such that all points converge to �⇤ under the
dynamics, we say that �⇤ is locally stable. As such, stable �xed
points are robust to small perturbations in the quali�cation rate,
which can occur due to random measurement errors.

(2) Quali�cation Rate of Group a: Recall that the quali�cation rate,
�a , is the fraction of individuals in group a who invested in
quali�cations. Since it is more desirable to have a high quali-
�cation rate in each group, we may compare equilibria based
on �a . We refer to G (w ) as the optimal quali�cation rate in
group a, which is the maximum achievable quali�cation rate
corresponding to the perfect assessment rule.4

(3) Balance:We may be interested in equilibria where the quali�ca-
tion rate is similar across groups, that is, to prioritize equilibria
with smaller maxa1,a22A |�⇤a1 � �⇤a2 |. When this quantity is 0
we say that �⇤ is fully balanced.

(4) Institutional utility:We may compare equilibria based on their
corresponding institution utility.

2.3 Examples From the Real World
Let us instantiate our model in the setting of two important appli-
cations from the real world.

College Admissions. Consider the college admission setting, where
X corresponds to the features that the college can observe, e.g.,
a candidate’s test scores and letters of recommendation. Y indi-
cates whether the candidate meets the quali�cations required to
succeed in the program. C is the cost of investing in the qual-
i�cations, e.g., the money and opportunity cost of studying or
taking additional courses to obtain the required quali�cations. A
4If group a has a group-speci�c cost distribution, Ga , then we refer to Ga (w ) as the
optimal quali�cation rate in group a.
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candidate from group a will develop features from distribution
P[X = x |Y = �,A = a], where � = 1 indicates a quali�ed candidate.
The di�erences in the feature distribution between groups can be
attributed to several factors such as resources that are available
to di�erent groups, e.g., letters of recommendations for quali�ed
female and male candidates often emphasize di�erent traits. � is
the decision parameter used by the college, e.g., Ŷ� = 1 when the
candidate has SAT score of > 1400 and an excellent recommenda-
tion letter. The college accepts applicants by trading o� between
the utility gain, pTP, of admitting quali�ed candidates and utility
cost, cFP, of admitting an unquali�ed candidates. The candidate is
incentivized to acquire the quali�cations for the college based on
the long term bene�t (described in Equation (1)) that depends on
their expected gainw from completing a college degree and how
likely it is to be admitted to college for a quali�ed or unquali�ed
member of the group the candidate belongs to.

Hiring. Consider the hiring setting, where X corresponds to the
features that the �rm can observe, e.g., a candidate’s CV.Y indicates
whether the applicant meets the quali�cations required by the �rm,
e.g., having the required knowledge and the ability to work in
a team. C is the cost of acquiring the quali�cations required by
the �rm, e.g., the (monetary and opportunity) cost of acquiring a
college degree or working on a team project. Parameter � is the
hiring parameter used by the �rm, e.g., Ŷ� = 1 when the applicant
has a software engineering degree and two years of experience. The
�rm accepts candidates according to utility maximization involving
pTP, the pro�t from hiring a quali�ed candidate, and cFP, the cost
of hiring an unquali�ed candidate e.g., the loss in productivity or
the the cost to replace the employee. The candidate is incentivized
to acquire the quali�cations for the job based on factors including
their expected salaryw and how likely it is to be hired by the �rm
given how the �rm has hired quali�ed or unquali�ed candidates
from the group the candidate belongs to (Eq. (1)).

We also consider a stylized example of lending in Section 6.

3 IMPORTANCE OF (NEAR) REALIZABILITY
We start our theoretical investigation of dynamic algorithmic deci-
sion making with the classical model of realizability. In the theory
of machine learning, a distribution is called realizable if there is
a decision rule in the set � whose error on the distribution is 0.
Analogously, we call a setting realizable when there is a decision
rule �opt 2 � that perfectly classi�es every individual from every
group, that is TPRa (�opt) = 1 and FPRa (�opt) = 0 for all a 2 A.
Realizability is a widely used assumption and is the basis of seminal
works such as Boosting [19]. At a high level, realizability corre-
sponds to the assumption that there is an unknown ground truth
assessment rule, for example, in a hypothetical setting where x
includes all the information that is su�cient for assessing one’s
quali�cation, and the chosen set of decision rules is rich enough to
contain it.

In static realizable applications of machine learning, the goal is
to (approximately) recover �opt from data. We show that in the our
dynamic setting, under realizability, the unique non-zero equilib-
rium of � is where individuals respond to �opt. Furthermore, each
group attains their optimal quali�cation rate at this equilibrium.

P���������� 3.1 (P������ �������������). If there exists � 2 �
such that TPRa (� ) = 1 and FPRa (� ) = 0 for all a 2 A, then there is
a unique non-zero equilibrium with �⇤a = G (w ) for all a 2 A.

While realizability is a common assumption in the theory of
machine learning, it rarely captures the subtleties that exist in au-
tomated decision making in practice. Next, we consider a mild
relaxation of realizability and consider a setting where a near-
perfect decision rule � 2 � exists such that TPRa (� ) � 1 � �
and FPRa (� )  � . As we show (and prove in Appendix A), when
there is a single near-realizable group the main message of Proposi-
tion 3.1 remains e�ectively the same. That is, all equilibria that are
reachable from initial points that are not too extreme approximately
maximize the group’s quali�cation rate.

T������ 3.2 (E�������� ����� ������������������). Let |A| =
1 and assume that pTP = cFP = 1. Assume that for �xed � 2 (0, 1) ,
s 2 (0, 1/2), G is LG -Lipschitz with property that 1 � s � G (w ) �
s + LGw�

s , and there is � 2 � such that

TPR(� ) � 1 � � and FPR(� )  � .

Then for any initial investment� (0) 2 [s, 1�s],�⇤ = limn!1 �n (� (0))
is such that

�⇤ � G (w (1 � �/s )).

A nice aspect of the above results is that the assumption of
realizability or near-realizability can be validated from the data.
That is, the decisionmaker can computewhether there is� 2 � such
that TPR(� ) � 1 � � and FPR(� )  � . If so, then the decision maker
can rest assured that the dynamical system is on the path towards
achieving near optimal investment by the individuals. Another nice
aspect of these results is the characterization of the equilibria in
terms of the CDF of the cost distribution. This allows us to use
this framework for studying interventions that change the cost
function directly. One such intervention is subsidizing the cost for
individuals so that the cumulative distribution function of the cost,
given byG (x ), is increased by a su�cient amount at every cost level
x . The following corollary, proved in Appendix B, shows that under
this kind of subsidy, the equilibria reached by the dynamics will
have higher quali�cation rate than any �xed point of the dynamics
before subsidy, as long as the initial points are not too extreme.
As we are considering di�erent cost distribution functions in the
following corollary, we denote the dynamics corresponding to cost
distribution function G as �G .

C�������� 3.3 (S���������� ��� ���� �� ����������). Let
|A| = 1 and assume that pTP = cFP = 1. Assume that for �xed
� 2 (0, 1) , s 2 (0, 1/2), G is LG -Lipschitz with property that 1 � s �
G (w ) � s + LGw�

s , and there is � 2 � such that

TPR(� ) � 1 � � and FPR(� )  � .

Let �⇤ > 0 be a �xed point of the dynamics �G . Suppose Ḡ is a strictly
increasing, LḠ -Lipschitz CDF such that 1 � s � Ḡ (x ) � s +

LḠw�
s

and Ḡ (x (1 � �/s )) � G (x ) for all x in the domain ofG . Then for any
initial investment � (0) 2 [s, 1 � s], there exists a �̄ � �⇤, such that
�̄ = limn!1 �n

Ḡ
(� (0)).
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4 GROUP REALIZABILITY
In this section, we investigate how the nature of equilibria evolves
as the assumption of realizability is relaxed to allow for hetero-
geneity across groups. Speci�cally, we consider the case where
there exists a perfect assessment rule for each group, but not when
the groups are combined. We call this “group-realizability”. Our
results illustrate that without realizability or near-realizability, the
utility-maximizing assessment rule can be very sensitive to the
relative quali�cation rates in di�erent groups, resulting in multiple
equilibria, at which groups may experience disparate outcomes.

In sections 4.1 and 4.2, we study group-realizability under two dif-
ferent and complementary settings. The �rst setting considers fea-
tures that are drawn from a multivariate Gaussian distribution and
assumes that in each group the quali�ed individuals are perfectly
separated from unquali�ed ones by a group-speci�c hyperplane.
This is a benign setting where no group is inherently disadvantaged
— group features and performance of assessment rules are symmet-
ric up to a reparameterization of the space. The second setting
considers features that are uniformly distributed scalar scores and
assumes that quali�ed and unquali�ed individuals in a group are
separated by a group-speci�c threshold, where one is higher than
the other. - This model captures the natural setting where the fea-
ture (score) and assessment rules inherently favor one group, e.g.,
SAT scores are known to be skewed by race [6]. We use the afore-
mentioned stylized settings to demonstrate the salient characteris-
tics of equilibria that one might anticipate under group-realizability.
We �nd that stable equilibria tend to favor one group or the other.
This is especially surprising in themultivariate Gaussian case where
the two groups are identical up to a change in the representation of
the space. We also study the existence of balanced equilibria, where
both groups acquire quali�cation at the same rate. We �nd that
when balanced equilibria exist they tend to be unstable, that is, no
initial quali�cation rate (except for the balanced equilibrium itself)
will converge to the balanced equilibrium under the dynamics.

We consider two natural interventions in overcoming the chal-
lenges of group-realizability as outlined above. As group-realizability
poses even greater challenges when the costs of investment are
unequally distributed between groups, in Section 4.3 we consider
the impact of subsidizing the cost of acquiring quali�cation for one
group. In Section 4.4, we consider the impact of decoupling, that
is, we allow the institution to use di�erent assessment rules for
di�erent groups assuming the group attributes are available. This is
in contrast to the typical setting where institutions are constrained
to using the same assessment rule across all groups, which may be
the case when data on the protected attribute is not available or
when the use of protected attributes for assessment is regulated.
4.1 Uniformly Distributed Scalar X
We considerX = [0, 1], the class of assessment paramters� = [0, 1],
and assessment decision Ŷh = 1{X > h} for all h 2 � that represent
all threshold decision policies. Consider two groups a1,a2. Let X
be a score that is uniformly distributed over [0, 1] where in group ai
those with score more than hi are quali�ed and those with score at
mosthi are unquali�ed. This is depicted in Figure 2 (right). Formally,

P(X = x | Y = �,A = ai ) =
8><>:
1{x > hi }/(1 � hi ) for � = 1 and
1{x  hi }/hi for � = 0

.

Figure 2: Equilibria in the Multivariate Gaussian case (left)
and the Uniform case (right)

We make the following assumption to simplify notation.

A��������� 1. We assume na1 · pTP = na2 · cFP. We also assume
that the cost for acquiring quali�cations is uniformly distributed on
[0, 1] (i.e. G (c ) = c) in both groups.5

We show that whenw is in a certain range, there are two unbal-
anced stable equilibria corresponding to assessment parameters h1
or h2, which respectively lead to the optimal quali�cation rate for
groups a1 or a2 but low quali�cation rate for the other group. There
is also a more balanced but unstable equilibrium at some threshold
hmid between h1 and h2. Outside of this range of w , there is only
one equilibrium in which one of the groups achieves its optimal
quali�cation rate. These �ndings are summarized in the following
two propositions.

P���������� 4.1. De�ne � B (1�h1 ) (�wh2
2+h2 (1�h1 )�wh1 (1�h1 ))

w ((1�h1 )2�h2
2 ))

.

Note that � 2 (0,h2 � h1) for anyw . Letw 2 (wl ,wu ) where

wl :=
(1 � h1)2

(1 � h2)h2 + (1 � h1)2
, wu :=

h2 (1 � h1)
h22 + h1 (1 � h1)

. (2)

Given Assumption 1, there exists two stable equilibria at

h = h1, �a1 = w, �a2 = w ·
h1
h2
, and (3)

h = h2, �a1 = w ·
1 � h2
1 � h1

, �a2 = w, . (4)

and a unique non-zero unstable equilibrium at

h = hmid := h1 + �, �a1 = w ·
1 � h1 � �
1 � h1

, �a2 = w ·
h1 + �

h2
.

Whenw = 1 � h1, the unstable equilibrium is fully balanced.

P���������� 4.2. Given Assumption 1 whenw < wl there exists
one stable equilibrium de�ned by Equation 4, and whenw > wu there
exists one stable equilibrium de�ned by Equation 3.

The details of the proofs are presented in Appendix C. At a high
level, if the wage is not too low or too high, both thresholds h1 and
h2 correspond to stable equilibria, at which either group a1 or a2 is
perfectly classi�ed. The equilibrium corresponding to hmid, where
the classi�er has the same true positive and false positive rates in
both groups, is unstable and subsequently harder to achieve.
5Our results also generalize to the setting where the CDF for the cost G : [0, 1] !
[0, 1] is an arbitrary strictly increasing function.
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In Table 1, we compare these equilibria in terms of metrics intro-
duced in Section 2, under the assumptions of Proposition 4.1. We
use standard notation � and ⇠ to denote preference and indi�er-
ence respectively. For example, we �nd that in terms of balance in
quali�cation rates, the stable equilibrium associated withh1 is more
balanced that the stable equilibrium associated with h2, but both
are always less balanced unstable equilibrium associated with hmid.
Details of the computation are deferred to Table C.1 in Appendix C.

Ranking of Equilibria

Stability h1,h2 are stable.
hmid is unstable

Quali�cation rate of group a1 h1 � hmid � h2
Quali�cation rate of group a2 h2 � hmid � h1
Balance of quali�cation rates hmid � h1 � h2

Institution’s Utility no ranking

Table 1: Comparison of equilibria for uniform features. In
this table we refer to each equlibria using the associated
threshold decision policy.

4.2 Multivariate Gaussian X
We consider X = Rd and � = Sd�1, where Sd�1 is the set of d-
dimensional unit vectors. Let Ŷh = 1{X>h � 0} for all h 2 � denote
separating hyperplane policies and \h,h0 B 1

� arccos( h>h0
kh k kh0 k )

denote the angle between two vectors, normalized by the constant � .
We consider two groups a1 and a2 associated respectively with
vectors h1 and h2, such that \h1,h2 , 0. We assume the groups have
equal size, i.e., na1 = na2 . For each group, the feature distribution
is a d-dimensional spherical Gaussian centered at the origin such
that the quali�ed individuals are in halfspace 1{X>hi � 0} and
the unquali�ed individuals in halfspace 1{X>hi < 0}. Formally, for
x 2 Rd and i 2 {1, 2},

P(X = x | Y = �,A = ai ) =
8><>:
2� (x )1{x>hi � 0} for � = 1 and
2� (x )1{x>hi < 0} for � = 0,

where � (x ) is the density of the spherical d-dimensional Gaussian.
This is depicted in Figure 2 (left).

A��������� 2. We assume that the CDF for the cost of acquiring
quali�cations is a strictly increasing function G : [0, 1]! [0, 1] and
is the same in both groups.

As we will see, the relative gain (loss) of the institution for
accepting a quali�ed (unquali�ed) individual, that is pTP/cFP, plays
a role in the nature of the equilibria. The following proposition
characterizes the equilibria when this value is strictly positive, that
is, when the bene�t of true positives outweighs the cost of false
positives. Notably, similar to the previous setting of uniform scores,
the current setting also has two stable equilibria that each favor one
group at the expense of the other, as well as a balanced equilibrium
that is unstable.

P���������� 4.3. Given Assumption 2 and pTP > cFP, there exists
two stable equilibria, at

h = h1, �a1 = G (w ) �a2 = G
⇣
w · (1 � 2\h1,h2 )

⌘
,

h = h2, �a1 = G
⇣
w (1 � 2\h1,h2 )

⌘
�a2 = G (w ).

There is a unique non-zero unstable equilibrium at

h = hmid, �a1 = G
⇣
w (1 � \h1,h2 )

⌘
�a2 = G

⇣
w (1 � \h1,h2 )

⌘
,

where hmid := h1+h2
kh1+h2 k .

Let us brie�y comment on the high level proof idea and defer
the full argument to Appendix D. Since pTP > cFP, the institution
cares more about accepting true positives than avoiding false pos-
itives. Therefore, the utility-maximizing h is determined by the
group that has a higher quali�cation rate and thus has a higher
fraction of positives — this is h1 (resp. h2) whenever �a1 > �a2
(resp. �a1 < �a2 ). When quali�cation rates are equal between the
two groups, the institution maximizes its utility at any h that is
a convex combination of h1 and h2, but the unique h that would
induce equal quali�cation rate is h = hmid, where the classi�er has
the same true positive and false positive rates in both groups.

An unfortunate implication of this result is that the dynamics will
always converge to an unbalanced quali�cation rate, except when
the initial levels of investment are exactly the same. Even though a
fully balanced equilibrium exists, it is unstable and therefore not
robust to small perturbations in either the quali�cation rates or the
classi�er, which in practice is unavoidable given sampling noise.

In Table 2, we compare these equilibria in terms of metrics intro-
duced in Section 2. For example, we �nd that in terms of institutional
utility, the stable equilibria associated with h1 and h2 are equally
preferred, and are both strictly preferred to the unstable equilibrium
associated with hmid. This implies that the institution has no incen-
tive at all to keep the dynamics at the unstable equilibrium, even
though it induces balanced investment. Exact values are deferred
to Table D.1 in Appendix D.

Ranking of Equilibria

Stability h1,h2 are stable.
hmid is unstable

Quali�cation rate of group a1 h1 � hmid � h2
Quali�cation rate of group a2 h2 � hmid � h1
Balance of quali�cation rate hmid � h1 ⇠ h2

Institution’s Utility h1 ⇠ h2 � hmid

Table 2: Comparison of equilibria for Multivariate Gaussian
features. In this table we refer to each equlibria using the
associated hyperplane.

Interestingly, when pTP < cFP, there are no stable equilibria;
instead there exists a stable limit cycle between h1 and h2. This is
stated informally in the following proposition.

P���������� 4.4. Given Assumption 2 and pTP < cFP, there exists
no stable equilibria. Instead there exists a limit cycle and one non-
trivial unstable equilibrium.

Intuitively, the cycle is caused by misaligned incentives between
the institution and the individuals. Since the institution �nds false
positives more costly than false negatives, it prefers the hyperplane
that classi�es more false positives correctly. At each time step,
it will choose the hyperplane associated with the group that has
a lower quali�cation rate, prompting that group to invest more
in the next time step. Strikingly, even a simple group-realizable
model involving multivariate Gaussian distributions demonstrates
a large range of limiting behaviors. In Section 6, we also observe the
existence of limit cycles in simulations with real data distributions.
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4.3 Di�erent Costs of Investment by Group
Thus far we have assumed that all groups have the same distribution
of the cost of investment, G. In reality, the cost of investment may
be distributed di�erently in each group; a disadvantaged group
might on average experience higher (monetary or opportunity)
costs. For example, low income families who may have to take out
loans to pay for college tuition incur high interest rates. This is
a compelling setting that re�ects deep-seated disparities in access
to opportunity between demographic groups in the real world;
an analogous setting has been considered by works on strategic
classi�cation, where the costs for manipulating features is posited
to di�er across groups [26, 36].

In this section, we consider the rami�cations of di�erences in
investment cost across groups, focusing on the setting of Section 4.2.
We show that the disadvantage from having higher costs is ampli-
�ed under group-realizability. Speci�cally, suppose that group a1
(resp. a2) has costs distributed according to cumulative distribution
functionG1 (resp.G2), and that group a1 is disadvantaged in terms
of costs. The following result observes that if G1 su�ciently domi-
nates G2, then there exists no stable equilibrium that encourages
optimal investment from group a1 and no equilibrium that is bal-
anced for both groups, in sharp contrast to the characterization in
Proposition 4.3. The proof is deferred to Appendix E.

P���������� 4.5. Consider the multi-variate Gaussian setting of
Section 4.2. Suppose G1 and G2 are such that G1 (w ) < G2 (w (1 �
2\h1,h2 )), then there exists a single non-trivial equilibrium at h2,
which is also stable. The level of investment by group a1 (resp. a2) is
G1 (w (1 � 2\h1,h2 ) (resp. G2 (w )).

E�ect of subsidies. In this situation, an intervention that would
e�ectively raise the equilibrium level of investment by the disadvan-
taged group is to subsidize the cost of investment. In particular, as
long as we replaceG1 with a stochastically dominated distribution
Ḡ1 such that Ḡ1 > G2 (w (1 � 2\h1,h2 )), under the new dynamics
�sub, h1 will again be a stable equilibrium, and there will also exist
a more balanced, unstable equilibrium at h = h̄mid, which is some
convex combination of h1 and h2. At all equilibria of �sub, group
a1 will have higher levels of investment than G1 (w (1 � 2\h1,h2 )).

However, this improvementmay come at a cost to the advantaged
group, since �sub has multiple equilibria and some of them have
group a2 investing less than G2 (w ). Still one might argue that the
equilibria of �sub are more equitable, since the dynamics without
subsidies always result in optimal investment by group a2 and low
investment by group a1.

4.4 Decoupling the Assessment Rule by Group
The models we studied in Sections 4.2 and 4.1 suggest that apply-
ing the same, or “joint”, assessment rule to heterogeneous groups
results in undesirable trade-o�s—between balance, stability, and
other metrics—at all equilibria, even though there exists a perfect
assessment rule for each group separately.

Decoupling the classi�er by group is a natural intervention in
this setting. Namely, the institution may choose a group-speci�c
�a 2 � to assess individuals from group a 2 A, assuming that
the group attribute information is available. This corresponds to
choosing �a that maximizes the utility that the institution derives

from each group separately. Thus we now consider the decoupled
dynamics �dec where the institution uses group-speci�c assessment
rules, i.e., for all a 2 A
�bra (�a ) B argmax

�a 2�
pTPTPRa (�a )�a �cFPFPRa (�a ) (1��a ).6 (5)

As in the standard joint setting individuals still acquire quali�-
cation according to their group utility as follows

�bra (�a ) B G (w (TPRa (�a ) � FPRa (�a ))).
We denote by �dec 2 [0, 1] |A | the equilibria of the decoupled
dynamics, �dec =

⇣
�bra � �bra

⌘
a2A . It is not hard to see that decou-

pling is helpful in a group-realizable setting. That is, the quali�ca-
tion rates of the decoupled equilibrium �dec Pareto-dominates the
quali�cation rates of all equilibria � under a joint assessment rule,
whenever group-realizability holds.

P���������� 4.6 (D���������). Consider a group-realizable set-
ting, that is, for every a 2 A, there exists a perfect assessment rule
�
opt
a 2 � such that TPRa (�

opt
a ) � FPRa (�opta ) = 1. Then �dec has a

unique stable equilibrium �dec, where �dec
a = G (w ). Moreover, for

any equilibrium � of the joint dynamics �, �dec
a � �a for all a 2 A.

Furthermore, if there is no perfect assessment rule, i.e.,

max
� 2�

X

a2A
na (TPRa (� ) � FPRa (� )) < 1,

then for some a 2 A, �dec
a > �a .

This proposition directly follows from Proposition 3.1.
Indeed, decoupling always helps in the group-realizable setting—

not only does it not decrease any group’s equilibrium quali�cation
rate, it also increases the equilibrium quali�cation rate of at least
one group when realizability across all groups does not hold. In
Sections 5 and 6 we examine decoupling in the absence of group-
realizability and see that those cases are not as clear-cut. When
group-realizability does not hold, in some cases decoupling is still
helpful while in others it can signi�cantly harm one group.

5 BEYOND GROUP-REALIZABILITY:
MULTIPLE EQUILIBRIA WITHIN GROUP

We have so far considered settings where the learning problem is
realizable (or almost realizable) within each group. This is a common
assumption in various prior works, such as Hu et al. [26]. As we
saw in Section 4, there may be multiple undesirable equilibria when
a joint assessment rule is used in a group-realizable setting, but
these undesirable equilibria disappear in the decoupled dynamics.

In many application domains, realizability does not hold even
at a group level. That is to say, no assessment rule in � can per-
fectly separate quali�ed and unquali�ed individuals even within
one group. This may be due to the fact that mapping individuals
to the visible feature space X involves loss of information or there
may be other sources of stochasticity in the domain [12], making it
impossible to provide a high accuracy assessment of individuals’
quali�cations. A key consequence of the lack of realizability is that
even for a single group, the optimal classi�er now can vary greatly
with �a , the group’s quali�cation rate. As a result, our guarantees
6As when we de�ned the joint dynamics (Section 2), when the argmax is not unique,
we assume ties are broken according to a �xed and well-de�ned order.
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about the near-optimality of stable equilibria (Theorem 3.2) no
longer hold, and there could exist multiple stable equilibria each
corresponding to a di�erent quali�cation rate within a group. In
this section, we investigate the existence of bad equilibria for a
single group and its implications on decoupling when the learning
problem is not group-realizable. For the rest of this section, we
consider a single group, i.e., |A| = 1 and suppress a in the notation.

In the following proposition (proved in Appendix F), we charac-
terize conditions under whichmultiple equilibria exists for arbitrary
feature spaces and assessment rules. This is a generalization of a
classical result from Coate and Loury [10] that considers a one-
dimensional feature space; we restate and prove the classical result
as a consequence of Proposition 5.1 in Appendix F.

P���������� 5.1 (M������� ��������� �� ��������� �������
������). Let � be as de�ned in Section 2. For any quali�cation rate
� , let

� (� ) B TPR(�br (� )) � FPR(�br (� )),
be the di�erence between true and false positive rates of the institu-
tion’s utility maximizing assessment rule with respect to � . Assume
� (� ) is continuous, the CDF of the cost G is continuous and that
there exists � 2 � such that P(Ŷ� = 1) = 0 and � 0 2 � such that
P(Ŷ� 0 = 1) = 1, i.e., there is a assessment rule that accepts every-
one and an assessment rule that rejects everyone. Also suppose the
likelihood ratio � (x ) := P(X=x |Y=0)P(X=x |Y=1) is strictly positive on X.

If x < G (w� (x )) for some x 2 (0, 1), then there exists at least
two distinct non-zero equilibria where � = �(� ). If in addition
� is di�erentiable, an equilibrium at � is locally stable whenever
G 0(w� (� )) < |� 0(� ) |, where G 0 and � 0 denote the derivatives of G
and � respectively.

Proposition 5.1 describes conditions under which there exists
more than one equilibrium in the dynamics modeled in Section 2.
Given a di�erentiable � (� ), one can always construct a monoton-
ically increasing G, such that the dynamics � has any number of
locally stable equilibria. The implication of having multiple equi-
libria is that the dynamics may converge to di�erent equilibrium
quali�cation rates depending on the initial investment, even for a
single group. This makes the setting particularly hard to analyze.

Nevertheless, the following result, proved in Appendix F, shows
that even in the non-realizable setting, subsidizing the cost of invest-
ment by changing the distribution G to a stochastically dominant
distribution Ḡ will create a new equilibrium that has a higher quali-
�cation rate. In other words, subsidies in the non-realizable setting
also improve the quality of equilibria. However, the new equilibrium
is not guaranteed to be locally stable. We see some rami�cations of
this empirically in the next section.

P���������� 5.2 (S�������� ������� �������������). Suppose
�⇤ > 0 is an equilibrium for the dynamics �G , where the cost of
investment is distributed according to G on [0, 1]. Let Ḡ be a CDF
that is stochastically dominated by G, that is, Ḡ (x ) > G (x ) for all
x 2 (0, 1), and both G and Ḡ are strictly increasing. Then there exists
�̄ > �⇤ such that �̄ is an equilibrium for �Ḡ .

6 SIMULATIONS WITH NON-REALIZABILITY
In this section we present results from numerical experiments ex-
amining the e�ects of decoupling and subsidies under our model of

dynamics, in the absence of group-realizability. We consider a styl-
ized semi-synthetic experiment, based on a widely used FICO credit
score dataset from a 2007 Federal Reserve report [42]. Importantly,
only aggregate statistics were reported and the data we accessed
does not contain sensitive or private information. Our modeling
assumptions may not be realistic for this dataset (see Section 8) and
our simulations should not be interpreted as policy recommenda-
tions. Instead, these experiments help us illustrate qualitatively the
types of dynamics one may �nd using real world data.

Stylized Model. We describe how our model can be instantiated
to a highly stylized example of credit scoring and lending. Assume
a loan applicant either has the means to repay a loan or not. If they
have the means to repay, they always repay (Y = 1); otherwise
they always default (Y = 0). In order to have the means to repay,
applicants must make an ex ante investment at the cost ofC , whose
distribution is P(C < c ) = G (c ). This represents costly actions an
individual has to take in order to acquire the �nancial ability to
repay loans, e.g. working at a stable job or taking job preparation
classes. Applicants from group a who have the means to repay
receive credit scores X drawn from f a1 and those who don’t receive
credit scores drawn from f a0 . The decision of the bank is to approve
or reject a loan applicant, given their credit scores.

Dataset. FICO scores are widely used in the United States to
predict credit worthiness. The dataset, which contains aggregate
statistics, is based on a sample of 301,536 TransUnion TransRisk
scores from 2003 [42] and has been preprocessed by Hardt et al.
[22]. These scores, corresponding toX in our model, range from 300
to 850. For simplicity, we rescale the scores so that they are between
0 and 1. Individuals were labeled as defaulted if they failed to pay
a debt for at least 90 days on at least one account in the ensuing
18-24 month period. The data is also labeled by race, which is the
group attribute A that we use. We compute empirical conditional
feature distributions P(X = x | A = a,Y = �) from the available
data and �t Beta distributions7 to these to obtain f a0 , f

a
1 .

We treat these distributions as if they came from our model as
shown in Figure 1, for the sole purpose of illustration. This is not
to claim that our modeling assumptions hold on this dataset, as dis-
cussed earlier. Given the lending domain is complex, our aim is not
to faithfully represent this particular domain with our model, but
to simulate feature distributions that exhibit group heterogeneity
and non-realizability, hence extending our consideration beyond
the idealized settings of Sections 3 and 4.

Figure 3 shows the histograms as well as the �tted Beta distri-
butions for f a0 , f

a
1 , where a is the race attribute. It is clear that

group-realizability does not hold even approximately, since there
is signi�cant overlap in the distributions of credit scores for people
who repaid and for people who did not repay.

6.1 Decoupling and Multiple Stable Equilibria
Although decoupling is guaranteed to improve the quali�cation
rate at equilibrium over using a joint decision rule for every group
(Sections 3 and 4), this is not necessarily true in the non-realizable
setting. In fact, even when G is the uniform distribution on [0, 1]
in all groups (i.e. the cost of investment C is uniformly distributed
on [0, 1], as we considered in Section 4), decoupling did not bene�t
7We simulate 100,000 samples from the empirical PDF (see Figure 3) and �t a Beta
distribution by maximum likelihood estimation.
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Figure 3: Score distributions conditioning on repayment out-
come (Y ) for di�erent race groups

Improvement in final qualification rate after decoupling

Initial qualification rate

Improvement in final qualification rate after decoupling

Initial qualification rate

Figure 4: E�ects of decoupling in presence of multiple equi-
libria. We vary the initial quali�cation rate in the x-axis.

all groups. As can be seen from Figure G.1 in Appendix G, while
the White and Asian groups had a higher quali�cation rate after
decoupling, the Black and Hispanic groups saw their equilibrium
quali�cation rate decrease. On the other hand, the e�ects of decou-
pling were small in this case (less than 3 percent points di�erence
in the �nal quali�cation rate).

We now show that the e�ect of decoupling can be drastic de-
pending on G. Recall that in Section 5, we showed that multiple
equilibria, with possibly vastly di�erent quali�cation rates, may
exist under the non-realizable setting even when there is a only
single group. In general the existence of multiple equilibria depends
on properties ofG , that is, how the cost of investment is distributed
in a group. In Figure 4, we show the change in equilibrium invest-
ment level after decoupling for an experiment with two groups,
Asian and Hispanic. The two plots each correspond to a di�erent
bimodal Gaussian distribution for G, truncated to [0, 1], that have
been chosen such that the decoupled dynamics have multiple stable
equilibria for the Hispanic (right) and the Asian (left) respectively8.

In both plots, we can see that the e�ects of decoupling depend on
the initial quali�cation rate. If the initial quali�cation rate was too
low, or too high, the decoupled dynamics converge to an equilibrium
where one of the groups invest in quali�cations at a much lower
level than they would under the joint dynamics.9

8The right (resp. left) plot is generated using a bimodal normal distribution forG with
modes at 0.57 and 0.74 (resp. at 0.57 and 0.63).
9See Figure G.2 in Appendix G for the converged quali�cation rates of both groups.
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Subsidizing one group under joint and decoupled dynamics

Black (joint)

Black (decoupled)

White (joint)

White (decoupled)

Asian (joint)

Asian (decoupled)

Hispanic (joint)

Hispanic (decoupled)

Figure 5: E�ects of raising the average cost of investment, by
varying the mean of G on the x-axis.

6.2 Subsidizing the Cost of Investment
In this experiment, we consider if subsidizing the cost of investment
of one group by changing G improves their new equilibrium quali-
�cation rate, under both decoupled and joint dynamics. Speci�cally,
we vary the cost of investment in the Black group.

We use a truncated normal distribution for G and vary its mean
(on the x-axis) for a single group, while keeping the other groups’
G unchanged (mean of 0.6).

Figure 5 shows that subsidizing the cost of investment is e�ective
in raising the equilibrium investment level of a group, both in the
joint learning and decoupled learning case. Interestingly, large
amounts of subsidy for a single group reduced the equilibrium
investment levels of other groups. As also suggested by theoretical
results in section 4.3, subsidizing the quali�cation rate of one group
does sometimes entail a tradeo� in the quali�cation rates of other
possibly more advantaged groups.

Interestingly, lowering the mean cost of investment in the Black
group below 0.35 caused the �nal quali�cation rate to decrease.
This is not a contradiction of Proposition 5.2, which argues that
equilibria improve under subsidies but does not guarantee that the
dynamics will converge to the improved equilibrium. In this case,
the decoupled dynamics for the Black group (where the mean cost
of investment is 0.30) actually converged to a limit cycle and the
�nal quali�cation rate in the plot is an average of the points in
the limit cycle. Limit cycles are a challenging object to study in
dynamical systems and game theory. While we have commented
on their existence in a simple model in group-realizable setting of
Section 4.2, we leave their implications in the general non-realizable
setting to future work.
7 RELATEDWORK
Our work follows a growing line of work on how machine learning
algorithms interact with human actors in a dynamic setting, with
the goal of understanding and mitigating disparate impact.

Recent work examine the long-term impact of group fairness cri-
teria [see e.g., 4, Chapter 2] on automated decision making systems:
Liu et al. [33] show that static fairness criteria fail to account for the
delayed impact that decisions have on the welfare of disadvantaged
groups. In the context of hiring, however, Hu and Chen [25] �nd
that applying the demographic parity constraint in a temporary
labor market achieves an equitable long-term equilibrium in the
permanent labor market by raising worker reputations.
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Prior work on the fairness of machine learning has examined
tradeo�s between fairness criteria [9, 32], as well as the incompati-
bility between risk minimization and fairness criteria [34], assum-
ing that the quali�cation rates di�er across groups. These results
concern the static setting, whereas we highlight the fact that quali-
�cation rates tend to change in response to the decision rules.

Another line of work [23, 45] analyzes a dynamic model where
users respond to errors made by an institution by leaving the
user base uniformly at random, and demonstrate how the risk-
minimizing approach to machine learning can amplify representa-
tion disparity over time. This is complementary to our work which
models individuals as rational decision makers who may or may
not have the incentive to acquire the positive label. In particular,
Hashimoto et al. [23] show that equilibria with equal user represen-
tation from all groups can be unstable, and that robust learning can
stabilize such equilibria. Unlike in our model, the user represen-
tation model does not distinguish between positive and negative
labels, and thus do not distinguish between false negative and false
positive errors. This is a crucial distinction in high-stakes decision
making as di�erent error types present asymmetric incentives for
individuals, as explained in Section 2; for example, a high false pos-
itive rate in hiring would encourage under-quali�ed job applicants.

Hu et al. [26] and Milli et al. [36] study the disparate impact of
being robust towards strategic manipulation [see e.g., 21], where
individuals respond to machine learning systems by manipulating
their features to get a better classi�cation. In contrast to our model
(Figure 5), their setting models the individual as intervening directly
on their features, X , and this is assumed to have no e�ect on their
quali�cation Y . This assumption applies to features that are easy
to ‘game’ (e.g. scores on standardized tests can be improved by
test preparation classes) but is less applicable to features that more
directly correspond to investment in one’s quali�cations (e.g. taking
AP courses in high school). Hu et al. [26] also show that subsidizing
the costs of the disadvantaged group to strategically manipulate
their features can sometimes lead to harmful e�ects. Kleinberg and
Raghavan [31] and Khajehnejad et al. [29] study decision policies
that incentivize individuals to directly manipulate their features X
to optimize particular notions of utility.

Our work is also related to the topic of statistical discrimination
in economics [2, 3, 40], which studies how disparate market out-
comes at equilibrium can arise from imperfect information. This
line of work often involves wage discrimination, whereas we as-
sume the wage is �xed and standard for all groups. Coate and Loury
[10] proposed a model of rational individual investment in the labor
market under a �xed wage and showed that a�rmative action may
lead to an undesirable equilibrium where one group still invests
sub-optimally. The model in our work is most closely related to
their model, with two key distinctions: 1) We allow features X to be
multi-dimensional, whereas Coate and Loury [10] assumes thatX is
a one-dimensional ‘noisy signal’. 2) We consider the case where the
conditional feature distributions, P(X = x | Y = �,A = a), di�er by
groups whereas Coate and Loury [10] assumes that the groups are
identically distributed. Under our models, if the conditional feature
distributions were shared across groups, then any hiring policy
will result in fully balanced equilibria where all groups have the
same quali�cation rate and are hired at the same rate. This does not
corroborate with reality, where conditional feature distributions do

in fact di�er across groups and we routinely observe institutions
applying the same model to all individuals only to see obviously
discriminatory outcomes [14]. By modeling feature heterogeneity
across groups, we �nd it necessarily leads to disparate equilibria.

Recently, Mouzannar et al. [37] studied the equilibria of quali�ca-
tion rates under a generic class of dynamics, focusing on contractive
maps and the e�ects of a�rmative action. In contrast, our work mo-
tivates a model of dynamics based on rational investment, and this
typically leads to non-contractive dynamics. We are both interested
in balanced equilibria, which they termed ‘social equality’.

Finally, our work studies two interventions for �nding more
desirable equilibria: decoupling the classi�er and subsidizing the
cost of investment. Several works, including Dwork et al. [17] and
Ustun et al. [43], have studied decoupled classi�ers in the static clas-
si�cation setting. Our work sheds light on when such interventions
are useful in the dynamic decision making setting.
8 DISCUSSION AND FUTUREWORK
In this work, we have made the following contributions:
(1) We proposed a dynamic model of decision making where indi-

viduals invest rationally based on the current assessment rule.
We studied the properties of equilibria under these dynamics.

(2) We showed that common properties of real data, namely het-
erogeneity across groups and the lack of realizability, lead to
undesirable tradeo�s at equilibria, resulting in long term out-
comes that disadvantage one or more groups.

(3) We considered two interventions—decoupling and subsidizing
the cost of investment—and showed that they have a signi�-
cant impact on the nature of equilibria both in theory and in
numerical experiments.
We now discuss the limitations of the current work and avenues

for future research. Questions related to sampling and its rami�-
cations for the nature of equilibria are challenging and warrant
further study. This work assumed that the institution can estimate
the true and false positive rates over the entire population, even
though it really can only observe the quali�cation of candidates
after hiring them. This is known as the selective labeling problem,
which could introduce bias. In theory, unbiased estimates can be
achieved by a small degree of random sampling and appropriate
reweighting [see e.g., 30], but this is still a large problem in practice
that requires domain-speci�c knowledge and solutions [15, 28].

Our model assumed that individuals make a rational decision to
invest and can a�ect their quali�cation Y directly. This assumption
could be reasonable in settings like hiring, for example, where
investing to acquire skills usually leads to increased competence.
In some settings, however, individuals may be unable to e�ectively
intervene onY . For example, a business loan applicant who is a good
business operator could still default on their loan due to external
economic shocks or other forms of disadvantage that have not
been taken into account. In this case, the current model does not
fully capture the complex societal processes that lead to a positive
outcome. Our work nonetheless shows that even in an idealized
setting where individuals can e�ectively and rationally intervene
on their outcome labels Y , underlying factors such as heterogeneity
across groups and non-realizability already lead to undesirable
tradeo�s at equilibrium. We leave the extensions of the current
model beyond rational individual investment to future work.
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