
GenCache: Leveraging In-Cache Operators for Efficient
Sequence Alignment

Anirban Nag
anirban@cs.utah.edu
University of Utah
Salt Lake City, Utah

C. N. Ramachandra
ramgowda@cs.utah.edu

University of Utah
Salt Lake City, Utah

Rajeev Balasubramonian
rajeev@cs.utah.edu
University of Utah
Salt Lake City, Utah

Ryan Stutsman
stutsman@cs.utah.edu
University of Utah
Salt Lake City, Utah

Edouard Giacomin
edouard.giacomin@utah.edu

University of Utah
Salt Lake City, Utah

Hari Kambalasubramanyam
hari.kambalasubramanyam@utah.edu

University of Utah
Salt Lake City, Utah

Pierre-Emmanuel Gaillardon
pierre-

emmanuel.gaillardon@utah.edu
University of Utah
Salt Lake City, Utah

ABSTRACT

Precision Medicine will rely on frequent genomic analysis, espe-

cially for patients undergoing cancer treatments or suffering from

rare diseases. Sequence alignment is invoked in multiple stages

of the genomic analysis pipeline. Recent projects have introduced

accelerators, GenAx and Darwin, for 2nd and 3rd generation se-

quencers respectively. In this work, we improve upon the GenAx

design by increasing its parallelism and reducing its memory band-

width demands. This is achieved with a combination of hardware

and software innovations. We first integrate in-cache operators

from prior work into the GenAx memory hierarchy; we then aug-

ment the in-cache peripheral circuit to support additional new op-

erators. We then re-structure the sequence alignment algorithm to

(i) leverage the many in-cache operators, (ii) exploit the common

case in genomic datasets, (iii) use Bloom Filters to reduce futile

accesses, and (iv) maximize data reuse within a re-organized mem-

ory hierarchy. While the baseline GenAx accelerator processes a

batch of reads in 194 seconds while nearly saturating the 153.6

GB/s memory bandwidth, the proposed GenCache architecture

processes the same batch of reads in 37 seconds at an improved en-

ergy efficiency of 8.6×, while demanding 20 GB/s average memory

bandwidth. Our hardware and software techniques thus interact

synergistically to target both memory and compute bottlenecks,

while not affecting the outputs of the application. We show that

the basic principles in GenCache can also be exploited by 3rd gen-

eration sequence aligners.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MICRO-52, October 12–16, 2019, Columbus, OH, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358308

CCS CONCEPTS

• Applied computing → Computational genomics; • Computer

systems organization→ Special purpose systems.

KEYWORDS

Genomics, Hardware Acceleration, Sequence Alignment, In-Cache

Operators, CISC Instructions, Cache Partitioning

ACM Reference Format:

Anirban Nag, C. N. Ramachandra, Rajeev Balasubramonian, Ryan

Stutsman, Edouard Giacomin, Hari Kambalasubramanyam, and Pierre-

Emmanuel Gaillardon. 2019. GenCache: Leveraging In-Cache Operators

for Efficient Sequence Alignment . In The 52nd Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO-52), October 12–16, 2019,

Columbus, OH, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/

10.1145/3352460.3358308

1 INTRODUCTION

Precision Medicine promises to revolutionize healthcare in the

near future, relying heavily on genomic information that has the

key to both diagnosis and treatment [15, 21, 24, 25]. For example,

genome analysis is useful in understanding cancer-causing muta-

tions and crafting an optimal drug cocktail that targets those can-

cers with minimal side effects [10]. Thanks to the reducing cost

of genome sequencing [36], we will have large enough genomic

databases to enable high-confidence hypothesis testing and signif-

icant discoveries. Not only will every person and every newborn

be sequenced, a single person will be sequenced multiple times to

monitor natural progression of genetic health, growth of a tumor,

and structural variations in different cells of the body. However,

this introduces a significant computation and storage challenge. In-

frastructures in hospitals and in the cloud will be fed with several

genomic analysis queries per patient, for thousands of patients per

day. Most analysis software packages consume several CPU hours

to perform each of these computations [9].

334

https://doi.org/10.1145/3352460.3358308
https://doi.org/10.1145/3352460.3358308
https://doi.org/10.1145/3352460.3358308
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3352460.3358308&domain=pdf&date_stamp=2019-10-12

MICRO-52, October 12–16, 2019, Columbus, OH, USA A. Nag, et al.

Genomic accelerators have the potential to dramatically bring

down the execution time and energy for these tasks. In the past

year, multiple such accelerators have emerged [9, 35, 37], and led

to orders of magnitude improvement. In this work, we extend this

family of accelerators by primarily augmenting the memory hier-

archy and tailoring the algorithm for the new hardware. The basic

ideas have the potential for impact beyond the domain of genomic

analysis.

A generic sequence alignment pipeline involves the following

steps: a genomic segment is partitioned into small sub-segments;

these sub-segments index into hash tables to identify potential

matching locations in a reference genome; filtration heuristics are

used to narrow the set of candidate locations; each location is then

assigned an alignment score with a dynamic programming step.

The first three steps are critical because they require many parallel

operations and memory fetches, while also determining the pres-

sure on the compute-intensive dynamic programming step. Prior

accelerators like GenAx [9] and Darwin [35] use tiling and dedi-

cate a large fraction of chip area for scratchpad SRAM that reduce

memory bandwidth overheads imposed by the first three steps.

The proposed GenCache architecture uses a combination of

hardware and software innovations. We first employ the concept

of in-cache operators to provide computational capabilities within

the SRAM arrays; we introduce new operators that can be lever-

aged to perform many parallel filtering operations. We then de-

sign a new multi-phase algorithm that reduces redundant work,

uses appropriate in-cache operators in each phase, and manages

scratchpad allocation and tiling to maximize reuse and parallelism.

This new algorithm is based on our characterization of the com-

mon case when aligning genomic reads and seeds. We also observe

that by promoting higher parallelism and reuse for some data struc-

tures, the cacheability of the largest data structure is negatively

impacted; we alleviate that effect with a Bloom Filter that reduces

cache pollution and bandwidth overheads.

Algorithm modifications alone, or in-cache operators alone yield

relatively low speedups. The combination of the two results in much

more than additive speedup because the new algorithm shifts the bot-

tleneck to compute, which is then accelerated by the new in-cache

operators in GenCache.

The above hardware and software techniques help reduce data

movement by more than an order of magnitude for a 2nd gen-

eration sequencing pipeline. Execution time is reduced by 5.3×,

energy efficiency is improved by 8.6×, and the outputs of the

genomic algorithm are unchanged. The new GenCache architec-

ture imposes an area overhead of 16%, relative to GenAx. We also

show that in-cache operators can be leveraged by 3rd generation

pipelines, yielding a 1.8× improvement in 3rd generation filtering.

2 BACKGROUND

2.1 Second and Third Generation Reads

Sequencing cost has dropped significantly over the past decade,

due to 2nd generation devices like Illumina HiSeq X and No-

vaSeq 6000. These devices typically produce small genomic seg-

ments called reads of size 100-200 bases at a throughput of 2300

Mbases/min. The machines introduce machine artifacts (errors)

when generating reads, which range from 2-5%. Additionally, a hu-

man genome differs from other human genomes by about 0.1%.

Since this difference is small, a reference-based reconstruction

of the genome using these short reads is possible. In such a re-

construction, the reads are uniquely aligned against a reference

genome by performing inexact matching which accommodates for

errors like mismatches and insertions/deletions (indels).

Once the reads are aligned, further statistical downstream anal-

ysis is performed to correct machine artifacts. This requires that

the machine produce the same base multiple times for sufficient

statistical guarantees. Thus, the machine generates multiple reads

such that each base in the genome has a redundancy of 30×−50×,

adding to the computational demands. Given its low error rate, the

2nd generation data is especially useful in discovering small vari-

ants in the genome.

Some genomic variants, called structural variants, span across

hundreds of base-pairs. Such variants are not easily detected with

second generation reads. Third generation sequencing devices like

the PacBio and Oxford Nanopore produce long reads of size 1 to

100 kilobases at a throughput of about 240 Mbases/min. Such long

reads are more effective at capturing structural variants. However,

these reads have a raw error rate of 10% to 30% (machine induced)

and this leads to significant computational overhead in the align-

ment step. Because of this trade-off, it is expected that both 2nd

and 3rd gen sequencing technologies will be used in tandem to

identify a broad range of variants. Initial hybrid pipelines [11, 13]

have been developed that, for example, use information from 2nd

gen alignment to improve the 3rd gen alignment. Accelerators for

sequence alignment can therefore be an integral part of 2nd gen,

3rd gen, and hybrid pipelines.

2.2 Second Generation Pipelines

GATK Pipeline. The Broad Institute has defined a standard sec-

ond generation pipeline – GATK. The first stage in this pipeline

is sequence alignment. Even with a reference genome, this stage

can consume 4.5 hours on a modern CPU [28], thus providing a

throughput of 12.5 Mbases/min, i.e., well below the throughput of

the sequencing machine. The second stage cleans the output of

alignment and the third stage, variant calling, distinguishes real

variants (mutations) from machine artifacts.

Figure 1: Execution time breakdown for stages of the GATK

pipeline and comparison of time taken by long and short

read alignments.

Figure 1 shows the breakdown of time taken in each stage of the

pipeline when using 36 threads on an Intel Xeon E5 with 256 GB

335

GenCache: Leveraging In-Cache Operators for Efficient Sequence Alignment MICRO-52, October 12–16, 2019, Columbus, OH, USA

of memory. Roughly equal time is spent in sequence alignment

(shownwith the BWA-Mem algorithm), SAM cleaning, and variant

calling. SAM cleaning is typically bottlenecked by I/O and is being

addressed by other works using SSD and compression [4, 8]. In this

work, we focus on the most compute-intensive task in the pipeline,

sequence alignment, that impacts all of the first stage, and portions

of the next two stages. Sequence alignment is also used in other

genomic pipelines such as exome sequencing, RNA sequencing, etc.

Figure 1 also shows that the computational overhead of alignment

grows when we move from 2nd-gen short reads to 3rd-gen long

reads.

ReadAlignment Steps.As shown in Figure 2, a typical read align-

ment algorithm first partitions the read into small subsets called

seeds (step 1). The seed is used to index into a hash table to deter-

mine all the locations in the reference genome where this seed can

be found (step 2). These are the potential candidate locationswhere

this read might align – L1 and L2 are the candidate locations in the

example in Figure 2. An inexact match between the full read and

these candidate locations is then performed. A quick inexact match

is first performed to filter out a promising list of candidates (step 3).

In the example, only L2 advances to step 4, where a more compute-

intensive inexact match is performed to score each candidate and

identify the best alignment for the read.

Figure 2: A typical four step read alignment pipeline.

First Three Steps.A number of different heuristics are used to im-

plement the first three steps, such as Hobbes, SMEM, Shifted Ham-

ming Distance, and Myer’s bit vector algorithm. We will shortly

discuss each of these and the trade-offs they introduce. These steps

require both significant memory bandwidth and compute opera-

tions. This work primarily improves these three steps by reduc-

ing its memory bandwidth requirments, supporting many parallel

compute operations, and eliminating redundant locations that are

forwarded to the fourth step.

Fourth Step. The compute-intensive inexact matching algorithm

in the fourth step is usually a variant of Smith-Waterman local

alignment (SWA) [33]. A read M of lengthm is matched against a

reference fragment N of length n by filling up the cells of a matrix

of sizem ×n. The cells also store trace-back pointers such that the

final alignment can be traced back from the highest scoring cell in

the matrix. Many parallel implementations of this algorithm have

been proposed using FPGAs and systolic arrays [12].

2.3 GenAx and Darwin

GenAx [9] and Darwin [35] are hardware architectures designed

to accelerate second and third generation read alignment respec-

tively. Both GenAx and Darwin use custom processing elements

to accelerate the compute intensive SWA alignment step. GenAx

serves as the baseline formuch of our work. It uses the SMEM algo-

rithm for the first three steps; some of the required operations are

accelerated with CAM arrays. To reduce the memory bandwidth

burden of the first three steps, GenAx uses a large scratchpad and

tiling to store/reuse a subset of its hash table. Darwin also has a

large scratchpad for storing counters used in the filtration tech-

nique called D-SOFT for long noisy reads. It also uses a tiling mech-

anism to manage the memory footprint of trace-back pointers. We

later discuss more details of GenAx (Section 3) and Darwin (Sec-

tion 6).

2.4 Bit-line or In-Cache Computing

Bit-line computing is a hardware technique for performing in-situ

computations in an SRAM array [1]. When two wordlines are ac-

tivated in parallel, the result sensed at bitline-bar (BLB) is the bit-

wise NOR and the result sensed at bitline (BL) is the bitwiseAND.

The major change is an extra row decoder for simultaneous ac-

tivation and a reconfigured differential sense amplifier to sense

BL and BLB separately. The bits at BL and BLB can be processed

further using combinational circuits to produce results like XOR,

OR, SUM , CARRY , etc. [14]. Since multi-row access can corrupt

data, the wordline voltage is lowered, which slightly increases the

access latency (1.5 ×). Such in-situ vector operations can unlock

data-parallelism at sub-array level and can improve performance

and energy due to reduced data movement.

2.5 Genomic Kernels

2.5.1 Seed Selection. The seed selection stage (step 1 in Figure 2)

optimizes the number of candidate locations. The Hobbes algo-

rithm fetches the frequency of all possible seeds of a read and then

selects a batch of non-overlapping seeds with minimum aggregate

frequency using a lightweight dynamic programming step. The

SMEM algorithm finds the longest exact match at each position

of the read (Super Maximal Extended Matches). Hobbes is good

for reads with lesser errors but produces slightly more candidate

locations. SMEM is good for reads with many errors but demands

a higher memory bandwidth.

2.5.2 Filtering. Within the first three steps, filtration (step 3 in

Figure 2) involves a significant amount of compute. Common fil-

tration kernels perform bit-vector computations to estimate string

similarity and are amenable to in-cache operations. We therefore

provide an overview of the major filtration kernels used in our

work, each targeting a different point in the trade-off space. Ham-

mingDistance is not suitablewhen indels are present; Shifted Ham-

ming Distance introduces a non-trivial false positive rate; Myer’s

is computationally more expensive. Note that some of these ker-

nels can be combined to reduce compute and false positives; in

our work, we find that a combination of SHD and Myer’s works

best in some phases.

336

MICRO-52, October 12–16, 2019, Columbus, OH, USA A. Nag, et al.

HammingDistance.TheHamming distance between two strings

indicates the number ofmismatches between the strings. TheHam-

ming distance between the read and an equal length sequence at

the candidate location in the reference indicates the number of mu-

tations, while dis-regarding shifts because of insertions and dele-

tions. Hamming distance of 0 indicates an exact match.

Shifted Hamming Distance (SHD). SHD is effective in identify-

ing a small number of errors including insertions/deletions [38]. To

check for e errors, the Hamming distance is computed after shift-

ing the read by up to e places to the left and right, indicative of e

insertions or e deletions (Step 11, 15 in Algorithm 1). After each

shift, a Hamming mask is computed (Step 12, 16) – a vector of 0s

and 1s that indicate if the bases match or not. These Hamming

masks are then amended using certain heuristics (Step 13, 17) and

combined using bit-wise operations (Step 14, 18) to estimate if the

candidate location should be filtered or not (Step 7, 20). SHD can

successfully filter reads with up to 5 errors without any false neg-

atives, but with a 7% false positive rate.

Algorithm 1 Shifted hamming distance

1: procedure SHD(re f [],read[],n,E)

2: HM ← re f ⊕ read ⊲ Hamming Mask

3: FM ← 1n ⊲ Final Mask

4: AM ← Amend (HM) ⊲ Amended Mask

5: FM ← FM & AM

6: e ← Count 1s in HM

7: if e < E then

8: return pass

9: else

10: for all i← 1 to E do ⊲ Loop over e errors

11: read_tmp ← read ≫ i

12: HM ← read_tmp ⊕ re f

13: AM ← Amend (HM)

14: FM ← FM & AM

15: read_tmp ← read ≪ i

16: HM ← read_tmp ⊕ re f

17: AM ← Amend (HM)

18: FM ← FM & AM

19: e ← Count 1s in FM

20: if e < E then

21: return pass

22: return f ail

23: procedure Amend(Mask)

24: M ← Mask

25: M−1 ← Mask ≪ 1

26: M−2 ← Mask ≪ 2

27: M+1 ← Mask ≫ 1

28: M+1 ← Mask ≫ 2

29: return (M−1MM+1) |(M−2M−1MM+1) |(M−1MM+1M+2)

Myer’s Bit Vector Edit Distance. This algorithm is used to calcu-

late the edit distance (including mismatches and indels) between

two strings. This is calculated with dynamic programming, simi-

lar to SWA. Myer’s algorithm is particularly amenable to in-cache

operators as it uses bitwise operations. Algorithm 2 initially cal-

culates the occurrence vector of each base (A/C/G/T) in the read

Algorithm 2Myer’s Bit-vector algorithm for levenshtein distance

1: procedure Number_Of_Edits(re f [],read[],n)

2: Peq[bp](i) ← (readi == bp) ⊲ Occurence vector

3: Pv ← 1n ,Ph ← 0n ⊲ Auxilliary vectors

4: Mv ← 0n ,Mh ← 0n ⊲ Auxilliary vectors

5: Edits ← 0

6: for all j← 1 to n do ⊲ Loop over n bases

7: Eq ← Peq[re fj]

8: Xv ← Eq & Mv

9: Xh ← (((Eq & Pv) + Pv) ⊕ Pv) | Eq

10: Ph ← Mv | ∼Xh | Pv)

11: Mh ← Pv & Xh

12: if Ph & 10m−1 then

13: Edits ← Edits + 1

14: else if Mh & 10m−1 then

15: Edits ← Edits − 1

16: Ph ← Ph ≪ 1

17: Mh ← Mh ≪ 1

18: Pv ← Mh | ∼Xv | Ph)

19: Mv ← Ph & Xv

20: return Edits

string (Step 2). For example, for a read with two As in the begin-

ning, the occurrence vector starts with two 1s. The algorithm then

scans through each base in the reference string (Step 6) to calcu-

late each column of the dynamic programming matrix. Essentially,

the algorithm calculates the difference between two consecutive

columns with the help of auxilliary vectors (Step 3, 4) and updates

the number of edits. Apart from the addition operation in step 9,

the rest are bitwise operations. In order to support Myer’s algo-

rithm in-cache or near-cache, addition and shift operations need to

be supported. A minor transformation of Myer’s algorithm is used

to calculate banded edit distance to filter reads with more than e

errors. This reduces computation by calculating only the cells of a

banded diagonal.

3 PROPOSAL

3.1 Architecture Overview

Without loss of generality, in this work, we model a baseline that

resembles the GenAx architecture [9]. The proposed architecture,

GenCache, is shown in Figure 3 with new components shaded

blue. It operates as a co-processor (similar to a GPU card) and is

equippedwith significant memory bandwidth. The accelerator has

large SRAM arrays; we add in-cache operators to these arrays. The

input to the accelerator is a set of reads thatmust be aligned against

the reference genome. These inputs are fed to a number of seeding

lanes that execute the required seed selection and filtration heuris-

tics (steps 1-3 in Figure 2). With help from a central controller unit,

filtration commands are sent to in-cache operators in SRAM arrays,

and responses are collected. The resulting candidate locations are

then sent to an SWA engine where step 4 is performed to score

each location and send final alignments back to the processor.

GenCache does not modify the SWA engine. It uses a new algo-

rithm for steps 1-3 that requires fewer memory accesses and that

337

GenCache: Leveraging In-Cache Operators for Efficient Sequence Alignment MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 3: (a) Block Diagram of the GenCache Architecture. (b) Overview of bitlines and added logic in a subarray. Additional

components over the GenAx architecture are colored in blue in both (a) and (b).

exposes more parallelism to the in-cache operators. The new al-

gorithm also eliminates redundant reads that are sent to the SWA

engine in GenAx. We are thus reducing the time taken in all steps

and retaining a balanced pipeline. We preserve the same output

quality as the baseline GenAx, i.e., we do not introduce any false

negatives. While we will focus on 2nd-generation alignment here,

similar approaches can be applied to 3rd-generation alignment as

well (Section 6).

3.2 GenCache Operators

In this work, we propose adding compute capabilities to the large

scratchpads in genomic accelerators – this has the potential to add

a large amount of distributed compute with local wiring and local

data movement. In addition, we observe that genomic workloads

can benefit from new in-cache operators. This subsection describes

these new operators and what role they play in genomics; the next

subsection describes how the algorithms can be modified to lever-

age in-cache operators.

Supported Operators

Compute Caches [1] were based on the principle of bit-

computing, where in-situ AND and NOR operations were per-

formed on two wordline vectors. Subsequently, more compute el-

ements were added within the bitline peripheral circuits of the

SRAM arrays to perform operations like OR, XOR, and in-place

COPY [1]. These works also add non-trivial full-adder circuits to

a bit-line to iteratively perform addition and multiplication to sup-

port convolution operations in neural networks [7]. All of these

operators are part of our design because they are useful for vari-

ous kernels. In addition, we introduce five new RISC-like operators

to efficiently implement SHD and Myer’s algorithms. These oper-

ators are:

(1) Hamming Mask (HM): computes the hamming vector be-

tween two strings; required by exact match, and in steps 2,

12, 16 of SHD (Algorithm 1) and step 2 ofMyer’s (Algorithm

2).

(2) Hamming Distance (HD): adds the 1s in a hamming vector;

required by exact match, and in steps 6, 19 of SHD (Algo-

rithm 1) and steps 12, 14 of Myer’s (Algorithm 2).

(3) Shift Left (SL): required in steps 15, 25, 26 of SHD and steps

16, 17 of Myer’s.

(4) Shift Right (SR): required in steps 11, 27, 28 of SHD.

(5) 32-bit addition (ADD): required in step 9 of Myer’s.

For some of the above operators, we create both 1-bit and 2-bit

versions. In genomic workloads, the input operand is often a base-

pair (ACGT), which is represented with 2 bits.

Figure 4: Bit-line Peripheral Circuit for GenCache

338

MICRO-52, October 12–16, 2019, Columbus, OH, USA A. Nag, et al.

Additional Peripheral Logic

The above operators require extra logic that is implemented ad-

jacent to the bitline sense-amps. The overhead of this extra logic is

quantified later with a synthesized design. This bitline peripheral

circuit for bitline i is shown in Figure 4. When two wordlines A

and B are activated, the results emerging from the sense-amps are

A&B and ∼ A& ∼ B. These are fed to a NOR gate (colored BLUE) to

produce an XOR result. Next, we introduce connections between

adjacent bitlines. This is useful to not only perform a shift, but also

to perform operations on 2-bit values. We introduce an OR gate

(colored GRAY) for even-numbered bitlines that gathers the XOR

result for two consecutive bitlines and decides if the 2-bit bases in

rows A and B are the same or different (producing the signal HM

or Hamming Mask). Next is a latch (colored YELLOW) that is used

to perform 1-bit or 2-bit shift operations. Finally, the result of the

bitline operation is sent to an adder tree used for aggregation; Ham-

ming masks are produced at bitlines, while the hamming distance

is produced at the adder tree. We implement a 128-bit adder tree

(assuming inputs from odd-numbered bitlines in a 256-wide array,

shown in Figure 3b) with 0.55 ns critical path latency at 28 nm

technology.

In addition, prior work [7] has shown how word-granularity ad-

ditions (say, addition of two 32-bit words) can be performed with

bitline operators. Those implementations incur overheads to map

data and iteratively perform addition over several cycles. Instead,

we implement a dedicated 32-bit adder adjacent to the subarray,

shown in Figure 3b. This adder receives input operands in consec-

utive cycles (the first operand is buffered in a register). This allows

addition of two 128-bit rows (as required by step 9 of Myer’s) in 4

cycles.

We later show that supporting these new operators results in a

modest area overhead. In addition to the 5 new RISC-like operators

introduced above, we introduce the following 4 CISC-like opera-

tors that perform the filtration kernels mentioned in Section 2.5.2:

SHD, SHD_C , MYERS , and MYERS_B, where SHD_C performs

SHD filtering for e + 1 errors using the result of SHD_C with

e errors and MYERS_B performs banded Myer’s algorithm. Each

“CISC” instruction is made up of multiple RISC operators and is

parameterized by the number of errors or the read length (Step 10

of SHD, Step 6 of MYERS). A ROM stores the sequence of 4b RISC

instructions for each CISC instruction.

Not shown in Figure 4 is a local control circuit that receives com-

mands from the central controller and implements the RISC/CISC

API; in addition to receiving/buffering addresses, a 4-bit command

is received to perform the operation and return the data response

after a fixed number of cycles. The local controller “unrolls” a CISC

instruction into a set of RISC intructions using the received param-

eter and the ROM sequence. Each RISC instruction is translated

into 7b select signals for the MUX and DEMUX logic in the bit-line

peripheral circuit. We have synthesized the local controller circuit

and its area footprint is only 225 µm2.

3.3 2nd-Gen Read Alignment

Having introduced various in-cache operators, we describe how

the 2nd-gen read alignment algorithm can be modified to unlock

the potential of GenCache.

SRAM Allocation: GenAx and GenCache

During the many steps of read alignment, the reference genome

and the hash tables for seed positions are repeatedly accessed.

Since these structures are too large to fit in cache, prior work

GenAx uses the following tiling approach to alleviate the mem-

ory bottleneck. It partitions the reference genome into 2 MB slices

and a hash table is constructed for each slice (see Figure 6). This

hash table has a capacity of about 64 MB. GenAx thus allocates

its on-chip storage for 2 MB of reference and 64 MB of hash table,

and processes the entire batch of input reads before bringing in the

next slice of reference and hash table. The storage is organized as

two scratchpads.

The values in the hash table exhibit a low computation/byte ra-

tio, while the values in the reference genome are involved in a ma-

jority of computations. If the reference genome occupies only 2MB

of on-chip storage, it can only leverage a small fraction of in-cache

operators, thus limiting the potential speedup. Therefore, we first

change our resource allocation. A much larger slice (24 to 48 MB)

of the reference genome is placed in a scratchpad with compute

capability. The remaining on-chip storage is then managed as a

cache for the corresponding hash table. Given the large size of the

hash table, the high miss rate in the cache is a potential bottleneck.

We alleviate this bottleneck by re-structuring the read alignment

software pipeline described next.

A New Error-Aware Algorithm

Figure 5 shows the number of errors encountered per read when

aligning against the reference genome. We show results for two

popular software packages, BWA-MEM [17] and SNAP [39]. We

see that about 75-80% of the reads align with the reference with

0 errors (exact matches), 15% align with one error, 5% with 2-5 er-

rors and the remaining with 6 or more errors. This distribution is

consistent across most second generation read datasets since two

human genomes typically differ by less than 0.1%. A key observa-

tion here is that higher efficiency can be extracted by treating each

of these error cases differently.

Figure 5: Read alignment profile for BWA-MEM and SNAP.

The seed-and-extend algorithm in GenAx divides a read into

chunks of size 12 bp (seeds) and accesses the hash table to fetch

locations where each of the seeds occurs in the reference genome.

If neighboring seeds in a read return neighboring locations in the

reference, the location is considered as a potential candidate. Po-

tential candidates are then scored using the “extend” engine. It is

339

GenCache: Leveraging In-Cache Operators for Efficient Sequence Alignment MICRO-52, October 12–16, 2019, Columbus, OH, USA

(a) GenAx computation pipeline.

(b) GenCache computation pipeline.

Load: 2MB ref slice

64MB hash table

Process: 48GB reads

Load: 2MB ref slice

64MB hash table

Process: 47.9GB reads

Step 1 Step 2

Load: 2MB ref slice

64MB hash table

Process: 12.1GB reads

Step 384

… repeat 384 times

2MB ref. scratchpad

64MB hash scratchpad

Load: 48MB ref slice

20MB bloom

On-demand: 4MB hash

Quick Process: 48GB reads

Phase 1, Step 1

48MB ref. scratchpad

4MB hash cache

20MB bloom scratchpad

… repeat 16 times

Phase 1, Step 16
Phase 2 … 3 …. 4

… repeat 16-32 times each

Longer processing steps

Fewer reads left

Larger cache

Smaller scratchpad

Load: 48MB ref slice

20MB bloom

On-demand: 4MB hash

Quick Process: 14GB reads

Figure 6: Comparing the GenAx and GenCache computational pipelines.

this step of fetching locations of all the seeds from the large hash

table that creates a potential memory bottleneck.

For example, consider a read of length 100 bp that is divided into

8 seeds, each of size 12. Assume that the frequency of occurrence of

each seed in the reference genome is given by the array [512, 256,

128, 64, 32, 16, 8, 4]. After fetching these 8 frequency counts and

pointers to the corresponding list of locations, GenAx then fetches

a total of 1020 locations from the scratchpad. If the intersection of

the sets of locations per seed is non-null, GenAx declares a perfect

match.

GenCache takes a different multi-phase approach in selecting

seeds for a read. The pigeon-hole principle states that given a read

with e errors, we need e+1 seeds such that at least one of the seeds

will be error free. When the read has zero errors, all seeds are error-

free. We can therefore pick the least frequent seed and check for

an alignment against locations for that seed. In the example read

above, GenCache creates seeds, then fetches 8 hash table locations

(the frequency counts above). It then focuses on the 4 locations

for the last seed and performs an in-cache perfect match for the

full read against those 4 locations – note that a large 32 MB slice

of the reference genome has already been pre-loaded. We are thus

fetching less than 10 memory locations (the frequency counts) in

the common case and performing a handful of parallel in-cache

matches, whereas GenAx reads 1000+ scratchpad locations, fol-

lowed by a set intersection operation.

Similarly, in order to align a read with 1 error (mismatch or in-

del), we can narrow our search to the two most infrequently oc-

curring seeds. We therefore employ a 4-phase algorithm, shown

in Figure 7, where each phase deals with a different error scenario.

The first phase deals with exact matches, the next phase deals with

1-errormatches, the next with 2-5 errors, and the fourth phase han-

dles 6+ errors. Each phase uses a different algorithm to identify an

efficient set of seeds, a different set of operations to perform the

matches, and different data structures. All of this is summarized in

Figure 7; we walk through the details of each phase in Section 3.4.

The bottomline is that our algorithmic change avoids a number

of memory fetches in the common case (with few errors) and our

hardware in-cache operators can perform highly parallel filtering

operations.

Exploiting a Bloom Filter

One of the bottlenecks in our design is the large number of hash

table look-ups and the potential for a high cache miss rate, espe-

cially when a large fraction of on-chip space is allocated for the

reference genome. As we will describe in the next sub-section, fu-

tile or non-useful look-ups of the hash table in Phases 1 and 2 can

be filtered out with a Bloom Filter.

Architectural Comparison

Architecturally, consider the contrast between GenAx and Gen-

Cache, summarized in Figure 6. The reference genome is a 3 billion

base-pair structure that is encoded in 768 MB. GenAx partitions

the reference into 384 2 MB slices and hash tables specific to each

slice. A slice and hash table are brought into the GenAx scratch-

pads, and alignment is performed for the entire batch of reads for

one human (800M reads). The reads that find perfect matches are

set aside and are not matched against subsequent slices. As a re-

sult, the set of reads to be processed shrinks gradually as GenAx

iterate through the slices. This pipeline increases reuse of the refer-

ence and hash table, but leads to high computational overhead and

high bandwidth demand when fetching the reads. It also results in

early approximate matches being sent to the SWA engine; these are

futile/redundant computations if a perfect match is discovered later.

Instead, in GenCache, the reference genome is partitioned into

16 48 MB slices. All slices are first processed in Phase 1 that looks

for exact matches, so that a vast majority of reads can be han-

dled quickly with low computational overhead. Also, unlike GenAx,

these perfectly matched reads never send redundant work to the SWA

340

MICRO-52, October 12–16, 2019, Columbus, OH, USA A. Nag, et al.

engine. The remaining 25% of reads then go through Phase 2, again

iterating through 16 reference slices, performing the slightly more

expensive 1-errormatch operations.More iterations are performed

again in Phase 3 and Phase 4, with even more computations per

read and an even smaller set of reads. The reference genome is

therefore fetched from memory 4 times and we also incur more

memory accesses because of large hash tables that do not fit in

the hash table cache. Note that in GenAx, a read is fetched 1-384

times depending on if/when it finds a perfect match, with 20-25%

of reads going through all 384 iterations because they never find a

perfect match. On the other hand, in GenCache, a read is fetched

1-96 times with 75-80% of reads finding a perfect match in the 16

iterations of Phase 1.

We are thus trading higher memory bandwidth for reference and

hash table, for lower memory bandwidth for input reads and a lower

computational burden.We show in Section 5 that this is a worthwhile

trade-off and results in fewer overall cycles for memory fetches and

compute.

3.4 Details of the Four-Phase Algorithm

In this sub-section, we describe the design details (both algorithm

andmapping to hardware) for the four phases described in Figure 7

for 2nd-gen read alignment.

Figure 7: Four phases in the new alignment algorithm that

exploits in-cache operators.

Seed Selection

Each phase starts with a seed solver that identifies a set of seeds

that is most favorable for next steps in the algorithm. The first two

phases are most concerned with identifying 1 or 2 seeds that occur

least frequently. The Min_Search modules walk through various

seeds and track their occurrence count with hash table look-ups to

find seeds with minimum frequencies. Phase 3 uses the Hobbes al-

gorithm, which performs a single (lightweight) dynamic program-

ming operation per read. The SWA engine of GenAx is used for

this. Phase 4 uses the SMEM algorithm, tailored for high-error sce-

narios and used in GenAx and BWA-Mem. Like GenAx, a TCAM

array is used to perform the SMEMoperation. Figure 3 shows hard-

ware units that implement the control for each of the above seed

solvers.

Phases 1 and 2

Most reads are handled by Phase 1 and 2 that leverage in-cache

operators. In phase 1, we are looking for a perfect match against a

few reference genome locations. We therefore write the read into

specific cache subarrays, perfectly aligned with the candidate refer-

ence genome locations (in some cases, the read may be split across

two subarrays). A Hamming Distance (HD) in-cache operation is

performed for each of these locations. The central controller re-

ceives responses; when a perfect match is discovered, the read

does not advance to subsequent phases and subsequent reference

genome slices. Phase 2 follows a similar process, but must consider

the hamming masks of the left- and right-shifted versions of the

read (using RISC operations SL, SR, HM).

Phase 3

In Phase 3, after using the Hobbes unit to identify seeds and can-

didate locations in the reference genome, the following in-cache

operations are used to filter out the worst locations. An SHD CISC

operation is performed at each location to filter out locations with

more than 5 errors. Since SHD lets through a small number of

false positives (7%), aMYERS_B CISC operation (described in Sec-

tion 3.2) is also performed to identify the true positives. The list of

true positives is then sent to the SWA engine.

Phase 4

In Phase 4, after using the hardware SMEM unit (already in-

cluded in GenAx) to identify the best candidate locations in the ref-

erence, aMYERS_B operation is performed at each location. Reads

with edit distance less than 40 are advanced to the SWA engine.

3.5 Reducing Hash Table Accesses

SRAM Allocation to Data Structures

We observe that each phase places different demands on the var-

ious data structures; there is the potential for higher efficiency if

the on-chip storage is re-allocated across the data structures at the

start of each phase. For example, Phase 1 handles the most reads

and benefits themost from the higher parallelism afforded bymany

subarrays, whereas Phase 4 performs more look-ups of seed loca-

tions for the SMEM seeding algorithm. In other words, Phase 1

needs a larger reference genome scratchpad (48 MB), while Phase

4 needs a larger hash table cache (48 MB). We therefore design

the arrays so that 48 MB of SRAM support in-cache operators and

leave it up to the central controller to configure/load the arrays

at the start of every phase. The SRAM allocation of different data

structures in the four different phases is shown in Figure 7.

Improving the Hash Table Cache

When a reference genome slice grows, its hash table size grows

in proportion, while receiving an even smaller allocation for the

hash table cache. We address this problem with the following in-

sight: the hash table for a reference slice is highly skewed in its

distribution (shown in Figure 8), with 70-80% of seeds having zero

occurrences in the reference genome, 14-17% having a single occur-

rence and 6-13% having more than 1 occurrence. Seeds with 0 or 1

occurrence are especially useful during Phase 1 and 2. If we find a

seed with 0 occurrences, the read cannot find a perfect match and

does not need further processing in Phase 1. If we find a seed with

1 occurrence, a single HD operation on that location is enough to

discover or give up on a perfect match in Phase 1. As described

next, we leverage this observation to improve hash table cache ef-

ficiency.

Bloom Filter Details

We use a Bloom Filter to determine if a seed has more than 1 oc-

currence in the reference genome slice (a smaller set that is easier

to track with a Bloom Filter). In Phase 1, we fetch Bloom Filter en-

tries for seeds in a read until the Bloom Filter finds a seed with 0 or

341

GenCache: Leveraging In-Cache Operators for Efficient Sequence Alignment MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 8: Distribution of seed occurrences for different ref-

erence genome slice sizes.

1 occurrence. That seed is then looked up in the hash table (hope-

fully in cache). If the hash table entry is empty (0 occurrences for

that seed), the read will not have a perfect match and it is skipped

over. If the hash table entry has a single occurrence, we perform an

in-cache Hamming Distance operation to identify a perfect match.

A similar Bloom Filter structure is also used for Phase 2.

The Bloom Filter implementation is a storage-efficient way to iden-

tify seeds with 0/1 frequency in a skewed hash table, which is crucial

for Phases 1 and 2. This is a novel application of Bloom Filters, unlike

prior caching policies [27] that use Bloom Filters for cache hit/miss

prediction. Because the Bloom Filter is on chip, it is also a more effi-

cient structure to identify candidate locations. Without this approach,

hash table entries with zero or many occurrences put pressure on

bandwidth, cache capacity, and in-cache operators.

4 METHODOLOGY

Software. For short read alignment, we use the single-end

ERR194147_1.fastq read dataset with 787M reads of length 101 bp,

as used in GenAx.We compare the alignment accuracy of our mod-

ified pipeline against that of GenAx and BWA-MEM [17]. Gen-

Cache accuracy matches that of GenAx because (i) the 4-phase

algorithm only eliminates redundant SWA computations which

would have had no impact on the GenAx output, (ii) the techniques

used in the first 3 phases such as Hobbes, SHD, and MYERS, have

no false negatives, and (iii) for complex alignments, GenCache falls

back to the GenAx SMEM heuristic. Similar to GenAx, GenCache

has a 0.0023% variance with the BWA-MEMoutput. This is because

the GenAx SWA engine used in GenCache to make an apples-to-

apples comparison uses a different tie-breaking mechanism than

the software BWA-MEM algorithm.

Circuit Models. We synthesize the bitline peripheral circuit, the

128-bit adder tree, the 32-bit adder, the new seed solver circuits,

the Bloom Filter hashing circuit, and the central controller using

Synopsys Design Compiler. We design 8:1 and 4:1 MUXes in our

peripheral circuit using smaller gates from a standard cell library.

The column circuit consists of two parts: the analog component

(sense amps and write drivers) and the digital component (rest

of the circuit). We pitch-match the analog component with every

SRAM cell to reduce variability due to noise. The digital compo-

nent of the bitline peripheral is used for every even-numbered

bitline and can be pitch-matched across two bitlines (10 tracks),

where our 8:1 or 4:1 mux can fit easily. However, the D Flip Flop

occupies 20 tracks, which is why we use two rows of peripheral

circuits below the SRAM array. Each row consists of the digital

component of every fourth bitline, each pitch-matched to four bit-

lines (20 tracks). We validate the floorplanning through a place-

and-route flow. The central controller includes logic for scratch-

pad allocation/indexing and a finite state machine to manage the

responses of in-cache operations. The generated gate level netlists

were converted to a SPICE netlist using FDSOI 28 nm technology

node to model the delay, power, and energy values. We model Gen-

Cache by integrating these circuit estimates within Cacti’s subar-

ray and cache models [23]. In order to model a scratchpad, we use

the modified version of Cacti within the Aladdin toolset [32]. For

memory fetches, we assume energy of 51 pj/bit for DDR4 [29]. Ta-

ble 1 lists the main components in the GenCache architecture and

their power and area (all scaled to 32 nm). Table 2 summarizes per-

formance and energy for each operator in GenCache. The bit-line

peripheral circuit adds to the area overhead of the cache subsys-

tem by 14.7%. To accommodate the Bloom Filter, we use 4 MB

more SRAM than GenAx, an additional SRAM overhead of 5.9%.

A conventional 256×256 SRAM array read takes 650 ps whereas a

compute-enabled access to GenCache takes 1040 ps. The adder tree

and 32-bit adder occupy negligible area. Overall, the GenCache

chip has 16.4% higher area, 34.7% higher peak power, and 15%

higher average power than GenAx.

Components Area Peak Power

Subarray

Bit-line Peripheral (x128) 2842 µm2 1.98 mW

Adder Tree 672 µm2 0.369 mW

32-bit Adder 70 µm2 0.126 mW

SRAM memory

GenAx Scratchpad (68 MB) 189.2mm2 12 W

GenCache Scratchpad (32 MB) 102.1mm2 8.42 W

GenCache Cache (40 MB) 117.6mm2 10.33 W

Seed Solvers (x128)

Min Finder 0.015mm2 5 mW

Hobbes Control 0.060mm2 169 mW

Bloom Hashes 0.073mm2 247 mW

SMEM 5.78mm2 4.4 W

Central Control Unit 2.59mm2 1.53 W

SWA Engine (x4) 7.43mm2 8.62 W

GenAx Chip Total 202.41mm2 25.02 W

GenCache Chip Total 235.68mm2 33.72 W

Table 1: Area and power of different components in GenAx

(yellow/orange) and GenCache (white/orange) at 32 nm.

Architecture Model. Since GenAx already shows an order of

magnitude improvement over a 56-thread CPU baseline and an

NVIDIA Titan Xp GPU [9], we compare our architecture against

GenAx only. For the GenCache architecture, we designed a cycle

accurate simulator that models the latency and bandwidth of each

component (cache HTree, cache subarray, queuing, instruction is-

sue width of the seeding lanes, etc.). For the scratchpad, we use 16

342

MICRO-52, October 12–16, 2019, Columbus, OH, USA A. Nag, et al.

Operations Cycles Energy/Op Throughput/Area

(@2.0GHz) (pj) (MReads/s/mm2)

HD 7 46 12268

SHD (1e) 71 659 1136

SHD (5e) 328 3109 244

SHD_C 64 613 1252

MYERS_B (5e) 501 2079 160

MYERS_B (40e) 3413 14085 23.5

MYERS_B (90e) 7571 31237 10.6

GenAx SWA (40e) 456 491340 2.36

Table 2: Comparison of Latency, Energy and Peak Through-

put of different GenCache Ops at 128 bp granularity for a 32

MB scratchpad (102.1 mm2) with GenAx SWA Engine (1.86

mm2).

slices of 2 MB each, where each slice has 64 banks and each bank

is equipped with 512 I/O wires. This provides high bandwidth for

GenCache to send the reads to the appropriate subarrays at the

cost of leakage power. Each subarray is 256×256 bits. The bitline

peripheral circuit is used for every even-numbered bitline, offering

a parallelism of 128 bit-wise operations per subarray. Each seeding

lane processes both forward and reverse read at a time. The seed-

ing lanes also buffer and overlap processing for 4 reads to tolerate

hash table access latencies. The CAM array used by the SMEM al-

gorithm in phase 4 is used as a cache for each seeding lane in phase

1-3 to temporarily store reads and locations of seeds.

5 RESULTS

Figure 9 shows the throughput improvement as each of our key

innovations is incrementally introduced. By adding in-cache op-

erators to the 2 MB reference slice in GenAx, and no algorithmic

changes, we see a marginal improvement of 5% due to the limited

parallelism. If the reference slice is allocated 32 MB (with in-cache

operators) to create a basic GenCache, we see a 1.62× speedup over

GenAx; while the operators allow high parallelism, the system con-

tinues to be bottlenecked by memory accesses because the hash ta-

bles experience frequent cache misses. The fourth bar introduces

the 4-phase algorithm (eliminating redundant computations) for

the baseline GenAx architecture (without in-cache operators). This

only yields a 1.36× speedup because ofmore iterations through the

reads and limited parallelism for filtration. The same 4-phase ap-

proach over basic GenCache yields a 2.5× speedup due to (i) fewer

fetches for reads (which accounts for a large fraction of memory

bandwidth) and (ii) the high degree of parallelism offered by Gen-

Cache operators. This is therefore a case of the whole being greater

(4× speedup from in-cache operators and algorithm) than the sum of

its parts (1.36× from algorithm alone and 1.62× from in-cache oper-

ators alone). The addition of the bloom filter alleviates the remain-

ing memory bottleneck from hash table misses in Phases 1 and 2

to yield a 5.26× speedup over baseline GenAx.

Figure 10 shows an energy comparison (in terms of reads per

mJ) and memory fetches for the same six configurations. Most of

the energy reduction is from a reduction in memory accesses. The

in-cache operators by themselves do little to reduce memory ac-

cesses – in fact, they increase memory accesses because of a higher

cache miss rate on hash table look-ups. A larger reference slice in

Figure 9: Throughput improvement of GenCache (Hardware

& Software).

third, fifth, and sixth bars leads to fewer memory fetches per read.

Energy improvement is the highest (8.6×) when using the 4-phase

algorithm with bloom filter, due to reduced memory access and

lower runtime.

Figure 10: Energy improvement (in Reads/mJ) and number

of memory fetches (log scale) of GenCache (Hardware &

Software).

Figure 11a further breaks down the memory accesses across

phases and data structures (note log scale). In the baseline GenAx,

most memory accesses are for the reads, parts of which are fetched

384 times. In GenCache, most memory accesses are again for reads,

but by eliminating redundancy, the total count is much lower.

While the hash table accesses are fewer than the read fetches, the

hash table accesses tend to be on the critical path, so reducing them

has a large impact on performance. Figure 11b breaks down the

time taken and energy consumed in each phase. Phase 1 and 2 take

less time because of the high parallelism offered by in-cache oper-

ators HD and SHD. Phase 4 takes the most amount of time because

it is bottlenecked by the CAM lookups for the SMEM based filtra-

tion. Phase 1 and Phase 4 consume high energy because ofmemory

fetches and CAM lookups respectively.

Figure 12a shows the Bloom Filter size required for different

false positive rates and reference genome slices. The SRAM allo-

cation for phases 1 and 2, shown in Figure 7, is based on this data.

Figure 12b shows the reduction in the miss rate for the hash table

cache. Note that the hash table itself is 1.5 GB, of which only 4 MB

is cached.We are using a 20MB bloomfilter to approximately track

high-frequency entries in the 1.5 GB table. The bloom filter not

only reduces futile memory bandwidth (captured in Figure 10), it

also yields a higher cache hit rate by avoiding pollution. This is es-

pecially important given that most of the on-chip storage has been

apportioned for storing other compute-friendly data structures.

343

GenCache: Leveraging In-Cache Operators for Efficient Sequence Alignment MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 11: (a) Breakdown of time and energy by program

phase. (b) Breakdownofmemory accesses by program phase

and data structure.

Figure 12: (a) Bloom Filter sizes for varying reference slices

and false positive rates. (b) Reduction in miss rate for Phase

1 and 2 when using a bloom filter with 10% false positive

rate.

Iso-area Analysis and Effect of HBM. As a sensitivity analysis,

we reduced the on-chip SRAM allocation of GenCache to 62MB for

an iso-area comparison with GenAx. In spite of the reduced paral-

lelism and cache space for hash tables, we observe a 4.3× speedup

over GenAx. Using an HBM interface with 256 GB/s bandwidth in-

stead of a Bloom Filter does little to improve the performance (8%)

of the 4-phase algorithm because there aren’t as many hardware

threads to hide the latency of memory accesses.

6 APPLICATION TO 3RD GENERATION
ALIGNMENT

GenCache operators are useful for other genomic operations such

as Indel Realignment in the GATK pipeline. Here, we show its po-

tential in the context of a 3rd generation kernel.

Baseline.We assume a Darwin-like baseline that uses D-SOFT fil-

tration for long reads. D-SOFT finds seeds from a read that map to

multiple non-overlapping bins of a reference genome. Depending

on the number of bases that match in a bin, the bin is chosen as an

anchor . The read is then iteratively aligned against the reference

and extended (SWA step) on either side of the anchor using smaller

tiles (512 bp).

In-Cache Filtration. We leverage the observation that D-SOFT

produces 100-10,000 false hits per read, 97% of which can be eas-

ily pruned by using a thresholding operation on the score of the

Figure 13: Throughput for 3rd gen workloads (log scale).

first SWA tile. Instead of using an SWA operation, we propose to use

a MYERS_B operation on the first tile as a filtration step, which is

amenable to acceleration with GenCache. This approach only ad-

vances 3% of D-SOFT hits to the Darwin SWA engine, while not

impacting accuracy.

Methodology. We simulated three sets of reads of size 10 Kbp

and 30× coverage using PBSIM [26], representing the various 3rd

gen sequencing methods and their error profiles. PacBio mimics a

15% error rate of Pacific Bioscience devices. ONT_2D and ONT_1D

mimic the error rates of Oxford Nanopore devices at 30% and 40%

respectively. Darwin uses a 64 MB scratchpad for storing the coun-

ters needed for the D-SOFT algorithm for all the reference bins (for

bin_size = 128). In our design, we allocate 16MB to cache the hash

table and prefetch the locations for neighboring seeds in a read; we

allocate 16 MB for counters; the remaining 32 MB (with in-cache

operators) is used to store a slice of the 768 MB reference genome.

A 32 MB slice of the reference consists of 1M bins of size 256 bp,

which needs 1 MB of counters; with a 16 MB allocation for coun-

ters, we process 16 reads in parallel.

Results. Figure 13 shows the improvement from using this in-

cache filtration (log scale). GenCache improves the performance

of 3rd gen alignment by 1.8×. This is because of two main rea-

sons: (i) the 32 MB scratchpad provides an additional through-

put of 1 BReads/s for the Myers Edit distance step along with the

21 MReads/s throughput provided by the Darwin SWA engine, (ii)

the cache for the hash table and the fewer counters increases the

throughput of the counter update in D-SOFT (thus creating align-

ment tasks at a faster rate for the SWA engine). In terms of chip

area, the Darwin chip is estimated to be 264 mm2, whereas the

GenCache design is estimated to be 289mm2 at 32 nm.

7 RELATED WORK

There have beenmany efforts to improve sequence alignment with

a variety of approaches, ranging from hardware acceleration to

distributed bioinformatics runtimes. Accelerators like GenAx [9]

and Darwin [35] have focused on sequence alignment, while ef-

forts like GateKeeper [2] accelerates SHD-based filtering, Wu et

al. [37] use FPGAs to accelerate INDEL realignment in the Cloud,

and the Dragen system uses FPGAs for alignment and variant call-

ing [22]. The FPGA approaches of accelerating filtering or align-

ment have the following downside in comparison to GenCache:

344

MICRO-52, October 12–16, 2019, Columbus, OH, USA A. Nag, et al.

(i) they provide lower parallelism in comparison to in-cache oper-

ators, (ii) they incur additional bandwidth penalty to fetch refer-

ence segments, which remain in-place for GenCache, and (iii) they

incur frequent cache misses due to smaller SRAM caches. Madha-

van et al. [19] explore the use of race logic to perform SWA op-

erations by encoding information as timing delays in the circuit.

Distributed systems like Persona [5] and Adam [20] take a wholis-

tic approach to combine different phases and build a cluster-scale,

high-throughput bioinformatics framework.

A large body of recent work has exploited opportunities for

near data processing [3], including some that embed operators into

memory arrays. Other in-SRAM operation based accelerators in-

clude PROMISE [34] which uses a mix of analog and digital circuits

to support matrix-multiplication operations for machine learning

workloads. The NAND-Net architecture [16] focuses on in-SRAM

and in-DRAM implementations of binary neural networks. Archi-

tectures such as DRISA [18] and Ambit [30] based on in-DRAM

operations accelerate neural networks and database search appli-

cations respectively. The ISAAC [31] and PRIME [6] architectures

implement analog dot-product operations within resistive cross-

bars to accelerate deep neural networks.

The Compute Cache [1] work proposes bit-line computing en-

abled caches, and evaluates a String-Match kernel, but has not been

used to accelerate genomic workloads. GenCache is the first work

to leverage such in-cache operators to provide significant speedups

in sequence alignment.

8 CONCLUSIONS

In this work, we show that in-cache operators can be leveraged

to provide significant speedups in sequence alignment. In partic-

ular, the filtration operations require access to large datasets and

prior work has overcome this bottleneck with tiling. With new in-

cache operators and a re-configured memory hierarchy, we show

the potential for high parallelism. We analyze the sequence align-

ment workload to identify redundant work and create a new error-

aware four-phase pipeline that is a better fit for the GenCache ar-

chitecture. The algorithm alone, or the in-cache operators alone

yield small speedups of 1.36× and 1.62×; their combination yields

a more than additive speedup of 4×. We introduce a new Bloom

Filter structure to reduce futile accesses to our largest data struc-

ture, thus offering more on-chip capacity for in-cache operations

and boosting the speedup to 5.26×. The improvements are caused

by higher parallelism, fewer memory fetches, and elimination of

redundant work. The 15× reduction in memory accesses is espe-

cially important when future security/privacy measures will fur-

ther penalize off-chip accesses. Our circuit analysis shows that the

additional in-cache logic has a small area/power overhead. We also

show significant benefits by exploiting in-cache operators in 3rd

gen pipelines. We have thus helped alleviate the significant mem-

ory bottleneck noted by both recent genomic accelerators, GenAx

and Darwin. The introduced operators can be exploited by other

stages of the genomic pipeline for additional improvements and

are left for future work: reference-based compression, Indel Re-

alignment, Variant Calling, protein sequencing. The combination

of in-cache operators, algorithm re-structuring, and the proposed

SRAM allocation into cache/Bloom/scratchpad can also apply to

other workloads that rely on bitwise operators and that must man-

age irregular memory accesses. This paper therefore provides fur-

ther evidence that in-cache operators are useful for a broad class

of applications.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for many helpful suggestions.

This work was supported in parts by NSF grant CNS-1718834 and

NSF career award #1751064.

REFERENCES
[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, SatishNarayanasamy,David

Blaauw, and Reetuparna Das. 2017. Compute Caches. In Proceedings of HPCA-23.
[2] Mohammed Alser, Hasan Hassan, Hongyi Xin, Oğuz Ergin, Onur Mutlu, and

Can Alkan. 2017. GateKeeper: A New Hardware Architecture for Accelerating
Pre-Alignment in DNA Short Read Mapping. Bioinformatics 33 (2017).

[3] Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H. Moreno,
Richard Murphy, Ravi Nair, and Steven Swanson. 2014. Near-Data Processing:
Insight from aWorkshop at MICRO-46. In IEEE Micro’s Special Issue on Big Data,
Vol. 34.

[4] James K. Bonfield and Matthew V. Mahoney. 2013. Compression of FASTQ and
SAM Format Sequencing Data. PLoS One 8 (2013).

[5] Stuart Byma, SamWhitlock, Laura Flueratoru, Ethan Tseng, Christos Kozyrakis,
Edouard Bugnion, and James Larus. 2017. Persona: A High-Performance Bioin-
formatics Framework. In Proceedings of USENIX-26.

[6] Ping Chi, Shuangchen Li, Ziyang Qi, Peng Gu, Cong Xu, Tao Zhang, Jishen Zhao,
Yongpan Liu, Yu Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-In-
Memory Architecture for Neural Network Computation in ReRAM-based Main
Memory. In Proceedings of ISCA-43.

[7] Charles Eckert, XiaoweiWang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer,
Dennis Sylvester, David Blaauw, and Reetuparna Das. 2018. Neural Cache: Bit-
Serial In-Cache Acceleration of Deep Neural Networks. In Proceedings of ISCA-
45.

[8] Patrick Foley, Abirami Prabhakaran, Karthik Gururaj, Mishali Naik, Shiva
Gopalan, Aleksandr Shargorodskiy, and Ernesto Brau. 2017. Acceler-
ate Genomics Research with the Broad-Intel Genomics Stack. https://
www.intel.com/content/dam/www/public/us/en/documents/white-papers/
accelerate-genomics-research-with-the-broad-intel-genomics-stack-paper.
pdf .

[9] Daichi Fujiki, Aran Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna Das,
David Blaauw, and Satish Narayanasamy. 2018. GenAx: A Genome Sequencing
Accelerator. In Proceedings of ISCA-45.

[10] Genetics Science Learning Center. 2017. Your Doctor’s New Genetic Tools.
http://learn.genetics.utah.edu/content/precision/example/.

[11] Sara Goodwin, James Gurtowski, Scott Ethe-Sayers, Panchajanya Deshpande,
Michael C Schatz, and W Richard McCombie. 2015. Oxford Nanopore Sequenc-
ing, Hybrid Error Correction, and De Novo Assembly of a Eukaryotic Genome.
Genome Research - 25 (2015).

[12] Ernst Joachim Houtgast, Vlad-Mihai Sima, Koen Bertels, and Zaid Al-Ars. 2015.
An FPGA-Based Systolic Array to Accelerate the BWA-MEM Genomic Mapping
Algorithm. In International Conference on Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS-15).

[13] Miten Jain, Sergey Koren, KarenH. Miga, Josh Quick, Arthur C. Rand, Thomas A.
Sasani, John R. Tyson, AndrewD. Beggs, Alexander T. Dilthey, Ian T. Fiddes, et al.
2018. Nanopore Sequencing andAssembly of a HumanGenomewith Ultra-Long
Reads. Nature Biotechnology 36 (2018).

[14] Supreet Jeloka, Naveen Bharathwaj Akesh, Dennis Sylvester, and David Blaauw.
2016. A 28 nm Configurable Memory (TCAM/BCAM/SRAM) Using Push-Rule
6T Bit Cell Enabling Logic-in-Memory. IEEE Journal of Solid-State Circuits 51
(2016).

[15] Muin J. Khoury. 2016. Cancer Precision Medicine: More Population Sciences
Ahead! https://blogs.cdc.gov/genomics/2016/01/20/cancer-precision-ahead/.

[16] Hyeonuk Kim, Jaehyeong Sim, Yeongjae Choi, and Lee-Sup Kim. 2019. NAND-
Net: Minimizing Computational Complexity of In-Memory Processing for Bi-
nary Neural Networks. In Proceedings of HPCA-25.

[17] Heng Li. 2013. Aligning Sequence Reads, Clone Sequences and Assembly Con-
tigs with BWA-MEM. arXiv preprint arXiv:1303.3997 (2013).

[18] Shuangchen Li, Dimin Niu, Krishna T.Malladi, Hongzhong Zheng, Bob Brennan,
and Yuan Xie. 2017. DRISA: A DRAM-based Reconfigurable In-Situ Accelerator.
In Proceedings of MICRO-50.

[19] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. 2014. Race Logic: A
Hardware Acceleration for Dynamic Programming Algorithms. In Proceedings
of ISCA-41.

345

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerate-genomics-research-with-the-broad-intel-genomics-stack-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerate-genomics-research-with-the-broad-intel-genomics-stack-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerate-genomics-research-with-the-broad-intel-genomics-stack-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/accelerate-genomics-research-with-the-broad-intel-genomics-stack-paper.pdf
http://learn.genetics.utah.edu/content/precision/example/
https://blogs.cdc.gov/genomics/2016/01/20/cancer-precision-ahead/

GenCache: Leveraging In-Cache Operators for Efficient Sequence Alignment MICRO-52, October 12–16, 2019, Columbus, OH, USA

[20] Matt Massie, Frank Nothaft, Christopher Hartl, Christos Kozanitis, Andre Schu-
macher, Anthony D. Joseph, and David A. Patterson. 2013. ADAM: Genomics
Formats and Processing Patterns for Cloud Scale Computing. University of Cal-
ifornia, Berkeley Technical Report, No. UCB/EECS-2013 207 (2013).

[21] Matthew Might and Matt Wilsey. 2014. The Shifting Model in Clinical Diagnos-
tics: How Next-Generation Sequencing and Families are Altering the Way Rare
Diseases are Discovered, Studied, and Treated. Genetics in Medicine 16 (2014).

[22] Neil A. Miller, Emily G. Farrow, Margaret Gibson, Laurel K. Willig, Greyson
Twist, Byunggil Yoo, Tyler Marrs, Shane Corder, Lisa Krivohlavek, AdamWalter,
et al. 2015. A 26-Hour System of Highly Sensitive Whole Genome Sequencing
for Emergency Management of Genetic Diseases. Genome Medicine 7 (2015).

[23] NaveenMuralimanohar et al. 2007. CACTI 6.0: A Tool to Understand Large Caches.
Technical Report. University of Utah.

[24] National Cancer Institute. 2017. The Genetics of Cancer. https://www.cancer.
gov/about-cancer/causes-prevention/genetics.

[25] Anna C. Need, Vandana Shashi, Yuki Hitomi, Kelly Schoch, Kevin V. Shianna,
Marie T. McDonald, Miriam H. Meisler, and David B. Goldstein. 2012. Clinical
Application of Exome Sequencing in Undiagnosed Genetic Conditions. Journal
of Medical Genetics 49 (2012).

[26] Yukiteru Ono, Kiyoshi Asai, and Michiaki Hamada. 2013. PBSIM: PacBio Reads
Simulator Toward Accurate Genome Assembly. Bioinformatics 29 (2013).

[27] Jih-Kwon Peir, Shih-Chang Lai, Shih-Lien Lu, Jared Stark, and Konrad Lai. 2002.
Bloom Filtering CacheMisses for Accurate Data Speculation and Prefetching. In
Proceedings of International Conference on Supercomputing (ICS-16).

[28] Abirami Prabhakaran, Beri Shifaw, Mishali Naik, Paolo Narvaez, Geraldine
Van der Auwera, George Powley, Serge Osokin, and Ganapati Srinivasa.
2016. Infrastructure for Deploying GATK Best Practices Pipeline. https://
www.intel.com/content/dam/www/public/us/en/documents/white-papers/
deploying-gatk-best-practices-paper.pdf .

[29] Tamara Schmitz. 2015. The Rise of Serial Memory and the Future of
DDR. Xilinx White Paper (456) https://www.xilinx.com/support/
documentation/white_papers/wp456-DDR-serial-mem.pdf .

[30] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,

and Todd C. Mowry. 2017. Ambit: In-Memory Accelerator for Bulk Bitwise Op-
erations Using Commodity DRAM Technology. In Proceedings of MICRO-50.

[31] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. Strachan, M. Hu,
R.S. Williams, and V. Srikumar. 2016. ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars. In Proceedings of ISCA.

[32] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2014.
Aladdin: A Pre-RTL, Power-performance Accelerator Simulator Enabling Large
Design Space Exploration of Customized Architectures. In Proceeding of ISCA-
41.

[33] Temple F. Smith, Michael S. Waterman, et al. 1981. Identification of Common
Molecular Subsequences. Journal of Molecular Biology 147 (1981).

[34] Prakalp Srivastava,Mingu Kang, SujanK. Gonugondla, Sungmin Lim, Jungwook
Choi, VikramAdve, Nam Sung Kim, and Naresh Shanbhag. 2018. PROMISE: An
End-to-End Design of a Programmable Mixed-Signal Accelerator for Machine-
Learning Algorithms. In Proceedings of ISCA-45.

[35] Yatish Turakhia, Kevin Jie Zheng, Gill Bejerano, and William J. Dally. 2018. Dar-
win: AHardware-Acceleration Framework for Genomic Sequence Alignment. In
Proceedings of ASPLOS-23.

[36] Kris A. Wetterstrand. 2017. DNA Sequencing Costs: Data from the
NHGRI Genome Sequencing Program (GSP). http://www.genome.gov/
sequencingcostsdata.

[37] Lisa Wu, David Bruns-Smith, Frank A Nothaft, Qijing Huang, Sagar Karandikar,
Johnny Le, Andrew Lin, Howard Mao, Brendan Sweeney, Krste Asanović, et al.
2019. FPGA Accelerated INDEL Realignment in the Cloud. In Proceedings of
HPCA-25.

[38] Hongyi Xin, John Greth, John Emmons, Gennady Pekhimenko, Carl Kingsford,
Can Alkan, and Onur Mutlu. 2015. Shifted Hamming Distance: A Fast and Accu-
rate SIMD-Friendly Filter to Accelerate Alignment Verification in ReadMapping.
Bioinformatics 31 (2015).

[39] Matei Zaharia,William J. Bolosky, Kristal Curtis, Armando Fox, David Patterson,
Scott Shenker, Ion Stoica, Richard M. Karp, and Taylor Sittler. 2011. Faster and
More Accurate Sequence Alignment with SNAP. arXiv preprint arXiv:1111.5572
(2011).

346

https://www.cancer.gov/about-cancer/causes-prevention/genetics
https://www.cancer.gov/about-cancer/causes-prevention/genetics
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/deploying-gatk-best-practices-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/deploying-gatk-best-practices-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/deploying-gatk-best-practices-paper.pdf
https://www.xilinx.com/support/documentation/white_papers/wp456-DDR-serial-mem.pdf
https://www.xilinx.com/support/documentation/white_papers/wp456-DDR-serial-mem.pdf
http://www.genome.gov/sequencingcostsdata
http://www.genome.gov/sequencingcostsdata

	Abstract
	1 Introduction
	2 Background
	2.1 Second and Third Generation Reads
	2.2 Second Generation Pipelines
	2.3 GenAx and Darwin
	2.4 Bit-line or In-Cache Computing
	2.5 Genomic Kernels

	3 Proposal
	3.1 Architecture Overview
	3.2 GenCache Operators
	3.3 2nd-Gen Read Alignment
	3.4 Details of the Four-Phase Algorithm
	3.5 Reducing Hash Table Accesses

	4 Methodology
	5 Results
	6 Application to 3rd Generation Alignment
	7 Related Work
	8 Conclusions
	References

