
Distributed Logless Atomic Durability with Persistent Memory
Siddharth Gupta
EcoCloud, EPFL

siddharth.gupta@epfl.ch

Alexandros Daglis
Georgia Institute of Technology
alexandros.daglis@cc.gatech.edu

Babak Falsafi
EcoCloud, EPFL

babak.falsafi@epfl.ch

ABSTRACT
Datacenter operators have started deploying Persistent Memory
(PM), leveraging its combination of fast access and persistence
for significant performance gains. A key challenge for PM-aware
software is to maintain high performance while achieving atomic
durability. The latter typically requires the use of logging, which in-
troduces considerable overhead with additional CPU cycles, write
traffic, and ordering requirements. In this paper, we exploit the
data multiversioning inherent in the memory hierarchy to achieve
atomic durability without logging. Our design, LAD, relies on per-
sistent buffering space at the memory controllers (MCs)—already
present in modern CPUs—to speculatively accumulate all of a trans-
action’s updates before they are all atomically committed to PM.
LAD employs an on-chip distributed commit protocol in hardware
to manage the distributed speculative state each transaction ac-
cumulates across multiple MCs. We demonstrate that LAD is a
practical design relying on modest hardware modifications to pro-
vide atomically durable transactions, while delivering up to 80% of
ideal—i.e., PM-oblivious software’s—performance.

CCS CONCEPTS
• Computer systems organization → Processors and mem-
ory architectures; • Information systems→ Storage class mem-
ory; Phase change memory.

KEYWORDS
Persistent Memory, Atomic Durability, Logging, Atomicity

ACM Reference Format:
Siddharth Gupta, Alexandros Daglis, and Babak Falsafi. 2019. Distributed
Logless Atomic Durability with Persistent Memory. In The 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-52), Octo-
ber 12–16, 2019, Columbus, OH, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3352460.3358321

1 INTRODUCTION
Persistent memory (PM) is making inroads into datacenters: battery-
backed DRAM is already used in production [21] and emerging
products based on non-volatile memory technologies, such as In-
tel’s 3D XPoint [12], are further popularizing PM’s deployment.
PM promises performance gains for data-intensive applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358321

by replacing slow disk-based I/O with fast memory accesses to
byte-addressable memory.

Making effective use of PM requires software to be specially
designed for crash consistency. For the popular programming ab-
straction of transactions, crash consistency requires a transaction
to be atomically durable. Atomic durability guarantees that upon a
power failure, either all or none of a transaction’s updates are made
durable. A key challenge for software is achieving atomic durabil-
ity without significantly hurting the performance boost gained by
replacing conventional storage with PM. The mainstream approach
for atomic durability is the use of logs, with most instances relying
on software-based write-ahead logging [15, 28, 42] and a number
of research proposals accelerating logging in hardware [20, 31, 37].
While its strengths and weaknesses vary with the specific imple-
mentation, logging in general introduces programmability hurdles
and notable performance overheads—excess CPU cycles, PM writes,
and ordering constraints—especially for short transactions.

In this paper, we leverage the multiple versions of data that are
inherently present in the memory hierarchy to eschew logging.
PM always holds the data values valid before a transaction’s start.
During the transaction’s runtime, all of its updates can be collected
in a speculative staging area higher up in the memory hierarchy
and atomically committed to PM as soon as the transaction com-
mits. A critical requirement for this high-level idea to work is that
the staging area should also be persistent, to guarantee atomic
propagation of the transaction’s updates to PM in case of power
failure. We argue that the request queues of the memory controllers
(MCs) are excellent candidates to implement such a staging area.
Not only are the battery-backing requirements modest because of
the small capacity of these queues, but battery-backed MCs are
already available on the latest server CPUs [36, 39].

We introduce LAD (Logless Atomic Durability), a hardware
mechanism that exposes the familiar interface of a transaction to
software and guarantees that all of the transaction’s updates prop-
agate atomically to PM without the use of logging. LAD buffers all
updates in the persistent MC queues while a transaction is running
and atomically commits them to PM when the transaction ends.
The general concept LAD relies on to eschew logging, namely the
use of a persistent staging area within the memory hierarchy to
collect data before atomically committing to PM, has been intro-
duced before by Kiln [46]. Unlike Kiln, LAD (i) limits persistence
requirements to the MCs without any LLC modifications and (ii)
supports scalable memory hierarchies that don’t feature a point
of centralization, like a unified LLC. As the memory hierarchy of
modern server CPUs is distributed (e.g., NUCA LLC and multiple
MCs), we address the critical challenge of managing speculative
state that is also distributed, because a single transaction’s updates
can touch data residing in different memory locations. LAD em-
ploys a variant of the two-phase commit protocol implemented in

https://doi.org/10.1145/3352460.3358321
https://doi.org/10.1145/3352460.3358321

MICRO-52, October 12–16, 2019, Columbus, OH, USA Siddharth Gupta, Alexandros Daglis, and Babak Falsafi

hardware to handle distributed speculative state and make atomic
commit decisions.

Prior work on atomic isolation involves management of similar
distributed speculative state. However, the proposed techniques
are not directly applicable in the case of atomic durability, as the
concepts of failure and recovery qualitatively differ in the two
contexts. At a high level, failure in the context of atomic durability
is abrupt as a result of a power loss, so at any given time instance, all
state necessary for recovery needs to be persistent and consistent.

Our main contribution is the design of a hardware mechanism for
atomic durability that contains all hardware extensions to the L1D
caches and MCs, without requiring any on-chip caches to be persis-
tent. LAD obviates the software overhead of log creation and—in the
common case—avoids any form of logging altogether. Consistent
with technological trends, the only non-volatile on-chip compo-
nents LAD relies on are MCs, which are already battery-backed in
recent server CPUs. Furthermore, we detail an implementation of a
distributed hardware-managed protocol for atomic decisions that
is robust in face of system crashes and power failures.

The rest of the paper is organized as follows. In §2, we dis-
cuss prior work and argue that the recent technology trend of
battery-backed MCs introduces new design opportunities for high-
performance atomic durability. We describe LAD’s design and im-
plementation in §3 and §4, respectively. We continue with our
methodology (§5) and evaluation (§6), and conclude in §7.

2 BACKGROUND AND RELATEDWORK
PM is a broad term describing byte-addressable persistent memory,
including both non-volatile memory technologies (e.g., Intel’s 3D
XPoint [12]) and battery-backed DRAM [21]. PM is gaining momen-
tum as it promises significant performance gains for data-intensive
applications, offering the persistence property—traditionally only
attainable with I/O operations to storage devices—at memory la-
tency [21, 24].

To benefit from PM’s persistence property, software has to follow
certain PM-specific contracts to be crash-consistent, namely guar-
antee that PM’s contents allow the application to recover to a valid
operational state after a system crash. A key source of complexity
in designing crash-consistent software arises from the fact that the
order in which data updates reach PM is different from the memory
order observed by the CPU (i.e., the CPU’s memory model) and
completely transparent to the software. For performance reasons,
CPUs feature a deep cache hierarchy above the memory, which
is typically volatile even in systems that deploy PM. Unlike data
residing in PM, all contents of the volatile cache hierarchy are lost
upon a system crash. With write-back caches, data is only written
to PM upon eviction; therefore, the order in which updates reach
PM can drastically differ from program order. As a result, unless
special care is taken in software to deal with this issue, unordered
data updates in PM lead to corrupted application state when the
system reboots after a crash.

To give software control over the order of update propagation
to PM, modern server CPUs extend their ISA with special flush
instructions that explicitly write a target cache block back to PM.
Once the cache block is made persistent, the memory controller
(MC) acknowledges the flush’s completion. For example, Intel’s

processors feature the clwb instruction [14] for that purpose. To
remove the high latency of writing through to PM from the critical
path, Intel recently made the MCs supporting PM persistent [36, 39].
This enhancement allows flushed cache blocks to attain durability
status as soon as they reach an on-chip MC and the clwb message
to be immediately acknowledged by the MC.1

2.1 Atomic Durability
PM-aware software uses ISA extensions, such as clwb, to force
selective propagation of data updates to PM and thus control the
order of persistent updates. However, control on ordering alone is
not a flexible enough tool for software, which requires higher-level
programming abstractions, such as that of a transaction: a block of
instructions with effects that either occur atomically, or not at all.
Among a range of existing transaction semantics, ACID [6, 11] is a
popular instance providing multiple desirable properties together.

In this paper, we focus on a subset of the ACID properties, atomic
durability, which is the guarantee that upon a system crash, either
all of a transaction’s updates are made persistent, or all collec-
tively discarded. As existing mechanisms that offer atomic durabil-
ity either significantly hamper performance or require extensive
hardware modifications, we introduce a practical alternative that
preserves PM’s high performance. Our proposed solution only con-
tributes toward improved atomic durability performance. LAD can
be combined with a concurrency control mechanism to attain full
ACID transactions; in fact, the implementation we detail in this
paper is readily combinable with conventional locking mechanisms.

Prior work pursuing the same goal of high-performance atomic
durability can be broadly classified into two categories: logging and
hardware versioning. We briefly cover proposals from both cate-
gories, highlighting the inherent overheads in all forms of logging,
which hardware versioning alleviates. Then, in §2.2, we underline
the salient differences of our proposed design for logless atomic
durability from Kiln [46], the most relevant prior proposal leverag-
ing hardware versioning.

2.1.1 Logging. Write-ahead logging [28] creates explicit duplicate
versions of data in the form of logs that are made persistent before
any in-place updates. In case of a crash, these logs are used to restore
data to a consistent state. Common logging mechanisms include
undo and redo logging, which log original data and updates respec-
tively. Logging is by far the most popular mechanism for atomic
durability, and is implemented in either software or hardware.

Software logging uses flush instructions such as clwb to write the
logs to PM before any in-place data updates become persistent [5,
6, 13, 15, 17, 22, 25, 30, 42, 43]. Kamino-TX [27] instead maintains a
replica of the dataset to serve as an undo log, thus removing logging
from the critical path. Transactions directly apply in-place updates
and the replica is asynchronously updated in the background.

Hardware logging techniques introduce hardware support to
improve the performance of logging. In some instances, logs are
generated by the CPU, and special hardware support accelerates
log management after their creation (i.e., writing the logs back
to PM and preserving correct ordering between logs and in-place
1Existing MCs are not truly persistent, but come with enough battery backup to flush
their queues’ contents back to memory upon power failure; for our purposes, the effect
is the same. We therefore refer to MCs with that feature as persistent.

Distributed Logless Atomic Durability with Persistent Memory MICRO-52, October 12–16, 2019, Columbus, OH, USA

updates) [6, 8, 18, 23, 26, 38]. In other proposals, logging is offloaded
to dedicated hardware altogether [7, 19, 20, 31, 37].

All forms of logging incur overhead related to log creation and
management. For software logging, the CPU executes a potentially
significant number of additional instructions per transaction. The
log also needs to be serialized and made persistent before any in-
place updates. In the case of undo logging, dynamic transactions for
which addresses of updates are not known in advance incurmultiple
explicitly ordered logging actions, hurting the CPU’s throughput
[25, 43]. In redo logging, in-place updates are delayed with respect
to the log’s creation, thus all reads need to check the log first to
guarantee that the latest data values are always accessed [25, 34, 43].

In every case, writing logs to PM increases bandwidth demands.
The cost of logging is disproportional to its utility. As crashes are
rare, logs are rarely used for recovery; in the common case, they
are simply erased shortly after their creation. Last but not least,
logging may also require non-trivial changes in application code, in-
troducing a programmability burden, especially when implemented
without the use of high-level library primitives [15, 42].

2.1.2 Hardware Versioning. Logging explicitly creates a second
version of a transaction’s updated data, to enable rollback in case
of a crash. Kiln [46] leverages the data multiversioning inherent in
multi-level memory hierarchies to obviate logging and its associated
overheads. Fig. 1a demonstrates a conventional system with PM,
assuming no battery-backed MCs, where all on-chip components
are volatile. In such a configuration, achieving atomic durability
through logging requires serialized log writes to off-chip memory,
incurring a high-latency operation. To tackle this challenge, Kiln
brings the persistent domain closer to the CPU, by replacing the
default SRAM-based LLC with a persistent memory technology
(STT-RAM) and leverages this quickly accessible persistent LLC to
remove logging altogether. While a transaction runs, its updates
are accumulated in the persistent LLC, marked as speculative (Fig.
1b). As soon as the transaction ends, its updates are instantaneously
committed to PM by simply clearing their speculative markers.
Upon a post-crash reboot, the persistent LLC discards cache blocks
found in the speculative state.

Overall, Kiln addresses the shortcomings of logging, but makes
two assumptions that generally don’t hold in modern server CPUs:
that the LLC is persistent and centralized. We next elaborate on
these limiting assumptions and how LAD addresses them.

2.2 Distributed Persistent MCs
Speculatively buffering updates within a quickly accessible persis-
tent domain is an effective approach to achieve atomic durability
that tackles the performance and programmability overheads of
logging. Inspired by the persistent nature of MCs in modern server
CPUs, we investigate whether the persistent MC queues can be sim-
ilarly used as a staging area for speculative updates of atomically
durable transactions, as demonstrated in Fig. 1c.

Our proposed design, LAD, addresses the challenge of managing
distributed speculative state to drive decisions for atomically com-
mitting a transaction to PM, a need that fundamentally arises from
the presence of several MCs in servers. MCs can be distributed even
in single-socket systems. For example, Intel’s mesh-based CPUs
place MCs in two physically disjoint on-chip locations (IMC tiles)

PM PM

Speculative

PM

Persistent

CPU

Off
Chip

VolatileLegend:

Core

(a) Baseline (b) On-chip (c) Distributed

MC

LLC

MC

Core
L1

Core

Figure 1: Persistent domain and staging area of speculative
buffering for atomic durability. The dashed line marks the
persistence boundary.

[1], while each AMD EPYC socket is a multi-chip package compris-
ing four chips, each with its own northbridge/MC [2]. Such MC
distribution significantly affects the design of an atomic commit
protocol. Even though messages from a CPU core may reach the
MCs at different times, all MCs must make decisions in unison to
maintain atomicity. A crash may result in partial delivery of these
messages. Thus, handling atomic durability fundamentally requires
treating the involved on-chip resources (i.e., the CPU cores and all
MCs) as a distributed system.

The complication of managing distributed state is not an artifact
of using MCs as a staging area. Given the ubiquitous presence of
distributed LLCs (NUCA) in server CPUs [3], placing the staging
area in the LLC, as per Kiln’s proposal, results in distributed specu-
lative state too. Even if future servers adopt persistent NUCA LLCs,
leveraging them for atomic durability will still require a distributed
commit protocol.

Finally, LAD shows that a persistent LLC is not necessary for
high-performance atomic durability. Limiting the persistent domain
to the MCs, a feature readily available in modern server CPUs, is
sufficient. In other words, extending the persistent domain beyond
the MCs (e.g., to the LLC) is a largely unnecessary modification
with diminishing returns.

2.3 Distributed State in Other Contexts
Prior work on persist barriers, ordering update flushes from the LLC
to PM, identified the need for consensus when the LLC is distributed
[18]. The authors developed a distributed consensus protocol to
synchronize flush ordering across LLC slices. In contrast, LAD’s
protocol is developed to achieve atomicity, a stronger guarantee
than ordering.

The concepts underlying LAD’s proposed mechanism for atomic
persistence also bear high-level similarities with the broad range
of work on hardware transactional memory. While transactional
memory implementations vary greatly, they are all concerned with
management of speculative state to achieve atomicity in the context
of isolation. We find more relevance between LAD and mechanisms
that manage distributed speculative state to make atomic decisions
in hardware, which are not necessarily framed in the context of
transactional memory. For instance, on-chip hardware implementa-
tions of distributed protocols resembling the well-known two-phase

MICRO-52, October 12–16, 2019, Columbus, OH, USA Siddharth Gupta, Alexandros Daglis, and Babak Falsafi

commit protocol [41] have been deployed to achieve sequential con-
sistency using update-based coherence [45] or to atomically com-
mit blocks of memory operations to improve the performance of
shared-memory multiprocessing [4, 32, 33]. Although implementa-
tion aspects differ between these proposals and LAD, they all share
the high-level goal of bringing consensus among multiple agents
to make atomic decisions, and protocol operation at a steady state
follows similar stages, as we will describe in §3.2. The key difference
of prior proposals and LAD is that such mechanism is employed
to achieve atomic durability rather than isolation. This qualitative
difference introduces new design limitations and challenges, such
as identifying the most appropriate on-chip component to manage
speculative atomically durable state (i.e., the MCs—§2.2), preserving
the atomic durability trait for arbitrarily long transactions causing
speculative buffer overflows (§3.3), and preserving or recovering
atomicity in face of system crashes and power failures (§3.4).

A particular aspect that differentiates LAD from other protocols
for distributed state management to make atomic decisions is the
failure model and system recovery after failure. In mechanisms
designed for atomic isolation, such as [4, 32, 33], a transaction fails
when a race with another transaction is detected and speculative
changes have to be rolled back. Due to the target domain’s nature,
there is significant flexibility in how and where to maintain state,
how failure is detected, which of the conflicting transactions to
abort, whether to react eagerly or lazily, etc. In the context of
atomic durability, failure is not associated with concurrency, but
with abrupt system failure because of a system crash or a power loss,
which introduces new types of protocol failures (e.g., power loss
precludes some MCs from receiving a broadcast message). Hence,
the mechanism has to maintain state that is resilient—persistent
and consistent—to failure at all times and enables recovery to a
fully consistent state when the system is brought back to normal
operation at a later point in time. The diverging set of assumptions
in these two different contexts leads to different design choices.
For example, the frequency of failures in the context of atomic
durability is extremely low compared to failures in concurrency
control, clearly tipping the scale toward optimistic rather than
pessimistic mechanisms. A clear demonstration of this guideline is
our choice of undo logging as a fallback mechanism (§3.3).

3 LAD DESIGN
3.1 Overview
LAD builds on the existence of an on-chip persistent domain acces-
sible by the CPU at low latency, the MCs, which can be used as a
staging area where a transaction’s updates are collected specula-
tively until they can be atomically committed to PM. Such mecha-
nism replaces logging as the means to achieving atomic durability.
LAD’s high-level design includes CPU-side andMC-side controllers,
which interact to deliver atomically durable transactions (DTX). In
this section, we refer to the CPU-side controller as the LAD con-
troller. The LAD controller manages the stages of each DTX as it
executes on the CPU and interacts with the MC-side controllers.
Because server-class CPUs feature several MCs, a single DTX’s
updates will be spread across multiple MCs. Therefore, achieving
atomic durability requires the coordination of the LAD controller
with all of the MCs, each of which holds a fraction of the DTX’s

Core
LAD Ctrl

MC0 MC1

PM PM

Cache
Hierarchy

(a) System architecture.

LAD Ctrl MC0 MC1

Flush

AckPr
ep

ar
e

Ph
as

e

Commit
Ack

Co
m

m
it

Ph
as

e

DTX Complete

Ack

(b) Protocol timeline.

Figure 2: Distributed commit protocol.

speculative state. LAD employs a distributed protocol to handle
that distributed speculative state and guarantee each DTX’s atomic
durability. This section details LAD’s design.

3.2 Distributed Commit Protocol
LAD’s distributed commit mechanism is inspired by the two-phase
commit (2PC) protocol [41], commonly implemented in software
for distributed systems. LAD’s adaptation of 2PC is implemented
in hardware, to handle the distributed speculative state each DTX
accumulates at the MCs during its execution. The LAD controller is
collocated per CPU core, controls the protocol’s flow and directly
interacts with the MCs, as shown in Fig. 2a. §4 describes a concrete
LAD controller implementation.

Fig. 2b demonstrates the protocol’s phases and exchanged mes-
sages. A DTX is divided into two phases: Prepare and Commit. In
the Prepare phase, while a CPU executes a DTX, the LAD controller
flushes all of the CPU’s writes that reside in the cache hierarchy and
match PM addresses to the MCs. The flushed updates carry a unique
identifier, comprising a thread ID and a private-per-thread DTX
ID, incremented with every new DTX. All of the DTX’s updates
contained in the MC queues are marked speculative and are not
written back to PM.When the CPU reaches the DTX’s end, the LAD
controller waits for all outstanding flushes to be acknowledged by
the MCs before proceeding to the Commit phase.

In the Commit phase, the LAD controller sends commit mes-
sages carrying the completed DTX’s identifier to all MCs. MCs
acknowledge the commit message’s reception and drain the DTX’s
corresponding updates from their queue back to PM. Finally, the
LAD controller notifies the CPU of the DTX’s durability as soon as
it receives a commit Ack from any MC.

As the MCs are physically distributed across the chip, commit
messages reach each of them at different times, making message
reception inherently non-atomic: a system crash may occur when
only a subset of the MCs has received a DTX’s commit message. In
this case, if only the MCs that received the commit message before
the crash end up committing the speculative data to persistent
memory, the DTX’s atomic durability is violated, leaving the system
in inconsistent state.

We resolve this challenge by leveraging the fact that all specula-
tive updates are guaranteed to be received by the MCs before the
Commit phase starts. On a crash, all MCs save a snapshot of their
queues’ state in PM, which is restored upon system reboot. After an

Distributed Logless Atomic Durability with Persistent Memory MICRO-52, October 12–16, 2019, Columbus, OH, USA

inter-MC communication phase, all MCs reach a consensus regard-
ing the DTXs that committed before the crash, and thus consistent
system state can be recovered. If at least one of the MCs receives a
commit message for a given DTX before the crash, at reboot time
that MC notifies all other MCs to write that DTX’s corresponding
updates from their queues back to PM. All other MC queue contents
corresponding to uncommitted DTXs are discarded.

3.3 Speculative Buffer Overflow
During LAD’s Prepare phase, all transactional updates have to be
buffered within the MCs’ persistent queues. For large or multiple
concurrent DTXs, these queues may become oversubscribed and
overflow. This capacity problem exists in all hardware-based atom-
icity mechanisms, as the speculative buffer has limited capacity. For
example, Intel RTM [16] limits speculative state to the L1 cache and
handles overflow by aborting the running transaction, discarding
all speculative updates and reverting to a software fallback handler.

LAD handles overflow by falling back to hardware logging, sim-
ilar to LogTM [29]. When an MC runs out of queue capacity for
speculative data, it starts draining its queues by creating a log for
the speculative data in a dedicated PM address range, allowing
DTXs to proceed and eventually commit. We detail the fallback’s
implementation in §4.6.

LAD creates undo logs to handle overflow. Undo logs are an
appealing design choice for three reasons. First, as crashes are
rare, the in-place updates are—most likely—useful work. Second, in-
place updates simplify software, as they remove the need for future
memory accesses to always check the redo log in PM for potential
updates. If a DTX commits and its updates have been partially
logged because of an overflow, the DTX’s log is simply discarded.
The logged updates have already been written in-place in PM, so
any updates remaining in the MC queues are written to PM as well,
completing the DTX’s set of updates. Finally, undo logging also
results in a more memory-friendly pattern, as it requires fewer row
buffer activations. The old value to be logged is read and replaced
with the updated one with a single row activation; writing the undo
log entry requires a second row activation. In contrast, redo logging
involves a total of three row activations in the general case: write
the log entry for the new value (1st) and later read the log entry
again (2nd) to apply the required in-place update (3rd).

3.4 Failure and Recovery
LAD always recovers a consistent system state upon reboot by fol-
lowing three sequential steps. First, all MCs exchange information
to reach consensus on whether each of the DTXs that were active at
the time of failure achieved committed status before the crash. As
long as at least one MC received a commit notification for a given
DTX, that DTX is deemed committed. Second, if an undo log is
present in persistent memory, it is read in chronological order (from
oldest to newest entry). For each entry belonging to an uncommit-
ted DTX, the entry’s contents are used to restore the corresponding
location’s value in persistent memory. In the third and last step, the
MC goes through the entries of its writeback queues from oldest
to newest. The MC writes an entry’s value to its corresponding
location in persistent memory, if the entry belongs to a committed

Logs 1

Updates 1

Logs N

Updates N

TX End

TX Begin

Co
nc

ur
re

nc
y

Co
nt

ro
l

At
om

ic
 D

ur
ab

ili
ty

 w
ith

 L
og

gi
ng

(a) Software logging.

TX Begin

TX End

Updates N

At
om

ic
 D

ur
ab

ili
ty

Updates 1

Co
nc

ur
re

nc
y

Co
nt

ro
l

(b) Atomically durable sections.

Figure 3: Structure of crash-consistent ACID transactions.

DTX, or discards it otherwise. §4.8 details the precise steps taken
by LAD recovery mechanism’s implementation.

3.5 Programmability
From a programming perspective, LAD exposes the simple software
interface of an atomically durable section:

persistent{<unmodified volatile code>}

The interface’s simplicity facilitates programming of crash-con-
sistent software and can either be used for DTXs with standalone
atomic durability, or can be combined with concurrency control
mechanisms to construct ACID transactions.

Fig. 3 graphically illustrates the high-level structure of a crash-
consistent ACID transaction with the use of logging (Fig. 3a) versus
annotated atomically durable sections (Fig. 3b). The annotated sec-
tions interface facilitates the conversion of code originally written
for volatile memory to crash-consistent code. In addition, as Fig. 3a
shows, a single transaction might dynamically incur multiple log-
ging actions if not all updates are known in advance. In contrast,
annotated sections eschew that complication. An ACID transaction
can be expressed by encapsulating the durable block within the
concurrency control mechanism’s critical section, as shown in Fig.
3b. We elaborate on the implications of concurrency control in §3.6.

The programmability aspect of annotated atomically durable sec-
tions versus logging for durability is similar to that of transactional
memory versus fine-grained locking for concurrency control [11].
Modern PM-aware libraries [15, 42] ameliorate the complexity—
and associated programmability burden—of fine-grained logging.
However, the performance overhead stemming from additional
instructions and synchronization events remains.

3.6 Concurrency Control
The choice of concurrency control mechanism is orthogonal to
atomic durability, but of high importance, as the requirements for
isolation and atomic durability typically come together. We design
LAD to be seamlessly combinable with pessimistic concurrency
control mechanisms (i.e., locking), which preclude aborts because
of race conditions. Assuming correct software, LAD guarantees
that data is persisted in memory in correct happens-before order.
Correct software requires transaction schedules to be recoverable.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Siddharth Gupta, Alexandros Daglis, and Babak Falsafi

In a recoverable schedule, a transaction may commit only after
all transactions it depends on have committed [9]. Consequently,
in the context of pessimistic concurrency control, recoverability
is achieved when transactions hold locks until after they commit,
which guarantees that no transaction B can access updates of a
preceding transactionA before transactionA has already committed
and thus its updates have been made persistent. In a recoverable
schedule with two dependent transactions A −→ B, LAD’s commit
for transaction A is guaranteed to complete (i.e., all of its updates
have reached the MCs) before transaction B can even access any of
A’s updates. This invariant guarantees that the order of persistence
observed in memory follows the order imposed by concurrency
control. In §4.5 we demonstrate with an example why irrecoverable
schedules can lead to inconsistent memory state and how LAD
guarantees correct happens-before order in the presence of correct,
recoverable schedules.

In principle, LAD can also be coupled with optimistic concur-
rency control mechanisms. For example, combination of LAD with
a transactional memory [11] implementation, hardware or software,
would be a natural fit, as the programming primitives for denoting
the concurrency and durability requirements (e.g., TX Begin/End
and DTX Begin/End—see Fig.3b) could be trivially merged. How-
ever, optimistic concurrency control allows for mid-transaction
aborts, which require reverting speculative data updates that, in the
general case, may be residing throughout the memory hierarchy.
Given that undoing speculative updates throughout the memory
hierarchy entails significant complications that are beyond LAD’s
scope of introducing a novel mechanism for atomic durability, our
design assumes coupling with pessimistic concurrency control.

Overall, the increased cost of updates when using PM-aware
software tips the scale in favor of pessimistic concurrency control
mechanisms, as aborts become more expensive relatively to volatile
software. With few exceptions (e.g., [19]), it is therefore common
for PM-aware systems to focus on pessimistic concurrency control
mechanisms [5, 6, 13, 17, 22, 42].

4 LAD IMPLEMENTATION
This section describes our LAD implementation, including ISA and
OS extensions, L1D cache and MC modifications, LAD’s protocol
state machines, fallback mechanism, recovery sequence, and two
running examples.

4.1 ISA and OS Extensions
We implement the LAD controller as an extension of each CPU
core’s L1D cache controller. The core notifies the LAD controller
of a DTX’s start and end with a pair of instructions: DTX_Start
and DTX_End. These ISA extensions resemble those used in Intel
RTM [16] to convey the start and end of a transaction. Because the
LAD controller assumes that all stores that arrive to the L1 cache
between the reception of a DTX_Start and a DTX_End belong to
the running DTX, both instructions wait for the core’s store buffer
to drain before notifying the LAD controller.

To support thread migrations and context switches, we need
to associate a DTX’s updates to the software thread executing
that DTX. The OS assigns a unique LAD thread ID (henceforth,
LAD_TID) to a thread that intends to use LAD. The LAD_TID is kept

DataTagDTX Bit

Cache
Controller

LAD Controller

DTX_State (4b)

DTX_ID (8b)

LAD_TID (8b)

L1 Cache

DTX Ack Counter (16b)

(a) L1D cache extensions.

Addr
& Data

DTX_ID
(8b)

LAD_TID
(8b)

Spec
(1b)

0 1 2 … 255
DTX_CID (8b entries)

Re
qu

es
t Q

ue
ue

(b) MC extensions.

Figure 4: L1D cache and MC extensions for LAD.

as a new field in the OS kernel’s Thread Control Block. Because
LAD requires hardware structures to maintain the status of all
software threads owning a LAD_TID, we cap the maximum number
of threads that can concurrently use LAD to 256. This limitation
mainly affects hardware resource provisioning and can be trivially
relaxed, if necessary. A DTX’s execution can also be disrupted
by exceptions or interrupts. In such an event, the LAD controller
simply pauses the recording of incoming writes and waits for the
DTX to resume. The abstraction of a LAD thread enables resuming
the DTX even if the software thread is rescheduled on another core.

4.2 LAD Controller: L1D Cache Extensions
The LAD controller tracks all of a DTX’s updates and coordinates
the distributed commit protocol to first transfer these updates to
the staging area in the MCs, and then atomically commit all of
them to PM. Fig. 4a illustrates the required extensions to the L1
data cache. The LAD controller features a set of DTX tracking
structures, comprising five components:

• A LAD_TID buffer holds the LAD_TID of the currently run-
ning LAD thread.

• A DTX_State buffer holds the tracked DTX’s state, required
by the LAD controller’s state machine (see §4.4).

• A DTX_ID buffer, incremented for every new DTX. DTX_ID
is private per LAD thread; DTX_ID and LAD_TID uniquely
identify a DTX’s updated cache blocks.

• A DTX bitvector, featuring one bit per L1 cache block. A set
bit indicates that the corresponding cache block was updated
by the DTX that is currently running.

• A DTX Ack Counter buffer tracks the number of outstand-
ing messages from the LAD controller (flushes or commits)
waiting to be acknowledged by the MCs.

For a 32KB cache, the DTX tracking structures are 70B in total. LAD
can also trivially support cores with multiple hardware contexts

Distributed Logless Atomic Durability with Persistent Memory MICRO-52, October 12–16, 2019, Columbus, OH, USA

DTX_Start

DTX_EndFirst Ack

Ack Counter 0
Commit

Off Run

Flush

/DTX_ID++

/Send
flushes

/Send commits

/Unblock core

* *

*

* see Table 1 for events not triggering a state transition

Figure 5: LAD state transition diagram.

(e.g., SMT), by provisioning a copy of the above structures per
hardware context.

When the OS scheduler suspends a running LAD thread, the
LAD controller clears the DTX bitvector by flushing all marked
cache blocks to PM and waits for the DTX Ack Counter to reach
zero. DTX_State and DTX_ID are stored in the Thread Control
Block along with the thread’s LAD_TID, and are restored on the
LAD controller of the core the thread gets rescheduled on to enable
seamless continuation of the pending DTX.

4.3 Memory Controller Extensions
LAD relies on the existence of persistent request queues in the
MCs, and extends them with additional hardware structures for
bookkeeping, which are also persistent/battery-backed. Fig. 4b il-
lustrates the added hardware structures. Every entry of the request
queue is extended with three additional fields: DTX_ID, LAD_TID,
and a Speculative bit. The first two fields identify which DTX_ID
and LAD thread each cache block belongs to, while the Speculative
bit indicates whether the cache block is a normal writeback request
or belongs to an ongoing DTX.

In addition to the added fields in the request queue, the MC
maintains a separate direct-mapped structure, the DTX_CID, which
plays an instrumental role in post-crash recovery, detailed in §4.8.
The DTX_CID is a vector of 256 entries, one per LAD thread, which
stores each LAD thread’s last DTX_ID that was committed. The to-
tal added storage at eachMCwith a standard request queue depth of
64 elements is 392B, corresponding to less than 9% storage overhead
per MC. The main impact of increasing the number of threads that
can use LAD concurrently is a higher hardware overhead, because
of a logarithmic/linear increase in LAD_TID’s bitwidth/DTX_CID
vector’s width, respectively.

4.4 LAD Protocol
We now describe how LAD uses L1 cache and MC hardware addi-
tions to deliver atomic durability. The LAD controller located at
each core’s L1 cache controller drives the protocol’s execution. Fig.
5 and Table 1 demonstrate the LAD controller’s state transition
diagram and the actions taken in each of the states, respectively.

A new DTX starts when a CPU executes a DTX_Start instruc-
tion. The CPU stalls until its store buffer has been drained, then
DTX_Start retires and the LAD controller is notified of a newDTX’s
start. The LAD controller increments DTX_ID and transitions to
the Run state, during which, it marks each written cache block’s
corresponding bit in the DTX bitvector. These updates are kept as

DTX_State
Cache Events

Write Eviction Coherence
Request Ack

Off – – – –

Pr
ep
ar
e Run Mark Evict & [*] [*] & Service Decrement

Ack Counter

Flush – Evict & [*] [*] & Service Decrement
Ack Counter

Commit – – – Decrement
Ack Counter

[*]: DTX_Flush & Increment Ack Counter
Table 1: LAD controller actions in each state.

long as possible in the L1 cache to benefit from locality (i.e., coa-
lesce future updates to the same cache block) and are only flushed
to the MCs upon a forced eviction by the cache controller, a DTX
completion, or an external coherence request.

DTX_End stalls the CPU until its store buffer has been drained,
to ensure the LAD controller records all of the DTX’s writes. The
CPU then notifies the LAD controller, which immediately transi-
tions from the Run to the Flush state. In the Flush state, the LAD
controller clears the DTX bitvector, flushing all marked cache blocks
from the L1 cache and incrementing its Ack Counter for each flush.

Each DTX_Flush (which carries the cache block’s data, DTX_ID,
and LAD_TID) is first sent to the LLC where the cache block’s value
is updated. Then, the DTX_Flush continues to its corresponding
MC. This flush operation is the same as clwb, and thus does not
require modifications to the coherence protocol [40].

The MC stores the cache block carried in DTX_Flush in its
persistent request queue—also setting the queue entry’s DTX_ID,
LAD_TID and Speculative bit fields—and sends an Ack back to
the originating LAD controller. For each Ack, the LAD controller
decrements its Ack Counter; when Ack Counter = 0, the controller
transitions from the Flush to the Commit state. By the end of the
Flush state, all of the DTX’s updates have been transferred to the
MCs’ persistent queues, where they are stored in speculative state.

Finally, in the Commit state, the LAD controller sends a DTX_-
Commit message carrying the committing DTX’s ⟨LAD_TID, DTX_-
ID⟩ to all MCs. On reception of DTX_Commit, each MC (i) atomi-
cally updates its DTX_CID vector (DTX_CID[LAD_TID] = DTX_-
ID); (ii) clears the speculative bit of all entries in the request queue
belonging to ⟨LAD_TID, DTX_ID⟩; and (iii) sends an Ack back
to the message’s originating LAD controller. The DTX completes
as soon as the first Ack from any MC is received, a policy that
is particularly beneficial on multi-socket processors, where the la-
tency to remote sockets’ MCs is considerably higher than local ones.

Race conditions. While in the Run state, the LAD controller only
flushes L1-resident cache blocks updated by the DTX if necessary.
An updated cache block may be forced to leave the L1 before the
DTX enters the Flush state, because of a necessary eviction or an
external coherence message (see Table 1). If a coherence message
for a marked block arrives from a peer cache, the LAD controller
flushes the requested cache block, updating the LLC’s contents, and
then the LLC responds to the peer cache’s request. Theoretically,
a race between a DTX_Flush and a subsequent DTX_Flush of the
same cache block with an updated value from a peer cache can
occur. However, the concurrency control mechanism is expected

MICRO-52, October 12–16, 2019, Columbus, OH, USA Siddharth Gupta, Alexandros Daglis, and Babak Falsafi

A B

(a)

DTX_Start
ST A
ST B
ST C

DTX_End

L1

LLC 0

MC
0

LLC 1

MC
1

A B

(b)

DTX_Start
ST A
ST B
ST C

DTX_End

A B

(c)

DTX_Start
ST A
ST B
ST C

DTX_End

A

B

(d)

DTX_Start
ST A
ST B
ST C

DTX_End

A

A

Eviction
Flush

Ack

C B

(e)

DTX_Start
ST A
ST B
ST C

DTX_End

A

A

C B

(f)

DTX_Start
ST A
ST B
ST C

DTX_End

A

A

C B

C

Flush

B

C B

(h)

DTX_Start
ST A
ST B
ST C

DTX_End

A

A

C B

C

Commit

B

C B

(i)

DTX_Start
ST A
ST B
ST C

DTX_End

A

A

C B

C

Commit

B

A Speculative DataA Clean Data A Persistent DataLegend:

C

C B

(g)

DTX_Start
ST A
ST B
ST C

DTX_End

A

A

C B

C

B

Ack
C B

(j)

DONE

A

A

C B

C

B

Ack Ack Ack

Figure 6: LAD running example.

to enforce proper isolation across racing DTXs, rendering such
races—and thus risk of update order inversion—impossible. The
Prepare phase’s synchronous nature guarantees that DTX_Flushes
of concurrent DTXs will reach the MCs in the same order as the
one dictated by concurrency control.

4.5 Running Examples
Fig. 6 demonstrates LAD’s operation with an example. In step (a),
the CPU starts executing a DTX (DTX_Start), notifying the LAD
controller about the new DTX. The LAD controller transitions to
the Run state and thus starts marking all of the CPU’s writes in the
L1. Cache blocks A and B are already present in the L1 cache in a
clean state. In steps (b) and (c), the CPU updates A and B and the
LAD controller marks their corresponding bits in the DTX bitvector.

In step (d), the CPU writes cache block C, which results in a
conflict miss that triggers the eviction of cache blockA. As described
in §4.4, A is flushed to its corresponding LLC tile and MC. The LAD
controller increments its Ack Counter and clears the corresponding
bit in the DTX bitvector, which is then set again for the newly
arrived cache block C. MC 0 receives the flushed cache block A and
stores it in its request queue, marking it as speculative.

In step (e), the CPU executes DTX_End, notifying the LAD con-
troller to transition to the Flush state. Meanwhile, MC 0 sends an
Ack for the cache block flushed in step (d), and the LAD controller
decrements its DTX Ack Counter.

In step (f), the LAD controller starts flushing all marked cache
blocks from the L1 cache, sending them to their corresponding MCs

through the LLC. The LAD controller increments its Ack Counter
with every flush performed, and clears each flushed block’s cor-
responding bit in the DTX bitvector. The MCs receive the flushed
blocks and store them in their request queues, marked as specula-
tive. The CPU stalls on DTX_End waiting for a signal of durability
completion from the LAD controller.

In step (g), each MC independently acknowledges each flush
received. For every received Ack, the LAD controller decrements
its Ack Counter. Once the counter reaches zero, the LAD controller
transitions to the Commit state, which also marks the transition
from the Prepare to the Commit phase.

In step (h), the LAD controller sends out commit messages to
all MCs, which asynchronously reach the MCs. On receiving a
commit message, each MC clears the speculative bit of all cache
blocks belonging to the committing DTX—this is the point the
DTX becomes effectively persistent. Then, in step (i) each MC
acknowledges the commit request. As soon as the LAD controller
receives the first Ack from an MC, it transitions to the Off state and
sends a notification to the CPU (step (j)). The DTX_End instruction
retires, unblocking the CPU. At this time, the DTX has been made
atomically durable in a logless and distributed manner.

As detailed in §3.6, LAD preserves the correct happens-before or-
der of updates to memory under correct use of concurrency control
(i.e., recoverable transaction schedules). Fig. 7’s example demon-
strates why irrecoverable schedules can lead to corrupted persistent
memory state (Fig. 7a) and why recoverable schedules (Fig. 7b) guar-
antee that the ordering of memory updates is preserved.

Distributed Logless Atomic Durability with Persistent Memory MICRO-52, October 12–16, 2019, Columbus, OH, USA

persistent{ //DTX_Start
Lock(A)
X = 1
Y = 1
Unlock(A)

} //DTX_End

persistent{
Lock(A)
X++
Unlock(A)

}

DTX 1

Failure

DTX 2

(a) Irrecoverable schedule.

Lock(A)
persistent{

X = 1
Y = 1

}
Unlock(A)

Lock(A)
persistent{

X++
}
Unlock(A)

DTX 1 DTX 2

Failure

(b) Recoverable schedule.

Figure 7: Interplay of LAD’s atomically durable sections
with concurrency control. Assume initial values X = Y = 0.

In Fig. 7a’s irrecoverable schedule, transactions exit their critical
section before committing (i.e., LAD’s atomically durable section
is not encapsulated within the critical section, as required). At the
time of failure, DTX 2 has committed, so X = 2 is made persistent
in memory. As the failure occurred during DTX 1’s Prepare phase,
DTX 1’s updates to X and Y may or may not have reached the MCs.
Regardless, all of DTX 1’s updates will be discarded by the LAD
recovery protocol upon reboot. As a result, the memory contents
after recovery will be (X ,Y) = (2, 0), which is an inconsistent state.
Note that the culprit is erroneous use of concurrency control.

Fig. 7b shows the same sequence of DTX execution, where LAD’s
atomic persistence block is correctly placed within the critical sec-
tion. At the time of failure, DTX 2’s updated value of X may or
may not have reached the MCs. However, as DTX 2 didn’t complete
its commit protocol, any DTX 2 updates received by the MCs will
be discarded at the time of recovery, bringing memory to a con-
sistent state ((X ,Y) = (1, 1)). Fig. 7b’s example demonstrates why
LAD always preserves the correct order of updates, when properly
combined with concurrency control that only allows recoverable
schedules. The invariant is that no DTX 2 can access (read or write)
a value updated by a preceding DTX 1, before all of DTX 1’s updates
have reached the MCs.

4.6 Fallback Logging
Because MC queues are bounded, overflow with speculative write-
backs is possible. As described in §3.3, LAD’s fallback in case of
such overflow is that the MC starts draining its request queue in
PM in chronological FIFO order, implementing undo logging. Dedi-
cated space is pre-allocated by the OS for this purpose on a per-MC
basis, and after allocation it is directly managed by the MCs. In our
implementation, logging starts when 80% of the request queue’s
entries are occupied by speculative cache blocks.

Each undo log entry contains the logged cache block’s old value
and ⟨LAD_TID, DTX_ID⟩. Before a speculative cache block is logged,
its corresponding old value is read from PM and the new value is
written back to PM. The retrieved old value is used to create the
undo log entry. A background OS thread periodically reclaims the
memory used by the undo logs, and also allocates additional log-
ging space for the MCs if necessary. In the rare case the MCs near
depletion of their logging space, an interrupt is raised to notify the

OS thread to allocate additional space, a practice similar to prior
work managing logging in hardware [20, 46].

4.7 Interplay with Coherence
LAD does not require any coherence protocol modifications. This
section serves as an informal proof that the LADprotocol’s interplay
with coherence is deadlock free. We briefly go over all resources
that are acquired and freed in the course of LAD’s operation, in the
L1 cache, the LLC, the MCs and the on-chip interconnect.

L1 cache: LAD tracks blocks in the cache but releases them im-
mediately upon a coherence request. Only the Ack counter—a LAD-
specific resource independent of coherence—remains as allocated
state waiting for the pending DTX_Flushes to be acknowledged.

LLC: LAD does not reserve any resources at the LLC. DTX_-
Flushes only update the cache block’s value in the LLC.

MC: LAD reserves entries in the MC queues while a DTX is
advancing and more cache blocks are flushed. While these MC
queues have limited capacity, when under pressure, their entries
are drained to PM as logs. With PM assumed to be an “infinite”
resource for LAD’s purposes (i.e., there is enough space allocated
for logging at all times), LAD’s state can always be drained to free
up the MC queues.

Interconnect: Assuming an interconnect with different VCs
for coherence requests and replies, we leverage these same VCs to
separate LAD messages into requests (DTX_Flush, DTX_Commit)
and replies (Acks). All LAD messages can always be processed to
completion upon reception at the L1 cache, LLC, or MC. Thus, LAD
messages cannot block coherence messages in the interconnect.

4.8 Failure and Recovery
LAD assumes that in case of a crash, the contents of the MC queues
are preserved. To achieve that, we leverage technology that already
exists in persistence-aware MCs of Intel servers [36, 39], which
are sufficiently battery backed to flush their queues’ contents into
memory upon failure. While our approach is similar, LAD’s flush-
on-failure policy requires slight modifications to the current policy
implemented in MCs, because MC structures in LAD hold both
committed and speculative state. Therefore, instead of draining all
pending requests in the queue to their corresponding locations in
PM upon failure, our modified MC differentiates between write-
backsmarked by LAD and normal ones. LADwritebacks are drained
in chronological order into “purgatory”, a dedicated space of a few
KBs in PM, where they are stored as temporary—yet non-volatile—
state to be recovered after reboot. All other pending writebacks are
normally written back into their corresponding locations in PM.
Upon reboot, the pre-crash contents of the MCs’ queues can be
recovered by reading back the purgatory’s contents.

The recovery process should be performed as soon as the sys-
tem restarts, before the OS resumes normal operation. Consistent
memory state is established by following three steps:
• Step 1: The DTX_CID vector Vi = ⟨ci1, ..., ciN ⟩ (where N = #
LAD threads—256 in our implementation) of every MCi is read.
Vi contains the DTX_ID of the last committed DTX per LAD
thread. A single vector

Vcommit = ⟨
Mmax
i=1

(ci1), ...,
Mmax
i=1

(ciN)⟩, M = # o f MCs

MICRO-52, October 12–16, 2019, Columbus, OH, USA Siddharth Gupta, Alexandros Daglis, and Babak Falsafi

Name Writes / DTX Description
(cache blocks)

TATP 1 Update location transaction in TATP
RBT 2–10 Ins./Del. entries in a Red-Black tree
CQ 4 Insert/Delete entries in a queue
PC 8 Modify values in a hash-table
SPS 16 Random swaps of array elements
TPCC 10–35 New Order transaction in TPC-C

Table 2: Evaluated benchmarks.

is compiled and sent to all MCs. TheVcommit vector summarizes
all the MCs’ consensus regarding each core’s last committed DTX.
Doing so covers the case where power failure resulted in partial
reception of a DTX_Commit message marking a DTX’s end.

• Step 2: Each MC goes through its private undo log, from oldest
to newest entry. For each entry ⟨LAD_TID, DTX_ID⟩ with DTX_-
ID > Vcommit [LAD_TID], the MCs restore the corresponding
location’s value in PM with the old value found in the undo log.

• Step 3: The contents of the purgatory are read. Entries belonging
to committed DTXs are written directly to their corresponding
location in PM in chronological order, while entries belonging to
uncommitted ones are discarded. After all three steps are done,
the undo log and purgatory are cleared and the system is ready
to resume normal operation.

The above steps assume coordinating state machines, one per
MC. Alternatively, a single core in BIOS mode (e.g., as part of the
memory count-up test) can perform them sequentially for each MC.
If the system undergoes another power failure during recovery, the
same recovery process restarts anew, as all recovery-related opera-
tions are idempotent and the state of the undo log and purgatory
are preserved until recovery completes successfully. Thus, LAD’s
recovery procedure can trivially sustain recursive failures.

5 METHODOLOGY
Applications. We use a benchmark suite for durable transactions,
taken from prior work [10, 23]. Table 2 briefly describes each bench-
mark and lists the number of updated cache blocks per DTX in each
case. The datasets of all the benchmarks exceed the capacity of
on-chip caches but are memory resident, except for RBT that oper-
ates on an LLC-resident dataset. We focus on small transactions,
which—in the common case—can leverage LAD to complete in a
logless fashion. As demonstrated in prior work, persistence-aware
software is dominated by such small transactions [30].

TATP andCQhave small transactionswith a very small read/write
ratio. RBT also has small transactions, but with more reads as it
traverses the tree for each operation. As the trees are small and fit in
the private cache, volatile transactions do not generate read/write
traffic to memory. PC, SPS, and TPCC have large transactions with
increasing read intensity. All the workloads execute back to back
transactions in order to stress LAD. Therefore, they represent an
extreme case as real-world applications are expected to execute
other operations beside durable transactions.

System architecture.We assume a tiled 16-core CPU with a dis-
tributed LLC. The memory address space is horizontally partitioned

Cores
16× ARM Cortex-A57
64-bit, 2GHz, OoO, TSO
3-wide dispatch/retirement, 128-entry ROB

L1 Caches
32KB 2-way L1D, 48KB 3-way L1I
64-byte blocks, 2 ports, 32 MSHRs
2-cycle latency (tag+data)

LLC Shared block-interleaved NUCA, non-inclusive
8MB, 16-way, 1 bank/tile, 6-cycle access

Coherence Directory-based MESI
Interconnect 2D mesh, 16B links, 3 cycles/hop

DRAM tCK = 0.625 ns, tRAS = 24 ns, tRCD = 13.75 ns
Timing tCAS = 11.2 ns, tWR = 10 ns, tRP = 13.75 ns

LAD
8 sets of DTX Tracking Structures per L1 cache
4 MCs (2 with 50ns socket overhead)
64-entry request queue per MC [23]

Table 3: System parameters for simulation on Flexus.

between volatile and persistent regions. We model PM as battery-
backed DDR4 DRAM, a representative form of PM deployment in
modern commercial datacenters [21]. We pin our workloads on
15 cores, leaving one core for the OS. To stress LAD’s distributed
commit protocol, we model four MCs. While our main evaluation
is based on a single-socket setup, we also evaluate the impact of
increased latency to reach a subset of the MCs, which typically
occurs when scaling beyond a single socket. For these experiments,
we emulate a dual-socket effect with half of the MCs injecting an
additional delay of 50ns in their responses.

We compare LAD against the most relevant state-of-the-art hard-
ware design for logless atomic durability, Kiln [46]. However, as
the original Kiln design does not consider a distributed NUCA LLC,
we extend its functionality by adding LAD’s distributed commit
protocol to the LLC controllers rather than the MCs. We optimisti-
cally model a persistent battery-backed LLC rather than STT-RAM,
thus enabling persistence without any latency penalty compared to
a volatile SRAM LLC. This configuration, LAD-LLC, represents an
idealized implementation of a logless atomic durability mechanism.

Evaluated configurations.We evaluate four configurations:

(1) Volatile: Transactions touch only volatile data. This config-
uration represents ideal performance, as there is no cost
associated with providing atomic durability.

(2) LAD-LLC: Transactions attain durability by writing updated
data to the persistent (battery-backed) LLC.

(3) LAD: Transactions attain durability by writing updated data
to persistent (battery-backed) MCs. By default, a DTX com-
mits after the LAD controller receives the first Ack from an
MC. We also evaluate a LAD-Base configuration that lacks
this optimized commit-after-first-Ack policy (i.e., the LAD
controller waits for all Acks).

(4) SW Logging: Transactions use software logging for atomic
durability, and undo logs are written to persistent MCs using
clwb operations.

Simulation. We evaluate all configurations using Flexus [44], a
full-system cycle-accurate simulator coupled with DRAMSim2 [35]
for DRAM simulation. Table 3 summarizes simulation parameters.

Distributed Logless Atomic Durability with Persistent Memory MICRO-52, October 12–16, 2019, Columbus, OH, USA

0

20

40

60

80

100

TATP RBT CQ PC SPS TPCC Geomean

Th
ro

ug
hp

ut
 n

or
m

al
ize

d
to

 V
ol

at
ile

 (%
)

LAD-LLC LAD-Base LAD SW Logging

Figure 8: Performance with synchronous transactions.

6 EVALUATION
6.1 Atomic Durability Performance
Fig. 8 shows the throughput (transactions per second) of different
configurations normalized to Volatile. Volatile outperforms LAD-
LLC by 14% on average, as in LAD-LLC every transaction blocks
the CPU until all of the transaction’s updated L1-resident data
are flushed to the persistent LLC because of the software’s strict
synchronous durability requirements. Workloads are affected dif-
ferently by the atomic durability requirement, depending on their
memory access patterns. In general, the durability property for
workloads with small transactions is costlier, because of the higher
frequency of CPU-blocking events.

Software logging severely degrades the throughput of most work-
loads, by about 45% on average. Only TPCC remains unaffected
by the overhead of logging, which is amortized by TPCC’s large
read-heavy transactions. On the other end of the spectrum, CQ is
the most write-intensive workload with high MLP and tiny trans-
actions. The multiple serialization points introduced by logging
severely hurt its performance. LAD outperforms software logging
across the board because it reduces the instruction footprint and
results in fewer writes to memory, as we will demonstrate in §6.3.

LAD also closely follows the performance delivered by the op-
timistic LAD-LLC configuration. The small performance gap is
attributed to LAD’s requirement for flushes to reach the MCs rather
than the LLC. Despite that, and despite the two orders of magnitude
smaller capacity for speculative buffering of transaction updates
(16KB vs. 8MB), LAD performs within 5% of LAD-LLC on aver-
age. Overall, our results indicate that the cost and effort of battery
backing the LLC only yields minuscule performance improvements
for crash-consistent software as compared to LAD, which only re-
quires persistent MCs. The latter is readily available in modern
server CPUs, indicating our design’s practicality.

To better understand the performance impact of our distributed
commit protocol, Fig. 8 also includes a version of LAD where a DTX
is committed only after Acks are received from every MC in the
Commit phase (LAD-Base). On our single-socket experiments, the
modest performance degradation (∼2% avg) of LAD-Base compared
to LAD demonstrates two expected outcomes. First, our protocol
spends more time in the Flush state than the Commit state, because
Flush involves moving data from the L1D cache to the MC rather
than a simple round-trip of a control message. Second, the minimal

Single-Socket (Fig. 8) Dual-Socket

LAD-LLC 86% 84%
LAD-Base 78% 72%
LAD 80% 77%
SW Logging 56% 48%

Table 4: Throughput (geomean) of single-socket and dual-
socket configurations normalized to Volatile.

performance hit taken when waiting for the last Ack in the Commit
state is a direct consequence of the single-socket system, where
the cores’ distance to all MCs is almost uniform. Despite the small
average performance difference between LAD and LAD-Base, work-
loads with very short DTXs still benefit from skipping the wait for
the last Ack. For example, TATP spends similar time in the Flush
and Commit state; as a result, LAD is 7% faster than LAD-Base.

Table 4 summarizes the average throughput of all aforemen-
tioned configurations on a single-socket system and compares them
to a dual-socket system. The performance gap of all configurations
compared to Volatile grows, because of the dual-socket’s increased
latency effect on the synchronous operations introduced by the
mechanisms enabling atomic durability. For the same reason, wait-
ing for only one Ack by the MCs at the Commit phase now becomes
more significant, increasing the performance difference between
LAD and LAD-Base to ∼5% on average and to 12% for TATP.

In summary, LAD enables synchronous atomically durable trans-
actions at low cost, being within 20% of the volatile single-socket
system’s performance. This number is close to what Kiln [46]—
a state-of-the-art mechanism for synchronous atomic durability
closely emulated by our LAD-LLC configuration—delivers, but with
significantly less intrusive hardware changes. LAD only requires
extending the L1D caches and MCs with additional state stored
in volatile SRAM buffers, rather than making the entire LLC non-
volatile. Finally, LAD’s performance is not directly comparable to
work proposing asynchronous durability (e.g., DudeTM [25]), which
relaxes the strict semantics of synchronous atomic durability for
performance gains.

6.2 LAD Overhead Breakdown
Table 5 shows each workload’s per-transaction latency for LAD,
including the time spent in the Prepare and Commit phase. Un-
surprisingly, the Prepare phase’s overhead is always higher than
the Commit phase’s, as it involves flushing data from the L1 cache
to the MCs. As the Commit phase involves a roundtrip of control
messages between the L1 and the MCs, its latency should be largely
insensitive to the workload. The small variability observed in the
Commit phase’s latency is attributed to the workload-dependent
contention in the interconnect. We verify this hypothesis on an un-
loaded system by using single-threaded instances of the workloads,
where we indeed observe a fixed Commit phase latency of 30 cycles.
Consequently, there is little room for performance improvement
by accelerating the Commit phase.

Proactive flush mechanisms [18, 21] have the potential of reduc-
ing the Prepare phase’s overhead, by removing all but a single
cache block’s flush from the critical path. We observe that even an
ideal proactive flush mechanism, with 100% accuracy in flushing
cache blocks right after their last update within a DTX, would yield

MICRO-52, October 12–16, 2019, Columbus, OH, USA Siddharth Gupta, Alexandros Daglis, and Babak Falsafi

Workload Total Prepare Commit Perf. improv.
phase phase upper bound

TATP 491 108 42 4%
RBT 269 86 35 1%
CQ 771 117 48 3%
PC 1614 158 48 4%
SPS 3062 165 45 3%
TPCC 17019 91 36 0%

Table 5: LAD per-transaction latency breakdown (in cycles)
and upper performance improvement bound for an ideal
early flush mechanism.

marginal performance improvements. We estimate an upper im-
provement bound by replacing each workload’s measured Prepare
phase latency with the absolute minimum latency required to flush
one block from the L1 to the MC (L1−→LLC−→MC−→returning Ack).
By setting that latency to 80 cycles (equal to TATP’s Prepare phase
latency on an unloaded system; TATP always has a single cache
block flush on the critical path), the estimated performance im-
provement for each workload is displayed in Table 5’s last column.

These results indicate that the Prepare phase’s overhead is not
bandwidth-, but latency-bound. Drastically reducing the remaining
performance margin between LAD and Volatile requires exploring
asynchronous commit mechanisms, which may require relaxation
of the strict semantics of synchronous atomicity.

6.3 Sensitivity to MC Request Queue Size
Fig. 9 shows the memory accesses per transaction, averaged across
all workloads, for our three evaluated crash-consistent configura-
tions with varying MC queue sizes. The secondary y-axis shows
performance normalized to Volatile with the same MC queue size.
Software logging increases the number of memory accesses bymore
than 3×, mainly because of writing log entries and flushing in-place
updates. Reads also increase, as the log’s memory locations are
first read by the CPU. LAD only increases memory accesses by the
number of cache blocks written per transaction, because they have
to be written back to memory to attain persistence. LAD-LLC’s
memory access pattern is the same as the Volatile baseline’s, as
flushes for durability purposes are absorbed by the LLC and do not
reach the memory.

We now focus on how MC queue size affects the frequency of
LAD’s fallback logging mechanism and, conversely, performance. A
commonly modeled MC queue size is 64 entries. For our evaluated
benchmark suite and a 64-entry MC queue, LAD’s fallback mech-
anism is never triggered. We only observe measurable memory
traffic caused by the fallback mechanism when we shrink the MC
queue eight-fold, to 8 entries, which results in < 3% performance
drop. The worst cases we observe for a queue size of 8 are for TPCC
and CQ, when the resulting fallback logging introduces ∼ 12% more
memory writebacks as compared to the baseline queue size of 64.
These additional writebacks hurt TPCC’s and CQ’s performance
by <1% and 9%, respectively. CQ is affected observably more by
the additional writes, because of its bandwidth-intensive nature.
Finally, software logging suffers significantly more from smaller
MC queues, because of the higher pressure it puts on the memory.
Our results validate that, in the common case, LAD delivers atomic

0

20

40

60

80

100

0

3

6

9

12

15

64 32 16 8 64 32 16 8 64 32 16 8

LAD-LLC LAD SW Logging

Th
ro

ug
hp

ut
 n

or
m

al
ize

d
to

 V
ol

at
ile

 (%
)

M
em

or
y

ac
ce

ss
es

 p
er

 tr
an

sa
ct

io
n

Reads Writes Flushes Logs Throughput

Figure 9: Sensitivity to memory controller queue size.

durability in a logless manner, despite the limited buffering space
available at the MCs.

6.4 Impact of Non-Volatile Memory
While the main body of our evaluation is based on modeling PM
after battery-backed DRAM, the same observations hold for non-
volatile memory (NVM) technologies. NVM has a broad spectrum
of access latency and read/write disparity; however, NVM used as
DRAM replacement will most likely fall in the faster end of that
spectrum. We therefore repeated our evaluation using 60/150ns
read/write memory access latency, representative of a fast NVM.

Despite changes in absolute numbers, relative performance across
configurations marginally shifts as compared to the results pre-
sented in §6.1 and therefore we omit detailed data for brevity. Our
takeaways regarding fallback logging frequency (§6.3) remain un-
affected as well. Our MC queue sizing remains sufficient for NVM,
because our workloads are not bottlenecked by memory bandwidth,
and, as discussed in §6.3, LAD’s 64-entry MC queue is 4–8× over-
provisioned for battery-backed DRAM.

7 CONCLUSION
We presented LAD, a logless atomic durability mechanism that
utilizes data multiversioning inherent in memory hierarchies. We
leverage persistent MCs, which are already featured in modern
servers, to accumulate speculative state and commit atomically to
PM. LAD features a distributed protocol in hardware to manage the
speculative state residing across the chip’s MCs and make atomic
commit decisions. Our design enables atomically durable synchro-
nous transactions at a performance cost as low as 20%, making
intrusive hardware modifications to extend the persistent domain
from the MCs further up in the memory hierarchy hardly justifiable.

ACKNOWLEDGMENTS
We are grateful to Aasheesh Kolli and Vaibhav Gogte for giving us
access to their PM workloads, Anirudh Badam, Jim Larus, Paolo
Ienne and Dmitrii Ustiugov for insightful comments and sugges-
tions in early versions of this work. We also thank Mario Drumond,
Mark Sutherland, Arash Pourhabibi, Zilu Tian, Yunho Oh, Ognjen
Glamocanin, Rishabh Iyer and Marina Vemmou for their feedback
and support. This work was partially supported by Huawei Tech-
nologies as part of the “Rack-Scale In-Memory Computing” project,
YB2016020020.

Distributed Logless Atomic Durability with Persistent Memory MICRO-52, October 12–16, 2019, Columbus, OH, USA

REFERENCES
[1] 2018. Intel Mesh Interconnect Architecture. https://en.wikichip.org/wiki/intel/

mesh_interconnect_architecture.
[2] 2019. AMD Zen Microarchitectures. https://en.wikichip.org/wiki/amd/

microarchitectures/zen#Multiprocessors.
[3] Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar. 2011.

Multi-Core Cache Hierarchies. Morgan & Claypool Publishers.
[4] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. 2007. BulkSC: bulk

enforcement of sequential consistency. In Proceedings of the 34th International
Symposium on Computer Architecture (ISCA). 278–289.

[5] Dhruva R. Chakrabarti, Hans-Juergen Boehm, and Kumud Bhandari. 2014. Atlas:
leveraging locks for non-volatile memory consistency. In Proceedings of the 2014
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. 433–452.

[6] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: making persistent objects fast
and safe with next-generation, non-volatile memories. In Proceedings of the 16th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XVI). 105–118.

[7] Nachshon Cohen, Michal Friedman, and James R. Larus. 2017. Efficient logging
in non-volatile memory by exploiting coherency protocols. PACMPL 1, OOPSLA
(2017), 67:1–67:24.

[8] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin C. Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through
byte-addressable, persistent memory. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP). 133–146.

[9] Ramez Elmasri and Shamkant B. Navathe. 2010. Fundamentals of Database
Systems, 6th Edition. Addison-Wesley.

[10] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Pe-
ter M. Chen, and Thomas F. Wenisch. 2018. Persistency for synchronization-free
regions. In Proceedings of the ACM SIGPLAN 2018 Conference on Programming
Language Design and Implementation (PLDI). 46–61.

[11] Tim Harris, James R. Larus, and Ravi Rajwar. 2010. Transactional Memory, 2nd
edition. Morgan & Claypool Publishers.

[12] Joel Hruska. 2018. Intel Optane DC. https://www.extremetech.com/extreme/
270270-intel-announces-new-optane-dc-persistent-memory.

[13] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. 2017. NVthreads: Practical Persistence for Multi-threaded Appli-
cations. In Proceedings of the 2017 EuroSys Conference. 468–482.

[14] Intel Corporation. 2019. Intel ISA Manual. https://software.intel.com/sites/
default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf.

[15] Intel Corporation. 2019. Intel PMDK. http://pmem.io/pmdk/.
[16] Intel Corporation. 2019. Intel RTM. https://software.intel.com/en-us/node/

524025.
[17] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic

Persistent Memory Updates via JUSTDO Logging. In Proceedings of the 21st
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXI). 427–442.

[18] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015. Efficient
persist barriers for multicores. In Proceedings of the 48th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). 660–671.

[19] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2018. DHTM:
Durable Hardware Transactional Memory. In Proceedings of the 45th International
Symposium on Computer Architecture (ISCA). 452–465.

[20] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017. ATOM:
Atomic Durability in Non-volatile Memory through Hardware Logging. In Pro-
ceedings of the 23rd IEEE Symposium on High-Performance Computer Architecture
(HPCA). 361–372.

[21] Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash Sharma, and Greg Ganger.
2017. Viyojit: Decoupling Battery and DRAM Capacities for Battery-Backed
DRAM. In Proceedings of the 44th International Symposium on Computer Architec-
ture (ISCA). 613–626.

[22] Aasheesh Kolli, Steven Pelley, Ali G. Saidi, Peter M. Chen, and Thomas F. Wenisch.
2016. High-Performance Transactions for Persistent Memories. In Proceedings
of the 21st International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XXI). 399–411.

[23] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali G. Saidi, Steven Pelley,
Sihang Liu, Peter M. Chen, and Thomas F. Wenisch. 2016. Delegated persist
ordering. In Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 58:1–58:13.

[24] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
phase change memory as a scalable dram alternative. In Proceedings of the 36th
International Symposium on Computer Architecture (ISCA). 2–13.

[25] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin
Zheng, and Jinglei Ren. 2017. DudeTM: Building Durable Transactions with De-
coupling for Persistent Memory. In Proceedings of the 22nd International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-XXII). 329–343.

[26] Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu. 2014. Loose-Ordering Con-
sistency for persistent memory. In Proceedings of the 32nd International IEEE
Conference on Computer Design (ICCD). 216–223.

[27] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou, Ram-
natthan Alagappan, Karin Strauss, and Steven Swanson. 2017. Atomic In-place
Updates for Non-volatile Main Memories with Kamino-Tx. In Proceedings of the
2017 EuroSys Conference. 499–512.

[28] C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M.
Schwarz. 1992. ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM
Trans. Database Syst. 17, 1 (1992), 94–162.

[29] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. 2006. LogTM: log-based transactional memory. In Proceedings of the 12th
IEEE Symposium on High-Performance Computer Architecture (HPCA). 254–265.

[30] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and
Kimberly Keeton. 2017. An Analysis of Persistent Memory Use with WHISPER.
In Proceedings of the 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XXII). 135–148.

[31] Matheus Ogleari, Ethan L. Miller, and Jishen Zhao. 2018. Steal but No Force:
Efficient Hardware Undo+Redo Logging for Persistent Memory Systems. In Pro-
ceedings of the 24th IEEE Symposium on High-Performance Computer Architecture
(HPCA). 336–349.

[32] Xuehai Qian, Wonsun Ahn, and Josep Torrellas. 2010. ScalableBulk: Scalable
Cache Coherence for Atomic Blocks in a Lazy Environment. In Proceedings of the
43rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
447–458.

[33] Xuehai Qian, Josep Torrellas, Benjamin Sahelices, and Depei Qian. 2013. Bulk-
Commit: scalable and fast commit of atomic blocks in a lazy multiprocessor
environment. In Proceedings of the 46th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). 371–382.

[34] Jinglei Ren, Jishen Zhao, Samira Manabi Khan, Jongmoo Choi, Yongwei Wu, and
Onur Mutlu. 2015. ThyNVM: enabling software-transparent crash consistency
in persistent memory systems. In Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 672–685.

[35] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A Cycle
Accurate Memory System Simulator. Computer Architecture Letters 10, 1 (2011),
16–19.

[36] Andy Rudoff. 2016. Deprecating the PCOMMIT Instruction. https://software.
intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction.

[37] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. 2017.
Proteus: a flexible and fast software supported hardware logging approach for
NVM. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 178–190.

[38] Seunghee Shin, James Tuck, and Yan Solihin. 2017. Hiding the Long Latency of
Persist Barriers Using Speculative Execution. In Proceedings of the 44th Interna-
tional Symposium on Computer Architecture (ISCA). 175–186.

[39] SNIA. 2014. NVDIMM Messaging and FAQ. www.snia.org/sites/default/files/
NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf.

[40] Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory
Consistency and Cache Coherence. Morgan & Claypool Publishers.

[41] Andrew S. Tanenbaum and Maarten van Steen. 2007. Distributed systems -
principles and paradigms, 2nd Edition. Pearson Education.

[42] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: light-
weight persistent memory. In Proceedings of the 16th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-XVI). 91–104.

[43] Hu Wan, Youyou Lu, Yuanchao Xu, and Jiwu Shu. 2016. Empirical study of redo
and undo logging in persistent memory. In Proceedings of the 5th IEEE Non-Volatile
Memory Systems and Applications Symposium. 1–6.

[44] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastassia Aila-
maki, Babak Falsafi, and James C. Hoe. 2006. SimFlex: Statistical Sampling of
Computer System Simulation. IEEE Micro 26, 4 (2006), 18–31.

[45] Andrew W. Wilson Jr. and Richard P. LaRowe Jr. 1992. Hiding Shared Memory
Reference Latency on the Galactica Net Distributed Shared Memory Architecture.
J. Parallel Distrib. Comput. 15, 4 (1992), 351–367.

[46] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. 2013.
Kiln: closing the performance gap between systems with and without persistence
support. In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 421–432.

https://en.wikichip.org/wiki/intel/mesh_interconnect_architecture
https://en.wikichip.org/wiki/intel/mesh_interconnect_architecture
https://en.wikichip.org/wiki/amd/microarchitectures/zen#Multiprocessors
https://en.wikichip.org/wiki/amd/microarchitectures/zen#Multiprocessors
https://www.extremetech.com/extreme/270270-intel-announces-new-optane-dc-persistent-memory
https://www.extremetech.com/extreme/270270-intel-announces-new-optane-dc-persistent-memory
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
http://pmem.io/pmdk/
https://software.intel.com/en-us/node/524025
https://software.intel.com/en-us/node/524025
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf
www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Atomic Durability
	2.2 Distributed Persistent MCs
	2.3 Distributed State in Other Contexts

	3 LAD Design
	3.1 Overview
	3.2 Distributed Commit Protocol
	3.3 Speculative Buffer Overflow
	3.4 Failure and Recovery
	3.5 Programmability
	3.6 Concurrency Control

	4 LAD Implementation
	4.1 ISA and OS Extensions
	4.2 LAD Controller: L1D Cache Extensions
	4.3 Memory Controller Extensions
	4.4 LAD Protocol
	4.5 Running Examples
	4.6 Fallback Logging
	4.7 Interplay with Coherence
	4.8 Failure and Recovery

	5 Methodology
	6 Evaluation
	6.1 Atomic Durability Performance
	6.2 LAD Overhead Breakdown
	6.3 Sensitivity to MC Request Queue Size
	6.4 Impact of Non-Volatile Memory

	7 Conclusion
	Acknowledgments
	References

