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Abstract

A large class of problems in AI and other areas of com-
puter science can be viewed as constraint-satisfaction prob-
lems. This includes problems in machine vision, belief main-
tenance, scheduling, temporal reasoning, type reconstruc-
tion, graph theory ,and satis�abilit y. In general, the con-
strain t satisfaction-problem is NP-complete, so searching
for tractable cases is an active research area. It turns out
that constraint satisfaction has an intimate connection with
database theory: constraint-satisfaction problems can be re-
cast as database problems and database problems can be
recast as constraint-satisfaction problems. In this tutorial,
I will co ver the fundamentals of constraints saisfaction and
describe its intimate relationship with database theory from
various perspectives.

1 Introduction

Since the early 1970s, researchers in arti�cial intelligence
ha ve investigated a class of combinatorial problems that be-
came known as constr aint-satisfaction problems (CSP). The
input to such a problem consists of a set of variables, a
set of possible values for the variables, and a set of con-
strain ts betw een the v ariables; the question is to determine
whether there is an assignment of values to the variables
that satis�es the given constraints. The study of constraint
satisfaction occupies a prominent place in arti�cial intelli-
gence, because many problems that arise in di�erent areas
can be modeled as constraint-satisfaction problems in a nat-
ural way; these areas include Boolean satis�ability, temporal
reasoning, belief maintenance, machine vision, and schedul-
ing (cf. [16, 41, 46, 51]). In its full generalit y,constrain t
satisfaction is an NP-complete problem. For this reason, re-
searchers in arti�cial intelligence have pursued both heuris-
tics for constraint-satisfaction problems and tractable cases
obtained by imposing restrictions on the constrain ts (cf.
[44, 16, 18, 26, 47]).

Over the last few years, it has become clear that there
is an intimate connection betw een constrain tsatisfaction
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and v arious problems in database theory. The goal of this
tutorial is to describe several such connections. We start
(Sections 2 and 3) b y describing the constraint-satisfaction
framework and show how it can be viewed from a database
perspectiv e. We then show three applications of database
theory to constraint satisfaction (Sections 4, 5, and 6). We
conclude with an application of constrain tsatisfaction to
database theory (Section 7).

This tutorial is not meant as a comprehensive overview,
but rather as a personal perspective. Material for this paper
has been drawn from [39, 40, 10].

2 Preliminaries

The standard terminology in AI formalizes an instance P of
CSP as a triple (V;D; C), consisting of a set V of variables, a
set D of values, and a collectionC of constr aintsC1; : : : ; Cq,
where each Ci is a pair (t; R) with t a tuple o verV and R is
a relation on D of the same arity as jtj. A solution of suc h
an instance, is a mapping h : D ! V such that for each
constraint (t;R) in C we have that h(t) 2 R, where h is de-
�ned on tuples component-wise. The constraint-satisfaction
problem asks whether a given instance is solvable, i.e., has
a solution. Note that, without loss of generalit y,w emay
assume that all constraints (t;Ri) involving a tuple t ha ve
been consolidated to a single constraint (t;R), where R is
the in tersection of all the constraining relationsRi. Th us,
w e can assume that each tuple t of variables occurs at most
once in the collection C.

An important observ ation made in [21] is that every
such CSP instance P can be viewed as an instance of the
homomorphism1 problem, where we ask whether there is a
homomorphism betw een tw o structuresAP and BP , where
the domain of AP is V , the domain of BP is D, the re-
lations of BP are the distinct relations R occurring in C,
and the relations of AP are de�ned as follows: for each re-
lation R on D occurring in C, w e have the relation RA =
ft : (t; R) is a constraintg. We call (AP ;BP) the homomor-
phism instance of P. It is also clear that every instance of
the homomorphism problem betw een tw o structuresA and
B can be viewed as a CSP instance CSP(A;B) by simply
\breaking up" each relation RA on A as follo ws: w e gener-
ate a constraint (t; RB) for eacht 2 RA. We call CSP(A;B)
the CSP instance of (A;B). We use both formalisms in this
paper, as each has its o wn advan tages.

1A homomorphism from a relation structure A to a relational
structure B over the same v ocabulary is a mapping from the domain
of A to the domain of B such that every tuple in a relation ofA is
mapped to a tuple in the corresponding relation of B.
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It turns out that in both formulations constraint satisfac-
tion can be expressed as a database-theoretic problem. We
start with the traditional AI formulation. Suppose we are
given an instance (V;D; C). We can assume without loss of
generality that in every constraint (t;R) 2 C the elements in
t are distinct. (Suppose to the contrary that ti = tj . Then
we can delete from R every tuple in which the ith and jth
entries disagree, and then project out that jth column from
t and R.) We can thus view every element of V as a rela-
tional attribute, every tuple of distinct elements of V as a
relational scheme, and every contraint (t;R) as a relation R
over the scheme t (cf. [2]). It now follows from the de�nition
of CSP that it can be viewed as a join-evaluation problem.

Proposition 2.1: [4, 32] A CSP instance (V;D; C) is solv-
able i� 1(t;R)2C R is nonempty.

On the other hand, the homomorphism formulation is
intimately related to conjunctive-query evaluation. A con-
junctive queryQ is a query de�nable by a positive existential
�rst-order formula '(X1; : : : ; Xn) having conjunction as its
only Boolean connective, that is, by a formula of the form

(9Z1) : : : (9Zm) (X1; : : : ; Xn; Z1; : : : ; Zm);

where  (X1; : : : ; Xn; Z1; : : : ; Zm) is a conjunction of pos-
itive database predicates. The free variables X1; : : : ; Xn

of the de�nining formula are called the distinguished vari-
ables of Q. Such a conjunctive query is usually written
as rule, whose head is Q(X1; : : : ; Xn) and whose body is
 (X1; : : : ; Xn; Z1; : : : ; Zm). For example, the formula

(9Z19Z2)(P (X1; Z1; Z2) ^R(Z2; Z3) ^R(Z3; X2)

de�nes a conjunctive query Q, which as a rule becomes

Q(X1; X2) :- P (X1; Z1; Z2); R(Z2; Z3); R(Z3; X2):

If D is a database, then Q(D) is the relation on D obtained
by evaluating the query Q on D, that is, the collection of
all tuples from D that satisfy the query. Let Q1 and Q2 be
two queries having the same tuple of distinguished variables.
If Q1(D) � Q2(D) for every database D, we say that Q1 is
contained in Q2, and write Q1 � Q2. The conjunctive-query
containment problem asks: given two conjunctive queriesQ1

and Q2, is Q1 � Q2?
It is well known that conjunctive-query containment can

be reformulated as a conjunctive-query evaluation problem
and also as a homomorphism problem. The link to these two
other problems is via the canonical database DQ associated
with Q. This database is de�ned as follows. Each variable
occurring in Q is considered a distinct element in DQ. Ev-
ery predicate in the body of Q is a predicate of DQ as well;
moreover, for every distinguished variable Xi of Q, there is a
distinct unary predicate Pi (not occurring in Q). Every sub-
goal in the body of Q gives rise to a tuple in the correspond-
ing predicate of DQ, and if Xi is a distinguished variable of
Q then Pi(Xi) is a fact of D

Q. Thus, in the example above,
the canonical database consists of the facts P (X1; Z1; Z2),
R(Z2; Z3), R(Z3; X2), P1(X1), P2(X2). The relationship
between conjunctive-query containment, conjunctive-query
evaluation, and homomorphisms is provided by the following
classical result.

Proposition 2.2: [13] Let Q1 and Q2 be two conjunctive
queries having the same tuple (X1; : : : ; Xn) of distinguished
variables. Then the following statements are equivalent.

� Q1 � Q2.

� (X1; : : : ; Xn) 2 Q2(D
Q1 ).

� There is a homomorphism h : DQ2 ! DQ1 .

It follows that the homomorphism problem can be viewed
as a conjunctive-query evaluation problem or as a conjunctive-
query containment problem. Given a pair A;B of struc-
ture over the same vocabulty, we can view the domain A =
fx1; : : : ; xng as a set of individual variables and associate
with A the Boolean conjunctive query

'A = 9x1 : : : 9xn
^

t2R in A

R(t):

We can associate an analogous query 'B with B.

Proposition 2.3: [39] There is a homomorphism from A
to B i� 'A is true in B i� 'B � 'A.

3 Uniform vs Non-Uniform Constraint Satisfaction Prob-
lem

Let A and B be two classes of �nite relational structures.
The (uniform) constraint-satisfaction problem CSP(A;B) is
the following decision problem: given a structure A 2 A
and a structure B 2 B, is there a homomorphism h : A !
B? Note that, by its very de�nition, each CSP(A;B) prob-
lem is in NP. We write CSP(B) for the special uniform
case CSP(A;B) in which A is the class of all �nite rela-
tional structures over the vocabulary of B. If B consists
of a single structure B, then we write CSP(A;B) instead
of CSP(A; fBg). We refer to such problems as non-uniform
constraint satisfaction problems, because the inputs are just
structures A in A. We also write CSP(B) for the special
non-uniform case CSP(A;B) in which A is the class of all
�nite relational structures over the vocabulary of B. Note
that if B is a Boolean structure, i.e., it has f0; 1g as its do-
main, then CSP(B) is a generalized satis�ability problem in
the sense of Schaefer [50].

Over the past twenty years, researchers in computational
complexity theory have studied non-uniform constraint sat-
isfaction problems in an attempt to determine for which
structures B the associated CSP(B) problem is tractable
and for which it is intractable. The �rst remarkable suc-
cess on this front was obtained by Schaefer [50], who pin-
pointed the computational complexity of Boolean CSP(B)
problems. Schaefer established a dichotomy theorem for
Boolean CSP(B) problems. Speci�cally, he identi�ed six
classes of Boolean structures and showed that CSP(B) is
solvable in polynomial time, if B is in one of these classes,
but CSP(B) is NP-complete in all other cases. In particular,
Schaefer's Dichotomy Theorem provides a coherent expla-
nation for the computational complexity of Horn Satis�a-
bility, 2-Satis�ability, One-in-Three Satis�ability, and other
such Boolean satis�ability problems. After this, Hell and
Ne�set�ril [33] established a dichotomy theorem for CSP(B)
problems in which B is an undirected graph: if B is 2-
colorable, then CSP(B) is solvable in polynomial time; oth-
erwise, CSP(B) is NP-complete. Observe that if Kk is a
clique with k nodes, then CSP(Kk) is the k-Colorability
problem, k � 2. Thus, Hell and Ne�set�ril's dichotomy the-
orem generalizes the results concerning the computational
complexity of the k-Colorability problem for each k � 2.

Motivated by these dichotomy results, Feder and Vardi
[21] raised two questions: (1) Under what conditions is the
non-uniform porblem CSP(B) tractable, and (2) is every
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CSP(B) problem either solvable in polynomial time or NP-
complete? Although they did not settle these questions,
Feder and Vardi were able to isolate two conditions that im-
ply polynomial-time solvability of CSP(B) problems; more-
over, they argued that all known polynomially solvable CSP(B)
problems seem to satisfy one of these conditions. The �rst
condition is group-theoretic and covers Schaefer's tractable
class of aÆne satis�ability problems. The second condition,
which we dicuss at length in the next two sections, asserts
that the complement of the CSP(B) problem at hand is ex-
pressible in Datalog (CSP(B) itself cannot be expressible in
Datalog, because it is not a monotone problem); this condi-
tion covers such known tractable cases as Horn Satis�ability,
2-Satis�ability, and 2-Colorability. (See [34, 35, 36] for an-
other line of attack on the classi�cation question for CSP(B)
problems.)

4 Constraint Satisfaction, Games, and Datalog

A Datalog program is a �nite set of rules of the form

t0 :- t1; : : : ; tm;

where each ti is an atomic formula R(x1; : : : ; xn). The re-
lational predicates that occur in the heads of the rules are
the intensional database predicates (IDBs), while all others
are the extensional database predicates (EDBs). One of the
IDBs is designated as the goal of the program. Note that
IDBs may occur in the bodies of rules and, thus, a Dat-
alog program is a recursive speci�cation of the IDBs with
semantics obtained via least �xed-points of monotone opera-
tors (see [52]). Each Datalog program de�nes a query which,
given a set of EDB predicates, returns the value of the goal
predicate. Moreover, this query is computable in polynomial
time, since the bottom-up evaluation of the least �xed-point
of the program terminates within a polynomial number of
steps (in the size of the given EDBs). Thus, expressibility in
Datalog is a suÆcient condition for tractability of a query.

If B is a �nite relational structure and A is a class of
structures, then we write :CSP(A;B) for the complement
of CSP(A;B), that is, the class of structures A such that
there is no homomorphism h : A ! B. Feder and Vardi
[21] provided a unifying explanation for the tractability of
many non-uniform CSP(B) problems by showing that the
complement of each of these problems is expressible in Dat-
alog. Kolaitis and Vardi [39] then showed how Datalog also
provides a unifying explanation for the uniform tractability
of constraint-satisfaction problems.

Note that, in general, non-uniform tractability results
do not uniformize. Thus, tractability results for each prob-
lem in a collection of non-uniform CSP(B) problems do not
necessarily yield a tractable case of the uniform constraint
satisfaction problem (or of the conjunctive query contain-
ment problem). The reason is that both structuresA and B
are part of the input to the constraint satisfaction problem,
and the running times of the polynomial-time algorithms for
CSP(B) may very well be exponential in the size of B.

For every positive integer k, let k-Datalog be the col-
lection of all Datalog programs in which the body of every
rule has at most k distinct variables and also the head of
every rule has at most k variables (the variables of the body
may be di�erent from the variables of the head). For exam-
ple, the query Non-2-Colorability is expressible in 4-Datalog,
since it is de�nable by the goal predicate Q of the following
Datalog program, which asserts that a cycle of odd length

exists:

P (X;Y ) : � E(X;Y )

P (X;Y ) : � P (X;Z); E(Z;W ); E(W;Y )

Q : � P (X;X):

It is well known that Datalog can be viewed as a frag-
ment of least �xed-point logic LFP (see [12, 2]). In turn,
on the class of all �nite structures LFP is subsumed by the
�nite-variable in�nitary logic L!1! =

S
k
Lk1!, where L

k
1!

is the in�nitary logic with arbitrary disjunctions and con-
junctions, but with at most k distinct variables (see [37]).
Here we are interested in fragments of Lk1! and L!1! that
are suitable for the study of Datalog. For every k � 1, let
9Lk1! be the existential positive fragment of L!1! with k
variables, that is, the collection of all formulas that have
at most k distinct variables and are obtained from atomic
formulas using in�nitary disjunction, in�nitary conjunction,
and existential quanti�cation only.

Theorem 4.1: [39] Let k be a positive integer. Every k-

Datalog query over �nite structures is expressible in 9Lk1!.
Thus, k-Datalog � 9Lk1!.

Next, we describe certain combinatorial games that will
play an important role in the sequel. Let A and B be two
relational structures over a common relational vocabulary
�. The existential k-pebble game on A and B is played
between two players, the Spoiler and the Duplicator. The
Spoiler places k pebbles (one at a time) on elements of A;
after each move of the Spoiler, the Duplicator responds by
placing a pebble on an element of B. Once all pebbles have
been placed, the Spoiler wins if one of the following two
conditions holds for the elements ai and bi, 1 � i � k, of
A and B that have been pebbled in the i-th move of the
Spoiler and the Duplicator:

1. the correspondence ai 7! bi, 1 � i � k, is not a map-
ping (that is to say, there exists i1 and i2 such that
i1 6= i2, ai1 = ai2 , and bi1 6= bi2);

2. the correspondence ai 7! bi, 1 � i � k, is a mapping,
but it is not a a homomorphism from the substructure
of A with domain fa1; : : : ; akg to the substructure of
B with domain fb1; : : : ; bkg.

If neither of the above two conditions holds, then the Spoiler
removes one or more pebbles and the game resumes. We
say that the Duplicator wins the existential k-pebble game
on A and B if he has a strategy that allows him to continue
playing \forever", that is, the Spoiler can never win a round
of the game. This is made formal by the following de�nition.

De�nition 4.2: Let k be a positive integer and letA and B
be two relational structures over the same vocabulary with
domains A and B respectively.

� A winning strategy for the Duplicator in the existen-
tial k-pebble game on A and B is a nonempty family
of k-partial homomorphisms (i.e., the domain of each
homomorphism has at most k elements) from A to B
and the family has the k-forth property, which means
that for every f 2 F with jf j < k and every a 2 A on
which f is unde�ned, there is a g 2 F that extends f
and is de�ned on a.
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� A con�guration for the existential k-pebble game on A
and B is a 2k-tuple a; b, where a and b are elements
of Ak and Bk respectively such that if ai = aj , then
bi = bj (i.e., the correspondence ai 7! bi, 1 � i � k,
is a partial function from A to B, which we denote by
ha;b).

� A winning con�guration for the Duplicator in the ex-
istential k-pebble game on A and B is a con�guration
a; b for this game such that ha;b is a member of some
winning strategy for the Duplicator in this game. We
denote byWk(A;B) the set of all such con�gurations.

The following results shows that expressibility in 9Lk1!

can be characterized in terms of the existential k-pebble
games.

Proposition 4.3: [38] Let k be a positive integer and Q
a k-ary query on a class C of �nite structures. Then the
following two statements are equivalent:

1. Q is expressible in 9Lk1! on C.

2. If A, B are two structures in C, (a; b) 2 Wk(A;B),

and A j= Q(a), then B j= Q(b).

Corollary 4.4: Let k be a positive integer and Q a Boolean
query on a class C of �nite structures. Then the following
two statements are equivalent:

1. Q is expressible in 9Lk1! on C.

2. If A and B are two structures in C such that A j= Q
and the Duplicator wins the existential k-pebble game
on A and B, then B j= Q.

Let �1 and �2 be two disjoint copies of the vocabu-
lary �, that is, for each relation symbol R of � and for
i = 1; 2, the vocabulary �i contains a relation symbol Ri of
the same arity as R. We write �1 + �2 for the vocabulary
�1[�2[fD1; D2g, where D1 and D2 are two new unary rela-
tion symbols. Using the vocabulary �1+�2, we can encode a
pair (A;B) of two �-structuresA and B by a single �1+�2-
structure A+B de�ned as follows: the domain of A+B is
the union of the domains of A and B, the interpretation of
D1 (respectively, D2) is the domain of A (respectively, B),
and the interpretation of each relation symbol R1 (respec-
tively, R2) is the interpretation of the relation symbol R on
A (respectively, on B). This encoding makes it possible to
formally view queries on pairs of �-structures as queries on
single �1 + �2-structures.

The next result concerns the computational and descrip-
tive complexity of existential k-pebble games.

Theorem 4.5: [39] Let � be a relational vocabulary and let
k be a positive integer.

1. There is a positive �rst-order formula '(x; y; S), where
x and y are k-tuples of variables, over the vocabulary
�1+�2 such that the complement of its least �xpoint on
a pair A+B of structures de�nes the set Wk(A;B).

2. There is a sentence  of least �xed-point logic LFP
over the vocabulary �1 + �2 that expresses the query:
\Given two �-structures A and B, does the Spoiler win
the existential k-pebble on A and B?". As a result,
there is a polynomial-time algorithm such that, given
two �nite �-structures A and B, it determines whether
the Spoiler wins the existential k-pebble game onA and
B.

3. For every �nite �-structure B, there is a k-Datalog
program �B that expresses the query \Given a �-structure
A, does the Spoiler win the existential k-pebble game
on A and B?".

The next theorem establishes a connection between ex-
pressibility of :CSP(A;B) in k-Datalog and existential k-
pebble games. (A closely related, but somewhat less precise,
such connection was established in [21]).

Theorem 4.6: [39] Let k be a positive integer, B a �nite
relational structure, and A a class of �nite relational struc-
tures such that B 2 A. Then the following statements are
equivalent.

1. :CSP(A;B) is expressible in k-Datalog on A.

2. :CSP(A;B) is expressible in 9Lk1! on A.

3. :CSP(A;B) = fB 2 A : The Spoiler wins the
existential k-pebble game on A and Bg.

By combining Theorems 4.5 and 4.6, we obtain the fol-
lowing uniform tractability result for classes of constraint
satisfaction problems expressible in Datalog.

Theorem 4.7: [39] Let k be a positive integer, A a class of
�nite relational structures, and

B = fB 2 A : :CSP(A;B) is expressible in k-Datalogg:

Then the uniform constraint satisfaction problem CSP(A;B)
is solvable in polynomial time. Moreover, the running time
of the algorithm is O(n2k), where n is the maximum of the
sizes of the input structures A and B.

We note that it is an open problem whether the class fB :
:CSP(A;B) is expressible in k �Datalogg is recursive.

In the next section, we take a closer look at the connec-
tion between constraint satisfaction, games, and Datalog.

5 Datalog and Consistency

One of the most fruitful approaches to coping with the in-
tractability of constraint satisfaction has been the intro-
duction and use of various consistency concepts that make
explicit additional constraints implied by the original con-
straints. The connection between consistency properties and
tractability was �rst described in [23, 24]. In a similar vein,
the relationship between local consistency and global consis-
tency is investigated in [17, 54, 55]. Intuitively, local con-
sistency means that any partial solution on a set of vari-
ables can be extended to a partial solution containing an
additional variable, whereas global consistency means that
any partial solution can be extended to a global solution.
Note that if the inputs are such that local consistency im-
plies global consistency, then there is a polynomial-time al-
gorithm for constraint satisfaction; moreover, in this case a
solution can be constructed via a backtrack-free search. We
now describe this approach from the Datalog perspective.

The crucial insight is that the key concept of strong k-
consistency [17] is equivalent to a property of winning strate-
gies for the Duplicator in the existential k-pebble game.
Speci�cally, an instance of a constraint-satisfaction prob-
lem is strongly k-consistent if and only if the family of all k-
partial homomorphims f is a winning strategy for the Dupli-
cator in the existential k-pebble game on the two relational
structures that represent the given instance. The connection
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between pebble games and consistency properties, however,
is deeper than just a mere reformulation of the concept of
strong k-consistency. Indeed, as mentioned earlier, consis-
tency properties underly the process of making explicit new
constraints that are implied be the original constraints. A
key technical step in this approach is the procedure known
as \establishing strong k-consistency", which propagates the
original constraints, adds implied constraints, and trans-
forms a given instance of a constraint satisfaction problem to
a stronly k-consistent instance with the same solution space
[15, 17]. In fact, strong k-consistency can be established
if and only if the Duplicator wins the existential k-pebble
game. Moreover, whenever strong k-consistency can be es-
tablished, one method for doing this is to �rst compute the
largest winning strategy for the Duplicator in the existential
k-pebble game and then modify the original problem by aug-
menting it with the constraints expressed by the largest win-
ning strategy; this method gives rise to the least constrained
instance that establishes strong k-consistency and, in addi-
tion, satis�es a natural coherence property. By combining
this result with known results concerning the de�nability of
the largest winning strategy, it follows that the algorithm for
establishing strong k-consistency in this way (with k �xed) is
actually expressible in least �xed-point logic; this strength-
ens the fact that strong k-consistency can be established in
polynomial time, when k is �xed. If we consider non-uniform
constraint satisfaction, it follows that for every relational
structure B, the complement of CSP(B) is expressible by a
Datalog program with k variables if and only if CSP(B) co-
incides with the collection of all relational structures A such
that establishing strong k-consistency on A and B implies
that there is a homomorphism from A to B.

We start the formal treatment with the following obser-
vation.

Proposition 5.1: [40] If F and F 0 are two winning strate-
gies for the Duplicator in the existential k-pebble game on
two structures A and B, then also the union F [ F 0 is a
winning strategy for the Duplicator. Hence, there is a largest
winning strategy for the Duplicator in the existential k-pebble
game, namely the union of all winning strategies, which is
precisely Hk(A;B) = fha;b : (a; b) 2 W

k(A;B)g.

We now recall the concepts of i-consistency and strong
k-consistency.

De�nition 5.2: Let P = (V;D; C) be a CSP instance. P is
i-consistent if for every i�1 variables v1; : : : ; vi�1, for every
partial solution on these variables, and for every variable
vi 62 fv1; : : : ; vi�1g, there is a partial solution on the vari-
ables v1; : : : ; vi�1; vi extending the given partial solution on
the variables v1; : : : ; vi�1. P is strongly k-consistent if it is
i-consistent for every i � k.

A key insight is that these concepts can be naturally recast
in terms of existential pebble games.

Proposition 5.3: [40] Let P be a CSP instance, and let
(AP ;BP) be the associated homomorphism instance. P is
i-consistent if and only if the family of all partial homomor-
phisms from AP to BP with i� 1 elements in their domain
has the i-forth property. P is strongly k-consistent if and
only if the family of all k-partial homomorphisms from AP

to BP is a winning strategy for the Duplicator in the exis-
tential k-pebble game on AP and BP.

Let us now recall the concept of establishing strong k-
consistency , as de�ned, for instance, in [15, 17]. This con-
cept has been de�ned rather informally in the literature to

mean that, given an instance P of CSP, we associate an in-
stance P 0 that has the following properties: (1) P 0 has the
same set of variables and the same set of values as P (2)
P 0 is strongly k-consistent; (3) P 0 is more constrained than
P; and (4) P and P 0 have the same space of solutions. The
next de�nition formalizes the above concept in the context
of the homomorphism problem.

De�nition 5.4: Let A and B be two relational structures
over a k-ary vocabulary � (i.e., every relation symbol in �
has arity at most k). Establishing strong k-consistency for
A and B means that we associate two relational structures
A0 and B0 with the following properties:

1. A0 and B0 are structures over some k-ary vocabulary
�0 (in general, di�erent than �); moreover, the domain
of A0 is the domain A of A, and the domain of B0 is
the domain B of B.

2. CSP(A0;B0) is strongly k-consistent.

3. if h is a k-partial homomorphism from A0 to B0, then
h is a k-partial homomorphism from A to B.

4. If h is a function from A to B, then h is a homomor-
phism fromA to B if and only if h is a homomorphism
from A0 to B0.

If the structures A0 and B0 have the above properties, then
we say that A0 and B0 establish strong k-consistency for A
and B.

An instance P of CSP is coherent if every constraint
(t; R) of P completely determines all constraints (u;Q) in
which all variables occurring in u are among the variables
of t. We formalize this concept as follows.

De�nition 5.5: An instance A;B of the homomorphism
problem is coherent if its associated CSP instance CSP(A;B)
has the following property: for every constraint (a;R) of

CSP(A;B) and every tuple b 2 R, the mapping ha;b is well

de�ned and is a partial homomorphism from A to B.

Note that a CSP instance can be made coherent by polynomial-
time constraint propagation.

The main result of this section is that strong k-consistency
can be established precisely when the Duplicator wins the
existential k-pebble game. Moreover, one method for estab-
lishing strong k-consistency is to �rst compute the largest
winning strategy for the Duplicator in this game and then
generate an instance of the constraint-satisfaction problem
consisting of all the constraints embodied in the largest win-
ning strategy. Furthermore, this method gives rise to the
largest coherent instance that establishes strong k-consistency
(and, hence, the least constrained such instance).

Theorem 5.6: [40] Let k be a positive integer, let � be a k-
ary vocabulary, and let A and B be two relational structures
over � with domains A and B, respectively. It is possible
to establish strong k-consistency for A and B if and only if
Wk(A;B) 6= ;. Furthermore, if Wk(A;B) 6= ;, then the
following sequence of steps gives rise to two structures A0

and B0 that establish strong k-consistency for A and B:

1. Compute the set Wk(A;B).

2. For every i � k and for every i-tuple a 2 Ai, form the
set Ra = fb 2 Bi : (a; b) 2 Wk(A;B)g.
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3. Form the CSP instance P with A as the set of vari-
ables, B as the set of values, and f(a; Ra) : a 2 [

k
i=1A

ig
as the collection of constraints.

4. Let (A0, B0) be the homomorphism instance of P.

In addition, the structures A0 and B0 obtained above con-
stitute the largest coherent instance establishing strong k-
consistency for A and B, that is, if (A00;B00) is another
such coherent instance, then for every constraint (a;R) of
CSP(A00;B00), we have that R � Ra.

The key step in the procedure described in Theorem 5.6
is the �rst step, in which the set Wk(A;B) is computed.

The other steps simply \re-format" Wk(A;B). From Theo-
rem 4.5 it follows that we can establish strong k-consistency
by computing the �xed-point of a monotone �rst-order for-
mula. We can now relate the concept of strong k-consistency
to the results in [21] regarding Datalog and non-uniform
CSP.

Theorem 5.7: [40] Let B be a relational structure over a
vocabulary �. :CSP(B) is expressible in k-Datalog i� for
every structure A over �, establishing strong k-consistency
for A;B implies that there is a homomorphism from A to
B.

6 Bounded Treewidth and Constraint Satisfaction

Up to this point, we found tractable cases of the uniform
constraint satisfaction problem CSP(A;B) by imposing re-
strictions on the class B. In this section, we exhibit tractable
cases of CSP(A;B) that are obtained by imposing restric-
tions on the class A. For this, we consider the concept of
treewidth of a relational structure; this concept was intro-
duced by Feder and Vardi [21] and generalizes the concept
of treewidth of a graph (see [56, 5]).

A tree decomposition of a �nite relational structure A is
a labeled tree T such that the following conditions hold:

1. every node of T is labeled by a non-empty subset of
the domain V of A,

2. for every relation R of A and every tuple (a1; : : : ; an) in
R, there is a node of T whose label contains fa1; : : : ; ang,

3. for every a 2 V , the set of nodes X of T whose labels
include a forms a subtree of T .

The width of a tree decomposition T is the maximum cardi-
nality of a label of a node in T minus 1. Finally, we say that
a structure A is of treewidth k if k is the smallest positive
integer such that A has a tree decomposition of width k.

For every k � 1, let A(k) be the class of all �nite re-
lational structures of treewidth k. Bodlaender [5] showed
that, for every k � 1, there is a linear-time algorithm that
tests whether a given graph is of treewidth k. It follows
that, for every k � 1, there is a polynomial-time algorithm
that tests whether a given �nite relational structure is of
treewidth k; in other words, each class A(k) is recognizable
in polynomial time.

It has been shown in [25] that a uniform constraint-
satisfaction problem CSP(A(k);B) is tractable, independetly
of B (see also [19]). Here we describe a proof of this result
via a connection with �rst-order queries with a bounded
number of distinct variables.

Let A and B be two �nite relational structure. Recall
that by Proposition 2.3, the existence of a homomorphism

h : A! B is equivalent to whether 'A(B) is true, where 'A
is the Boolean conjunctive query whose body consist of the
conjunction of all facts inA. Consider the fragment 9FO^;+
of �rst-order logic, which allows no negative formulas, no
disjunctions, and no universal quanti�ers. It is easy to see
that fragment has the same expressive power as conjunctive
queries. It turns out that the fragment 9FOk+1

^;+ of 9FO^;+,
where we allow at most k+1 individual variables in formulas,
can express precisely the queries 'A, where A is a structure
of treewidth k.

Proposition 6.1: [25] Let A be a �nite relational structure.

Then A has treewidth k i� 'A is expressible in 9FOk+1
^;+.

We can now derive the main result of this section.

Theorem 6.2: [39] Let k be a positive integer, A(k) the
class of �nite relational structures of treewidth k, and F the
class of all �nite relational structures. Then the uniform
constraint satisfaction problem CSP(A(k);F) is solvable in
polynomial time.

Proof: We asserted in Proposition 6.1 that if A is a �-
nite relational structure of treewidth k, then 'A is equiv-
alent to an 9FOk+1

^;+ formula. In fact, the formulas can be
constructed eÆciently from parse trees, which can be con-
structed eÆciently from tree decompositions of structures of
bounded treewdith [39]. Thus, a 9FOk+1

^;+ formula equivalent
to 'A can be constructed in time polynomial in the size of
A. Thus, in this case, checking the existence of a homomor-
phism h : A ! B reduces to the evaluation of a 9FOk+1

^;+

query on the structure B. As shown in [58], 9FOk+1 has
polynomial-time combined complexity, which implies that
CSP(A(k);F) is solvable in polynomial time.

A precise complexity analysis of CSP(A(k);F) is provided
in [28], where it is shown that the problem is LOGFCL-
complete (LOGCFL is the class of decision problems that are
logspace-reducible to a context-free language). Note that, in
contrast, the combined complexity of evaluating queries in
FOk (the k-variable fragment of �rst-order logic) is PTIME-
complete [58].

The study of the impact of the \topology" of a conjunc-
tive queries on the complexity of their evaluation dates to
the study of the complexity of evaluating acyclic joins [45].
The connection between acyclic joins and acyclic constraints
was pointed out in [32]. This is still an active research
area. Chekuri and Ramajaran [14] showed that the uni-
form constraint satisfaction problem CSP(Q(k);F) is solv-
able in polynomial time, where Q(k) is the class of struc-
tures of querywidth k. They also showed that the incidence
treewidth of a structure A provides a strict upper bound for
its query width by showing that a tree decomposition of the
incidence graph is also what they called query decomposi-
tion. (Note, however, that the property of having treewidth
k can be tested in linear time [5], while the property of hav-
ing querywidth 4 is NP-complete [30].) Gottlob, Leone, and
Scarcello [30] de�ne another notion of width, called hypertree
width. They showed that the querywidth of a structure A
provides a strict upper bound for the hypertree width of A,
but that the class H(k) of structures of hypertree width at
most k is polynomially recognizable, and that CSP(H(k);F)
is tractable. For further discussion on the relative merit of
various notions of \width", see [29]. At this point, hypertree
width seems to be the most powerful way to obtain tractabil-
ity results for constraint satisfaction using the \topology" of
the input instance.
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7 Constraint Satisfaction and View-based Query Process-
ing

Several recent papers in the literature show that the prob-
lem of view-based query processing [53, 1] is relevant in
many aspects of database management, including including
query optimization, data warehousing, data integration, and
query answering with incomplete information. Informally
speaking, the problem requires to answer a query posed to
a database only on the basis of the information on a set of
views, which are again queries over the same database.

There are two approaches to view-based query process-
ing, called query rewriting and query answering, respec-
tively. In the former approach, we are given a query Q
and a set of view de�nitions, and the goal is to reformulate
the query into an expression that refers only to the views,
and provides the answer to Q. Typically, the rewriting is
expressed in the same language used for both the query and
the views. In the latter approach, besides Q and the view
de�nitions, we are also given the extensions of the views.
The goal is to compute the set of tuples that are implied by
these extensions.

In the last years a large number of results have been re-
ported for both problems. Query rewriting has been studied
under di�erent assumptions on the form of the queries and
views, cf. [43, 48, 53]. A comprehensive framework for view-
based query answering, as well as several interesting results,
are presented in [1, 31]. In [8, 9, 11] view-based query pro-
cessing has been studied for the case of regular-path queries
(RPQs).

We consider a setting in which databases are expressed
in terms of edge-labeled graphs, and queries ask for pairs of
nodes connected by a speci�ed path. This setting is typical
in semistructured data, where all data models share the char-
acteristic that data are organized in a labeled graph, where
the nodes represent objects, and the edges represent links
between objects [7]. Semistructured data models and have
been introduced with the aim of capturing data on the Web,
digital libraries, and the like. The main diÆculty arising in
this context is that languages for querying semistructured
data enable expressing RPQs [3, 6, 22]. An RPQ asks for
all pairs of nodes in the database connected by a path con-
forming to a regular expression, and therefore may contain a
restricted form of recursion. Note that when the query con-
tains unrestricted recursion, both view-based query rewrit-
ing and view-based query answering become undecidable,
even when the views are not recursive [20].

In this section we study the relationship between view-
based query rewriting and view-based query answering. We
de�ne a rewriting of a query with respect to a set of views as
a function that, given the extensions of the views, returns a
set of pairs of objects that is contained in the answer set of
the query with respect to the views. We call the rewriting
that returns exactly such set the perfect rewriting of the
query wrt the views. Thus, view-based query answering, and
evaluating the perfect rewriting over given view extensions,
are equivalent problems.

Typically, one is interested in queries that are PTIME
functions (in data complexity). Hence, we would like rewrit-
ings to be PTIME as well. From this the relationship be-
tween view-based query rewriting and view-based query an-
swering, and by the results in [9], it follows that perfect
rewritings are not PTIME in general. Hence, the problem
arises of characterizing which instances of query rewriting
admit a perfect rewriting that is PTIME. Unfortuanetly,
this question seems to be quite hard, as it is intimately re-

lated to the attempt to characterize tractable non-uniform
constraint-satisfaction problems.

Formally, we consider a database as an edge labeled graph
DB = (D; E), where D is a set of nodes (called the domain)
that represent the objects of DB , and E = fre j e 2 �g is
a set of binary relations corresponding to the edges of the
graph labeled by elements from an alphabet �. Such edges
represent links between objects labeled by attribute names.
We denote an edge from node x to node y labeled by r, i.e.,

(x; y) 2 r, with x
r
�! y.

As query mechanism we consider regular-path queries
(RPQs), which are the basic constituents of full-
edged query
languages over semistructured data [7]. Such queries denote
all the paths corresponding to words of a speci�ed regular
language over the alphabet �, and hence are expressed by
means of regular expressions or �nite automata. The an-
swer set of an RPQ Q over a database DB is ans(Q ;DB) =

f(x ; y) j there is a path x
r1�! � � �

rn�! y in DB s.t. r1 � � � rn 2
L(Q)g, where L(Q) is the regular language de�ned by Q.

Next we introduce the problem of view-based query an-
swering [1, 31, 42]. Consider a database that is accessible
only through a set V = fV1; : : : ; Vkg of views, and suppose
we want to answer an RPQ only on the basis of our knowl-
edge on the views. Speci�cally, associated to each view Vi
we have:

� its de�nition def (Vi) in terms of an RPQ over the
alphabet �;

� information about its extension in terms of a set ext(Vi)
of pairs of objects2.

We use def (V) to denote (def (V1 ); : : : ; def (Vk)), ext(V) to
denote (ext(V1 ); : : : ; ext(Vk)), and DV to denote the set of
objects appearing in ext(V).

We say that a database DB is consistent with the views V
if ext(Vi) � ans(def (Vi);DB), for each Vi 2 V. The certain
answer set of Q wrt the views V is the set cert(Q ;V) �
DV �DV such that (c; d) 2 cert(Q ;V) if and only if (c; d) 2
ans(Q ;DB), for every DB that is consistent with V.

The problem of view-based query answering is the follow-
ing: Given

� a set V of views, their de�nitions def (V), and exten-
sions ext(V),

� a query Q,

� a pair of objects c; d 2 DV ,

decide whether (c; d) 2 cert(Q ;V).
The complexity of the problem can be measured in three

di�erent ways [57]:

� Data complexity : as a function of the size of ext(V).

� Expression complexity : as a function of the size of Q
and of the expressions in def (V).

� Combined complexity : as a function of the size of ext(V),
Q, and def (V).

In [9] the following complexity characterization of view-
based query answering is given.

Theorem 7.1: [9] View-based query answering for RPQs is
co-NP-complete in data complexity and PSPACE-complete
in expression and combined complexity.

2We assume that objects are represented by constants, and we
adopt the unique name assumption [49], i.e., di�erent constants de-
note di�erent objects and therefore di�erent nodes.
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The de�nition of view-based query answering given above
re
ects two implicit assumptions: (i) The views are sound,
i.e., from the fact that a pair (a; b) is in ext(Vi) we can con-
clude that (a; b) is in ans(def (Vi);DB), but not vice-versa.
(ii) The domain is open, i.e., a database consistent with the
views may contain additional objects that do not appear in
the view extensions. Other assumptions about the accurate-
ness of the knowledge on the objects of the database and the
pairs satisfying the views, have been studied [1, 31, 9].

We now describe the relationship between view-based
query answering and query rewriting. An instance of query
rewriting is given by a query Q and a set V of views with
de�nitions def (V). One then tries to generate a new query
Q0 over the symbols in V such that Q0 approximates the an-
swer to Q, when Vi is interpreted as ext(Vi), for each Vi 2 V.
Formally, we require ans(Q 0; ext(V)) � cert(Q ;V). In the
context of RPQs, Q and def (V1 ); : : : ; def (Vk ) are regular
expressions over the alphabet �, while Q0 is a regular ex-
pression over the alphabet V.

A solution to the problem of RPQ rewriting is described
in [8], where an algorithm is given to compute the maximal
RPQ rewriting wrt to all rewritings that are RPQs. Never-
theless, such rewriting is in general not maximal if we allow
for rewritings that belong to a larger class of queries. From
a more abstract point of view, we can de�ne a rewriting
of Q wrt V as a function that, given ext(V), returns a set
of pairs of objects that is contained in the certain answer
set cert (Q ;V). We call the rewriting that returns exactly
cert(Q ;V) the perfect rewriting of Q wrt V. The problem of
view-based query rewriting is the one of computing a rewrit-
ing of Q wrt V. The problem comes in di�erent forms, de-
pending of the properties that we require for the rewriting.
In particular:

� It is sometimes interesting to consider rewritings that
are expressible in a certain query language, e.g., Dat-
alog.

� It is also interesting to consider rewritings belonging to
a certain data complexity class, for example, polyno-
mial time. A rewriting f belongs to a data complexity
class C if the problem of deciding whether a pair of ob-
jects (c; d) is in f(ext(V)) is in the class C, where the
complexity of the problem is measured with respect to
the size of ext(V).

� Finally, it is worth computing rewritings that are max-
imal in a certain class. A rewriting f of Q wrt V is
maximal in a class C if, for every rewriting g 2 C of Q
wrt V, we have that g(ext(V)) � f (ext(V)) for every
ext(V).

An algorithm for view-based query answering is an al-
gorithm that takes as input a query, a set of view de�ni-
tions, and a set of view extensions, and determines whether
a given pair of objects is in the answer set of the query for
every database that is consistent with the views. Hence, if
we �x the query and the view de�nitions, we can consider
every algorithm for view-based query answering as an algo-
rithm that computes whether a given pair of objects is in
the perfect rewriting. This observation establishes a tight
connection between view-based query answering and query
rewriting.

Now, considering that in the present setting view-based
query answering is co-NP-complete in data complexity (see
Theorem 7.1), we obtain the following result.

Theorem 7.2: [9] The perfect rewriting of an RPQ wrt
RPQ views is a co-NP function. There is an RPQ Q and a

set V of RPQ views such that the rewriting of Q wrt V is a
co-NP-complete function.

Typically, one is interested in queries that are PTIME
functions. Hence, we would like rewritings to be PTIME
as well. Unfortunately, by Theorem 7.2, perfect rewritings
are not PTIME in general (assuming PTIME 6=NPTIME).
Hence it would be interesting to characterize which instances
of query rewriting admit a perfect rewriting that is PTIME.
Note, however, that �nding such instances corresponds to
�nding those instances of view-based query answering that
are PTIME in data complexity. We now show that this is go-
ing to be diÆcult, by exhibiting a tight connection between
view-based query answering and constraint satisfaction.

We show �rst that every CSP is polynomially reducible
to view-based query answering.

Theorem 7.3: [10] Let B be a directed graph. There exists
an RPQ Q and RPQ views V with de�nitions def (V) such
that the following holds: for every directed graph A, there
are extensions ext(V) and objects c, d such that (c; d) 62
cert(Q ;V) if and only if CSP(A;B) is solvable.

The reduction in the proof of Theorem 7.3 is polynomial,
so we get the following corollary.

Corollary 7.4: [10] Every CSP over directed graphs is
polynomially reducible to view-based query answering.

We note that it is shown in [21] that constraint-satisfaction
problems over directed graphs are just as hard as general
constraint-satisfaction problems.

We show next a reduction from view-based query an-
swering to CSP. To this end, given a query Q and a set V
of views with de�nitions def (V), we call the constraint tem-
plate of Q wrt V the structure B de�ned as follows. The
vocabulary of B is V [fUc; Udg, where symbols in V denote
binary predicates, and Uc and Ud denote unary predicates.
Let AQ = (�; S; S0; �; F ) be a (nondeterministic) automaton
for Q. The structure B = (B;VB) is given by:

� The domain B of B is 2S ;

� (�1; �2) 2 Vi
B i� there exists a word w 2 L(def (Vi))

such that �(�1; w) � �2;

� � 2 Uc
B i� S0 � �, and � 2 Ud

B i� � \ F = ;.

Theorem 7.5: [10] Let Q be an RPQ and V a set of RPQ
views with de�nitions def (V). Then the problem of verifying,
given ext(V) and objects c, d, whether (c; d) 62 cert(Q ;V) is
polynomially reducible to CSP(B), where B is the constraint
template of Q wrt V.

Corollary 7.6: [10] View-based query answering is polyno-
mially reducible to CSP.

Theorems 7.3 and 7.5 exhibit a very strong connection
between CSP and view-based query answering. In particu-
lar, since in the reduction in Theorem 7.3, the query and the
view de�nitions depend only on graph B, and only the view
extensions depend on graph A, the theorem shows that non-
uniform CSP can be polynomially reduced to query rewrit-
ing. As a consequence, if we had a method to decide whether
an instance of query rewriting admits a perfect rewriting
that is PTIME, we would then be able to precisely character-
ize those instances of non-uniform CSP that are in PTIME.
As discussed above, this is a longstanding open problem that
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appears to be diÆcult to solve. On the other hand, how-
ever, it is shown in [10] how the connection between CSP
and Datalog described in Section 4 can be used to derive
(non-perfect) Datalog rewritings for RPQs with respect to
RPQ views.
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