
Tigris: Architecture and Algorithms for 3D Perception
in Point Clouds

Tiancheng Xu∗
txu17@ur.rochester.edu

Boyuan Tian∗
btian2@ur.rochester.edu

Yuhao Zhu
yzhu@rochester.edu

Department of Computer Science
University of Rochester

http://horizon-lab.org

Abstract

Machine perception applications are increasingly moving toward
manipulating and processing 3D point cloud. This paper focuses on
point cloud registration, a key primitive of 3D data processingwidely
used in high-level tasks such as odometry, simultaneous localization
and mapping, and 3D reconstruction. As these applications are
routinely deployed in energy-constrained environments, real-time
and energy-efficient point cloud registration is critical.

We present Tigris, an algorithm-architecture co-designed sys-
tem specialized for point cloud registration. Through an extensive
exploration of the registration pipeline design space, we find that,
while different design points make vastly different trade-offs be-
tween accuracy and performance, KD-tree search is a common
performance bottleneck, and thus is an ideal candidate for architec-
tural specialization. While KD-tree search is inherently sequential,
we propose an acceleration-amenable data structure and search
algorithm that exposes different forms of parallelism of KD-tree
search in the context of point cloud registration. The co-designed
accelerator systematically exploits the parallelism while incorpo-
rating a set of architectural techniques that further improve the
accelerator efficiency. Overall, Tigris achieves 77.2× speedup and
7.4× power reduction in KD-tree search over an RTX 2080 Ti GPU,
which translates to a 41.7% registration performance improvements
and 3.0× power reduction.

CCS Concepts

•Computer systems organization→ Special purpose systems;
• Human-centered computing→ Mixed / augmented reality.

Keywords

Perception, Point Cloud, Registration, KD-Tree, Nearest Neighbor
Search, Architecture-Algorithm Co-Design

∗Tiancheng Xu and Boyuan Tian are co-primary authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358259

Artifacts

Configurable Point Cloud Pipeline: https://github.com/horizon-
research/pointcloud-pipeline

ACM Reference Format:

Tiancheng Xu, Boyuan Tian, and Yuhao Zhu. 2019. Tigris: Architecture and
Algorithms for 3D Perception in Point Clouds. In The 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-52), October 12–16,
2019, Columbus, OH, USA. ACM, New York, NY, USA, 14 pages. https://
doi.org/10.1145/3352460.3358259

1 Introduction

Enabling machines to perceive, process, and understand visual data
plays a vital role toward the promise of an intelligent future. While
traditional machine perception focuses mostly on processing 2D
visual data such as images and videos, 3D data – represented using
point cloud – that provides a three-dimensional measure of object
shapes has become increasingly important. The proliferation of 3D
data acquisition systems such as LiDAR, time-of-flight cameras, and
structured-light scanners stimulates the development of point cloud
processing algorithms. As a result, point cloud-based algorithms
have become central to many application domains ranging from
robotics navigation [70], Augmented and Virtual reality [63], to 3D
reconstruction [66].

(a) Data frame A (b) Data frame B (c) Aligned frame

Fig. 1: Illustration of point cloud registration. Two point

cloud frames are aligned to form a unified frame.

The single most important building block of 3D perception-
enabled applications is registration, the process of aligning two
frames of point cloud data to form a globally consistent view of the
scene. Fig. 1 illustrates the registration of two point cloud frames.
Augmented Reality applications align a sequence of frames to form
a complete 3D model of the environment so as to place virtual ob-
jects. Similarly, a mobile robot estimates its real-time position and
orientation (a.k.a., odometry) by aligning two consecutive frames,
which provides the translational and rotational transformations. As
these applications are increasingly deployed in embedded systems

ar
X

iv
:1

91
1.

07
84

1v
3

 [
cs

.C
V

]
 2

1
N

ov
 2

01
9

https://doi.org/10.1145/3352460.3358259
https://github.com/horizon-research/pointcloud-pipeline
https://github.com/horizon-research/pointcloud-pipeline
https://doi.org/10.1145/3352460.3358259
https://doi.org/10.1145/3352460.3358259

MICRO-52, October 12–16, 2019, Columbus, OH, USA Tiancheng Xu, Boyuan Tian, Yuhao Zhu

with limited performance and power budgets, this paper takes a first
step toward enabling real-time, low-power 3D data registration.

We present Tigris, a software-hardware system specialized for
3D point cloud registration. Tigris achieves high efficiency not
only by the specialized datapaths and control logics that mitigate
common inefficiencies in general-purpose processors, but also by a
combination of acceleration techniques that exploit unique charac-
teristics of point cloud registration. In particular, Tigris identifies
and exploits different forms of parallelism, captures unique data
reuse patterns while reducing the overall compute demand. Criti-
cally, we enable these techniques by co-designing the data structure,
algorithm, and the accelerator architecture.

We start by understanding the performance characteristics of
point cloud registration and identifying the acceleration opportuni-
ties. The central challenge, however, is that point cloud registration
exposes a large design space with many parameters that are of-
ten collectively co-optimized given a particular design target. In
order to obtain general conclusions without overly specializing
for one particular design point, we first construct a configurable
registration pipeline, which let us perform a thorough design space
exploration. Surprisingly, although different design points differ sig-
nificantly in registration accuracy and compute-efficiency, KD-tree
search is the single most dominant kernel across all design points,
constituting over 50% of the registration time, and thus presents
itself as a lucrative specialization target.

KD-tree search, however, is inherently sequential due to the re-
cursive tree traversal. To enable effective hardware acceleration,
we propose a parallel KD-tree search algorithm to introduce fine-
grained parallelism that are amenable to hardware acceleration.
The algorithm builds on top of the two-stage KD-tree data struc-
ture, a variant of KD-tree that provides high degrees of parallelism
by balancing recursive search with brute-force search. However,
two-stage KD-tree necessarily introduces lots of redundant com-
putations in increasing parallelism. To mitigate the redundancies,
we observe that point cloud registration is resilient to impreci-
sions introduced in KD-tree search due to the noisy nature of point
cloud data. Our algorithm incorporates an approximate KD-tree
search procedure that reduces workload while presenting massive
parallelism to the hardware.

The new data structure and algorithm in conjunction uniquely
expose two forms of parallelism in KD-tree search: query-level
parallelism (QLP) and node-level parallelism (NLP). The key design
principle of the hardware accelerator is to exploit the two forms of
parallelism with proper architectural mechanisms. Specifically, the
accelerator incorporates parallel processing elements (PE) to exploit
the QLPwhile applying pipelining to exploit the NLPwithin a query.
While parallel PEs and pipelining are well-established techniques,
effectively applying them in KD-tree search requires us to design a
set of architectural optimizations that leverage compute and data
access patterns specific to KD-tree search.

We evaluate Tigris over a general-purpose system consisting of
an Intel Xeon Silver 4110 CPU and an Nvidia RTX 2080 Ti GPU. We
show that Tigris achieves 77.2× speedup and 7.4× power reduction
in KD-tree search compared to the GPU, which translates to 41.7%
speedup and 3.0× power reduction for the end-to-end registration.

To our best knowledge, this is the first paper focusing on archi-
tecture and system specializations for point cloud processing. In
summary, we make the following contributions:

• We identify that KD-tree search is inherently a performance
bottleneck in point cloud registration by carefully navigating
the algorithmic and parametric design space of registration.

• We demonstrate that point cloud registration is tolerant to
errors introduced in KD-tree search.

• We propose an acceleration-amenable KD-tree search algo-
rithm. Building on top of a novel two-stage KD-tree data
structure, the algorithm exposes massive parallelism to the
hardware while reducing the compute.

• We co-design an accelerator architecture with the search
algorithm. The accelerator incorporates a set of architec-
tural optimizations that are specific to KD-tree search to
effectively exploit different forms of parallelism.

The rest of the paper is organized as follows. Sec. 2 introduces
the necessary background of point cloud processing. Sec. 3 per-
forms extensive algorithmic design space exploration to identify
that KD-tree search is the performance bottleneck of point cloud
registration. Sec. 4 presents an acceleration-amenable KD-tree data
structure and search algorithm, and Sec. 5 describes the correspond-
ing Tigris accelerator architecture. Sec. 6 presents the experimental
methodology and evaluation results. Sec. 7 puts Tigris in the broad
context of related work, and Sec. 8 concludes the paper.

2 Background

This section first introduces point cloud data (Sec. 2.1). We then
describe point cloud registration, a key task in many application
domains that operate on point cloud data (Sec. 2.2).

2.1 Point Cloud Data

Point cloud is a collection of points in a given 3D Cartesian coordi-
nate system. Each point in the point cloud represents the < x ,y, z >
coordinates of a particular point in the 3D space. Point cloud di-
rectly preserves the 3D geometric information of a scene and the
spatial relationship between objects of interest, avoiding the need
to estimate such information from 2D images. The proliferation
of 3D sensors and the emerging interests in 3D geometry-based
applications such as robotics lead to massively increased use of 3D
data, of which point cloud is the de-facto representation [4].

Point cloud data is obtained through 3D sensors, ranging from
conventional stereo [41] and structured-light cameras [54] that
estimate the scene 3D geometry through computational methods
to active sensors such as LiDAR [58] that operate on the "time-of-
flight" principles [24]. While using different mechanisms, different
sensors eventually produce the same point cloud data structure.
Our paper focuses on the fundamental point cloud processing algo-
rithms, and is independent of how the point cloud data is obtained.

2.2 Point Cloud Registration

A key building block in virtually all point cloud-based applications
is registration, a process that finds the 4×4 transformation matrix
that aligns two point cloud frames to form a globally consistent
point cloud. More specifically, given a source point cloud frame
S and a target point cloud frame T, the goal of registration is to

Tigris: Architecture and Algorithms for 3D Perception in Point Clouds MICRO-52, October 12–16, 2019, Columbus, OH, USA

Point Cloud T

Point Cloud S

Key-point
Detection Key-Point

Correspondence
Estimation (KPCE)

Correspondence
Rejection

Normal
Estimation

Source

Raw-Point
Correspondence

Estimation (RPCE)
Final

Transformation
Error

Minimization

Target
Descriptor
Calculation

Key-point
Detection

Normal
Estimation

Descriptor
Calculation

Converged

Not Converged

Initial
Estimation

Initial Estimation Fine-Tuning

Fig. 2: The general point cloud registration pipeline, which consists of an initial estimation phase and a fine-tuning phase. The

pipeline exposes two kinds of design knobs for accuracy-performance trade-off analysis: algorithmic and parametric choices.

Shaded stages make heavy use of KD-tree search, the single-most dominant kernel in all design points.

Table 1: Algorithmic and parametric choices and of a general point cloud registration pipeline.

Initial Estimation Fine-Tuning

Stages

Normal
Estimation

Key-point
Detection

Descriptor
Calculation KPCE Rejection RPCE Transformation

Estimation

Algorithm

Choices

PlaneSVD[35]
AreaWeighted[35]

DNN[68]

SIFT[40, 59]
NARF[62]

HARRIS[27, 61]

FPFH[56]
SHOT[64]
3DSC[20]

- Thresholding
RANSAC[19]

Normal-shooting
Projection[10]

Error metric[55]
Solver[55]

Key

Parameters

Search radius Scale
Range Search radius Reciprocity Distance threshold

Ratio threshold
of neighbors
Reciprocity

Convergence
criteria

estimate a transformation matrix M, which transforms S to S′ in
a way that minimizes the Euclidean distance (i.e., error) between
S′ and T. S′ is transformed from S by applying the transformation
matrixM to every point X in S to a point X ′ in S′:

X
′
4×1 = MX4×1 =

[
R3×3 T3×1
01×3 1

]
4×4

X4×1 (1)

where X = [x ,y, z, 1]T and X
′
= [x ′

,y
′
, z

′
, 1]T are the homoge-

neous coordinates of X and X ′, respectively. The 4×4 transfor-
mation matrix M consists of a 3×3 rotation matrix R and a 3×1
translation matrix T, representing all six degrees of freedom.

Significance of Registration Point cloud registration is a key
primitive that finds itself in many application domains.

In many cases point cloud registration is the end-to-end ma-
chine perception applications such as odometry and mapping. For
instance, an autonomous navigation system could capture two
consecutive frames Ft and Ft+1 in time, and by registering Ft+1
against Ft and obtaining the transformation matrix, the navigation
system could estimate its own trajectory (rotation and translation)
over time, a process known as odometry or ego-motion estima-
tion [32, 77]. Similarly, registration is key to 3D reconstruction [66],
where a set of frames are aligned against one another and merged
together to form a global point cloud of the scene. In other cases
point cloud registration is part of the application pipeline to collab-
orate with other modalities such as camera (e.g., SLAM uses both
visual data and point cloud) [49, 77].

This paper focuses on improving the efficiency of the core regis-
tration operation while being independent of how the high-level
applications make use of the registration results.

3 Performance Characterizations

This section characterizes the performance of point cloud regis-
tration through a configurable registration pipeline design that
exposes a large accuracy-performance trade-off space (Sec. 3.1).

Through an exhaustive exploration of the design space covering
both algorithmic and parametric choices, we find that different
design points share the same performance bottleneck of KD-tree
search, which is thus an ideal acceleration candidate (Sec. 3.2).
We make the pipeline implementation publicly available at https:
//github.com/horizon-research/pointcloud-pipeline.

3.1 Point Cloud Registration Pipeline

Existing implementations of point cloud registration make different
trade-offs between accuracy and performance. Intuitively, achieving
a higher registration accuracy increases the workload, and vice
versa. Our goal in this paper, however, is not to overly specialize for
one particular implementation. Rather, we hope to derive general-
purpose solutions that benefit different design points.

In order to obtain generally applicable conclusions, a key obser-
vation is that different registration implementations, while making
different design decisions, all share a similar pipeline substrate. This
allows us to construct a general-purpose pipeline with configurable
knobs that cover different implementation instances. Critically, our
pipeline exposes two kinds of design knobs for tuning: algorithmic
choices and parametric choices within a particular algorithm.

At the high-level, our pipeline adopts a common two-phase
design consisting of an initial estimation phase and a fine-tuning
phase [31, 76]. The first phase performs an initial estimation of
the transformation matrix, which is then fine-tuned in the second
phase until the accuracy converges. The rationale behind the two-
phase design is that the fine-tuning phase usually uses an iterative
solver to minimize the global registration error; the solver could
easily be trapped at local minima if poorly initialized. A carefully
designed initial estimation phase would thus significantly improve
the efficiency and accuracy of fine-tuning. Fig. 2 illustrates the high-
level architecture of the pipeline, and Tbl. 1 shows the different
algorithmic and parametric knobs exposed by the pipeline.

The goal of the initial estimation phase is to calculate an initial
transformation matrix by matching a set of salient points from the

https://github.com/horizon-research/pointcloud-pipeline
https://github.com/horizon-research/pointcloud-pipeline

MICRO-52, October 12–16, 2019, Columbus, OH, USA Tiancheng Xu, Boyuan Tian, Yuhao Zhu

2.1 2.6 3.1 3.6
Translational Error (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
im

e

DP1

DP2DP4

DP5

DP7

DP6

(a) Translational error vs. time.

0.02 0.03 0.04 0.05
Rotational Error (°/m)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
im

e

DP8

DP4DP6
DP3DP2

(b) Rotational error vs. time.

Fig. 3: Quantifying the accuracy-performance tradeoff. We

annotate Pareto-optimal design points in both design spaces.

Execution time is normalized to 1500ms.

source point cloud to a set of salient points in the target cloud,
similar to image registration [78], but in the 3D space.

(1) Normal Estimation The front-end first calculates the sur-
face normal of all points. A point’s normal is a 3D vector
perpendicular to the tangent plane at the point. Normals are
important metadata that will be used in later stages to calcu-
late feature descriptors and to estimate correspondences.

(2) Key-Point Detection This stage selects key-points which
contains representative information, from both the target
and source point clouds. Operating on the key-points rather
than all the points improves the compute-efficiency of the
front-end. We explore different feature extraction algorithms
such as NARF [62] and SIFT [40, 59], as well as feature-
specific parameters such as the scale of SIFT feature and the
range of NARF feature.

(3) Feature Descriptor Calculation This stage computes the
feature descriptor of each key-point. A point’s feature de-
scriptor is a high-dimensional representation that encodes
neighborhood information of the point and therefore pro-
vides richer information for registration. Essentially, this
stage converts the original 3D point space to a high-dimensional
feature space. The dimension of the feature space depends
on the specific feature descriptor being used. We explore
different descriptors, including FPFH [56] and SHOT [64], as
well as key algorithmic parameters such as the search radius
when calculating the descriptors.

(4) Key-PointCorrespondenceEstimation (KPCE)This stage
establishes correspondences between the key-points in the
source and the target point cloud frames using feature de-
scriptors. Specifically, KPCE establishes the correspondence
between a point s in the source frame and a point t in the
target frame if t’s feature is the nearest neighbor of s’ fea-
ture in the feature space generated in the previous stage. We
explore whether or not reciprocal search is performed.

(5) Correspondence Rejection The final stage of the front-
end removes incorrect correspondences produced by the
previous stage, and generates a set of correct key-point cor-
respondences, from which the initial transformation matrix
M is estimated. We explore different correspondence rejec-
tion algorithms include the classic RANSAC algorithm [19]
and ones that simply threshold the distance.

DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP80.0
20.0
40.0
60.0
80.0

100.0

R
at

io
 (%

)

Normal Estimation
Key-point Detection
Descriptor Calculation

Error Minimization
Correspondence Rejection

RPCE
KPCE

(a) Distribution across the seven key stages (Fig. 2).

DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP80.0
20.0
40.0
60.0
80.0

100.0

R
at

io
 (%

)

KD-tree search KD-tree construction Other operations

(b) Distribution between KD-tree search and other operations.

Fig. 4: Time distribution of point cloud registration of the

eight Pareto-optimal design points (denoted as DPi) ob-

tained from the design spaces in Fig. 3a and Fig. 3b.

The initial transformation matrix M allows all points in the
source point cloud S to be transformed to form a new point cloud
S′. The fine-tuning phase then estimates the transformation matrix
between S′ and the target point cloud T, effectively refining the ini-
tial result. The fine-tuning phase uses the popular Iterative Closest
Point [9, 12] framework, iterating between two stages:

(1) Raw-PointCorrespondenceEstimation (RPCE)This stage
establishes correspondences between all points from the
source point cloud S′ and the target point cloud T. For every
point in S′, RPCE finds its nearest neighbor in T. Different
from KPCE, RPCE searches in the original 3D point space.

(2) Transformation Estimation This stage formulates an er-
ror measure between every pair of corresponding points
identified previously, and minimizes the error using an opti-
mization solver, which produces the transformation matrix
M′ between S′ and T, and transforms S′ into S′′. S′′ then
becomes the new source point cloud, and is fed back to the
RPCE stage. We explore different error formulations (e.g.,
mean square point-to-point [34] or point-to-plane error [12])
and different solvers including the Singular Value Decom-
position [25] and the Levenberg-Marquardt algorithm [45].
Another key parameter that we explore is the convergence
criteria, which determines the termination of ICP, and thus
impacts both the accuracy and compute time.

3.2 Performance Bottleneck Analysis

Design Space Exploration Using the configurable pipeline, this
section performs a design space exploration (DSE) to identify rep-
resentative design points, on which we then study the performance
bottlenecks. The design space is specified by the different algorith-
mic choices and parameter values described in Tbl. 1. We use the

Tigris: Architecture and Algorithms for 3D Perception in Point Clouds MICRO-52, October 12–16, 2019, Columbus, OH, USA

h

(a) Canonical KD-tree data structure.

htop
h

(b) Two-stage KD-tree data structure.

Fig. 5: Comparison between the canonical and the two-stageKD-tree data structures. Shadednodes are visited during the search

while the rest of the nodes are pruned. The top-tree in the two-staged data structure is exactly the same as the corresponding

portion in the classic data structure. Each leaf node in the top-tree organizes its children as an unordered set rather than a

sub-tree to enable exhaustive search. While exposing parallelism, the two-stage data structure requires visiting more nodes:

nine nodes as opposed to six nodes required by the classic data structure in this example.

widely-adopted KITTI dataset [22] and perform the experiments
on a Xeon 4110 processor (see Sec. 6.1 for detailed experimental
setup). Fig. 3a shows how different design points trade translation
error for execution time, and Fig. 3b shows the trade-off between
rotational error and execution time. The DSE results confirm the
vast trade-offs space exposed by our configurable pipeline. More im-
portantly, we are able to identify the Pareto-optimal frontier in each
design space as annotated both in Fig. 3a and Fig. 3b. To draw mean-
ingful conclusions, we now focus on analyzing the Pareto-optimal
design points from both design spaces.

Performance Bottleneck Our goal is to identify “universal”
performance bottlenecks that, if accelerated, would lead to speed
improvements on a wide range of design points rather than being
overly tied to a particular design point.

To that end, we first examine the per-stage performance of the
pipeline. Fig. 4a shows the registration time distribution across the
seven key stages as described in Fig. 2 for the eight Pareto-optimal
design points (DP). Normal Estimation, Descriptor Calculation, and
RPCE are three dominating stages, constituting to over 90% of
the total time. However, there is no single dominant stage that is
consistent across different design points. For instance, while the
Normal Estimation stage contributes to about 80% of the execution
time in DP8 and thus is an ideal acceleration target, it contributes to
less than 30% of the execution time in DP1 and DP2. The diversity of
stage-wise time distribution indicates that accelerating any single
stage would not yield a general solution.

Looking into the operations within each stage, however, we find
that Normal Estimation, Descriptor Calculation, and RPCE all make
heavy use of neighbor search. For instance, to calculate the surface
normal for a given point in the Normal Estimation stage, one must
identify the neighbors of the given point in order to form a surface,
with which the normal is calculated. Similarly, the very definition
of “correspondence” in the RPCE stage requires identifying the
nearest neighbor of a given point. In particular, KD-tree is arguably
the most efficient data structure that is widely used in neighbor
search, providing an average time complexity of O(logn) [8, 18].
The majority of the point cloud registration implementations use
KD-tree for neighbor search [26, 38, 60, 69]. We thus equate KD-tree
search with neighbor search in the rest of the paper.

As a result of the inherently algorithmic requirement of different
pipeline stages, KD-tree search is a key operation that dominates
the registration time across different DPs. Fig. 4b shows that the

KD-tree search operation consistently contributes to 50% - 85% of
the total time in all the design points. Accelerating KD-tree would
thus be a key performance optimization that is generally applicable
to different point cloud registration implementations.

4 Acceleration-Amenable KD-Tree Data

Structure and Algorithm

KD-tree search is inherently sequential as it requires tree traver-
sal [8]. To enable hardware acceleration, we propose a mechanism
that exposes massive parallelism in KD-tree search while reducing
the total compute – at the cost of negligible end-to-end accuracy
loss. The key is to co-design the KD-tree data structure with a
new approximate search algorithm. This section first describes a
parallelism-exposing KD-tree data structure (Sec. 4.1). We then
quantify the error-tolerating nature of KD-tree search (Sec. 4.2),
and describe our new search algorithm (Sec. 4.3).

4.1 Two-Stage KD-Tree Data Structure

We first briefly describe the classic KD-tree data structure and its
associated search algorithm. We then describe the two-stage KD-
tree data structure, which exposes higher degrees of parallelism
during search while introducing redundant work.

Canonical KD-Tree A KD-tree is a data structure that orga-
nizes points in a k-dimensional space in a binary search tree to
enable efficient search [8]. Each tree node stores a k-dimensional
point. The point on each non-leaf node implicitly generates a split-
ting hyperplane that divides the space into two half-spaces. Points
that lie in the left half-space are stored in the left sub-tree, and
points that lie in the right half-space are stored in the right sub-
tree. Essentially, each non-leaf node corresponds to a bounding box
in the k-dimensional space that encapsulates all the nodes in its
sub-tree. Usually the median point is used to generate the splitting
plane such that the resulting KD-tree is a balance tree.

Point cloud registration mainly involves two kinds of search:
radius search and Nearest Neighbor (NN) search. Given a query,
which itself is also a point in the k-dimensional space, the former
returns all the points in the point cloud that are within the given
radius to the query point, and the latter returns the nearest neighbor
to the query point. Without losing generality, we use NN search to
drive the explanation.

The KD-tree search algorithm starts from the root node, and re-
cursively traverses the tree using the query point. As the algorithm

MICRO-52, October 12–16, 2019, Columbus, OH, USA Tiancheng Xu, Boyuan Tian, Yuhao Zhu

1 2 4 8 16 32
Leaf-Set Size (log2)

0
5

10
15
20
25
30
35

R
ed

un
da

nc
y

(X
)

Radius Search
NN Search

(a) Redundancy ratio.

1 2 4 8 16 32
Leaf-Set Size (log2)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

O
pe

ra
tio

ns
 (1

07)

Radius Search
NN Search

(b) Total number of nodes visited.

Fig. 6: The two-stage KD-tree introduces redundant visits to

nodes. Redundancy is quantified as the ratio between the

number of nodes visited in the two-stage KD-tree and that

in the classic KD-tree. Redundancy increases as the leaf-set

size grows. The leaf-set size is defined as the number of chil-

dren in the leaf node’s unordered set.

visits a node, it checks whether the node should be added to the
return results by comparing against the current nearest distance d .
The algorithm then further searches the left and right sub-tree of
the current node. Critically, if the bounding box of either sub-tree
does not intersect with the hypersphere surrounding the query
point with the d , the entire sub-tree could be skipped because all
of its nodes are guaranteed to lie outside of d . This is a key tech-
nique called pruning that enables efficient search in KD-tree. Fig. 5a
shows a simple KD-tree example, where the shaded points are
visited during the search while the rest of the points are pruned.

While pruning reduces redundant computations by skipping
unnecessary nodes, it serializes the search: every time the algorithm
visits a node, it might obtain a new current nearest distance, which
allows for pruning more nodes later.

Two-Stage KD-Tree To balance parallelism and redundancies,
we use a slight variant of the canonical KD-tree data structure
called two-stage KD-tree. Fig. 5b shows the two-stage KD-tree
organization of the same points stored in the canonical KD-tree
(Fig. 5a). The two-stage KD-tree is split into two halves. The top half,
which we call the top-tree, is a tree with height htop . The top-tree
is exactly the same as the first htop levels of the classic KD-tree.
Each top-tree leaf node organizes its children as an unordered set
as opposed to a sub-tree as in the canonical data structure.

Since the leaf nodes of the top-tree organize their children as
unordered sets, different child nodes of a leaf node can be searched
in parallel. Essentially, the two-stage KD-tree enables exhaustive
searches in certain sub-trees. In the extreme case where htop is 0,
searching in the two-stage KD-tree is equivalent to exhaustively
searching all the points. Fundamentally, the two-stage KD-tree
introduces more parallelism at the cost of higher redundancies
compared to the canonical KD-tree data structure. In the exam-
ple of Fig. 5, searching in the two-stage data structure visits nine
nodes, three when traversing the top-tree and six when exhaus-
tively searching a leaf node of the top-tree, as opposed to six nodes
required by the classic data structure.

Intuitively, a shorter top-tree exposes more parallelism but also
introduces more redundancies. Using the KITTI Odometry Dataset
(see Sec. 6.1 for the detailed experimental setup), Fig. 6a shows
how the redundancy introduced by the exhaustive searches varies
with the leaf-set size for both radius search and NN search. The
redundancy is quantified as the ratio between the number of nodes

1 2 3 4 5 6 7 8 9

K

0.0

20.0

40.0

60.0

80.0

Tr
an

sl
at

io
na

l E
rr

or
 (%

)

KPCE (sparse)

RPCE (dense)

(a) Sensitivity of translational error

as the NN search returns the k th
nearest neighbor instead of the near-

est neighbor.

10
.0

,7
5

12
.5

,7
5

15
.0

,7
5

17
.5

,7
5

20
.0

,7
5

25
.0

,7
5

30
.0

,7
5

35
.0

,7
5

40
.0

,7
5

45
.0

,7
5

50
.0

,7
5

55
.0

,7
5

55
.0

,8
5

55
.0

,9
5

<r1,r2>(cm)

0.0

2.5

5.0

7.5

10.0

Tr
an

sl
at

io
na

l E
rr

or
 (%

)

NE (dense)

(b) Sensitivity of translational error

as the radius search returns points

between <r1, r2> rather than within

r (r = 60 cm here).

Fig. 7: Registration error (y-axis) varies as the degree of error
(x-axis) changes. The error is robust against inexactness of

KD-tree searchwhen searching dense points (NE andRPCE),

but is sensitive when searching sparse points (KPCE).

visited in the two-stage KD-tree and that in the classic KD-tree.
The leaf-set size is defined as the number of children in the leaf
node’s unordered set. The classic KD-tree has a leaf-size one, and
the two-stage KD-tree in Fig. 5b has a leaf-set size six.

As the leaf-set size increases, the top-tree height decreases and
more exhaustive searches occur. Thus, the redundancy increases.
With a leaf-set size of 32, the two-stage KD-tree introduces about
35× redundant node visits for NN search and about 3× for radius
search. The redundancy grows much faster for the NN search than
for the radius search because the NN search benefits more from
pruning than the radius search, and thus suffers more from exhaus-
tive searches. While the redundancy introduced to radius search
seems lower than NN search, the sheer number of nodes that ra-
dius search has to visit is much greater than NN search as shown
in Fig. 6b, which shows the absolute number of nodes visited as the
leaf-set size increases. Thus, the redundancies introduced by the
two-stage KD-tree is significant for radius search as well.

4.2 Quantifying the Error-Tolerance

While the two-stage KD-tree data structure exposes more paral-
lelism, it also introduces lots of redundancies to the search on
leaf nodes. To mitigate the redundancies, our key observation is
that KD-tree search does not have to be exact because the entire
point cloud registration pipeline is error-tolerant. By performing
inexact searches on the two-stage KD-tree, we could reduce the
amount of computations while retaining parallelism. This section
quantitatively demonstrates the error resilience while leaving the
mechanisms to exploit the resilience to the next section.

There are two reasons that point cloud registration is resilient
to inexact KD-tree search. First, acquiring point cloud data is in-
herently an approximation process due to the sensor noise. The
movement of the sensor during acquisition further adds uncertain-
ties to data acquisition. Second, the registration algorithm strives
to minimize the global error, where local inexactness would be
compensated at the global scale.

Error Injection To understand the impact of inexact KD-tree
search on the registration accuracy, we manually inject errors into
the KD-tree search, and quantify how the end-to-end registration
accuracy varies with the KD-tree search accuracy. Specifically, we

Tigris: Architecture and Algorithms for 3D Perception in Point Clouds MICRO-52, October 12–16, 2019, Columbus, OH, USA

Algorithm 1: Approximate KD-Tree Search.
Input: QuerySet Q; LeafNode LF ; Threshold thd .
Result: Search result q.res for all q in Q.
for q in Q do

if LF .leaders .size() then
// Find the closest leader for q
closestLeader = дetMinDist(q,LF .leaders)
if dist(q, closestLeader) < thd then

// Approximate path: search in the

results of closestLeader
q.res = b f -search(q, closestLeader .res)
continue;

end

end

// Precise path: search in all the children of

the leaf node LF
q.res = b f -search(q,LF .children)
LF .leaders .pushback(q)

end

inject errors into the nearest neighbor (NN) search by replacing
the return result, i.e., the nearest neighbor to the query, with a
point that is the kth nearest neighbor to the query point. Similarly,
we inject errors into radius search by replacing the return results,
i.e, points that lie within a sphere delineated by the radius r , with
points that lie within a spherical shell delineated by two radiuses
r1 and r2, where r1 < r < r2. The parameters k and < r1, r2 >
control the degrees of error injected into the radius search and the
NN search on KD-tree, respectively.

Error Tolerance While multiple stages make use of KD-tree
search, we mainly inject errors into two stages: Normal Estimation
(NE) and Raw-Point Correspondence Estimation (RPCE), both con-
tributing heavily to the total execution time (Fig. 4a). The former
uses radius search and the latter uses NN search. Fig. 7a and Fig. 7b
show how the end-to-end registration error varies with different
degrees of error injected into RPCE and NE, respectively. Due to
space limit, we show only the translational error; the trend on rota-
tional error is similar. Error bars denote the standard deviation of
all the frames’ errors in one sequence.

We find that the registration error is statistically robust to errors
introduced in both the radius search and NN search, indicating
the potential of relaxing KD-tree search accuracy. For instance, the
registration error is virtually the same if the radius search returns
the points between < 30, 75 > compared to the precise search that
returns points within r = 65.

Critically, not all instances of KD-tree search are equally amenable
to approximation. While the NE stage and the RPCE stage both
operate on dense points, we find that errors introduced in KD-tree
search that operates on sparse data are detrimental to registration
accuracy. For instance, the Key-Point Correspondence Estimation
(KPCE) stage operates on sparse (feature) data. Fig. 7a overlays how
the registration accuracy varies with the error degree introduced in
the KPCE stage. Returning just the second nearest neighbor leads
to about 40% registration accuracy loss.

Overall, we find that KD-tree searches that operate on dense
points are amenable to approximation, and thus provide an oppor-
tunity to greatly reduce the amount of computations in the KD-tree
search. We particular focus on the NE and RPCE stages as they
dominate the end-to-end performance.

4.3 Approximate KD-Tree Search

Motivated by the error resilience of the point cloud registration
pipeline, we propose an approximate KD-tree search algorithm
that reduces computation overheads with little accuracy loss. Our
key observation is that queries arriving at the same leaf node in
the top-tree are close to each other as they fall into the same 3D
partition. Therefore, it is likely that their search results are similar.

Leveraging this insight, our idea is to split queries arriving at the
same leaf node into a leaders group and a followers group. Queries
in the leaders group perform an exhaustive search in the leaf node’s
children as usual, while queries in the followers group search in
only the return results of the closest leader. To dynamically adjust
the leaders group, we introduce a discriminator thd ; if the distance
between a query point and the closest leader is greater than thd ,
the query point is added to the leaders group. Algo. 1 shows the
pseudo-code of the algorithm.

This algorithm relies on an efficiency trade-off: it allows a fol-
lower query to search in a much smaller space, i.e., its closest
leader’s neighboring points as opposed to all the children of the leaf
node, while incurring the cost to find the closest leader. Assuming
that one leaf node has N children points; there are L points in the
leaders group, and the returned neighbors of a leader consists of
R points. A follower query would compare against L + R points,
which should be much smaller than N for the algorithm to succeed.
This first-order cost model is used to understand the performance
gains in Sec. 6.3.

5 KD-Tree Accelerator Design

This section describes the accelerator design. We first provide an
overview of the architecture (Sec. 5.1). We then describe its two key
components: the front-end (Sec. 5.2) and the back-end (Sec. 5.3).

5.1 Accelerator Overview

The new data structure and search algorithm expose two levels of
parallelism. First, each query can be processed in parallel, both in
searching the top-tree and in exhaustively searching leaf nodes.
We call it query-level parallelism (QLP). Second, in the exhaustive
search stage, different child nodes could be processed in parallel
within each query. We call it node-level parallelism (NLP). The
hardware architecture is designed to provide the mechanisms to
support the two forms of parallelism while exploiting the data
locality. Fig. 8 shows an overview of the accelerator.

The accelerator consists of a Front-End (FE) that is responsible
for searching in the top-tree and a Back-End (BE) that is responsible
for searching in the leaf nodes. The FE uses a set of Recursion Units
(RU), each processing one query at a time, to exploit QLP in the
top-tree. Each incoming query is first inserted into the FE Query
Queue (FQQ), from which each RU deques a query to search in
the top-tree. Once the top-tree search for a query is finished, the
RU sends the query to the BE. The BE uses a set of Search Units

MICRO-52, October 12–16, 2019, Columbus, OH, USA Tiancheng Xu, Boyuan Tian, Yuhao Zhu

Global
Buffer

Search Unit

……

BE Query
Buffer

PE

…

PE

Search Unit

PE

…

PE

Search Unit

PE

…

PE

BE Query
Buffer

BE Query
Buffer

Recursion Unit

FQ

RS

RN

CD

PI

CL

Bypass
Forw

ard

Query Distribution Network

Recursion Unit

FQ

RS

RN

CD

PI

CL

Bypass
Forw

ard

Recursion Unit

FQ

RS

RN

CD

PI

CL

Bypass
Forw

ard

……

FE Query Queue

Query
Buffer

Point
Buffer

Query
Stack
Buffer

Result
Buffer

Fig. 8: The Tigris accelerator architecture overview. The

front-end (FE) consists of a set of recursion units (RU) that

process queries in the top-tree. The back-end (BE) consists

of a set of search units (SU) that process queries by exhaus-

tively searching children in the leaf nodes. Queries are dis-

tributed from the FE to the BE buffers, and the BE reinserts

queries to the FE query queue. The global buffer maintains

all the necessary metadata.

(SU), each responsible for a set of leaf nodes. Queries coming from
the FE are first inserted into an SU’s BE Query Buffer (BQB), from
which the SU schedules the queries to execute. Each SU has a set of
Processing Elements (PEs), exploiting both QLP and NLP.

Processing search queries requires a set of input and output
metadata, which is stored in a global buffer. Specifically, the buffer
is partitioned to hold the following metadata: (1) an Input Point
Buffer that holds all the points in the point cloud, (2) a Query Buffer
that holds all the query points, (3) a Result Buffer that holds the
return results, and (4) a Query Stack Buffer that holds the recursion
stacks for all the queries. We reserve the maximal number of stack
entries for each query (i.e., the height of the top tree) in the buffer.

5.2 The Front-End: Recursion Unit

The FE processes queries in the top-tree. For each query, the FE
recursively searches the top tree until a leaf node is reached, upon
which time the query will be sent to BE. To exploit QLP, the FE
consists of a set of RUs. Each RU independently processes a query
popped from the FQQ.

While different RUs can exploit the QLP, processing within each
query is sequential due to the inherent nature of depth-first search:
the RU would have to finish the current node before deciding
whether/how to proceed to the next node in the top-tree. The
key challenge in the RU design is thus how to expose intra-query

parallelism to improve performance. To that end, we start from
a simple hardware design, and gradually introduce architectural
optimizations that exploit pipelining.

Baseline Design Processing a query in the top-tree requires
iteratively traversing the top-tree in a DFS manner. We use a stack
to maintain the traversal status. Each iteration processes the node
at the top of the stack, and pushes the two children nodes back to
the stack in the end. Therefore, processing a query consists of the
following six stages:

• FQ: fetch the query point Q from the FQQ and obtain the
query information, including the address of the query stack
in the global buffer;

• RS: read the top of the stack (TOS) from the query stack; the
TOS structure contains the address of the next top-tree node
N to be visited;

• RN: read the data of N from the global buffer;
• CD: calculate the distance Dist between Q and N ;
• PI: push the two child nodes to the stack, and use Dist to
decide whether to insert N to the Result Buffer;

• CL: issue the query to the BE if a leaf node is reached.
The baseline six-stage RU design is illustrated in Fig. 9. The first

stage prepares the query data and is required only at the beginning
of the query, while the rest five stages are required for each iteration
during the query processing. Critically, there is a data dependency
between the PI stage that pushes data to the stack and the RS

stage that popes data from the stack. This dependency stalls the
pipeline for 3 cycles between searching consecutive top-tree nodes.
We propose two architectural optimizations that eliminate the stalls
and improve performance.

Node Forwarding We observe that the PI stage pushes the
current node’s two child nodes, N 1 and N 2, to the stack; whichever
child node gets pushed later will necessarily be popped in the next
iteration. Thus, if N1 gets pushed first, the PI stage could then
directly forward N 2 to the RN stage, eliminating one stall cycle. To
completely remove stalls, we observe that the logic to decide which
child node gets pushed first could be determined early in the CD
stage rather than waiting until the PI stage. Moving that decision
logic earlier to the CD stage completely eliminates stalls.

Node Bypassing Forwarding eliminates stalls when a node gets
to the PI stage. Node bypassing aims at finishing a node early in the
pipeline, allowing the next node to start immediately. Specifically,
if a node is deemed to be prunable, its entire sub-tree could be
skipped (Sec. 4.1). As a result, that node needs not go through the
rest steps (i.e., bypassed). Bypassing pruned nodes is particularly
significant in NN search when the top-tree is short. A short top-tree
would allow the exhaustive search stage to obtain a tighter current
nearest distance, exposing more pruned nodes.

To support bypassing, we augment a node’s metadata with the
distance information, which gets decoded in the RN stage, which
in turn generates the bypass signal to let the RS stage start the next
node immediately.

5.3 The Back-End: Search Unit

Each query that arrives at the BE comes from a particular leaf
node in the top-tree. The BE processes the query by exhaustively
searching through the leaf node’s children, which we call a Node

Tigris: Architecture and Algorithms for 3D Perception in Point Clouds MICRO-52, October 12–16, 2019, Columbus, OH, USA

Stack Entry

Read Stack Entry
(RS)

Query Stack Buffer

Node Addr.

Read Tree Node
(RN)

Calc. Dist.
(CD)

Compute
Logic

Push & Insert
(PI)

idx

xdist

Bypass
Logic

Insert to
ResBuf Logic

Push Stack Logic

Input Point Buffer

Stack Acs.
Control Logic

Bypass?

Result Buffer

Current
Dist.

Current
Node

Next Node
Addr.

Threshold

Threshold

Query Buffer

Query
Point

Query Acs.
Control Logic

Query from
FE Query

Queue

Fetch Query
(FQ)

Cleanup
(CL)

Finish Query
Logic

Issue to
BE Query

Buffer

Node
Addr.

Current Node

Query
Point Current

Node

New
Stack
Entry

Forwarding?

xdist

TOS
Addr.

Query Status

Forwarding
Logic

dx Node
Addr.

dx2
Node
Addr.

dx2

Fig. 9: Recursion unit (RU) pipeline overview. Each RU recursively traverses the top-tree in a DFS manner for one query at

a time. The traversal status is maintained by a stack, introducing data dependencies between the PI and the RS stages. Node

bypassing and forwarding eliminate the pipeline stalls.

Processing Element

Compute
Logic

Insert to
ResBuf Logic

Threshold

To Result Buffer

Processing Element

Compute
Logic

Insert to
ResBuf Logic

Threshold

To Result BufferCurrent
Dist.

Current
Dist.

Search Node

Query Point

Search Node

Query Point

Memory Access Logic

Back-End
Query Buffer

Input Point
Buffer

Search Node
Access

Query Buffer

Query Point
Access

Query Issue
Logic

Node Cache

Result Buffer
Leader

Check Logic
Leader
Buffer

Fig. 10: Search unit (SU) overview. Each SU has a set of processing elements (PE) operating in the SIMD fashion. The PEs are

organized as a 1D systolic array to improve data distribution efficiency. The SU adopts a “ query-stationary” data-flow where

each query is pinned at a PE and the search nodes are streamed through the PEs (i.e., reused by different queries).

Set. The BE exhibits both QLP and NLP. To exploit QLP, the BE
incorporates a set of PEs, each handling one query at a time. The
Query Point Access logic fetches a query from the Query Buffer at
the beginning of query processing, and stores the query point in a
PE-local register. Fig. 10 shows the design of each PE.

Each PE exploits NLP within a query in a pipelined fashion. The
PE datapath is pipelined into three stages, through which the nodes
in the Node Set are streamed. Stage one reads a child node N driven
by the Search Node Access logic. Stage two computes the distance
Dist between the query point Q and N . The final stage decides
whether to insert N into the Result Buffer depending on Dist . The
pipeline is guaranteed to proceed with no stalls because there are
no dependencies across different child nodes.

MQMN vs. MQSN A naive BE design would allow each PE to
handle any arbitrary query distributed from the FE to maximize
the PE utilization. This design, however, leads to high memory
bandwidth requirements because each PE would potentially have
to read a different Node List. We call this design Multiple Query
Multiple NodeSet (MQMN). The alternative is to force all the PEs
to process queries from the same leaf node, which lowers memory

bandwidth requirements as different PEs consume the same Node
List. We call this design Multiple Query Single NodeSet (MQSN).

While MQSN is memory-efficient, the query issue logic would
have to perform an associative search in the BE Query Buffer to
find as many queries from the same leaf node as possible. This is
key to ensure a high PE array utilization, which, however increases
the design complexity and the pipeline cycle time.

HierarchicalMQSN To enable a complexity-effective PE design
while achieving high PE utilization, the BE groups the PEs into
several groups, each responsible for only a set of leaf nodes. In this
way, the issue logic has a much smaller scheduling window and
has fewer PEs to keep occupied, increasing both the scheduling
efficiency and the PE utilization.

We call each group a search unit (SU). More specifically, each
SU has a set of PEs, a BE Query Buffer that holds queries that are
sent to the SU from the FE, a query issue logic to issue queries
to the PEs, and a set of address generation logic to access search
nodes and query points. With this hierarchical design, we find that
MQSN is able to achieve similar PE utilization as MQMN while
being complexity-effective. We thus adopt the MQSN design, and
will quantify its performance against MQMN later.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Tiancheng Xu, Boyuan Tian, Yuhao Zhu

The associative search performed by the query issue logic uses
the first query in the BQB as the search key, and search the remain-
ing entries in the BQB. The search is done in groups of 32 queries
in parallel, and terminates when we find enough queries for the
PEs to operate on. The cost of the associative search is amortized
across the execution of the found queries, which typically takes
two orders of magnitude longer than the associative search.

We find that the overall performance is relatively insensitive to
how exactly the leaf nodes are mapped to each SU. Thus, we use a
simple policy that uses the low-order bits as the target SU ID. The
Query Distribution Network sitting in-between the FE and BE is
hard-wired with this logic.

Systolic PE Organization To reduce the data distribution cost,
we organize the different PEs in a SU as a 1D systolic array [37]. Fig. 10
shows an example with two PEs, and the nodes in the same Node Set
are streamed through the PEs to be reused by different queries. This
dataflow is naturally “query stationary” as each query is pinned at
a PE. Alternatively, the PEs could be organized as a set of SIMD
lanes, requiring a data distribution fabric (e.g., bus) with support
for multicasts to keep the PEs utilized [1].

Approximate Search Our SU design supports approximate
search (Sec. 4.3), which allows a follower query to search in the
return results of the leader queries instead of the leaf node’s Node
Set. To that end, we augment the memory access logic with a Leader
Check logic, which, when determines that the current query could
be approximated by a leader, would drive the Search Node Access
logic to fetch search nodes from the Result Buffer rather than from
the Input Point Buffer. The actual check requires computing the
distances between an incoming query and the existing leaders. We
reuse the PEs in the SU for these computations.

The leader queries of each leaf node are stored in a local Leader
Buffer, which we cap at 16 entries guided by the profiling results
on the KITTI dataset [22]. The leader group stops growing after
the buffer is full, which we find rare in our experiments, to sim-
plify the hardware implementation. It is worth noting that capping
the Leader Buffer improves accuracy because more queries will be
searched exactly without relying on the leaders.

Node Cache While the MQSN design significantly reduces the
Node Set load traffic, loading from the Node Sets still contributes
to over half of the total memory traffic. We observe that queries
consecutively issued from the FE are likely from a small set of leaf
nodes. We propose a cache design to capture the locality when
loading the Node Sets to further reduce the memory traffic.

The node cache is organized as a set of entires, each containing
the nodes in one Node Set. The nodes in each entry is organized as
a FIFO queue because nodes in a Node Set are accessed sequentially.
While there is a need to associatively search different entries to
determine whether a particular Node Set is in the cache, the nodes
within an entry could be accessed as a FIFO, greatly simplifying the
hardware implementation.

6 Evaluation

We first describe the evaluation methodology (Sec. 6.1). We then
analyze the area of the Tigris accelerator (Sec. 6.2). We then com-
pare the performance and energy consumption of the accelerator
over the baseline system for both the KD-tree search alone and the

end-to-end pipeline (Sec. 6.3). We tease apart the contributions from
different optimizations (Sec. 6.4), and analyze how the performance
of Tigris is sensitive to different resource configurations (Sec. 6.5).

6.1 Experimental Methodology

Hardware ImplementationWe synthesize, place, and route the
accelerator datapath using Synposys and Cadence tools in a 16nm
process technology, with memories generated using an SRAM com-
piler. Power is estimated using Synopsys PrimeTimePX by anno-
tating the switching activity. The datapath is able to be clocked at
500 MHz. The DRAM energy is estimated using Micron’s DDR4
specification [44] and power calculator [3]. We then use a cycle-
accurate simulator parameterized with the synthesis and memory
estimations to drive the performance and energy analysis.

DatasetWe evaluate Tigris on thewidely-used KITTI Odometry
dataset [22]. We use the first 11 sequences in the dataset that has
ground truth. Each sequence consists of hundreds to thousands of
point cloud frames. The point cloud in the KITTI dataset is obtained
using the popular Velodyne HDL-64E LiDAR [65], representative
of today’s point cloud acquisition system. We report the average
results across all the frames, unless noted otherwise.

MetricsWe evaluate Tigris in performance, energy, and accu-
racy. We show both the KD-tree time and the end-to-end registra-
tion time for all the frames in the entire sequence. The accuracy is
measured using standard rotational and translational errors [22].

BaselineWhile the performance characterizations are performed
on a CPU-based implementation (Sec. 3.2) as most of today’s point
cloud registration pipelines are implemented on the CPU [21], for
a fair evaluation we use a GPU/CUDA implementation of KD-tree
search from the popular FLANN library [46]. KD-tree search on the
GPU is about 8–20× faster than on the CPU.

We use a CPU-GPU setup as the baseline system. The KD-tree
searches run on the GPU while all other operations run on the CPU.
The CPU is a 32-core Xeon Silver 4110 Processor, and the GPU
is an Nvidia GeForce RTX 2080 Ti. We use the widely-used Point
Cloud Library (PCL) [57] to develop the registration pipelines, and
integrate the FLANN’s implementation of KD-tree search. The GPU
power is measured at 100 Hz using the nvidia-smi utility, and the
CPU power is measured using the Intel RAPL energy counters [14]
via directly reading the processor MSRs [2].

To demonstrate the generally applicability of Tigris, we evaluate
it on two Pareto-optimal designs of the point cloud registration
pipeline (Fig. 4 in Sec. 3.2): DP4 that optimizes for performance and
DP7 that optimizes for accuracy.

6.2 Area Analysis

We configure the Tigris accelerator to have 64 RUs, 32 SUs, and
32 PEs per SU. We size the on-chip SRAM to accommodate about
130,000 points per frame, representative of the point cloud density
acquired in the real-world. In particular, the Input Point Buffer and
the Query Buffer are both sized at 1.5 MB; the Query Stack Buffer
is sized at 1.2 MB, accommodating a maximal top-tree height of
18, sufficient for the KITTI dataset; the FE Query Queue is sized at
1.5 MB, and the BE Query Buffer is sized at 1 KB per SU, holding
128 BE queries at a time. The Node Cache is configured at 128 KB.
Finally, the Result Buffer is set at 3 MB, which is double-buffered

Tigris: Architecture and Algorithms for 3D Perception in Point Clouds MICRO-52, October 12–16, 2019, Columbus, OH, USA

80

60

40

20

0

S
pe

ed
up

 (X
)

Base-KD

Base-2SKD
Acc-KD

Acc-2SKD

16

12

8

4

0

P
ow

er R
eduction (X

)

(a) Accuracy-oriented DP7.

30

24

18

12

6

0

S
pe

ed
up

 (X
)

Base-KD

Base-2SKD
Acc-KD

Acc-2SKD

20

15

10

5

0

P
ow

er R
eduction (X

)

(b) Performance-oriented DP4.

Fig. 11: KD-tree search speedup and power reduction on two

Pareto-optimal designs: DP7 is accuracy-oriented and DP4 is

performance-oriented.

to interface with the DRAM to take the result write traffic off the
critical path. Overall, the SRAM is estimated to take 8.38mm2.

The datapath area of each RU and each SU’s PE is mostly domi-
nated by the logic that computes the euclidean distance between
two points using 32-bit floating point arithmetics. The total com-
binational logic occupies about 7.19mm2. Overall, 53.8% of area is
taken by SRAM and 46.2% is occupied by compute logic.

6.3 Performance and Power Comparisons

Speedup Tigris achieves significant speedup in KD-tree search
compared to the baseline. Using the accuracy-oriented design point
DP7 as an example, Fig. 11a shows the KD-tree search speedup of
the Tigris accelerator running both the original KD-tree (Acc-KD)
and the two-stage KD-tree with a top-tree height of 10 (leaf-set size
of about 128) (Acc-2SKD) compared to the GPU baseline that runs
the original KD-tree, i.e., leaf-set size 1 (Base-KD). For comparison
purposes, we also show the speedup of the GPU running the two-
stage KD-tree with the same top-tree height 10 (Base-2SKD). Note
that both Acc-KD and Acc-2SKD do not apply approximate search
here, i.e., no accuracy loss.

Acc-2SKD achieves 77.2× speedup in KD-tree search compared
to Base-2SKD, which in turn is 28.3% faster than Base-KD. Acc-KD
however, is “only” 18.7× faster than the Base-KD baseline. This is
because using the original KD-tree, the accelerator’s performance
is almost completely bottlenecked by the recursive search in the
top-tree while the back-end SUs are almost always idle, leading
to resource under-utilization. This confirms the need to co-design
accelerator with the new data structure that exposes parallelism.
Compared to the CPU implementation of KD-tree (not shown),
Acc-2SKD achieves a speed up of 392.2×.

The speedup on KD-tree search translates to significant end-to-
end performance improvement. Specifically, Acc-2SKD reduces the
overall registration time by 41.7% and 86.6% compared to the GPU
baseline Base-KD and the CPU-only implementation, respectively.

Tigris also achieves high speedups in the performance-oriented
design point DP4. Fig. 11b shows the performance comparisons
across different systems for DP4. Acc-2SKD achieves about 21.0×
speedup compared to Base-2SKD on KD-tree search alone, which
translates to about 13.6% end-to-end performance improvement.
The speedup on the DP4 is lower than DP7 because in optimizing
for performance DP4 uses tight search criteria that leads to much
fewer exhaustive searches. For instance, the Normal Estimation
stage in DP4 uses a radius of 0.30 while using a radius of 0.75 in DP7.

40

35

30

25

20

15

S
pe

ed
up

 (X
)

No-Opt
Bypass

+Forward
MQMN

ACC-2SKD Variants

12

10

8

6

4

2

P
ow

er R
eduction (X

)

MQSN

Fig. 12: The speedup and

power reduction of architec-

tural optimizations.

100

80

60

40

20

0

M
em

or
y

Tr
af

fic
 D

is
t.

(%
)

ACC-2SKD
ACC-KD

 FE Query Q
 Query Buf
 Query Stacks
 Res. Buf
 BE Query Q
 Node Cache
 Points Buf

Fig. 13: The memory traffic

distributions. Point cache al-

leviates Point buffer traffic.

A relaxed radius exposes more exhaustive searches, which could
benefit from the SU design of Tigris. Overall, the performance
improvements on two very different design points demonstrate the
general applicability of Tigris.

Power Reductions We overlay the power reductions on the
right y-axis in Fig. 11a and Fig. 11b. Acc-2SKD achieves about
7× and 10.5× power reductions compared to Base-KD on KD-tree
search for DP7 and DP4, respectively. The reduction along with
the speedup further translates to significant energy savings (i.e.,
power-efficiency). For instance, Acc-2SKD reduces the energy con-
sumption of Base-KD by a factor of 220.2 on DP4. Breaking down
the energy consumption of DP4, the PE contributes to about 53.7% of
the total energy consumption. The rest of energy is contributed by
SRAM read(34.8%), SRAM write(8.0%), Leakage(3.3%), and DRAM
read/write(0.2%). Over the end-to-end pipeline, Acc-2SKD achieves
about a 3.0× power reduction compared to Base-KD.

The power consumption of Acc-KD is lower than Acc-2SKD,
because Acc-KD does not expose exhaustive searches in the leaf
nodes, and thus exclusively exercises the RUs while leaving the SUs
idle. It trades lower power for lower performance. As a result, its
overall energy consumption is about 2.5× higher than Acc-2SKD.

Approximate Search We empirically choose 1.2 meters as the
approximate threshold (Sec. 4.3) for the NN search, and use 40%
of the original radius as the threshold in the radius search. Using
these settings, the approximate search has no impact on translation
errors, and increases the rotational error only by 0.05°/meter on
DP4 and 0.0006°/meter on DP7.

Using DP7 as an example, the approximate KD-tree search achieves
about 11.1× performance improvements over Acc-2SKD, translat-
ing to 7.5% end-to-end performance improvement. The improve-
ment is a direct result of the compute reduction: the approximate
algorithm reduces the number of nodes visited during search by
72.8%, to which NN search contributes 41.6% and radius search
contributes 31.2%.

6.4 Optimization Effects

Bypassing and Forwarding In the RU design, bypassing allows
pruned nodes to take an early exit from the pipeline, and forwarding
allows the node that will soon be at the top of the query stack
to start immediately. Both techniques help reduce pipeline stalls
and improve the performance. Fig. 12 shows the speedup over
Base-KD of three Acc-2SKD variants: without either technique
(No-Opt), with just bypassing (Bypass), and with both bypassing

MICRO-52, October 12–16, 2019, Columbus, OH, USA Tiancheng Xu, Boyuan Tian, Yuhao Zhu

36

28

20

12

4

P
ow

er
 (W

)

15131197531
Search Time (ms)

 RU 16
 RU 32
 RU 64
 RU 128

Our Design
Point

(a) Performance vs. power.

15
13
11
9
7
5
3
1

S
ea

rc
h

Ti
m

e
(m

s)

16
,1

6
16

,3
2

16
,6

4
16

,1
28

32
,1

6
32

,3
2

32
,6

4
32

,1
28

64
,1

6
64

,3
2

64
,6

4
64

,1
28

12
8,

16
12

8,
32

12
8,

64
12

8,
12

8

S
U

, P
E

16 SUs 32 SUs 64 SUs 128 SUs

Our Design
Point

(b) Performance comparison.

Fig. 14: Performance and power sensitivity to three hard-

ware parameters: number of RUs, number of SUs, and num-

ber of PEs per SU. Both figures share the same legend.

and forwarding (+Forward). Bypassing improves the performance
by about 13.1%; forwarding further achieves 10.5% improvements.

MQMN vs. MQSNMQMN allows different PEs from the same
SU to process queries from different leaf nodes at the cost of addi-
tional memory traffics (Sec. 5.3). Fig. 12 shows the speedup of the
MQMN organization of Acc-2SKD over Base-KD, and compares
it against MQSN variants.MQMN doubles the performance of the
best MQSN variant (+Forward). However, the additional memory
traffic significantly increases the power consumption. The right
y-axis in Fig. 12 overlays the power reductions of various schemes
over Base-KD. MQSN’s power consumption is almost 4× worse
than +Forward, leading to 2× energy.

Node Cache Node Cache reduces the global Points Buffer traffic
and thus saves energy. Fig. 13 shows the memory traffic distribu-
tions across different data structures. In ACC-2SKD, the Points
Buffer traffics would account for 53% of the total traffics without
the Node Cache, and are reduced to 35% with the Node Cache. By
directing 18% of the memory traffic to a smaller memory, the Node
Cache reduces the energy by 5.9% (not shown). ACC-KD has very
few exhaustive searches and thus much lower Points Buffer traffics.
As a result, the Points Buffer traffics contribute to only 29% of the
total traffic; the effect of the Node Cache is smaller.

6.5 Sensitivity Analysis

We study how the performance and energy of Tigris vary with
hardware resources and software parameters.

Hardware ConfigurationsWe study three key parameters: the
number of RU, the number of SU, and the number of PEs per SU.
We sweep all three parameters from 16, 32, 64, through 128. Fig. 14a
shows the KD-tree search time and power under all 64 configura-
tions. Overall, as performance improves the power consumption
also increases. Fig. 14b shows a detailed performance comparison of
different configurations, where different curves represent different
RU counts and the x-axis sweeps the SU and PE counts.

When the RU count is low, e.g., 16 and 32, the performance is
bottlenecked by the front-end. Thus, improving the back-end ca-
pabilities by increasing the SU and PE counts improves the overall
speed only marginally. As the RU count increases to 64, the ac-
celerator becomes balanced. Our design choice of 64 RUs, 32 RUs,
and 32 PEs per SU sits on the “knee of the curve”, indicating a
complexity-efficient design decision.

36
28
20
12

4Ti
m

e
(m

s)

4 5 6 7 8 9 10 11 12 13 14 15
Top-tree Height

0.5
0.4
0.2
0.1
0.0

E
nergy (J)

Fig. 15: Search time and energy vary with top-tree height.

Software Configurations The results we have shown so far
assume a top-tree height of 10 (about 128 children per leaf node
in the top-tree). Fig. 15 shows the KD-tree search time and en-
ergy consumption as a function of the top-tree height. The per-
formance initially increases as the top-tree height increase. This
is because higher top-trees have less redundancy in exhaustive
searches. However, the performance reaches a diminishing return
when the top-tree height reaches around 10, beyond which the per-
formance decreases. This is because a high top-tree requires more
recursive search in the RU, thus reducing the node-level parallelism
within each query that could be exploited by the SUs.

We find that the optimal top-tree height (10) is largely consistent
across different KD-tree search instances in the pipeline. The opti-
mal top-tree height mainly depends on two factors: 1) the points
in a data frame, and 2) the hardware organization. Given a specific
registration pipeline, different KD-tree search instances share these
two factors and thus share the same optimal top-tree height.

7 Related Work

Point Cloud Registration Point cloud registration pipelines gen-
erally fall under three categories depending on the density of points
that are used for registration. On one extreme is algorithms that
use all the points for registration [7, 9, 48], which tolerate outliers
but are computationally prohibitive in real-time. On the other ex-
treme are algorithms that use only (sampled) feature points [15, 33],
which are efficient in compute, but could suffer from local minima.

The point cloud registration pipeline studied in this paper repre-
sents a trade-off between the two extremes, and is the predominant
choice today [13, 31, 73, 75, 76]. It uses feature points for coarse-
grained, initial estimation while using all the points for fine-tuning.
While prior work proposes specific design points that make specific
accuracy-speed trade-offs, we construct a flexible pipeline that let
us perform design space exploration, which reveals Pareto-optimal
design points that drive our performance bottleneck analysis.

Recent work has also using Deep Neural Networks (DNN) for
point cloud registration. End-to-end DNNs are susceptible to and
are limited to specific registration cases such as pose estimation [67].
DNNs are mostly used to replace certain stages of the registration
pipeline such as key point detection [17, 52], normal estimation [11],
description calculation [16], and fine-tuned ICP [39] while relying
on the overall pipeline architecture as we described in Sec. 3.1.

To our best knowledge, this is also the first paper that proposes
hardware accelerator for point cloud registrations while prior work
mostly focuses on algorithmic developments.

KD-Tree Search Acceleration KD-tree search is widely used
in application domains beyond point cloud registration, such as
graphics [29, 50], data analytics [47, 72], and image/video process-
ing [30, 74]. Tigris accelerates the fundamental KD-tree search
algorithm, and is applicable to these application domains as well.

Tigris: Architecture and Algorithms for 3D Perception in Point Clouds MICRO-52, October 12–16, 2019, Columbus, OH, USA

Accelerating KD-tree search has been mostly explored in the
context of Map-Reduce [5], GPU [23, 28, 36, 53], and FPGA [71].
The Tigris accelerator differs from prior attempts in its systematic
and comprehensive exploitation of different forms of parallelism in
KD-tree search. Specifically, our Tigris accelerator exploits query-
level parallelism (QLP) and node-level parallelism (NLP) both in
the top-tree traversal and in the exhaustive searches. Most prior
work exploits only QLP without NLP [5, 28, 36, 53]. Buffer KD-
tree [23] allows for NLP in the leaf nodes, but does not permit
NLP in tree traversal. Heinzle et al. [28] exposes NLP in tree tra-
versal, but does not exposes NLP in leaf nodes. Our accelerator
design also incorporates a set of architectural mechanisms (e.g.,
node forwarding/bypassing, MQSN, systolic PE organization) that
are unobtainable in general-purpose hardware such as GPUs.

ApproximateKD-Tree SearchThe approximate nature ofmany
robotics and graphics applications that require neighbor informa-
tion has spurred much interest in approximate KD-tree/KNN search
algorithms [6, 26, 28, 42, 43, 51]. Our approximate KD-tree search
algorithm differs from prior work in two key ways. First, we quan-
tify the extent to which KD-tree search can be approximated in
the context of end-to-end registration accuracy while prior work
mostly focuses on the accuracy of KD-tree search alone. Second,
our approximate search algorithm applies to both NN search and
radius search while most prior work is limited to NN search.

8 Conclusion

With the proliferation of 3D sensors and the rising need for ubiqui-
tous 3D perception, point cloud processing is increasingly becoming
the cornerstone of many machine perception applications, and ar-
chitects must be ready for that. To our best knowledge, this is the
first paper that comprehensively characterizes and addresses the
performance bottlenecks of point cloud registration. The key to
our approach is to co-design the data structure, algorithm, and the
accelerator of the key compute kernel. Our work provides the first
answer, not the final answer, in a promising direction of research.

References

[1] 2018. DNN Accelerator Architecture - SIMD or Systolic?
https://www.sigarch.org/dnn-accelerator-architecture-simd-or-systolic/

[2] 2018. Intel Xeon Processor Scalable Family Datasheet, Volume Two: Registers.
(2018), 55–60.

[3] 2019. Micron DDR4 Power Calculator.
https://www.micron.com/~/media/documents/products/power-
calculator/ddr4_power_calc.xlsm

[4] Aitor Aldoma, Zoltan-Csaba Marton, Federico Tombari, Walter Wohlkinger,
Christian Potthast, Bernhard Zeisl, Radu Bogdan Rusu, Suat Gedikli, and Markus
Vincze. 2012. Tutorial: Point cloud library: Three-dimensional object recognition
and 6 dof pose estimation. IEEE Robotics & Automation Magazine 19, 3 (2012),
80–91.

[5] Mohamed Aly, Mario Munich, and Pietro Perona. 2011. Distributed kd-trees for
retrieval from very large image collections. In Proceedings of the British machine
vision conference (BMVC), Vol. 17.

[6] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and
Angela Y Wu. 1998. An optimal algorithm for approximate nearest neighbor
searching fixed dimensions. Journal of the ACM (JACM) 45, 6 (1998), 891–923.

[7] Jens Behley and Cyrill Stachniss. 2018. Efficient surfel-based SLAM using 3D
laser range data in urban environments. In Robotics: Science and Systems (RSS).

[8] Jon Louis Bentley. 1975. Multidimensional binary search trees used for
associative searching. Commun. ACM 18, 9 (1975), 509–517.

[9] Paul J Besl and Neil D McKay. 1992. Method for registration of 3-D shapes. In
Sensor Fusion IV: Control Paradigms and Data Structures, Vol. 1611. International
Society for Optics and Photonics, 586–607.

[10] Gérard Blais and Martin D. Levine. 1995. Registering multiview range data to
create 3D computer objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence 17, 8 (1995), 820–824.

[11] Alexandre Boulch and Renaud Marlet. 2016. Deep learning for robust normal
estimation in unstructured point clouds. In Computer Graphics Forum, Vol. 35.
Wiley Online Library, 281–290.

[12] Yang Chen and Gérard Medioni. 1992. Object modelling by registration of
multiple range images. Image and vision computing 10, 3 (1992), 145–155.

[13] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. 2015. Robust Reconstruction
of Indoor Scenes. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[14] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and Christian
Le. 2010. RAPL: memory power estimation and capping. In 2010 ACM/IEEE
International Symposium on Low-Power Electronics and Design (ISLPED). IEEE,
189–194.

[15] Jean-Emmanuel Deschaud. 2018. IMLS-SLAM: scan-to-model matching based on
3D data. In 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2480–2485.

[16] Gil Elbaz, Tamar Avraham, and Anath Fischer. 2017. 3D point cloud registration
for localization using a deep neural network auto-encoder. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 4631–4640.

[17] Yu Feng, Alexander Schlichting, and Claus Brenner. 2016. 3D feature point
extraction from LiDAR data using a neural network. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives
41 (2016) 41 (2016), 563–569.

[18] R Finkel, J Friedman, and J Bentley. 1977. An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Software (1977), 200–226.

[19] Martin A Fischler and Robert C Bolles. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM 24, 6 (1981), 381–395.

[20] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow, and Jitendra Malik.
2004. Recognizing objects in range data using regional point descriptors. In
European conference on computer vision. Springer, 224–237.

[21] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. [n. d.].
KITTI Visual Odometry / SLAM Evaluation.
http://www.cvlibs.net/datasets/kitti/eval_odometry.php. Accessed April 5,
2019.

[22] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for
autonomous driving? the kitti vision benchmark suite. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 3354–3361.

[23] F. Gieseke, J. Heinermann, C. Oancea, and C. Igel. 2014. Buffer k-d trees:
Processing massive nearest neighbor queries on GPUs. (2014).

[24] S Burak Gokturk, Hakan Yalcin, and Cyrus Bamji. 2004. A time-of-flight depth
sensor-system description, issues and solutions. In 2004 Conference on Computer
Vision and Pattern Recognition Workshop. IEEE, 35–35.

[25] Gene H Golub and Christian Reinsch. 1971. Singular value decomposition and
least squares solutions. In Linear Algebra. Springer, 134–151.

[26] Michael Greenspan and Mike Yurick. 2003. Approximate kd tree search for
efficient ICP. In Fourth International Conference on 3-D Digital Imaging and
Modeling, 2003. 3DIM 2003. Proceedings. IEEE, 442–448.

[27] Christopher G Harris, Mike Stephens, et al. 1988. A combined corner and edge
detector.. In Alvey vision conference, Vol. 15. Citeseer, 10–5244.

[28] Simon Heinzle, GaÃńl Guennebaud, Mario Botsch, and Markus H. Gross. 2008.
A Hardware Processing Unit for Point Sets. In Acm Siggraph/eurographics
Symposium on Graphics Hardware.

[29] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and Pat Hanrahan. 2007.
Interactive kd tree GPU raytracing. In Proceedings of the 2007 symposium on
Interactive 3D graphics and games. ACM, 167–174.

[30] Keng-Yen Huang, Yi-Min Tsai, Chih-Chung Tsai, and Liang-Gee Chen. 2010.
Video stabilization for vehicular applications using SURF-like descriptor and
KD-tree. In 2010 IEEE International Conference on Image Processing. IEEE,
3517–3520.

[31] Xiaoshui Huang, Jian Zhang, Qiang Wu, Lixin Fan, and Chun Yuan. 2018. A
coarse-to-fine algorithm for matching and registration in 3D cross-source point
clouds. IEEE Transactions on Circuits and Systems for Video Technology 28, 10
(2018), 2965–2977.

[32] Michal Irani, Benny Rousso, and Shmuel Peleg. 1997. Recovery of ego-motion
using region alignment. IEEE Transactions on Pattern Analysis & Machine
Intelligence 3 (1997), 268–272.

[33] Jun Jiang, Jun Cheng, and Xinglin Chen. 2009. Registration for 3-D point cloud
using angular-invariant feature. Neurocomputing 72, 16 (2009), 3839–3844.

[34] Andrew Edie Johnson and Sing Bing Kang. 1999. Registration and integration of
textured 3D data. Image and vision computing 17, 2 (1999), 135–147.

[35] Klaas Klasing, Daniel Althoff, Dirk Wollherr, and Martin Buss. 2009. Comparison
of surface normal estimation methods for range sensing applications. In 2009
IEEE International Conference on Robotics and Automation. IEEE, 3206–3211.

[36] Takuya Kuhara, Takaaki Miyajima, Masato Yoshimi, and Hideharu Amano. 2013.
An FPGA Acceleration for the Kd-tree Search in Photon Mapping.

https://www.sigarch.org/dnn-accelerator-architecture-simd-or-systolic/
https://www.micron.com/~/media/documents/products/power-calculator/ddr4_power_calc.xlsm
https://www.micron.com/~/media/documents/products/power-calculator/ddr4_power_calc.xlsm
http://www.cvlibs.net/datasets/kitti/eval_odometry.php

MICRO-52, October 12–16, 2019, Columbus, OH, USA Tiancheng Xu, Boyuan Tian, Yuhao Zhu

[37] Hsiang-Tsung Kung. 1982. Why systolic architectures? IEEE computer 15, 1
(1982), 37–46.

[38] Shihua Li, Jingxian Wang, Zuqin Liang, and Lian Su. 2016. Tree point clouds
registration using an improved ICP algorithm based on kd-tree. In 2016 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS). IEEE,
4545–4548.

[39] Heng Liu, Jingqi Yan, and David Zhang. 2006. Three-dimensional surface
registration: A neural network strategy. Neurocomputing 70, 1-3 (2006), 597–602.

[40] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints.
International journal of computer vision 60, 2 (2004), 91–110.

[41] Bruce D Lucas, Takeo Kanade, et al. 1981. An iterative image registration
technique with an application to stereo vision. (1981).

[42] Vincent CH Ma and Michael D McCool. 2002. Low latency photon mapping
using block hashing. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware. Eurographics Association, 89–99.

[43] Laurent Miclet and Mhamed Dabouz. 1983. Approximative fast
nearest-neighbour recognition. Pattern Recognition Letters 1, 5-6 (1983), 277–285.

[44] Inc. Micron Technology. 2018. 16Gb, 32Gb: x4, x8 3DS DDR4 SDRAM.
https://www.micron.com/-/media/documents/products/data-
sheet/dram/ddr4/16gb_32gb_x4_x8_3ds_ddr4_sdram.pdf

[45] Jorge J Moré. 1978. The Levenberg-Marquardt algorithm: implementation and
theory. In Numerical analysis. Springer, 105–116.

[46] Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms for
high dimensional data. IEEE transactions on pattern analysis and machine
intelligence 36, 11 (2014), 2227–2240.

[47] Beng C Ooi. 1987. Spatial kd-tree: A data structure for geographic database. In
Datenbanksysteme in Büro, Technik und Wissenschaft. Springer, 247–258.

[48] Chanoh Park, Soohwan Kim, Peyman Moghadam, Clinton Fookes, and Sridha
Sridharan. 2017. Probabilistic surfel fusion for dense lidar mapping. In
Proceedings of the IEEE International Conference on Computer Vision. 2418–2426.

[49] Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Colored point cloud
registration revisited. In Proceedings of the IEEE International Conference on
Computer Vision. 143–152.

[50] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek. 2007.
Stackless kd-tree traversal for high performance GPU ray tracing. In Computer
Graphics Forum, Vol. 26. Wiley Online Library, 415–424.

[51] Timothy J Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen, and
Pat Hanrahan. 2005. Photon mapping on programmable graphics hardware. In
ACM SIGGRAPH 2005 Courses. ACM, 258.

[52] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. In Advances in
Neural Information Processing Systems. 5099–5108.

[53] Deyuan Qiu, Stefan May, and Andreas NÃĳchter. 2009. GPU-Accelerated
Nearest Neighbor Search for 3D Registration. In International Conference on
Computer Vision Systems.

[54] CMPPC Rocchini, Paulo Cignoni, Claudio Montani, Paolo Pingi, and Roberto
Scopigno. 2001. A low cost 3D scanner based on structured light. In Computer
Graphics Forum, Vol. 20. Wiley Online Library, 299–308.

[55] Szymon Rusinkiewicz and Marc Levoy. 2001. Efficient variants of the ICP
algorithm.. In 3dim, Vol. 1. 145–152.

[56] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. 2009. Fast point feature
histograms (FPFH) for 3D registration. In 2009 IEEE International Conference on
Robotics and Automation. IEEE, 3212–3217.

[57] Radu B Rusu and S Cousins. 2011. Point cloud library (pcl). In 2011 IEEE
International Conference on Robotics and Automation. 1–4.

[58] Brent Schwarz. 2010. LIDAR: Mapping the world in 3D. Nature Photonics 4, 7
(2010), 429.

[59] Paul Scovanner, Saad Ali, and Mubarak Shah. 2007. A 3-dimensional sift
descriptor and its application to action recognition. In Proceedings of the 15th
ACM international conference on Multimedia. ACM, 357–360.

[60] G Shi, X Gao, and X Dang. 2016. Improved ICP point cloud registration based on
KDTree. 9 (01 2016), 2195–2199.

[61] Ivan Sipiran and Benjamin Bustos. 2011. Harris 3D: a robust extension of the
Harris operator for interest point detection on 3D meshes. The Visual Computer
27, 11 (2011), 963.

[62] Bastian Steder, Radu Bogdan Rusu, Kurt Konolige, and Wolfram Burgard. 2011.
Point feature extraction on 3D range scans taking into account object
boundaries. In 2011 IEEE International Conference on Robotics and Automation.
IEEE, 2601–2608.

[63] Jonathan Dyssel Stets, Yongbin Sun, Wiley Corning, and Scott W Greenwald.
2017. Visualization and labeling of point clouds in virtual reality. In SIGGRAPH
Asia 2017 Posters. ACM, 31.

[64] Federico Tombari, Samuele Salti, and Luigi Di Stefano. 2010. Unique signatures
of histograms for local surface description. In European conference on computer
vision. Springer, 356–369.

[65] Inc. Velodyne LiDAR. 2018. HDL-64E Data Sheet.
http://velodynelidar.com/docs/datasheet/63-9194_Rev-F_HDL-
64E_S3_DataSheet_Web.pdf

[66] George Vosselman, Sander Dijkman, et al. 2001. 3D building model
reconstruction from point clouds and ground plans. International archives of
photogrammetry remote sensing and spatial information sciences 34, 3/W4 (2001),
37–44.

[67] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martín-Martín, Cewu Lu, Li Fei-Fei,
and Silvio Savarese. 2019. DenseFusion: 6D Object Pose Estimation by Iterative
Dense Fusion. arXiv preprint arXiv:1901.04780 (2019).

[68] Xiaolong Wang, David Fouhey, and Abhinav Gupta. 2015. Designing deep
networks for surface normal estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 539–547.

[69] Yujian Wang, Tengfei Lian, W. U. Mingming, Qian Gao, School Of Information,
and Beijing Union University. 2017. Point cloud registration based on octree and
KD-tree index. Engineering of Surveying & Mapping (2017).

[70] Mark Whitty, Stephen Cossell, Kim Son Dang, Jose Guivant, and Jayantha
Katupitiya. 2010. Autonomous navigation using a real-time 3d point cloud. In
2010 Australasian Conference on Robotics and Automation. 1–3.

[71] Felix Winterstein, Samuel Bayliss, and George A. Constantinides. 2013.
FPGA-based K-means clustering using tree-based data structures. In
International Conference on Field Programmable Logic & Applications.

[72] Chunxia Xiao and Meng Liu. 2010. Efficient mean-shift clustering using gaussian
kd-tree. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 2065–2073.

[73] Cheng Xu, Zhongwei Li, Zhong Kai, and Yusheng Shi. 2017. An automatic and
robust point cloud registration framework based on view-invariant local feature
descriptors and transformation consistency verification. Optics & Lasers in
Engineering 98 (2017), 37–45.

[74] Kun Xu, Yong Li, Tao Ju, Shi-Min Hu, and Tian-Qiang Liu. 2009. Efficient
affinity-based edit propagation using KD tree. In ACM Transactions on Graphics
(TOG), Vol. 28. ACM, 118.

[75] Jiaqi Yang, Zhiguo Cao, and Qian Zhang. 2016. A fast and robust local descriptor
for 3D point cloud registration. Information Sciences 346 (2016), 163–179.

[76] Ji Zhang and Sanjiv Singh. 2014. LOAM: Lidar Odometry and Mapping in
Real-time.. In Robotics: Science and Systems, Vol. 2. 9.

[77] Ji Zhang and Sanjiv Singh. 2015. Visual-lidar odometry and mapping: Low-drift,
robust, and fast. In 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2174–2181.

[78] Barbara Zitova and Jan Flusser. 2003. Image registration methods: a survey.
Image and vision computing 21, 11 (2003), 977–1000.

https://www.micron.com/-/media/documents/products/data-sheet/dram/ddr4/16gb_32gb_x4_x8_3ds_ddr4_sdram.pdf
https://www.micron.com/-/media/documents/products/data-sheet/dram/ddr4/16gb_32gb_x4_x8_3ds_ddr4_sdram.pdf
http://velodynelidar.com/docs/datasheet/63-9194_Rev-F_HDL-64E_S3_Data Sheet_Web.pdf
http://velodynelidar.com/docs/datasheet/63-9194_Rev-F_HDL-64E_S3_Data Sheet_Web.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Point Cloud Data
	2.2 Point Cloud Registration

	3 Performance Characterizations
	3.1 Point Cloud Registration Pipeline
	3.2 Performance Bottleneck Analysis

	4 Acceleration-Amenable KD-Tree Data Structure and Algorithm
	4.1 Two-Stage KD-Tree Data Structure
	4.2 Quantifying the Error-Tolerance
	4.3 Approximate KD-Tree Search

	5 KD-Tree Accelerator Design
	5.1 Accelerator Overview
	5.2 The Front-End: Recursion Unit
	5.3 The Back-End: Search Unit

	6 Evaluation
	6.1 Experimental Methodology
	6.2 Area Analysis
	6.3 Performance and Power Comparisons
	6.4 Optimization Effects
	6.5 Sensitivity Analysis

	7 Related Work
	8 Conclusion
	References

