What Do We Do When We Teach Software Engineering?

Joseph Maguire
School of Computing Science
University of Glasgow
Glasgow, Scotland
joseph.maguire@glasgow.ac.uk

ABSTRACT

Many UK higher education institutions offer software engineering
programmes, but the purpose and relevance of these programmes
within computing science departments is not always obvious. The
reality is that while advanced economies require many more skilled
software engineers, universities are not delivering them. This is at
least true in the context of the United Kingdom, where there are
high numbers of software engineering vacancies and unemployed
software engineering graduates. A possible explanation could be
that curriculum content of software engineering programmes in
universities needs to be reconsidered to meet the needs of indus-
try. However, reconsidering curriculum content alone is unlikely
to be transformative as there is little to be gained from changing
to an emerging methodology, language or framework. Instead, an
alternative direction could be to reconsider curriculum delivery
and the identity of software engineering within computing science
itself. In this paper, we contextualise the challenge by consider-
ing the history of software engineering education and some of its
key developments. We then consider some of the alternative deliv-
ery approaches, before arguing cooperative programmes provide
a opportunity for institutions to reconsider software engineering
education.

CCS CONCEPTS

« Social and professional topics — Computing education.

KEYWORDS

work based learning, software engineering, computing science ed-
ucation

ACM Reference Format:

Joseph Maguire, Steve Draper, and Quintin Cutts. 2019. What Do We Do
When We Teach Software Engineering?. In UK Ireland Computing Ed-
ucation Research Conference (UKICER), September 5-6, 2019, Canterbury,
United Kingdom. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3351287.3351295

1 INTRODUCTION

Friedrich Ludwig Bauer employed the term ‘software engineering’
over 50 years ago as both the problem and solution to the perceived
software crisis of the era [34, 51]. The specifics of the profession

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UKICER, September 5-6, 2019, Canterbury, United Kingdom

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7257-2/19/09...$15.00
https://doi.org/10.1145/3351287.3351295

Steve Draper
School of Psychology
University of Glasgow

Glasgow, United Kingdom
steve.draper@glasgow.ac.uk

Quintin Cutts
School of Computing Science
University of Glasgow
Glasgow, United Kingdom
quintin.cutts@glasgow.ac.uk

emerged from the 1968 NATO Conference and its use was delib-
erately provoking. The aim was to recognise the specific skills
required to deliver software that was both significant in complexity
and scale [10].

The provocation to traditional programmers and theorists was
arguably effective as in the ensuing years, large-scale systems
have came to represent significant assets not only for developed
economies, but emerging markets as well [7]. The continued sig-
nificance of software engineering is expected only to increase as
the governors of advanced economies identify software systems
and services as strategically important to economic growth [24].
Universities across the world are serving the perceived priority, for
example 95 of the 130 publicly funded universities in the United
Kingdom deliver computing science and/or software engineering
degrees [53].

However, while the significance and importance of software to
modern society has only increased, many of the same problems
persist. In 1955, industry perceived universities as not delivering
computing science graduates that satisfied their requirements [36].
In the current climate, at least in the United Kingdom, industry still
perceives universities as not delivering computing science gradu-
ates that satisfy their requirements [53]. The solution to the problem
is not entirely obvious. This is partly due to the fact the problem
is not clear. The problem could be curriculum content, delivery or
it could be both. Parnas argues that software engineering should
be more engineering-focused and not delivered as a formal science
[44]. However, Gibbs argues that fragmenting computing science
and software engineering is detrimental to computing as a whole,
as theorists should always be mindful of the applied environment
[22].

In this paper, we attempt to propose a solution to the challenge
of software engineering education, by considering some of its past.
The contributions of this paper are:

e to contextualise the issue by reminding readers that the
identity of software engineering education has been debated
just as long as computing science, but there is still no sign
of a resolution.

e to review some of the developments in the education of
software engineers.

e to identify of some of the different delivery models used for
software engineering education and suggest a way forward.

2 TRACING A HISTORY FOR SOFTWARE
ENGINEERING EDUCATION
In order to chart a future for software engineering education it re-

quires appreciation of the events that shaped its past. The following
section attempts to understand the current settlement by tracing

https://doi.org/10.1145/3351287.3351295
https://doi.org/10.1145/3351287.3351295
https://doi.org/10.1145/3351287.3351295

some of the developments in the history of software engineering
education.

2.1 Magic Tricks and Moon Shots

A system is only as powerful as the mind that wields it. The chal-
lenge for early computer manufacturers was to demonstrate the
potential of their expensive systems, a situation that required man-
ufacturers to train programmers [18]. In the 1950s while a soft-
ware industry was emerging, programmers had their own personal
practices and systems had their own incantations. The immediate
concern was to get the most out of manufactured systems.

However, the Apollo Guidance and Navigation programme in the
1960s serves as a classic example of the difficulty in delivering a com-
plex software solution at scale to solve a specific challenge: space-
craft control. David Hoag, programme technical director, stated
that 1,400 person hours were applied to land on the moon alone
and that the “effort needed for the software turned out to be grossly
underestimated” [28]. Hoag stated at the peak of activity, in 1968,
350 programmers were working on software. While this figure that
may seem trivial by modern standards, it was significant for the era:
recall that computer manufacturers typically trained programmers
in the era. For context, in 1954, a manager from the computer man-
ufacturer UNIVAGC, stated that the annual training capacity for all
computer manufacturers was approximately 260 programmers [18].
Consequently, the Apollo Guidance and Navigation programme
was a hugely significant software project.

Margaret Hamilton, software lead on the programme, regularly
used the term “software engineering” to emphasise that devising
software was just as much an engineering challenge as others on
the programme [40]. Hamilton was aware that minds had to shift
to appreciate that software delivery was less a hobby and more
a profession. This important shift was increasingly occurring in
industry and academia. In general, industry was becoming tired of
the lack of programmers with transferable skills and systems that
required bespoke solutions [69]. In academia there was increasing
recognition that programming had to move from a craft to a dis-
cipline [16, 68]. Consequently, there was increasing consensus for
the need for a discipline for computing generally.

2.2 Forging a Discipline

In the summer of 1960, IBM organised a conference for computing
centre directors [38]. There was, unsurprisingly, agreement among
directors that universities should fund computing centres, much
like libraries and other central resources. The directors also agreed
that computing centres should deliver more advanced computing
courses that were credit bearing and contributed to undergraduate
programmes. The conversation of advancing the discipline contin-
ued throughout the 1960s with much of the focus on defining a
suitable foundation, possibly in mathematics, systems or informa-
tion processing.

There was much debate, but European institutions were gen-
erally not convinced that information processing was a suitable
foundation as it was arguably an established discipline in itself
[26]. There was also a general consensus that mathematics would
be a suitable foundation, leading to more abstract and theoretical
course content. However, in 1964, Varga argued that “the systems

programming expert is neither a numerical analyst, a pure logician
or at the other extreme a computer coder” [63]. Varga proposed
a curriculum for computing that was more closely related to the
educating of engineers, rather than mathematicians. Neverthless,
mathematics remained the favoured foundation for the discipline
and this was reflected in “Curriculum 68” published by the ACM
[4].

The early attempts to outline curricula were formative in nature,
weaponised to guide the formation of the discipline [17]. The argu-
ment could be made that a mathematical foundation was favoured
as it may ensure the theoretical progression of the discipline. How-
ever, Atchison argued that the focus on mathemaitcs in Curriculum
68 is not particularly surprising given that many of the committee
members were mathematicians [3].

2.3 Theory versus Reality

In the 1970s, the path for the discipline was beginning to form, but
not necessarily in a direction that favoured software engineering.
Coates argued that computing science departments were concerned
more with theory and less with reality [14, 39]. Coates argued that
graduates were not immediately productive and required additional
training as they no exposure to real world systems. The situation led
to some institutions introducing more industry considerate courses.
Parnas reported one such course that delivered a project-oriented
course in software engineering methods at Carnegie-Mellon Univer-
sity [43]. Parnas delivered the course twice, one cohort had indus-
trial programming experience, while the other had completed only
programming courses. Parnas argued that when devising courses
with different cohorts, tailored versions should be favoured.

Further consideration of the optimal curriculum continued in
the 1970s. The Model Curricula Subcommittee of the IEEE Com-
puter Society Education Committee was formed to bridge the gap
between emerging computing science curricula and computing en-
gineering curricula [39]. While not specifically focused on software
engineering, Wasserman and Freeman argued the recommenda-
tions from the Model Curricula Subcommittee could act as the
strong foundation for curricula optimal for software engineering
[65]. Consequently, even in the 1970s consideration was been given
to the significance and importance of software engineering.

2.4 Economic importance

The significance of software engineering increased into the 1980s
with many advanced economies beginning to assess the importance
of software to defence and economic growth. The Software Engi-
neering Institute (SEI) was established, a key outcome of the US
Department of Defense Strategic Computing Initiative in the early
1980s. The aim of the SEI was not only to increase the production
of software, but also to increase the dependability and quality of it
[6, 19]. In the UK, there was concern the country was not leading in
software engineering and computing initiatives. Grindley reported
that the UK software industry contributed to only 2% of the world’s
software value [25]. In 1983, the Alvey Programme was launched,
primarily to improve collaboration between academia and industry
[59]. The programme considered many technological areas and
challenges, but a key concern was improving software engineering
within the United Kingdom [47].

The importance of software engineering and relevancy to em-
ployment was also beginning to be recognised by UK institutions.
In 1984, University College London (UCL) adopted an engineering
approach to their undergraduate programme, delivering graduates
that were valuable to industry [67]. Winder et al. argued this was
not about equipping students with a “bag of skills” but rather, devel-
oping intellectual skills that permit them to progress rapidly within
their chosen career. Similarly, Garratt and Edmunds reported on the
introduction of a compulsory software engineering course into the
computing science curriculum at the University of Southampton
[21]. The project-led course spanned 12 weeks and was focused
more on group interaction and less on formal lecturers and exercises.
There was growing recognition that software engineering needed
to be considered within the computing science UK curriculum.

In 1989, the British Computing Science (BCS) and the then In-
stitution of Electrical Engineers (IEE) formed a joint initiative to
consider a curriculum for undergraduate software engineering [57].
Hoyle argued this was a direct response to the outcomes of the
Alvey programme [29]. The focus of the initiative was to ensure
software engineering was perceived as more than just program-
ming. There was an increasing sense that a curriculum for software
engineering was emerging.

2.5 Threatening Split from Computing Science

In the 1990s, Ford argued that software engineering had been evolv-
ing over the past 20 years, but that despite best efforts the necessary
skills and knowledge were not present in the majority of comput-
ing science curricula [19]. Gibbs argued that computing science
and software engineering were facing an impending split, much
the same way that computing science split from mathematics [22].
Gibbs argued that software engineering in the early 1990s was in
a state of evolution similar to computing science in the 1960s and
that by the end of the century it would splinter. In 1997, Garlan et al.
reported on their postgraduate software engineering programme
that they had spent almost nine years refining and was jointly de-
livered by the Software Engineering Institute and Department of
Computing Science at Carnegie Mellon University [20].

The postgraduate programme required students to have earned
an undergraduate in computing science and have at least two years
of relevant industrial experience. An interesting aspect was that
approximately 50% of the initial cohort comprised of students em-
ployed by large corporations who paid their tuition fees. The ex-
pectation was that such leaders would return to workplace and in-
fluence existing practice and essentially represent agents of change.
However, while the programme was promising the cohort was com-
parably small, initially only educating 20 students at some expense.
In 1999, as the century closed there was still much concern that
computing science departments were not embracing software engi-
neering education. The Software Engineering Institute released a
body of knowledge for software engineering as to support develop-
ment of bespoke courses and programmes [5].

2.6 Prioritising Skills Development

In 2000, Shaw outlined a road map for software engineering educa-
tion [55]. Shaw argued while progress had been made, focus had to
move away from content and consider how the curriculum could

reflect different software engineering roles. However, concern still
persisted that computing science graduates were not aligned with
industry expectations. Begel and Simon investigated graduate soft-
ware developers experience in the workplace [8]. They reported
that while students demonstrated generally good design skills, they
lacked other important skills relevant to software engineering, such
as communication.

The trend continued in the 2010s with more research and practi-
tioners discussing the importance of skills. In 2013, Radermacher
and Walia argued that students not only lacked strong communi-
cation and collaboration skills, but were also weak in design and
development [48]. They argued that curricula changes were still
necessary to address the technical and professional skill deficien-
cies in many graduates [48]. Similarly, Radermacher et al. argued
that graduating students do not possess skills to deliver on large-
scale software engineering projects [49]. They interviewed project
managers and hiring personnel in the US and Europe and reported
that graduates lacked project experience, had poor communication
skills and had little knowledge of testing [49]. Almi et al. argued
that despite the best efforts of educators and industry, there still
existed a gap between academic curricula and the requirements of
industry [1].

The importance of skills and the lack of focus on them is ar-
guably reflected in the present day settlement, at least in the United
Kingdom. A reality confirmed by the high unemployment of com-
puting science graduates versus the high demand for such skills
[53]. Numerous reviews of such a paradox have not identified any
single clear, consistent factor [64].

3 SOFTWARE ENGINEERING AS A BRANCH
OF ENGINEERING

If graduate employment is an acceptable metric then computing
science departments still need to refine their efforts to ensure they
are producing graduates that are aligned with the requirements of
industry. The concern is that computing science departments are
not equipping graduates with the necessary skills. An alternative
perspective could be that industry are incorrectly expecting com-
puting science departments to deliver software engineers, rather
than computing scientists. Consequently, a solution to the current
challenge could be to reconsider the foundation of software engi-
neering education.

Hoyle argues one of the strongest outcomes of the BCS/IEE cur-
riculum report in 1989 was the definition of software engineering:
“Software Engineering is not simply a more organised approach
to programming than that which was prevalent in the early days
of computer science and remains widespread among amateurs or
through lack of education and training" [29, 57]. Similarly, Parnas
argues a software engineer is not simply a good programmer, but a
professional who is responsible for the solutions they deliver [44].

However, this thinking is not clearly reflected in many software
engineering programmes and courses. Tomayko argues that some
computing scientists display a general lack of respect towards en-
gineering, essentially not favouring or even believing in “messy”
solutions [61]. The assumption could be that high-quality software
solutions can be delivered by thinking about them hard. However,

perfect solutions are not always possible, as any potential solution
will represent any number of hidden assumptions.

The failure of the original Tacoma bridge demonstrates the chal-
lenge of hidden assumptions [46]. Celebrated bridge engineer Leon
Moisseiff was the leading engineer on the bridge that collapsed
shortly after opening to the public. The design of the bridge utilised
narrow and shallow girders, unusual at the time for such suspension
bridges. The narrow and shallow girders were not sufficiently rigid
and were easily swayed by the winds until the eventual collapse of
the bridge.

Othmar Ammann, leading bridge engineer investigating the
collapse, stated: "The Tacoma Narrows bridge failure has given us
invaluable information... It has shown [that] every new structure
[that] projects into new fields of magnitude involves new problems
for the solution of which neither theory nor practical experience
furnish an adequate guide. It is then that we must rely largely on
judgment and if, as a result, errors or failures occur, we must accept
them as a price for human progress" [2].

Moisseiff had never thoroughly considered the winds as they
had not been a concern in prior bridge projects. Consequently, it
does not matter how hard Moisseiff and other thought about the
solution, as Ammann suggests no prior theory or experience shed
light on the problem. Petroski argues that many projects demand
engineering judgement and that such judgement does not come
from deeper understanding of theory or strong command of compu-
tational tools, but by learning from experience and failure [45]. In
the context of software engineering, exposure to existing systems
and building messy solutions may be a stronger starting point. The
use of robust or defensive programming is one such technique that
may be valuable for software engineers to learn to deal with hidden
assumptions [9].

Therefore, adopting a more engineering perspective may be
valuable in the delivery of software engineering education. Roy
and Veraart argues such a curriculum does not need to be widely
different from existing computing science curricula, but would
include more engineering science courses and relevant skills [52].
Parnas argues software engineering does not need to be a sub-field
of computing science, but needs to consider not just content, but
delivery as well [44].

4 THE DIFFERENT APPROACHES TO
SOFTWARE ENGINEERING EDUCATION

There have been attempts to perform mappings of software engi-
neering education [12, 35]. However, while such attempts provide
insight into methods and trends, they arguably do not consider
the wider delivery strategy or approach to software engineering
education within computing science programmes.

In the UK context, computing science departments use many
different approaches to deliver software engineering education
and skills. The “approaches” discussed here are our groupings of
examples considered from literature, experience and other sources.
The listed approaches and examples are not exhaustive, and others
may favour alternative groupings and different examples.

4.1 The “icing" approach

The icing approach delivers software engineering within existing
courses or as one area within computing science. It affords institu-
tions the option to embed content within existing courses, such as
operating systems, and/or deliver bespoke courses that focus solely
on software engineering concerns, such as processes and practices.

There are many examples of the aforementioned approach dis-
cussed in §2, but there are many inventive methods to consider.
Dawson suggests “twenty dirty tricks to train software engineers”
that can introduce some of the richness of the real world back into
the sheltered and sterile environment of the computing laboratory
[15]. Dawson argues that software upgrades of workstations, down-
time of important resources, moving deadlines and fluctuating team
members are part of professional software engineering. However,
the university environment strives to perform software upgrades
and maintain resources outside semesters and have numerous poli-
cies to manage missing team members. Dawson reasons that such
disruptions should be introduced back into courses as to provide
students with sufficient experience and skills in negotiating such
challenges. The approach from Dawson seems valuable, but also
relatively inexpensive to implement. Nevertheless, care would be
required in employing such tricks, considering the current climate
within universities and concerns around student mental health.
An alternative approach would be to create an artificial real-world
environment.

Tvedt et al. proposes the Student Software Factory an organisa-
tion that is staffed and effectively managed by students [62]. The
software factory comprises of eight semester courses that students
complete sequentially. Each course represents a role within the soft-
ware engineering profession, from the junior to senior. A student
would complete an initial course on software tools and processes
in a first semester course, before starting the role of system tester
in the second semester. The conclusion in the seventh and eighth
semester is for students to act as project managers, effectively co-
ordinating and managing junior students as well as considering
risk and deadlines. A potential limitation of the proposed software
factory approach is that students are not able to reflect fully on
some roles, such as project management. The student effectively
completes the course and graduates.

Another approach is studio teaching, students typically have a
dedicated space with mentors that support reflection and critique
of the ongoing production of software [27]. Lee et al. reports on
the use of studio teaching for three software engineering courses
on a software engineering program [32]. Lee et al. states the stu-
dio comprises of a dedicated lab space with teaching staff in the
space for specific contact hours. Tomayko argues teaching software
engineering in a studio environment affords greater opportunity
for students to engage and reflect on the production of software
[60]. The concept of studio education is long since established, but
definitions in the context of software engineering and computing
science are often vague. Bull et al. argues that the lack of such a
precise definition makes such a method difficult to evaluate and to
determine its overall effectiveness [11].

Nevertheless, the icing approach has advantages in that it allows
students to focus on theory will still be exposed to material relevant

to industry. The concern is that students have limited to no exposure
to industry itself.

4.2 The “sandwich” approach

Two fairly common complaints from employers are that: gradu-
ates are not aligned with their requirements; and/or that they lack
exposure to the challenges of the workplace [14]. The sandwich
approach exposes students to industry early, by expecting students
to complete a summer or even a year in the workplace in the mid-
dle of their degree programme. The Shadbolt Review reports that
integrated work placements are crucial in addressing the unem-
ployment of computing science graduates [53]. Shadbolt states that
students that completed sandwich degree programmes reported
lower levels of general unemployment (6% vs 15% non-sandwich)
and the lowest level of non-graduate unemployment (6% vs 25%
non-sandwich). Consequently, Shadbolt recommends increased use
of placements and internships within programmes. However, while
the Shadbolt review may recommend the increased use of such
sandwich programmes and some countries make them compul-
sory [31], such an approach focuses on exposure to industry as the
solution to the problem rather than the students themselves.

The typical approach for many sandwich programmes is that
students are encouraged to engage with specific resources, such
as the programme lead, placement coordinator or placement office.
The student is largely responsible for identifying and securing the
placement with scaffolding from the institution. The approach itself
requires the student to engage in their preparation and exposure
to the workplace. In a compulsory approach students are thrust
upon employers and potentially view the placement as just another
course.

Clark and Zukas report on the experience of two different stu-
dents exploring placements in software engineering [13]. They
argue that students being required to engage in the process of se-
curing a placement is an important component of the experience.
Clark and Zukas suggest that not all students would benefit from a
placement experience as they may not have the general qualities for
the workplace, that are effectively demonstrated in securing a place-
ment. That is demonstrating independence by research, identifying
a suitable placement and determining the value to be extracted from
it. Clark and Zukas also argue that compulsory placements not only
remove such a process, but also have the potential to undermine
the value of them.

Similarly, O’Briain et al. report that a significant advantage of a
placement, other than the placement itself, is the process of iden-
tifying, engaging and securing it [42]. However, O’Briain et al. do
suggest that some students struggle to adjust to academic processes
and structures upon returning from the workplace. Silva et al. ar-
gues that while sandwich placements and internships can enhance
graduate employment, the most effective structure or approach is
still unclear [56]. Silva et al. suggests that institutions need to con-
sider more the value in the entry and exit processes to placements.
It is not clear that placement students experience a different path or
curriculum upon return from their employment, they likely experi-
ence the same courses as non-sandwich students. Parnas discussed
this concern in 1972 as a primary consideration on his software en-
gineering course, while students with industrial experience did not

perform any better than inexperienced students, a course approach
that was optimal for both could not be found [43]. Similarly, Tvedt
et al. argues one of the difficulties of sandwich placements is that
they are slightly “big-bang”, in that students encounter many new
things all at once, and the curriculum has not necessarily prepared
them for it [62].

In many ways the sandwich approach can be compared to that
of a joint academic degree programme between two different disci-
plines. A student essentially studies all the hardest parts of both,
with no one managing their situation.

4.3 The “cooperative” approach

The cooperative approach to software engineering education is for
academia and industry to partner to deliver graduate professionals.
The cooperation could be relatively small scale and only involve a
few courses and internships or it could involve a shared curriculum.
The approach effectively expects students not only to learn on-
campus at university, but also in industry at the workplace. The
approach is commonly referred to as cooperative programmes in
North America, Duales Studium in Germany and is effectively being
introduced in the United Kingdom through Degree Apprenticeships.

The cooperative approach is a delivery model that attempts to
address the isolation of theory and practice by integrating them
in a single programme where students are exposed to theory at
university and practice it in the workplace [50]. The approach has
the benefits of both the aforementioned approaches while avoiding
some of the concerns. In particular the academic and industrial
partner work together to form a programme that is an optimal
balance of theory and practice.

The concern is that many universities do not have sufficient
experience to rapidly deliver traditional academic degrees, such as
software engineering, as cooperative programmes. This is not to
say that universities are ineffective at working with industry [30].
However, devising cooperative curriculum is a significant challenge
as universities need to ensure quality and effective attainment of
higher education objectives.

A successful work-based learning programme requires close
collaboration with industrial partners [66]. The aspiration is that
knowledge transfer can occur between both industry and academia.
Research is transferred from university and makes an impact on
industry and companies can inform universities of the knowledge
and skills they expect of software engineering graduates. There is
potential for cooperative education programmes to engage more
research-led universities with software engineering as more re-
searchers are able to connect with practitioners in industry. Shaw
argues that “Good science depends on strong interactions between
researchers and practitioners" [54]. Similarly, Meyer argues that
institutions should take on the challenge of delivering a programme
of teaching and research that is engaging and scientifically rigorous
[37].

Nevertheless, the concern is that rather than being a mutually
assured partnership, universities will be ‘reverse-colonised’ by in-
dustry [23]. The concern is that universities will seek to satisfy
industry requirements when under pressure rather than ensure
attainment of higher education objectives. Nevertheless, univer-
sities could adopt different solutions to avoid such challenges, a

novel approach could be for academic institutions to initially act
as the academic environment and workplace by training research
software engineer apprenticeships [33].

Staehr et al. report on the delivery and use of cooperative learn-
ing for computing science students [58]. They argue that the pri-
mary advantage of the approach is reflection, that students are able
to consider their practice away from the workplace.

Similarly, Nerland reports on the experiences of graduates partic-
ipating in work-based learning in the roles as computing engineers
[41]. Nerland argues that the role of computer engineer, not dissimi-
lar to that of a software engineer, requires interaction with multiple
objects that vary and are tailored to a given context. Moreover,
the relevant technology and implementation is in constant flux.
Nerland suggests professional development requires an individ-
ual to continually update and question knowledge. Consequently,
work-based learning has the potential not only to prepare students
for industry, but academia has the potential to shape students for
professional development.

4.4 The “do nothing” approach

There is more than one powerful case for doing nothing, i.e. not
delivering finished computing professionals.

The less discussed approach for computing science departments
is to not engage regards software engineering education. These
departments may favour simply focusing on core computing science.
There is nothing to say that such graduates would not be eminently
employable. In such universities, employers may simply look to
other disciplines to fill roles that are perceived as being delivered
by computing science graduates. The reality is that Physics could
deliver programmers, Statistics could deliver data scientists and
Business Schools could deliver project managers.

There is also the case that the role of computing science depart-
ments is not to produce perfect professionals, but rather strong
entry candidates for subsequent professional programmes. These
programmes could be delivered by higher education institutions, by
companies themselves or a combination of the two. An approach
that is broadly similar to the traditional USA model of professional
education for medicine which traditionally only tackled applied
concerns in postgraduate programmes, not in undergraduate pro-
grammes.

5 REDISCOVERING SOFTWARE
ENGINEERING EDUCATION

The primary concerns of software engineering education seem to
persist, despite many academics and practitioners rediscovering
them over the past 70 years. The future challenges for software
engineering education for academia and industry seem largely the
same now as we near 2020 as they did in the 1950s.

However, a significant aspect has changed in the ensuing decades
for software engineering education. In the 1950s and 1960s, stu-
dents at universities would have scheduled access to a computing
system and wait days for results. In 2020, students can wander
into any university library and find countless desktop systems just
waiting for a key press. That is to say that computing systems have
progressed from being incredibly costly to inexpensive, whereas
the same can not be said for the individuals that operate them.

Consequently, individuals have to be productive for companies
as soon as possible. If graduate employment is an important metric,
then (some) computing science departments (at least in the UK) are
not delivering graduates aligned with the expectations of industry.
The challenge becomes how to solve the misalignment problem
and deliver graduates that meet expectations.

From the non-exhaustive list of considered approaches, see §4,
computing science departments could consider progress in two
different routes. The first option could be to adopt the “do nothing"
approach, where computing science departments focus more on a
computing science curriculum for undergraduates and tackle pro-
fessional concerns at the postgraduate level. Alternatively, industry
could hire graduates from other departments, such as programmers
from Physics and data scientists from Statistics.

The second route could be to emphasise the responsibilities of
industry and embrace the “cooperative” approach. Industry can
engage more in defining the knowledge and skills they want from
software engineering students. Academia can begin to devise and
develop programmes that deliver such graduates. There is great
potential in cooperative programmes to deliver valuable graduates,
but only if industry appreciate their responsibility in delivering pro-
fessional software engineers. Cooperative programmes also have
the potential to engage traditional computing scientists in the con-
cerns and requirements of industry. This could potentially not only
produce valuable research partnerships but could also result in
industry utilising existing research outputs, leading to greater re-
search impact for traditional academics.

6 CONCLUSION

The history of software engineering education reveals a debate
which has persisted for many decades with no clear progress. Con-
trasting that to Moore’s law brings home how shocking that stasis
is. Cooperative programmes could be a fruitful starting point for
departments interested in moving forward, but are no silver bul-
let. A sounder basis for progress may be for us each not only to
acknowledge, but to take to heart, that: (a) software engineering
is not all about programming, equally (b) it is not a receptacle for
all applied and professional concerns and (c) there are numerous
different roles that are filled by computing graduates, each of which
implies different course content.

REFERENCES

[1] Nurul Ezza Asyikin Mohamed Almi, Najwa Abdul Rahman, Durkadavi Puru-
sothaman, and Shahida Sulaiman. 2011. Software engineering education: The
gap between industry’s requirements and graduates’ readiness. In Computers &
Informatics (ISCI), 2011 IEEE Symposium on. IEEE, 542-547.

[2] Othmar H Amman, Theodore von Karmén, and Glenn B Woodruff. 1941. The

failure of the Tacoma Narrows bridge. Bulletin of the Agricultural and Mechanical

College of Texas (1941).

William F Atchison. 1981. Computer education, past, present, and future. ACM

SIGCSE Bulletin 13, 4 (1981), 2-6.

William F Atchison, Samuel D Conte, John W Hamblen, Thomas E Hull, Thomas A

Keenan, William B Kehl, Edward] McCluskey, Silvio O Navarro, Werner C

Rheinboldt, Earl J Schweppe, et al. 1968. Curriculum 68: Recommendations

for academic programs in computer science: a report of the ACM curriculum

committee on computer science. Commun. ACM 11, 3 (1968), 151-197.

[5] Donald J Bagert, Thomas B Hilburn, Greg Hislop, Michael Lutz, and Michael Mc-
Cracken. 1999. Guidelines for software engineering education version 1.0. Technical
Report. Carnegie Mellon University.

[6] Mario R Barbacci and A Nico Habermann. 1985. The Engineering Institute:
Bridging Practice and Potential. IEEE software 2, 6 (1985), 4.

.
=)

~

]

8]
(9]
[10]

[11]

[12]

[13]

[14]

(15]

[16]

[17]

[18]
[19]

[20

[21]

[22

[23]
[24]

[25]
[26]
[27]
[28]

[29]

Momodu Ibrahim Bayo, Nnebe Samuel Ekene, Sadiq Fatai Idowu, et al. 2007.
Software development: An attainable goal for sustainable economic growth in
developing nations: The Nigeria experience. International Journal of Physical
Sciences 2, 12 (2007), 318-323.

Andrew Begel and Beth Simon. 2008. Struggles of new college graduates in their
first software development job. In ACM SIGCSE Bulletin, Vol. 40. ACM, 226-230.
Matt Bishop and Deborah Frincke. 2004. Teaching robust programming. I[EEE
Security & Privacy 2, 2 (2004), 54-57.

Frederick P Brooks Jr. 1975. The mythical man-month: Essays on Software
Engineering. (1975).

Christopher N Bull, Jon Whittle, and Leon Cruickshank. 2013. Studios in software
engineering education: towards an evaluable model. In Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 1063-1072.

Orges Cico and Letizia Jaccheri. 2019. Industry trends in software engineering
education: a systematic mapping study. In Proceedings of the 41st International
Conference on Software Engineering: Companion Proceedings. IEEE Press, 292-293.
Martyn Clark and Miriam Zukas. 2016. Understanding successful sandwich
placements: A Bourdieusian approach. Studies in Higher Education 41, 7 (2016),
1281-1295.

DC Commission on Engineering Education, Washington. 1968. Proceedings
of the Meeting on Computer Science in Electrical Engineering of the Commis-
sion on Engineering Education, Stanford University, October 24-25, 1968. http:
/[www .eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=ED027219
Ray Dawson. 2000. Twenty dirty tricks to train software engineers. In Proceedings
of the 22nd international conference on Software engineering. ACM, 209-218.
Edsger W Dijkstra. 1970. Notes on structured programming. (1970), 1-82.
Sebastian Dziallas and Sally Fincher. 2015. ACM Curriculum Reports: A Peda-
gogic Perspective. In Proceedings of the Eleventh Annual International Computing
Education Research. ACM, 81-89.

Nathan L Ensmenger. 2012. The computer boys take over: Computers, programmers,
and the politics of technical expertise. Mit Press.

Gary Ford. 1990. 1990 SEI Report on Undergraduate Software Engineering Education.
Technical Report. Carnegie Mellon University.

David Garlan, David P Gluch, and James E Tomayko. 1997. Agents of change:
Educating software engineering leaders. Computer 30, 11 (1997), 59-65.

PW Garratt and G Edmunds. 1988. Teaching software engineering at university.
Information and software technology 30, 1 (1988), 5-11.

Norman E Gibbs. 1991. Software engineering and computer science: the impend-
ing split? Education and Computing 7, 1-2 (1991), 111-117.

Paul Gibbs. 2013. Work-based quality: a collusion waiting to happen?

Energy Great Britain. Department for Business and Industrial Strategy. 2017.
Industrial Strategy: building a Britain fit for the future. (2017).

Peter C Grindley. 1988. The UK software industry: a survey of the industry and
evaluation of policy. Centre for Business Strategy, London Business School.
Gopal K Gupta. 2007. Computer science curriculum developments in the 1960s.
IEEE Annals of the History of Computing 29, 2 (2007), 40-54.

Orit Hazzan. 2002. The reflective practitioner perspective in software engineering
education. Journal of Systems and Software 63, 3 (2002), 161-171.

David G Hoag. 1983. The history of Apollo onboard guidance, navigation, and
control. Journal of Guidance, Control, and Dynamics 6, 1 (1983), 4-13.

BS Hoyle. 1991. The software engineering initiative: the past and the future. In
IEE Colloquium on Teaching of Software Engineering-Progress Reports. IET, 12-1.

[30] James Kewin, Iain Nixon, Abigail Diamond, Martin Haywood, Helen Connor,

[31

[32]

and Alexandra Michael. 2011. Evaluation of the higher education transforming
workforce development programme. (2011).

Markus Klein and Felix Weiss. 2011. Is forcing them worth the effort? Benefits of
mandatory internships for graduates from diverse family backgrounds at labour
market entry. Studies in Higher Education 36, 8 (2011), 969-987.

Jaejoon Lee, Gerald Kotonya, Jon Whittle, and Christopher Bull. 2015. Software
Design Studio: A Practical Example. In Proceedings of the 37th International
Conference on Software Engineering - Volume 2 (ICSE ’15). IEEE Press, Piscataway,
NJ, USA, 389-397. http://dl.acm.org/citation.cfm?id=2819009.2819071

[33] Joseph Maguire, Quintin Cutts, Jack Parkinson, Matthew Barr, and Derek

[35]

[36]

[37

Somerville. 2019. Devising Work-based Learning Curricula with Apprentice
Research Software Engineers. In Proceedings of the 2019 ACM Conference on In-
novation and Technology in Computer Science Education (ITiCSE '19). ACM, New
York, NY, USA, 313-313. https://doi.org/10.1145/3304221.3325576

Michael S Mahoney. 2004. Finding a history for software engineering. IEEE
Annals of the History of Computing 26, 1 (2004), 8-19.

Maira R Marques, Alcides Quispe, and Sergio F Ochoa. 2014. A systematic
mapping study on practical approaches to teaching software engineering. In 2014
IEEE Frontiers in Education Conference (FIE) Proceedings. IEEE, 1-8.

M. E. Mengel. 1995. Present and projected computer manpower needs in busi-
ness and industry. In Proceedings of the Conference on Training Personnel for the
Computing Machine Field, Vol. 1. Wayne University Press, 4-9.

Bertrand Meyer. 2001. Software engineering in the academy. Computer 34, 5
(2001), 28-35.

[38

[39

[40

[41

[42]

[43]

[44

[45

[46

[47

(48]

a
=

o
&,

o
=

[63

(64

[65

[66]

[67

(68

[69]

Philip M Morse. 1960. Report on a conference of university computing center
directors (June 2-4, 1960). Commun. ACM 3, 10 (1960), 519-521.

Michael C Mulder. 1975. Model Curicula for Four-Year Computer Science and
Engineering Programs: Bridging the Tar Pit. Computer 8, 12 (1975), 28-33.
NASA. 2016. Margaret Hamilton, Apollo Software Engineer, Awarded Presidential
Medal of Freedom. https://www.nasa.gov/feature/margaret-hamilton-apollo-
software-engineer-awarded- presidential-medal- of-freedom

Monika Nerland. 2008. Knowledge cultures and the shaping of work-based
learning: The case of computer engineering. Vocations and learning 1, 1 (2008),
49-69.

Sian O’Briain, Susan Bergin, Martina Bourgoin, Aidan Mooney, Paula Murray,
and Qingyang Zhao. 2013. Student Work Placement: Friend or Foe? A study of
the perceptions of university students on industrial work placement. (2013).
DL Parnas. 1972. A course on software engineering techniques. ACM SIGCSE
Bulletin 4,1 (1972), 154-159.

David Lorge Parnas. 1999. Software engineering programs are not computer
science programs. IEEE software 16, 6 (1999), 19-30.

Henry Petroski. 1993. Failure as source of engineering judgment: Case of John
Roebling. Journal of performance of constructed facilities 7, 1 (1993), 46-58.
Henry Petroski. 2018. Success through failure: The paradox of design. Vol. 59.
Princeton University Press.

Paul Quintas and Ken Guy. 1995. Collaborative, pre-competitive R&D and the
firm. Research Policy 24, 3 (1995), 325-348.

Alex Radermacher and Gursimran Walia. 2013. Gaps between industry expec-
tations and the abilities of graduates. In Proceeding of the 44th ACM technical
symposium on Computer science education. ACM, 525-530.

Alex Radermacher, Gursimran Walia, and Dean Knudson. 2014. Investigating the
skill gap between graduating students and industry expectations. In Companion
Proceedings of the 36th international conference on software engineering. ACM,
291-300.

Joseph A Raelin. 1997. A model of work-based learning. Organization science 8,
6 (1997), 563-578.

Brian Randell. 1996. The 1968/69 nato software engineering reports. History of
Software Engineering (1996), 37.

Geoffrey G Roy and Valerie E Veraart. 1996. Software engineering education:
from an engineering perspective. In Proceedings 1996 International Conference
Software Engineering: Education and Practice. IEEE, 256-262.

Nigel Shadbolt. 2016. Shadbolt review of computer sciences degree accreditation
and graduate employability: April 2016. (2016).

Mary Shaw. 1990. Prospects for an engineering discipline of software. IEEE
Software 7, 6 (1990), 15-24.

Mary Shaw. 2000. Software engineering education: a roadmap. In ICSE-Future of
SE Track. 371-380.

Patricia Silva, Betina Lopes, Marco Costa, Ana I Melo, Gongalo Paiva Dias, Elisa-
beth Brito, and Dina Seabra. 2018. The million-dollar question: can internships
boost employment? Studies in Higher Education 43, 1 (2018), 2-21.

British Computer Society and Institute of Electrical Engineers. 1989. A Report of
Undergraduate Curricula for Software Engineering.

Lorraine Staehr, Mary Martin, and Ka Chan. 2014. A multi-pronged approach
to work integrated learning for IT students. Journal of information technology
education: innovations in practice 13 (2014), 1-11.

D Talbot and RW Witty. 1983. Alvey Programme: Software Engineering: Strategy.
Alvey Directorate.

James E Tomayko. 1991. Teaching software development in a studio environment.
In ACM SIGCSE Bulletin, Vol. 23. ACM, 300-303.

James E Tomayko. 1998. Forging a discipline: An outline history of software
engineering education. Annals of Software Engineering 6, 1-4 (1998), 3-18.

John D Tvedt, Roseanne Tesoriero, and Kevin A Gary. 2001. The software factory:
combining undergraduate computer science and software engineering education.
In Proceedings of the 23rd international conference on Software engineering. IEEE
Computer Society, 633-642.

Richard S Varga. 1964. Computer technology at Case. In Proceedings of the 1964
19th ACM national conference. ACM, 121-301.

William Wakeham. 2016. Wakeham Review of STEM degree provision and
graduate employability. (2016).

Anthony I Wasserman and Peter Freeman. 1977. Special Feature Software En-
gineering Concepts and Computer Science Curricula. Computer 10, 6 (1977),
85-91.

Tim Wilson. 2012. A review of business—university collaboration. Department
for Business Innovation and Skills.

Russel Winder, Charles Easteal, and Robert Cole. 1987. Software engineering in
a first degree. Software Engineering Journal 2, 4 (1987), 133-139.

Niklaus Wirth. 2008. A brief history of software engineering. IEEE Annals of the
History of Computing 30, 3 (2008), 32-39.

Jo Anne Yates. 1995. Application Software for Insurance in the 1960s and Early
1970s. Business and Economic History (1995), 123-134.

http://www.eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=ED027219
http://www.eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=ED027219
http://dl.acm.org/citation.cfm?id=2819009.2819071
https://doi.org/10.1145/3304221.3325576
https://www.nasa.gov/feature/margaret-hamilton-apollo-software-engineer-awarded-presidential-medal-of-freedom
https://www.nasa.gov/feature/margaret-hamilton-apollo-software-engineer-awarded-presidential-medal-of-freedom

	Abstract
	1 Introduction
	2 Tracing A History for Software Engineering Education
	2.1 Magic Tricks and Moon Shots
	2.2 Forging a Discipline
	2.3 Theory versus Reality
	2.4 Economic importance
	2.5 Threatening Split from Computing Science
	2.6 Prioritising Skills Development

	3 Software Engineering AS A BRANCH OF Engineering
	4 The different approaches to software engineering education
	4.1 The ``icing" approach
	4.2 The ``sandwich'' approach
	4.3 The ``cooperative'' approach
	4.4 The ``do nothing'' approach

	5 Rediscovering Software Engineering Education
	6 Conclusion
	References

