

This is an electronic reprint of the original article. This reprint may differ from the original
in pagination and typographic detail.

Multi-Objective Optimization of Real-Time Task Scheduling Problem for Distributed
Environments
Salimi, Maghsood; Majd, Amin; Loni, Mohammad; Seceleanu, Tiberiu; Seceleanu, Cristina;
Sirjani, Marjan; Daneshtalab, Masoud; Troubitsyna, Elena
Published in:
Proceedings of the 6th Conference on the Engineering of Computer Based Systems

DOI:
10.1145/3352700.3352713

Published: 01/01/2019

Document Version
Accepted author manuscript

Document License
Publisher rights policy

Link to publication

Please cite the original version:
Salimi, M., Majd, A., Loni, M., Seceleanu, T., Seceleanu, C., Sirjani, M., Daneshtalab, M., & Troubitsyna, E.
(2019). Multi-Objective Optimization of Real-Time Task Scheduling Problem for Distributed Environments. In
Proceedings of the 6th Conference on the Engineering of Computer Based Systems (ECBS '19). Association for
Computing Machinery. https://doi.org/10.1145/3352700.3352713

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 25. Apr. 2024

https://doi.org/10.1145/3352700.3352713
https://research.abo.fi/en/publications/11f92c82-e910-45bd-bfbb-e1a83008a0d1
https://doi.org/10.1145/3352700.3352713

Multi-objective Optimization of Real-Time Task
Scheduling Problem for Distributed Environments

Abstract—Real-world applications are composed of multiple
tasks which usually have intricate data dependencies. To exploit
distributed processing platforms, task allocation and scheduling,
that is assigning tasks to processing units and ordering inter-
processing unit data transfers, plays a vital role. However,
optimally scheduling tasks on processing units and finding an
optimized network topology is an NP-complete problem. The
problem becomes more complicated when the tasks have real-
time deadlines for termination. Exploring the whole search space
in order to find the optimal solution is not feasible in a reasonable
amount of time, therefore meta-heuristics are often used to find
a near-optimal solution.

We propose here a multi-population evolutionary approach
for near-optimal scheduling optimization, that guarantees end-
to-end deadlines of tasks in distributed processing environments.
We analyze two different exploration scenarios including single
and multi-objective exploration. The main goal of the single
objective exploration algorithm is to achieve the minimal number
of processing units for all the tasks, whereas a multi-objective
optimization tries to optimize two conflicting objectives simul-
taneously considering the total number of processing units and
end-to-end finishing time for all the jobs. The potential of the
proposed approach is demonstrated by experiments based on
a use case for mapping a number of jobs covering industrial
automation systems, where each of the jobs consists of a number
of tasks in a distributed environment.

Index Terms—Distributed Task Scheduling, Real-Time Pro-
cessing, Evolutionary Computing, Multi-Objective Optimization

I. INTRODUCTION

Industrial applications often require guaranteeing real-time
execution, fault tolerant implementations and providing reli-
able functionality. In general, it is impossible for a single pro-
cessing unit to satisfy all these needs. However, a distributed
processing environment provides a variety of computational
capabilities, which can be utilized to perform an application
that has diverse execution requirements. An application job can
be decomposed into tasks. Tasks may have data dependencies
and it is possible that each task needs a certain computational
throughput. For distributing tasks, the following decisions
should be made respectively: 1© task allocation, i.e. assigning
tasks to processing units, and 2© tasks scheduling, i.e. defining
task execution order and the order of data transfers among
processing units. The general goal of task allocation and
scheduling is to minimize the end-to-end cost of computa-
tion, i.e. minimizing overall response time of the application,
minimizing the number of processing units, or both.

Performance of such parallel systems can be optimized
by employing an efficient task allocation and scheduling
approach, however, the allocation and scheduling problem is

an NP-complete problem [1]. Using exhaustive approaches for
finding optimal solution is time-consuming and is impossible
in practice. Many heuristic task scheduling strategies have
been proposed [2], [3] to find a near-optimal solution in a
reasonable amount of time. Evolutionary Computing (EC) is a
set of methods proposed to solve the allocation and scheduling
problem. Genetic Algorithm (GA) is a popular EC method
which can better locate a near-optimal solution than other
similar approaches in most cases [4]–[7]. Although GA is a
powerful solution, defining a proper fitness function is always
challenging and requiring expertise especially when the size
of design space is huge. Plus, GA is relatively slow and may
be trapped in local optima [8].

To overcome aforementioned challenges, a Multi-Population
Genetic Algorithm (MPGA) [9] is leveraged in this research
for task allocation and scheduling over a collection of nonuni-
form processing units. MPGA is a static scheduling strategy,
where the execution times of tasks and the data transfer times
between tasks are known. MPGA is the parallel version of
GA that provides better convergence rate and more speedup
compared to single population GA [8]. In addition, MPGA
highly reduces the probability of falling into local optima trap.
Two different MPGA strategies have been considered to solve
the allocation and scheduling problem including: 1© Single
objective optimization and 2© Multi-objective optimization.
While the single objective optimization minimizes the number
of processing units, the multi-objective optimization considers
the second conflicting metric, jobs end-to-end finishing time,
to find solutions satisfying multiple user needs.

Contribution. In a nutshell our main contributions are:

• In this paper, we solved task allocation and scheduling
problem in a distributed environment. To attain this
purpose, we leveraged a MPGA optimization method
with different optimization scenarios.

• Defining novel fitness functions to efficiently explore the
design space in both single and multi-objective optimiza-
tion scenarios.

• The evaluation results based on an industrially inspired
use case show the impact of the proposed fitness function
while converging to better solutions.

Paper Organization. The paper is organized as follows.
Section II defines the allocation and scheduling problem
and our use case. Section III explains the MPGA and the
specifications of fitness functions for both single objective and
multi-objective optimization scenarios. Section IV presents
the experimental results and demonstrates the efficiency and

convergence of the proposed algorithm. Some related work
reviewed in Section V. We end with concluding remarks and
future work in Section VI.

II. PROBLEM DEFINITION

We start here by describing a generic distributed process
control system. In such systems, a series of computing devices
operate on data collected from sensors placed close to a
physical process, and update control signals to other devices
- actuators - able to control the evolution of the process. A
process may be exemplified by a simple tank-filling operation
or by more complex systems, such as ore separation, water
purification, etc. The process parameters (such as liquid levels,
temperatures, etc.) are usually required to be maintained within
a certain range of values, even when the environment is
disturbed. Whenever new values are presented via sensors to
the processing devices, certain procedures hosted within these
devices are launched, and potential new values are sent to
the process-responsible actuators. In large systems, there are
potentially thousands or more such procedures, installed in
tens to hundreds of control devices.

The main problem that we raise here is how to allocate the
number of processing operations on an as small as possible
set of processing devices, such that planned operations are
not affected with respect to their timing and duration, and
the processing devices are operating within their nominal
characteristics.

In order to cover most of the aspects of interest when
solving this, in the following we employ a synthetic example
of a system as use case, with elements presented in Fig. 1.
Here, we have a control system composed of 8 jobs, their
characteristics and further decomposition being detailed below.

A. System Model Elements
The system we consider is composed of a number of

complex control processes, referred from now on as jobs.
The system reads data from a set of input elements - the
sensors S1,...,S11 and processes the data on a number of
available processing units (P1,..., P24). The processed data
is sent further in the system to other elements - the actuators
A1,...A11 - notice that having a similar number of sensors and
actuators is a coincidence of no relevance in the analysis to
come. A job refers to the data trip from sensors to actuators.

A job can be further described as a collection of tasks, acting
mostly sequentially, but not excluding parallel processing -
especially if tasks belong to different jobs. To illustrate a more
critical situation, we assume that all the considered tasks are
non-interruptible. A task is a unitary, and with the assumed
non-interruptible characteristic, an atomic system element, to
be executed on one of the available processing units. Each task
has input either a sensor, or the output of a precedent task. At
the output of a task stays either an actuator, or the input of a
follower task. Multiple inputs to a task are possible (see task
T13 in Job8 on actuator A10), in which case all of them must
be present for the task to start its operation. Differently, if a
task has more than one output (see task T21 in Job7), all of
them are presented at the same moment.

Fig. 1 describes additional information pertaining to task
and job execution, as well as some characteristics of interest
for the processing units. Thus, a task is also defined with
a potential maximal load that it presents to the processing
unit, and with a maximal execution time. For instance, task
T1 in Fig. 1 produces a maximal load of 10, and it executes
in maximum 10tu (”time units”: µ-seconds to seconds, for
instance. However, an actual specification of these units is not
of interest in our work here). At the same time, the available
processing unit P1 can withhold a maximum load of 100, and
possess 5 connection interfaces.

In their turn, the jobs have an execution time (the sum of
the execution times of the composing tasks), and a frequency:
how often data is read from sensors, and it has to be sent
to the actuators. For instance, Job1 - a sequence of T1, T14
and T18 - has a maximal execution time of 60tu, and it is
recurring every 70tu. A more complex situation is presented
by jobs 3, 7 and 8, where two actuators are related to each
job. The times for processing the data corresponding to each
actuator may be different, but what holds them together is
the execution frequency (200tu, 400tu and 500tu, per job,
respectively). Fig. 2 shows the dependency graph between
tasks of a job example from the use case (see Section II.A).

B. Problem Assumption

To only focus on the allocation and scheduling problem, we
made the following additional assumptions. First of all, we
assumed that each task is written in a machine-independent
language. Moreover, it is assumed that we know all the data
dependencies among tasks before execution (as described by
Fig. 1 and partially by Fig. 2). The distributed processing
platform is nonuniform, consisting of multiple homogeneous
processing units with various processing potential.

If a data conditional is based on input data, it is assumed
to be contained inside a task. A loop that uses an input data
item to determine one or both of its bounds is also assumed
to be contained inside a task. When two communicating tasks
are mapped onto the same processing units we assume that
the communication delay is zero. However, when they are
mapped onto different processors a finite communication delay
is assumed and modeled by 1tu.

Moreover, we do not (yet) consider here aspects related
to reliability, fault tolerance, safety, etc. These aspects may
(such as in the case of fault tolerance) require a duplication
of allocation and synchronization of data across duplicated
locations. These additional objectives are subject of further
work analysis.

III. MPGA DESCRIPTION

GA is an iterative population-based exploration solution
mimicking the process of natural selection and evolution
where the characteristics of the process can be utilized in
solving optimization problems. All GA-based methods have
an initial population where selection, crossover, mutation oper-
ators are applied to initial population for producing improved
population. The operations will be repeated until satisfying

Fig. 1. Representing The use case including jobs, intra-task dependencies, tasks load complexity, real-time deadlines and processing unit specifications.

Fig. 2. Dataflow of Job #7.

user criteria (reaching suitable results) or stopping after a
predefined number of iterations. The following subsections
explain the basic components of GA.

Step 1. Generating Initial Population. The initial population
includes random solutions in the design space, where each
solution represented by chromosome is a scheduling for all
the jobs. The size of initial population depends on the size of
design space. To check the validity of solutions in the initial
population, each solution is examined by using the objective
function represented in Equation (1). Invalid solutions will be
removed from the population.

Step 2. Fitness Evaluation. Objective function (fitness func-
tion) is a metric for comparing different scheduling that satisfy
problem constraints. Equation (1) and Equation (2) represent
the fitness functions for single-objective and multi-objective
optimization, respectively.

Fitness 1 = #Processors+ (γ × (α+ β + θ)) (1)

Fitness 2 =
#Processors

γ
+ (2)

Run− time
BiggestDeadline

+ 3× (α+ β + θ)

where α is the total extra loads of the all assigned tasks that
exceed the load of processing units, β is the total extra deadline
of all assigned tasks that exceed the real-time deadlines, θ is
the total extra ports of all job assignments that exceed the
total number ports per processing units, and γ is equal to 23,
the total number of processing units. BiggestDeadline is the
maximum possible time for finishing the slowest job. The scale
of extra load (α), extra deadline (β), and extra ports (γ) could
be very different, thus all the α, β, and γ parameters should
be normalized. However, we did not normalized them since
the range of these parameters are deterministic and the fitness
functions are customized for the studied use case.

In (1), minimizing the number of processors (#Processor)
is the exploration objective. Whereas in (2), minimizing both
the end-to-end finishing time of all the jobs (Run−time) and
#Processor are the exploration objectives.
Step 3. Selection. Obviously the schedules with better fitness
function are selected as the next generation and the others will
be removed from population set. The goal is to find a solution
in design space with lowest fitness function in both Equations
(1) and (2).
Step 4. Crossover Operator. Is the most important operator of
GA. GA randomly selects two genomes from the population

Fig. 3. Representing a valid allocation and scheduling by GA/MPGA
chromosome type.

set based on a certain crossover rate. Then two genome strings
exchange parts of their corresponding chromosomes to create
two new genomes. In our use case, the chosen scheduling are
exchanged with the other scheduling for producing two new
schedules with most likely better schedules. Fig. 3 illustrates
the representation of the all jobs scheduling by a genome type.
Each genome consists of 42 portions since the use case has 42
different tasks. All possible assignments to processing units for
each task is equal to 23 (γ). This representation also indicate
the task scheduling by prioritizing the assigned tasks to the
same processor. Such that the processor operates on the tasks
from left to right i.e, if Task #4 (T4), Task #7 (T7)and Task
#11 (T11) are assigned to Processor #2 (P2), the processor
first runs T4, then T7 and T11 respectively.
Step 5. Mutation Operator. The main goal of mutation
operator is to increase genetic diversity. Mutation alters one
gene value (assigned processor to task) in a chromosome string
from its initial state. The solution may be better or even worst
solution by using mutation. Mutation forces GA to get rid of
local optima. For doing mutation, we need to randomly select
one gene in chromosome and modify its assigned value to a
new valid number.

After each cycle of selection, crossover and mutation, the
newly generated set of solutions (schedules) is called as new
generation. All the generations are evaluated based on the
fitness function to determine if they represent a good enough
solution to satisfy the fitness function. This determines if
the GA can stop searching, or if otherwise, for the GA to
continue searching until the predefined stopping criteria is met.
The stopping criteria could be the number of generations, or
evolution time, or fitness threshold, or fitness convergence, or
population convergence. In our case, the number of genera-
tions was set as the stopping criteria. The schedule obtained
after the stopping criteria will be the optimal or near optimal
schedule.

A. MPGA Algorithm

Although EC methods can improve the quality of results,
using them have some difficulties. First of all, an evolutionary
algorithm may not converge towards the optimal solutions
or even to near-optimal solutions in the case of very huge
exploration space. One possible solution is to increase the
initial population size, but leading to increase the execution
time of evolutionary algorithms. Parallelizing these algorithms
can remarkably diminish their execution time and improve the
quality of results. In the parallelized GA, multiple processors

Fig. 4. Multi-population migration operation.

Fig. 5. Flowchart of MPGA.

work together where each one runs a simple GA and has an
independent populations.
Step 6. After a predefined number of iterations, all processors
share their best chromosomes among each other (migration
operation).

Step 6 above is specific to the parallel procedure, which,
including the previous 5 steps is called MPGA. Sharing the
best individuals aids the MPGA to get avoid of local optima.
This procedure comes to be utilized in the algorithm that we
propose in further.

Fig. 4 represents the behavior of the MPGA and the
flowchart of consequent operations is shown in Fig. 5. The
pseudo-code of MPGA is presented in Algorithm 1. The inputs
of proposed meta-heuristic optimization approach include:
1© the specification of processing units including maximum
processing potential, the total number of input/output ports,
and 2© the specifications of jobs and tasks including load
complexity, run-time deadlines, and task dependencies.

Algorithm 1: Pseudo Code of MPGA
Input: • Processor Pi: 1 ≤ i ≤ # Processors
• Distributed processing units Specifications
• Jobs and related tasks Specifications
• N : Population Size
• T : Maximum Number of Iterations
Output: A Set of Near-Optimal Solutions
Function MPGA(N , T):

(Step 1): U i,0= Random Population (N); //Creating
initial random population and assign to each Pi
(Step 2): Fitness Function (U i,0); //Evaluating the
objectives of each solution in the all populations
t = 1;
while t ≤ T | SatisfyingUserNeeds do

(Step 3): U ′i,t = Select (U i,t); //Select some
chromosomes from the U i,t randomly.
(Step 4): U ′′i,t = Crossover (U ′i,t)
(Step 5): Y i,t+1 = Mutation (U ′′i,t)
(Step 2): Fitness Function (Y i,t+1);
(Step 6): if
#Iterations%MigrationGap == 0 then

Select the best chromosome from Y i,t+1
Send the best chromosome to Pi+1
Receive the best chromosome from Pi-1

t = t+ 1;

return Y i,t+1

IV. EVALUATIONS

This section presents the results of experiments that have
been fulfilled to evaluate the impact of the proposed MPGA
on the use case. The evaluations have been done based on two
different optimization scenarios including single objective and
multi-objective optimization. It is necessary to mention that
the single objective optimization has been solved with simple
GA, while we leveraged MPGA to solve the multi-objective
optimization.

A. Implementation Details

MPGA is implemented in C++ and MPI library has been
utilized for parallelization. Ring topology is used for connec-
tions between processors for running MPGA. For the imple-
mentations, an Intel Core i7-4770 CPU 3.40 GHz with 16.0
GB RAM running on 64-bit Windows 10 has been used. Seven
cores have been leveraged in the parallel implementation. The
specification of MPGA parameters is shown in Table I.

B. Experimental Results Convergence

One of the main limitations of evolutionary algorithms is
decreasing the convergence speed by increasing the number
of iterations leading to make non-convergent results in low
iterations for difficult problems. Fig. 6 and Fig. 7 represent
the convergence of fitness functions for both single and multi-
objective optimization, respectively. It can be easily observed
from the convergence figures that both strategies are highly

TABLE I
MPGA ALGORITHM PARAMETERS.

Parameter Value
N: Initial Population Size (Each Processor) 100

Populations 15
Maximum # Iterations 750

Crossover Rate {0.1, 0.5, 0.9}
per each 5 populations

Mutation One-Point Mutation
Migration Rate 3
Migration Gap 25
Mutation Rate 1 - Crossover Rate

TABLE II
EXPERIMENTAL RESULTS COMPARED TO [11]

Exploration Approach End-to-end finishing time # Processing units
Our Single Objective

Equation(1) 250 7
(Solved by simple GA)

Our Multi-Objective Solution 1©: 210 7
Equation(2) Solution 2©: 250 8

(Solved by MPGA) Solution 3©: 160 9
Single Objective [11] 210 9
Multi-Objective [11] 180 11

convergent toward the improved results by contentious reduc-
tion in fitness functions as the system cost (see Equation (1)
and Equation (2)).
a) Single Objective Optimization. Fig. 8 illustrates the
variation trend of total number of utilized processing units
over the number of iterations. As mentioned before, the aim
of single objective optimization is to decrease the number
of processing units used in jobs scheduling. Fig. 8 shows
considerable improvement in finding scheduling with less
required processing units. According the results of Table II, we
need 22 processing units for scheduling in the first iteration,
while by proceeding the exploration algorithm, we found a
solution with only seven required processing units. Although
there exist some breaks in continuous improvement, the overall
trend moves toward improvement.
b) Multi-Objective Optimization. As mentioned before, the
total number of processing units and end-to-end finishing time
(represented as Run− time in (2)) for all the jobs are the two
main objectives of MPGA. Fig. 9 and Fig. 10 illustrate the
convergence figures of required processing units for scheduling
and end-to-end finishing time for all the scheduled jobs,
respectively. We can conclude from the figures that both the
objectives are approaching toward optimized results. Although
there are some failures or stops in achieving better results
in each iteration, the overall Progression of MPGA always
approaches toward superior outcomes (Fig. 11).

Table II shows three different solutions on the Pareto
frontier of the last Population. We have a variety of options
based on the user needs. Solution 1© is an scheduling with
minimized number of processing units (7 processing units)
while takes more time, 210tu, for running. On the other hand,

Fig. 6. Convergence diagram of the fitness function for the single objective
optimization ((1)).

Fig. 7. MPGA convergence diagram of the fitness function for eight different
populations ((2)).

Solution 3© provide the minimum elapsed end-to-end finishing
time (160tu), while needs 9 processing units for running.

C. Comparison between MPGA and simple GA

For evaluating the impact of multi-population optimization
on the allocation and scheduling problem, the results of
single objective optimization has been achieved by leveraging
single population GA (simple GA). On the other hand, the
results of multi-objective optimization has been achieved by
using MPGA. We compared MPGA and simple GA schemes
in terms of exploration time and quality of results in the
following sections.
a) Exploration Time and Speedup. Fig. 8 and Fig. 9 repre-
sent the convergence of processing units for single population
GA and MPGA, respectively. MPGA achieve the best result
after 400 iterations, while single population GA needs 750

Fig. 8. Convergence diagram of the variations # processing units in single
objective optimization solved by simple GA.

Fig. 9. Convergence diagram of # processing units in multi-objective
optimization by using MPGA approach.

iterations for finding the best solution. Obviously converging
to the best result needs in less number of iterations by using
MPGA which is the best proof to show the benefits of applying
the MPGA, especially when the design space is large.
b) Quality of Results. According to the results of Table II,
MPGA found a solution with 7 required processing units and
210tu for the end-to-end finishing time, while single popula-
tion GA found a solution with the same required processing
units but takes 250tu for the end-to-end finishing time. MPGA
provides more quality of results compared to single population
GA even when single population GA tries to optimize only one

Fig. 10. Convergence diagram of end-to-end run-time in multi-objective
optimization by using MPGA approach.

Fig. 11. Improvement proceeding of exploration objectives including the
number of processing units and end-to-end use case run-time.

objective.

D. Comparison Between MPGA and Morady et al. [11]

We compare the proposed MPGA solution with a similar
evolutionary approach [11]. However, we customize the fitness
functions for the studied use case. Table II represents the
evaluation results after applying [11] on the industrial use
case. As seen in Table II, our method in single objective
scenario found a scheduling with 7 required processing unit,
while [11] proposed a solution with 9 required processing
units. In addition, in multi-objective scenario, [11] needs 180tu
to finishe all the jobs, while compared to Solution 3©, our
proposed method needs 160tu. Therefore we can conclude our
customized MPGA overcomes other similar EC methods.

E. Allocation and Scheduling Results

We have considered here the use case described in section
II, and illustrated entirely by Fig. 1. After applying MPGA to
the use case tasks, the near-optimal scheduling result is shown

Fig. 12. The best solution for multi-objective optimization with minimum
number of processing units (solution 1©)

in Fig. 12, a valid scheduling for all jobs and their related tasks
with minimum number of processing units (Solution 1©).

V. RELATED WORK

Here, we first explore more traditional list scheduling
heuristics that have considered communication costs.

The basic idea is to make an ordered list of nodes by
assigning them orders, and then to repeatedly execute the
following two steps until a valid schedule is obtained: 1©
Select from the list the node with the highest order for

scheduling. 2© Select a processor to accommodate this node.
In realistic cases, scheduling needs to exploit parallelism by
identifying the task graph structure and take into consideration
task granularity, arbitrary computation, and communication
costs.

In [10], the modified critical path algorithm (MCP) is
proposed, based on the latest possible start time of a node.
A node’s latest possible start time is determined via the as-
late-as-possible (ALAP) binding by traversing the task graph
upward from the exit nodes to the entry nodes while pulling
the node’s start times downwards as much as possible. The
latest possible start time of the node itself is followed by
a decreasing order of the latest possible start times of its
successor nodes. Furthermore, in [10], the dominant sequence
clustering algorithm (DSC) is presented. It is based on the
dominant sequence, which is essentially the critical path of
the partially scheduled task. CP (the critical path of task
graph) node is a ready node. If so, DSC schedules it to a
processor allowing the minimum start time. Such a minimum
start time may be achieved by rescheduling some of the node’s
predecessors to the same processor. If the highest CP node
is not a ready node, DSC does not select it for scheduling.
Instead, it chooses the highest node which lies on a path
reaching the CP for scheduling. Moreover, also in [10], the
mobility directed algorithm (MD) is presented. MD selects a
node at each step based on relative mobility which is defined
as the difference between a node’s earliest start time and latest
start time. Similar to the ALAP binding, the earliest possible
start time is assigned to each node via the as-soon-as-possible
(ASAP) binding. This is performed by traversing the task
graph downward from the entry nodes to the exit nodes while
pulling the nodes upward as much as possible. Moreover,
relative mobility is obtained by dividing the mobility with the
nodes computation cost. Basically, a node with zero mobility
is a node on the CP. At each step, MD schedules the node
with the smallest mobility to the first processor having a large
enough time to accommodate the node without considering the
minimization of the nodes start time. After a node has been
scheduled, the relative mobility values of the remaining nodes
are updated.

In [11], a MPGA is presented which outperforms determin-
istic and non-deterministic methods described in [12], [13].
In [14], a new encoding mechanism with a multi-functional
chromosome is presented, using a priority representation that
is called priority- based multi-chromosome (PMC). PMC
can efficiently represent a task schedule and assign tasks to
processors. It is another meta-heuristic method that uses a GA
to achieve near-optimal scheduling of tasks.

Research on static mapping methods includes the work of
Lei et al., who proposed a genetic mapping algorithm to
optimize application execution time [15]. In their work, graphs
represent applications and the target architecture is a NoC. Wu,
et al. also investigated genetic mapping algorithms [16]. By
combining dynamic voltage scaling techniques with mapping,
they achieved 51% savings in energy consumption. Murali et
al. explored mappings for more than one application in NoC

design, using the tabu search (TS) algorithm [17]. Manolache,
et al. investigated task mapping in NoCs, trying to guarantee
packet latency [18]. For this purpose, both the task-mapping
algorithm (TS) and the routing algorithm are defined at design
time. Hu et al. presented a branch-and-bound algorithm to
map a set of IP cores (IPs) onto a NoC with bandwidth
reservation [19]. Their results show energy savings of 51.7%
in the communication architecture. In [20] presented a task
scheduling scheme on heterogeneous computing systems using
a multiple priority queues genetic algorithm (MPQGA). Their
experimental results for large-sized problems for a large set
of randomly generated graphs as well as graphs of real-world
problems with various characteristics showed that the pro-
posed MPQGA algorithm outperformed two non-evolutionary
heuristics and a random search method.

VI. CONCLUSIONS AND FUTURE WORK

Leveraging a distributed environment for task scheduling
can enhance reliably and provide a specification compliant
processing scheme. The inherent difficulties in distributing
application jobs and scheduling them among processing units
may lead applications to expose low performance, or the
system may require extra (unnecessary) resource costs. Here,
a parallel Multi-Population Genetic Algorithm is developed to
overcome complexity barriers, towards optimizing both opera-
tion time and resource numbers, while preserving application
requirements. For the evaluations, a synthetic use case has
been studied, grouping many aspects of actual industrial sys-
tems. The final results offer a better resource efficiency (requir-
ing less number of processing unit) while guaranteeing real-
time execution. In addition, MPGA provides better efficiency
compared to other cutting-edge evolutionary approaches. We
expect more complex problems to appear when we need to
deal with duplication of tasks and synchronization activities,
related to reliability and fault tolerance aspects, in future
research actions.

REFERENCES

[1] Freund, R. F. Optimal selection theory for superconcurrency. Proc.
Supercomputing 89. IEEE Computer Society, Reno, NV, 1989, pp.
699703.

[2] Adam TL, Chandy KM, Dicksoni JR. A comparison of list sched-
ules for parallel processing systems. Communications of the ACM
1974;17(12):68590.

[3] Wu MY, Gajski DD. Hypertool: a programming aid for message-
passing systems. IEEE Transactions on Parallel and Distributed Systems
1990;1(3):33043.

[4] Hou ESH, Ansari N, Hong R. A genetic algorithm for multiprocessor
scheduling. IEEE Transactions on Parallel and Distributed Systems
1994;5(2):11320.

[5] Hwang RK, Gen M. Multiprocessor scheduling using genetic algorithm
with priority-based coding. Proceedings of IEEE conference on elec-
tronics, information and systems; 2004.

[6] Wu AS, Yu H, Jin S, Lin K-C, Schiavone G. An incremental genetic
algorithm approach to multiprocessor scheduling. IEEE Transactions on
Parallel and Distributed Systems 2004;15(9):82434.

[7] Majd, Amin, et al. ”NOMeS: Near-optimal meta-heuristic scheduling for
MPSoCs.” Computer Architecture and Digital Systems (CADS), 2017
19th International Symposium on. IEEE, 2017.

[8] Majd, Amin, Golnaz Sahebi, Masoud Daneshtalab, Juha Plosila, Shahriar
Lotfi, and Hannu Tenhunen. ”Parallel imperialist competitive algo-
rithms.” Concurrency and Computation: Practice and Experience 30, no.
7 (2018): e4393.

[9] Y. Chen, Y. Zhong, Automatic Path-oriented Test Data Generation Using
a Multi-population Genetic, Proc. Fourth International Conference on
Natural Computation, pp. 566 570, Oct 2008.

[10] Adam TL, Chandy KM, Dicksoni JR. A comparison of list sched-
ules for parallel processing systems. Communications of the ACM
1974;17(12):68590.

[11] R. Morady and D. Dal, A Multi-Population Based Parallel Genetic Al-
gorithm for Multiprocessor Task Scheduling with Communication Costs,
2016 IEEE Symposium on Computers and Communication (ISCC).

[12] Wu MY, Gajski DD. Hypertool: a programming aid for message-
passing systems. IEEE Transactions on Parallel and Distributed Systems
1990;1(3):33043.

[13] Hou ESH, Ansari N, Hong R. A genetic algorithm for multiprocessor
scheduling. IEEE Transactions on Parallel and Distributed Systems
1994;5(2):11320.

[14] R. Hwang, M. Gen and H. Katayama, A comparison of multiprocessor
task scheduling algorithms with communication costs Computers &
Operations Research, Vol. 35, pp. 976 993, ELSEVIER, 2008.

[15] T. Lei and S. Kumar, A Two-Step Genetic Algorithm for Mapping Task
Graphs to a Network on Chip Architecture, Proc. Euromicro Symp.
Digital System Design (DSD 03), IEEE Press, 2003, pp. 180-187.

[16] D. Wu, B. Al-Hashimi, and P. Eles, Scheduling and Mapping of
Conditional Task Graphs for the Synthesis of Low Power Embedded
Systems, Proc. Design, Automation and Test in Europe (DATE 03),
IEEE CS Press, 2003, pp. 90-95.

[17] S. Murali and G. De Micheli, Bandwidth-Constrained Mapping of Cores
onto NoC Architectures, Proc. Design, Automation and Test in Europe
(DATE 04), IEEE CS Press, 2004, pp. 896-901.

[18] S. Manolache, P. Eles, and Z. Peng, Fault and Energy-Aware Communi-
cation Mapping with Guaranteed Latency for Applications Implemented
on NoC, Proc. 42nd Annual Design Automation Conf. (DAC 05), ACM
Press, 2005, pp. 266-269.

[19] J. Hu and R. Marculescu, Energy- and Performance- Aware Mapping
for Regular NoC Architectures, IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 4, 2005, pp. 551-562.

[20] Y. Xu, K. Li, J. Hu and K. li, A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues,
Information Sciences, Vol.270, pp. 255-287,Elsevier,2014.

