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ABSTRACT 

We consider the classical geometric problem of determining 
a shortest path through a weighted domain. We present 
approximation algorithms that  compute e-short paths, i.e., 
paths whose costs are within a factor of 1 + e of the shortest 
path costs, for an arbitrary constant e > O, for the following 
geometric configurations: 

S P P S  P r o b l e m :  We are given a polyhedron 79 consisting 
of n convex faces 1 and each face has a positive non-zero real 
valued weight. The shortest path on polyhedral surface prob- 
lem (SPPS) is to compute a path of least cost that  remains 
on the surface of 79 between any two vertices, where the cost 
of the path is defined to be the weighted sum of Euclidean 
lengths of the sub-paths within each face. Our algorithm 
runs in O(~ lo 1, 1 g ; t ~  + logn)) time for 0 < e < 1. The run 

time improves to O(n log n) for e >_ 1 and to O(~ log ~ log n) 
when all weights are equal. 

W R P - 3 D  P r o b l e m :  We are given a subdivision of N3 
consisting of n convex regions. Each face has associated 
with it a positive non-zero real valued weight. The shortest 
path problem in three dimensions (SP3D) is to compute a 
path of least cost between any two vertices, where the cost 
of the path is defined to be the weighted sum of Euclidean 
lengths of the sub-paths within each region. We present the 
first polynomial time approximation scheme. Our algorithm 

O n 1 1 runs in ( ~  log ; ( ~  +log n)) time. The run time improves 

to O(;~-log ~logn))  when all weights are equal. This can 
be used to solve the shortest path problem amidst obstacles 
in 3-dimensional Euclidean space (ESP-3D). 
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1. INTRODUCTION 

1.1 Motivation 
Shortest path problems are among the fundamental  prob- 
lems studied in computational geometry and other areas in- 
cluding graph algorithms, geographical information systems 
(GIS) and robotics. Existing algorithms for most of the 
interesting shortest path problems are either very complex 
and/or  have very large time and space complexities. Hence 
they are unappealing to practitioners and pose a challenge 
to theoreticians. This coupled with the fact that  the ge- 
ographic/spatial models are approximations of reality any- 
way and high-quality paths are favored over optimal paths 
that  are "hard" to compute, approximation algorithms are 
suitable and necessary. 

1.2 Related Work 
Shortest path problems in computational geometry can be 
categorized by various factors which include the dimension- 
ality of space, the type and number of objects or obstacles 
(e.g., polygonal obstacles, convex or non-convex polyhedra), 
and the distance measure used (e.g., Euclidean, number of 
links, or weighted distances). Several research articles, in- 
cluding surveys, have been written presenting the state-of- 
the-art in this active field. Here we discuss those contribu- 
tions which relate more directly to our work; these are in 
particular stated in 2 and 3-dimensional weighted scenarios. 

In two dimensions several variations of shortest path prob- 
lems have been studied over the last two decades. This 
includes computing Euclidean shortest paths and answer- 
ing shortest path queries between two points inside a simple 
polygon and amidst polygonal obstacles. Of particular in- 
terest is the weighted region problem (abbreviated as SPPS 
here) introduced by Mitchell and Papadrimitriou [21]; it is a 
natural  generalization of the shortest path problem i n polyg- 
onal domains. In their version [21] of the SPPS problem 
a planar triangulated subdivision is given consisting of n 
faces, where each face has a positive non-zero weight. Using 
an algorithm based on the "continuous Dijkstra's method" 
they [21] provide an approximation algorithm to compute 
a (weighted) e-short path; it runs in O(n s log(nNW/w~)) 
time using O(n 4) space, where N is the largest integer coor- 
dinate of any vertex of the triangulation and W (w) is the 
maximum (minimum) weight of any face of the triangula- 
tion. 
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Lanthier et al. [17] have described several algorithms for 
the SPPS problem; the cost of the approximation is no 
more than the shortest path  cost plus an (additive) factor of 
WILongestEdge[, where LongestEdge is the longest edge, 
W is the largest weight among all faces. As their experi- 
mental analysis shows these algorithms are also of practical 
value. They [19] also developed approximation algorithms 
for anisotropic shortest paths problems. Aleksandrov et al. 
[2] propose e-approximation algorithms to solve the SPPS 
problem in O ( ( ~  + ~log~)~ log ~) time. 

Given a set of pairwise disjoint polyhedra in ~3 and two 
points s and t, the problem of computing a shortest path  
between s and t tha t  avoids the interiors of polyhedra is 
NP - hard [5]. The shortest pa th  problem amidst  (dis- 
joint) convex polyhedra can be solved in time exponential 
in the number of polyhedral  objects as was shown by Sharir 
[23]. The NP-hardness and the large t ime complexities of 
3-d shortest paths algorithms even for special problem in- 
stances have motivated the search for approximate solutions 
to shortest path  problems. 

Papadimitr iou [22] was the first to s tudy fully polynomial 
t ime approximation algorithms for the Euclidean shortest 
path problem in three dimensions (termed as ESP3D), where 
the interiors of the obstacles have infinite weight and the 
rest of the space has a uniform finite weight. Choi et al. 
[8; 9] present a refinement of the scheme proposed by [22] 
which provide an e-approximation for ESP3D; their algo- 
r i thm runs in O((nSM log M + (nM)2).#(W)) time, where 
W -- O(log(~) + L), M ---- O(nL/e) and each vertex of 
an obstacle is specified by an L-bit  integer. Both of these 
algorithms divide the edges of the polyhedra into intervals 
by introducing Steiner points based on a geometric progres- 
sion which depends on e and the location of the source ver- 
tex, and then build a graph on these Steiner points. The 
ESP3D problem is solved by computing a shortest path  in 
the graph using Dijkstra 's  algorithm [12]. Clarkson [7] pro- 
vides a solution for the ESP3D problem. His algorithm pro- 
duces an e-short path  and runs in O(n2A(n) log(n/e)/(e 4) + 
n 2 log np log(n log p)) t ime, where p is the ratio of the longest 
obstacle edge to the distance between the source and the 

target  vertex, )~(n) ---- ~(n) °(~('0)°(I), (~(n) is the inverse 
Ackermann's  function. 

Recently, there have been several results on approximation 
algorithms for computing Euclidean shortest paths  on con- 
vex and nonconvex polyhedral  surfaces. For example, Varada- 
ra jan and Agarwal [1] provide an algorithm that  computes 
a path  on a, possibly non-convex, polyhedron that  is at 
most 7(1 + e) times the shortest pa th  length; it runs in 
O(n 5/3 log 5/3 n) time. They also present a slightly faster 
algorithm that  returns a pa th  which is at most 15(1 + e) 
times the shortest path  length. Algori thms of [17; 2] apply 
for Euclidean shortest pa th  problems on polyhedral  surfaces 
as well. We note that  the Chen and Han's  algorithm [6] 
can compute an exact Euclidean shortest pa th  between two 
points on a polyhedral surface in O(n 2) time, and recently 
Kapoor [15] claimed a faster algorithm. 

1.3 Summary of our contributions 
Our results improve upon previous results in a variety of 
ways: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

SPPS problem: Considering the real-RAM model, we 
improve upon the result of Mitchell and Papadimitr iou 
[21], by a factor of about n 7 in the problem size n. 
More specifically, our algorithm runs in O( ~-~ log 7 ( ~ + i  1 

log n)) time, whereas Mitchell and Papadimit r iou 's  al- 
gorithm runs in O(n s log(nNW/we)) time. Although 
the est imates include some geometric parameters,  our 
result improves on that  of [21] if 1/e 1'5 is less than 
nZ/log n, which holds for most realistic problem in- 
stances. Although the improvement in the t ime com- 
plexity over [2] by a factor of ~ may not look substan- 
tial, note that  the margin for improvement is small, 
the constants arising out of geometric parameters  are 
substantial ly bet ter  and the techniques developed in 
the process are novel and, as we show, are helpful in 
solving the 3-dimensional problem SP3D, which none 
of the previous techniques could. 

8. 

Unweighted SPPS problem: We improve upon the 
results of Varadarajan and Agarwal [1] in the worst 
case t ime complexity as well as in terms of the ap- 
proximation factors. They provide 7(1 + e) and 15(1 + 
e) approximations whereas ours is a true, i.e., (1 + 
e)-approximation.  For e > 1 our algorithm runs in 
O(n log n) time, whereas theirs takes O(n 5/3 log 5/3 n) 
time. 

SP3D Problem: We provide the first polynomial t ime 
e-approximation scheme. 

Unweighted SP3D Problem: For the unweighted ver- 
sion, namely the ESP3D problem, our worst case t ime 
complexities are bet ter  than those of [22; 8; 9] by at 
least a factor of n. Moreover, similar to the SPPS 
problem, our algorithm is simple and works for any 
pair of source and target  vertex. 

Geometric parameters: The constants tha t  are hid- 
den by the big-O notation may play an important  role. 
Our analysis (for SPPS) reveals fairly precisely the 
constants of the geometric portion of our algorithm 
(see e.g., Lemma 2.3). These constants depend on the 
geometric constellation of the given problem instance. 
The constants in previous approaches depend on ra- 
tios of maximum weight to minimum weight, maxi- 
mum length v/s  minimum length of edges, minimum 
angle of a face, etc. All our constants are averages 
over all faces and the dependence on the weights is 
square-root of the ratio of the maximum weight to the 
minimum weight. This in itself is significant, although 
it does not appear  in the asymptot ic  bound. 

Simplicity: Our algorithms are conceptually simple 
(in particular,  compared to [21]), use few and stan- 
dard geometric primitives and employ an readily im- 
plemented modification of Dijkstra 's  algorithm. 

Practicality potential: Variants of the algorithm pro- 
posed here (for the SPPS),  where the approximation 
factor is an additive factor, have been implemented 
and their practicali ty has been demonstra ted (see [17]). 

Source independence: Most of the previous approaches 
including [22; 21; 1], build a graph over the surface, by 
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using the knowledge of the location of the source ver- 
tex. This requires rebuilding of the graph if the loca- 
tion of the source vertex changes. Our approach does 
not require the knowledge of the location of the source 
or target vertex for building the graph, and hence one 
graph serves for any pair of source and target vertex. 

To solve these problems, we employ the traditional technique 
of partitioning a continuous geometric search space into dis- 
crete combinatorial search space by designing an appropri- 
ate mesh. Simplifying, the general strategy taken here is to 
place Steiner points on edges and in the interior of faces (in 
3-D), interconnect the Steiner points within each face and 
then show that  an e-short path exists approximating any 
(true) shortest path. 

The Steiner point placement is novel (e.g., see the above dis- 
cussion on source independence). One of the problems that  
arise is to place Steiner points near vertices and near edges 
in 3-D. As, near vertices (edges in 3-D), the distance be- 
tween adjacent path vertices can become arbitrarily small, 
an infinite number of Steiner points would be required for 
the approximation (see also [16; 10]). Here, we address this 
problem by constructing "spheres" around the vertices and 
"spindles" around edges of the faces; ensuring that Steiner 
points are placed outside these regions. (Finding the right 
radius is important  and non-trivial.) This allows us to put a 
lower bound on the length of the smallest possible edge that  
passes between two adjacent Steiner points and hence we 
are able to add a finite number of Steiner points. Now the 
challenge is to still show that  an e-approximation scheme is 
achievable. 

Another issue that  needs attention is that the constructed 
graph has considerable large size and it would be inappropri- 
ate to search it and hoping for the desired time complexities. 
We reduce the size of the search space during an execution 
of Dijkstra's algorithm by deriving geometric properties of 
Snell's law of refraction for a discrete domain. Snell's law is 
typically stated for continuous domains. We also describe a 
variant of Dijkstra's algorithm in which the execution is re- 
stricted to a sparse set of potential edges, given that the pre- 
ceding edge on a path is known. Employing both together 
and using geometric spanners we are able to construct a path 
of desired accuracy within the stated complexity bounds. 

2.  S P P S  P R O B L E M  

2 .1  M o d e l  
Let 7 9 be a polyhedral surface, whose faces are convex poly- 
gons. Let m be the number of edges and n be the number 
of faces of 79. Non-zero positive weights wl , .  • •, w,~ are as- 
sociated with faces f l , .  • •, f,~ representing costs of traveling 
along them. The cost of traveling along an edge of 79, or oth- 
erwise the weight associated with an edge, is the minimum 
of the weights of the two neighboring faces. The cost of a 
path II on 7 9 is defined by IIIIH = )--]~=1 witH'l, where [Hi[ 
denotes the Euclidean length of the intersection Hi : II N fi. 
(An edge is assumed to be part of the face from which it in- 
herits its weight.) 

Given two distinct points u and v on 7 9, a minimum cost 
path II(u,v)  joining u and v is called geodesic path. In 

this setting, it is well known that  any geodesic path is sim- 
ple (non self-intersecting) and consists of a sequence of seg- 
ments, whose endpoints are on the edges of 79. More pre- 
cisely, each segment is of one of the following two types: 1) 
face-crossing: a segment which crosses a face joining two 
points on its boundary that  lie on different edges 2) edge- 
using: a segment which (partially) follows an edge. 

We define linear paths to be paths consisting of face-crossing 
and edge-using segments exclusively. A linear path H(u, v) 
is represented as a sequence of its segments { s l , . . . ,  Sl+l} 
or /and as sequence of points a 0 , . . . , a l + l  lying on adja- 
cent edges of 7 9, that  are endpoints of these segments, i.e., 
si = (a i - l , a i ) ,  u = ao, and v = al+l. Points ai that are 
not vertices of 79 axe called bending points of the path. The 
local behavior of a linear path around a bending point is 
described by two oriented angles, which we call in-angle and 
out-angle at the considered bending point. 

Formally, let a be a bending point on a linear path II lying 
on an edge e. Let s' be the segment preceding a on II. Then 
we define the in-angle ~ = ~(a, H) to be the acute clockwise 
angle between the normal to e at a and s'. Similarly, the out- 
angle ¢ is the acute clockwise angle between the normal to e 
and the segment s" succeeding a on II. Note that in-angles 
and out-angles are always in [-7r/2, 7r/2]. If the absolute 
value of an in-angle at some bending point a is 7r/2 then the 
segment preceding a is an edge-using segment. Similarly, if 
the absolute value of an out-angle is 7r/2 then the segment 
after a is an edge-using segment. In the case when H is a 
geodesic path, angles ~ and ¢ are related as follows: 

LEMMA 2.1. (Shell's law) Let a be a bending point of  a 
geodesic path H that lies inside an edge e of 7 9. Let the seg- 
ment  preceding a in H be s' and the one after a be s". Let the 
costs of traveling along s ~ and s" be w ~ and w" respectively. 
Then 

w" sin ¢ = w' sin to, (1) 

where qa and ¢ are the in-angle and out-angle at a. 

In the next lemma we establish an estimate on the dif- 
ference between out-angles of two given geodesic paths in 
terms of the difference between their in-angles. The result 
is somewhat counter intuitive as one may have expected that 
Iqax - ~1 < c implies 1¢1 - ¢1 < e * constant,  for all angle 
pairs satisfying Snell's law and all e, where the constant only 
depends on face weights 2. 

LEMMA 2.2. Let qo, ¢ and qal, ¢1 be two pairs of angles 
each satisfying (1). Assume that w' > w".  Then 

7r w t 

1¢1 - ¢1 _< 2-~7~(~, ~1)1~1 - ~1, (2) 

where ~(~,  ~1) = cos ~-~+ / cos *~$*.  

Proof :  Since each pair qa, ¢ and ~Ol, ¢1 satisfies (1) we have 

w" (sin ¢1 - sin ¢) = w' (sin qol - sin to), 

2Math and Mitchell's [20] algorithm is based on this, and 
their analysis as presented has gaps, since the angle between 
the cones after multiple refraction as claimed by them is 
incorrect 
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which is 

w" sin ~2-~--~ cos ¢ 1 + ¢ ~  -- w ' 's in ([91- ~ cos ~ - - ~ . 2  (3) 

Using the above relat ion and  the inequali t ies 

2 0  < s in0 < 0, 
7r 

tha t  hold for any angle 0 E [0, 7r/2] we obta in  the claim of 
the l emma 

I¢~ - ¢1 < 7rl sin ¢ '  2------~¢ I 

7 r W  t C O S  T I + T  _ ~ ~ 
w"cos  Cx-T-~ I sin I 

2 

71"W t 

< 2w" ~(~o, qo~)l~l - qa I. 

2.2 Di scre t i za t ion  

[] 

DEFINITION 2.1. Given a point x E 79 the distance d(x) 
of x to the set of edges of 79 is defined as the Euclidean 
distance d(x) on 7 9 from x to E \ E(x) ,  where E is the set 
of the edges of 79 and E(x )  are the edges incident to x. 

For each vertex v of P we define a weighted radius 

r ( v ) -  Wmin(v) d(v), (4) 
5Wmax (V) 

where Wm~(v) and  Wrnin(V) are the m a x i m u m  and  m i n i m u m  
weights of the faces incident  to v. By using the weighted ra- 
dius r(v) for each face incident  to v we define a "small" 
isosceles t r iangle with two sides of length cr(v) incident  to 
v. The small tr iangles a round  v form a star shaped polygon 
S(v) which we call a vertex-vicinity of v. 

• Next, we describe the  p lacement  of Steiner points  on edges, 
e, of 79. Assume tha t  e = (v' ,  v")  and  let d(e) = sup~Ee d(x). 
Let M be a point  on e, so tha t  d(M) = d(e). Such a point  
M can be easily computed  in t ime proport ional  to the size 
of the two faces incident  to e. The Steiner points  on e are 
defined as follows. The  point  M is a Steiner point .  On the 
edge-segment (v', M)  we define points  Pl,' • • • ,Pk,' so tha t  

lv'p'xl = er(v'),  and  Ip~-lp~l = cd(p~-l) ,  for i = 2 , . . . k ' .  
Note tha t  the first Steiner point  p~ coincides with the vertex 
of the vertex-vicini ty S(v')  tha t  lies on e. The Steiner points  

tt t! 
P l , - - - , P k "  on the  edge-segment (v", M)  are defined in an 
analogous manner .  To simplify nota t ion,  we denote Steiner 
points on e following their  order from v' to v" by p l ,  • • •, pk, 
where k = k ' + k " + l  and  M = p k , + l .  Using the above 
procedure we insert  Steiner points  on all edges of 79. In  
the next  l emma we es t imate  the number  of Steiner points  
inserted on an edge of 79 and  consequently the total  n u m b e r  
of Steiner points  on 79. We denote by E(79) the set of edges 
of 79. 

LEMMA 2.3. (a) The number of Steiner points inserted on 
an edge e = (v', v") does not exceed 3 + C(e)~ log z 2 -g , where 
the constant C(e) < 4(lel/d(e) ) log2(le]/ x / r (v ' ) r (v")  ). 
(b) The total number of the Steiner points inserted on 7 9 is 
bounded by C(79)~  log 2 2 7, where C(79) - 3 does not exceed 
the average of the constants C(e) on E(79), i.e., C(79) < 
3 + ~ ~=(~,,o,,)~(~,) c(e). 

P r o o f i  Recall tha t  we denoted d(e) = s u p ,  e~ d(x) and  let 
T(e) be the ratio d(e)/le I. Note tha t  T(e) is a positive num-  
ber smaller t han  1/2 and  in some sense measures the "thick- 
ness" of the  two faces a round e. Let M '  E e be the closest 
to v'  point  on e, such tha t  d(M')  = d(e). According to our 
const ruct ion the point  M '  is between v' and  M or coincides 
with M. Let p ~ , . . . , p ~  be the Steiner points  on the sub- 

segment  (v', M ' )  and  P k ~ + l , ' "  ,Pk' are those in (M' ,  M).  

Then  by the  fact tha t  d(x) / t v ' x  [ is a decreasing funct ion in 
(v', M ' )  we have 

Iv'p~l > (1 + ~-(e))lv'p~-xl, 
and  therefore 

I I Ivp,  I > ~ r ( v ' ) ( l + E T ( e ) )  i-1 for i = 1 , . . . , k ~  + 1. 

Since Iv'p'ki+x I <_ Iv'M[ we have 

k'x < logo+¢~(,))(lv' MI/~r(v ' )  ). (5) 

By the definit ion the  points  P k [ + l , ' "  ,Pk,' are equidis tant ly  

placed in (M' ,  M)  at a dis tance ¢d(e) and  therefore 

k' - k~ - 1 < IM' MI 
- ed(e)"  

S um m ing  these two inequali t ies we obta in  

IM'MI 
k' - 1 < tog(l+~(~))(lv'Ml/¢r(v'))  + ed(e-------~" (6) 

To es t imate  the n u m b e r  k = k' + k" + 1 of Steiner points  
inserted in e we sum (6) with the  analogous inequal i ty  for 
k", use tha t  IM'M"I  < let and  41v'M'l lv"M"l  < lel 2 and  
obta in  

k - 3  
< , , [M'M I l°g(l+~(e))(Iv MI/er (v  )) + ~d(e) 

It It I M H M [  +lOg(l+,~(o)(Iv MI/~r(v ))+ o~(o) 
Iv 'MJ 'MI  IM'M'q 

-< l °go+~(~)  ~2~(v,)~(v,,) + ~d(~) 
I< 1 21og(l+~r(e) ) 2 ~ ~  + ~ e ) "  

Then  the  es t imate  s ta ted in the  l emma is derived from this 
inequal i ty  using propert ies of the logari thm funct ion and  the  
fact tha t  ¢T(e) ~ 1/2. Namely 

lel 1 
k - 3 < 2 logo+~(~)) 2¢~/r(v ')r(v")  + cT(e----~ 

1 25 lel ~ ~ ~'2 < e-~(e)(1 + In < C(e) log z - 2~/r(v')r(v")" -- 
(7) 

where C(e) < 4(lel/d(e))logz(lel/x/r(v')r(v")). The esti- 
mate  on the total  n u m b e r  of Steiner points  on P is obta ined  
by summing  (7) for all edges of 79. [ ]  
The  set of Steiner points  defines a set of Steiner intervals. 
The essential proper ty  of the  Steiner point  set on ~ is tha t  
any face-crossing segment  s having an  endpoint  in a Steiner 
interval (pi,pi+l), 1 < i < k - 1, satisfies the inequali ty 

IP~Pi+I I < ¢lsl " (8) 

The above proper ty  provides an upper  bound  on the max-  
i m u m  angle 0 at which a Steiner interval  (p i ,p i+l )  is seen 
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from a point on the boundary of the quadrilateral  formed 
by the two triangles neighboring that  interval. 

LEMMA 2.4. Let (pi ,Pi+l)  be a Steiner interval on an 
edge e and x be a point on the boundary of the union of 
the two faces neighboring e. Then 

7i" 
Zp~xp~+l <_ ~e. (9) 

Next we show tha t  the density of the Steiner points is suffi- 
cient to approximate face-crossing segments with segments 
joining pairs of Steiner points with e accuracy. More pre- 
cisely, for a face-crossing segment (a, b) tha t  does not inter- 
sect vertex vicinities we show that:  

LEMMA 2.5. Let (a, b) be a face-crossing segment that does 
not belong to a vertex-vicinity. 
a) / f  (a, b) joins a pair of Steiner intervals say (pi,pi+l) and 
(qj, qj+l)  then 

m~x [min(Ip~q~ I, IP,qJ+~ I), min(Ip~+~q~ h Ip~+~q~+l I)] 
_< (1 +e) lab l .  (10) 

b)  If  (a,b) joins a segment (v ,p l )  between a vertex v and a 
Steiner point pl with a Steiner interval (qj, qj+l ) then 

max[(lplqj[,[plqj+l[) ] <_ (l +e ) lab l+er (v )  (11) 

~) g (a,b) joins two segments (v,pO and (v ' ,qO,  where v 
and v' are vertices and pl,  ql are their neighbour Steiner 
points then 

Iplqll <_ labl + e(r(v) + r(v')) (12) 

2.3 Di scre te  p a t h s  
In Section 2.2 we have described a part icular  method for 
placing Steiner points on edges of 79. This suggests the 
definition of a graph G~ = (V(G~), E(Ge))  whose vertex set 
V(G~) includes all Steiner points plus the vertices of 79. The 
set of edges of E(G~) consists of all face-crossing segments 
joining pairs of Steiner points plus edge-using segments join- 
ing either a pair of neighboring Steiner points or a vertex of 
79 with its neighboring Steiner point. Now any pa th  in G~ is 
referred to as a discrete path on 7 9. Note tha t  discrete paths  
are linear as well. 

An e-short path  for a pa th  I~I on 79 is a discrete pa th  whose 
cost is at most (1 + e)lll=III. In this section we first show the 
existence of a 3e-short discrete pa th  for any linear pa th  on 79. 
Then, by using a spanner technique, we define a subgraph 
G~ of Gs tha t  has a smaller set of edges but  still contains 
7e-short discrete path  for any linear path.  The graph G~ 
will be used in the next section where we present a pruned 
Dijkstra  algorithm for approximating geodesic paths  on 79. 

Next we introduce some notions about  the structure of lin- 
ear paths  as necessary for our considerations. Consider a 
linear pa th  l=I(v0, v) joining two different vertices of 7 9. This 
pa th  crosses vertex-vicinities S(vo) and S(v) and possibly 
a number of other vertex-vicinities. The path  l=i can be 
part i t ioned into portions (I(S(vi)),  lying fully inside vertex- 
vicinities, S(vl),  and those, called between-vertex-vicinities 
II(S(vl),  S(vi+l)) ,  connecting vertex-vicinities S(vi) and 

S(vi + 1). 3 Assume now tha t  the path  l:I(v0,v) consists 
of k + 2 vertex-vicinity and k + 1 between-vertex-vicinity 
portions. 

Next, we introduce the notion of a discrete path  that  neigh- 
bouts a given linear pa th  l=I(v0, v). We describe first a dis- 
crete pa th  tha t  neighbours a between-vertex-vicinities por- 
tion. Consider a between-vertex-vicinity portion 
I 'I(S(vi), S(vi+l)) for some 0 < i < k. This port ion con- 
sists of a sequence of face-crossing and edge-using segments 
that  do not intersect vertex vicinities. Each of these seg- 
ments joins two Steiner intervals and thereafter the por- 
tion l:I ( S (vi), S (vi+ 1 )) defines a sequence of Steiner intervals. 
A discrete pa th  II(S(v~), S(vi+l)) neighbours the between- 
vertex-vicinities linear pa th  
fI(S(vi),  S(vi+l)) if it  joins a Steiner point on the bound- 
ary of the vertex-vicinity S(vi) with a Steiner point on the 
boundary of S(vi+l) and crosses the same sequence of Steiner 
intervals. Informally, when the linear pa th  crosses a Steiner 
interval its discrete neighbour snaps to one of the Steiner 
points forming tha t  interval. In general, we use the follow- 
ing definition. 

DEFINITION 2.2. A discrete path H(v0,v) is a neighbour 
of the linear path H(vo,v) given as above, if its between- 
vertex-vicinities portions neighbour corresponding between- 
vertex-vicinities portions of H and its vertex-vicinity por- 
tions are two edge paths joining between-vertex-vicinities por- 
tions through the corresponding vertex. 

Now we state and prove (see the full version [3] also for a 
formal definition of pa th  neighbour) the central theorem of 
this section. 

THEOREM 2.1. Let l=I(v0,v) be a linear path joining two 
different vertices on 79. There exists a discrete 3e-short path 
II(v0, v) that neighbours II. 

Theorem 2.1 provides a method for approximating geodesic 
paths  on 7 9. We may consider the graph G~ = (V(G~), E(G~)) 
and assign weights on its edges equal to the cost of travel- 
ing along them. Then by Theorem 2.1 the cost of a short- 
est pa th  in G~ between may two of its nodes does not ex- 
ceed (1 + 3e) t imes the cost of the geodesic pa th  on 79. 
Then Dijkstra 's  algorithm can be used for finding short- 
est paths  in G~ in t ime O(IE(G~)[ + tV(G~)I log IV(G~)I). 
Therefore, we may approximate  geodesic paths  on 79 in t ime 
O(~  l°g 17(gl log ~ + log(~ log ~))). 

1 COROLLARY 2.1. For s = g we obtain an O(n logn)  al- 
gorithm that finds a path of cost at most twice that of the 
shortest. 

A weighted shortest pa th  can have O(ft(n~)) segments. This 
does however not contradict  our t ime bounds as in such a 
case many segments will cross the same Steiner interval and 
are thus replaced by a single approximating segment. For 
the remainder we will assume tha t  e < 1. Note however tha t  
our approach so far does not use any properties of geodesic 

3Note tha t  according to our definition a vertex-vicinity por- 
tion (I(S(v))  can be empty  although the pa th  crosses S(v) 
as well it  can contain segments outside S(v)  that  lie between 
the first and the last intersection point of l=I and S(v). 
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paths on 7 ) . I t  turns out that  using the addit ional geometric 
information of geodesic paths (provided by Lemma 2.1) we 
are able to prove a useful characterization of the paths in 
G~ that  neighbour geodesic paths on 7) and thereafter direct 

1 1 l our search. This will result in an O(~  log 7 ( ~ +  og n)) t ime 
approximation algorithm. 

DEFINITION 2.3. A discrete path H(v0, v) is a discrete 
geodesic path i f  it neighbours a geodesic path joining vo and 
V. 

Theorem 2.1 directly implies the following corollary. 

COROLLARY 2.2. For any geodesic path ~I(vo, v) there ex- 
ist a discrete geodesic path II(v0,v) such that [[H[] _~ (1 + 

3~)llnll. 

Corollary 2.2 suggests that  in order to approximate geodesic 
paths on P it suffices to search in the class of discrete geodesic 
paths. So we need an efficient procedure to compute and 
search tha t  class. First  we show tha t  discrete geodesic paths  
satisfy a constraint similar to that  established for geodesic 
paths  in Lemma 2.1. More precisely given a discrete geodesic 
path  II and a segment (a, b) of II, we can prove that  there 
is a cone C(a, b) with apex b and angle depending on e and 
weights around b, that  contains the next bending point c of 
II. Note that  in the case of geodesic paths  any of its segments 
completely determines the direction of its next segment, i.e., 
the angle of the corresponding cone is zero. 

Let H(v0, v) be a discrete geodesic path.  By definition there 
is a geodesic path  neighboring H. Let a, b, and c be three 
consecutive bending points of H, where b does not neighbour 
a vertex of P.  Here a and c are Steiner points (not vertices 
of p ) .  According to Lemma 2.1, the segment (a, b) defines a 
unique direction at which a geodesic pa th  containing (a, b) 
must continue after b. Except for the case where that  direc- 
tion is along the edge containing b, a unique face-crossing 
segment (b, co) is defined so that  the in-angle ~o and the out- 
angle ¢ at b of the sub-path {a,b, co} satisfy Lemma 2.1. 
The next lemma establishes an est imate on the size of the 
angle Zcbco. 

LEMMA 2.6. Let e < 1 and a, b and c be three consecu- 
tive bending points on a discrete geodesic path l-I, where the 
Steiner point b does not neighbour a vertex of 7 ). Let co be 
a point on the geodesic direction determined by the segment 
(a, b) (on the ray starting at b and with an out-angle ¢ that 
satisfies Lemma 2.1). Then 

/ " ~ !  f -  
Zcbco <_ r~(1 + V 2--~ ) re '  (13) 

w', w " are the weights of the faces incident to b. 

Proo f :  Let us denote by al,a2, bl,b2, and cl,c2 the left 
and right Steiner points neighboring a, b and crespectively. 
By the definition H neighbors a geodesic pa th  II  and let the 
bending points of l=i sharing common Steiner intervals with 
a, b and c be 5, b and 5. Thereby we have 5 E (a l ,a2) ,  

E (bl, b2), and 5 e (Cl, c2). 
The segment (a, b) is either a face-crossing or an edge-using 
segment. We consider these two possibilities separately. 

Case 1. Let (a, b) be a face-crossing segment. 

First  we shall est imate the differences between in-angles of 
the segments (a,b) and (5, b). Let us denote these two in 
angles by ~o and 95. Recall tha t  V and 95 are clockwise angles 
between segments (a, b) and (5, b) and normals at b and b. 
We are going to show tha t  

k ° - 951 -< Ir~. ( 1 4 )  

One easily observes that  IV - 951 always equals the angle 0 
between lines containing (a, b) and (5, b) and so it is enough 
to show O < 1re. Let the intersection point between lines 
containing ~ ,  b)and (5, b) by x (if these lines do not intersect 
0 is zero and the claim is trivial). Then 

0 = Zax5 <_ Zab5 + Zbhb, 

where we have equality if the point x = (a, b) A (5, b) and 
inequality if (a, b) and (5, b) do not intersect. Now it follows 
that  0 _< 7re, since by Lemma 2.4 both /ab5  and /{~hb are 
at most ~re/2. 
The same argument implies that  

I¢~ - ~3l _< we, ( 1 5 )  

where ¢c and ¢ are the out-angles of the segments (b, c) and 
(g,, a). 
Using that  the angle Zebco is equal to I~b - *pc I triangle in- 
equality and (15) we obtain 

Zcbc0 = I¢ - Cd  _< I¢o - V;I + I¢ - V31 _< ~ + I¢ - V31. 

(16) 

Next we est imate I¢ - ¢1- Lemma 2.2 and (14) imply 

t 
"ffW ~ 

1¢ - ¢1 < 2 - ~ ( ~ ,  ~ ) ~  

and by using a simple inequality ~(~o, 95) < ~r/(Tr - 1¢ + ¢1) 
we have 

I¢ - ¢1 < ~3w'e  (17) 
2 w " ( ~  - I¢ + ¢ 1 )  

On the other hand, since ¢,  ¢ E [ - I r /2 ,  ~r/2] we have 1¢ - 
¢1 + [¢ + ¢[ -< lr and therefore 

/ 7r3 W/~ \ 

~ 7 ~  (18) 
-< ~V E ~ , ,  

We obtain the lemma in the case where (a, b) is a face- 
crossing segment by substi tut ion of (18) in (16). 

Case 2. Let (a, b) be an edge-using segment. 
In this case by Lemma 2.1 we know that  the out-angles ¢ 
and ¢ are equal. Thus 

Zcbe0 = I¢ - ¢ot = I¢ - Col. 

But as we have proved ]¢ - ¢ c ]  < ~re and the lemma follows. 
[ ]  
The result of Lemma 2.6 can be summarized in the following 
way. If II is a discrete geodesic path and (a, b) is a segment 
of II, so tha t  b does not neighbour a vertex of P then the 
cone defined using (13) contains the next segment(b, e) of YI. 
Hereafter, we call the set of edges (b, c) tha t  satisfy (13) with 
respect to (a, b) geodesic cone and denote it by GCone(a, b). 
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Note that if b neighbours or is a vertex P then the lemma 
provides no information and we assume, that  GCone(a, b) 
consists of all edges incident to b except (a, b). 

Let ao be any fixed node of G~. Based on Lemma 2.6 we 
define a class of paths C(ao) consisting of all discrete paths 
that originate from ao and satisfy Lemma 2.6. Clearly, C(ao) 
contains discrete geodesic paths originating from ao. An 
inductive description of C(ao) is as follows: 

DEFINITION 2.4. The class of paths C(ao) is defined by: 

1. Edges of G~ incident to ao belong to C(ao). 

2. A discrete path YI' = {ao,a l , . . . ,ak- l ,ak} ,  k > 1 be- 
longs to C(ao) iffII ---- { a o , a l , . . . , a k - 1 }  • C(ao) and 
(ak-1, ak) • GCone(ak-2, ak-1). 

2.4 A Pruned Dijkstra Algorithm 
We have shown that geodesic paths originating from a fixed 
node ao of G~ to all other nodes can be approximated by 
finding single source shortest paths in C(ao). To compute 
those, we employ a pruned Dijkstra algorithm whose search 
is restricted to the class C(ao). Note that  the inductive def- 
inition of C(ao) perfectly meets that  purpose. However, we 
cannot prove the claimed efficiency bound since the num- 
ber of the edges in cones Cone(a, b) still can be large. To 
obtain an efficient algorithm we define and employ a class 
of paths C*(a0) that contains an e-approximation path for 
each path in C(ao). Additionally the class C*(ao) will be 
defined so that  the pruned Dijkstra algorithm will perform 
fewer updates per step while searching it. The definition of 
C* (ao) resembles Definition 2.4, but  here the sets of edges, 
Cone*(H), that can continue a given path II • C*(ao) are 

1 
subsets of the cones from Definition 2.4 of size O(e-~) .  We 
specify sets Cone*(H) in detail after the definition. 

DEFINITION 2.5. The class C*(ao) consists of: 

1. Edges of G~ incident to ao are one edge paths in C*(ao). 

2. A discrete path H' = {ao,a l , . . . ,ak- l ,ak} ,  k > 1 be- 
longs to C* (a0) iff 

II = {ao,al , . . . ,ak-1} • C*(ao) and 

(ak-l,ak) • Cone*(H). (19) 

Next, given a path H = { a o , a l , . . .  ,ak-1, }, k > 1 in C*(ao) 
we define the set Cone*(H) = Cone*(H, ak_l). Intuitively, 
it consists of an e-spanner of some of geodesic cones 
Cone(ak-i, ak-1), i > 1. Let us introduce first the notion of 
an e-spanner of a cone of edges. A cone Cone(b) with apex 
b is a set of all edges incident to b that belong to the inter- 
section of one of the faces around b. Equivalently, Cone(b) 
is a sequence of consecutive edges around b lying in one of 
the faces that  neighbour b. The angle between the first and 
the last edge in the sequence Cone(b) is called the angle of 
Cone(b). Note that by our definition the angle of a cone can 
not exceed ~r. 

An e-spanner Cone~(b) of Cone(b) with an angle 0 • (0, lr) 
is defined as a subset of at most [20/lre] edges of Cone(b) as 
follows. The Cone(b) is partitioned into j < [20/lre] sub- 
cones Conel(b),. . . ,  Conej(b), so that  each of these cones 
contains at least one edge and their angles do not exceed 

7re/2. Such a partition is always possible as a result of 
Lemma 2.4. Then Cone~(b) is defined as the set of the 
shortest length edges sl,  • • •, sj, in the sub-cones 
Cone1 (b ) , . . . ,  Conej (b). The lemma below states an impor- 
tant  property of e-spanners. 

LEMMA 2.7. Let Cone(b) and Cone~(b) be a cone of edges 
and its e-spanner. For any edge (b,c) in Cone(b) there is 
an edge (b,c') in Cone~(b) so that 

Ibc'l <_ Ibcl <_ ]bc' I + Icc't < (1 + 2) lbc  ]. (20) 

The following cases arise for the last node and edge of the 
path H = { a o , a l , . . . , a k - 1 , } :  
Case I : The node ah-1 is a vertex of P. 
In this case the set Cone*(H, ak_l) consists of all edges in- 
cident to ak-1 except (a~-2,ak-1).  The number of edges 
in Cone*(H, ak-1) in this case is equal to the degree of the 
vertex ak-1 in P.  
Case 2: The node ak-1 neighbours a vertex of P.  
In this case the edges incident to ak-1 can be partitioned 
into two cones - one per each of the two faces incident to 
ak-1. Then the set Cone*(H, ak-1) is defined as the union 
of the e-spanners of these cones. The number of edges in 
Cone*(II, ak-1) in this case does not exceed [4/e]. 

Case 3: The node ak-1 neither neighbours nor is a vertex 
of P.  
In this case the definition of Cone*(H, ak-1) depends on the 
type of the segment (ak-2,ak-1)  and we consider the two 
possible sub-cases. 

Case 3.1: The edge (a~-2, ak - , )  is an edge-using segment. 
In this case the set Cone*(H, ak-1) depends on the 
first node ak-i ,  i > 2 backward on the path H, for 
which (ak-i,  ak-1) is a face-crossing segment (see Fig- 
ure 6). The set Cone*(H, ak-1) consists of the edge 
joining ak-1 with its neighboring Steiner point differ- 
ent of ak-2 plus e-spanners of the geodesic cones of the 
segments (ak-i,ak-1) and (ak-i+l,ak-1). Note that  
in some of the cases the corresponding geodesic cones 
are empty and so are their spanners. 

To estimate the size of the set Cone*(H, ak-1) in this 
case we use the estimates for the angles of the geodesic 
cones obtained in Lemma 2.6. Then we have estimates 
on the size of the spanners based on the size of the cone 
angles. We add these estimates, use that  e < 1 and 
obtain 

/-~, _½ 
]Cone*(H, ak_ll l<_2+Ir~(Z+V~w,,)e . 

(21) 

Here w' is the weight of the face containing (ak-i, ak-1) 
and w" is the weight of the other face incident to ak- 1. 

Case 3.2: The edge (ak-~, ak-1) is a face-crossing segment. 
In this case the set Cone*(II, ak-1) consists of the two 
edges joining ak-1 with its neighboring Steiner points 
plus the e-spanner of the geodesic cone 
GCone(ak-2,ak-1). The angle of the geodesic cone 
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was estimated in Lemma 2.6 and according to the con- 
struction of t-spanner and (13) the size of Cone*(Yl, ak-  1) 
is at most 

~/--~' 
[Cone*(II, ak-1)l _< 3 + 7rZ(1 + V 2 ~ " ) ¢ - - '  

(22) 

where w' is the weight of the face containing (ak-2, ak-1) 
and w" is the weight of the other face incident to ak-  1. 

In the next lemma we establish that  paths in the class C(ao) 
are approximated by paths in C* (ao). 

LEMMA 2.8. Let II be a discrete geodesic path starting at 
ao and consisting of k edges II = { a o , a l , . . .  ,ak}. The class 
C* (ao) contains a path I-i* of the form 
H* = { a o , a l , . . . , a 2 , . . . , a k - 1 , . . . , a k } ,  where each of the 
sub-paths H*(ai-1, a~), for i = 1 , . . . ,  k, consists either of a 
single edge (ai-1, ai) or of a single face-crossing edge (ai-1; a~) 
plus a sequence of edges joining consecutive Steiner points 
between a~ and ai along an edge of 79. The cost of the path 
l-I* satisfies 

IIn*ll __ (1 + ~e/2)llnll. (23) 

Next we present an efficient algorithm for finding shortest 
paths in the class C*(ao) from ao to all other nodes of G~. 
Actually, this is Dijkstra's single source shortest paths al- 
gorithm restricted to search in the class C*(ao) only. The 
algorithm takes as input the surface 79, the set of Steiner 
points V~ as defined in Section 2.2 and a fixed Steiner point 
ao. It outputs a tree SPT(C*(ao)) routed at ao and con- 
sisting of single source shortest paths in the class C* (a0). 
The only difference between the algorithm and the classi- 
cal Dijkstra's algorithm is that  this one does not update all 
possible continuations of the latest output shortest path, 
but  only the nodes forming paths in C*(ao) using edges 
(a,b) • Cone*(II(a),a). As the classical Dijkstra's algo- 
rithm, our modified algorithm, called PrunedDjikstra, em- 
ploys a priority queue Q. 

We may implement Q (see, [13]) so that  the amortized time 
for each update in Step 2.2 is a constant and therefore it is 
proportional to the size of the corresponding set 
Cone*(H(a), a) i fa  was extracted from the queue. According 
to the definition of the sets Cone*(H(a), a) their sizes are: 

1. ICone*(II(a),a)l = O(e-½) i fa  is a node that does not 
neighbour nor is a vertex of 79. 

2. ICone*(rl(a), a)l = O(e -~) if a neighbours a vertex of 
79. 

3. ICone*(II(a),a)[ = deg(a) if a is a vertex of 79, where 
deg(a) denotes the number of edges incident to a in 79. 

Therefore the total time for the implementation is propor- 
O n 1 tional to the }-'~ey~ IC°ne*(II(a), a)l which equals (---~- log ~). 

LEMMA 2.9. Algorithm PrunedDjikstra outputs a rooted 
spanning tree SPT(g*(ao))  of G~ and for each a • Ve, the 
cost of the shortest path from ao to a in the class C*(ao). 
The algorithm runs in O(~log  7 ( ~ + 1  ' t logn)) time. 

In summary, given a polyhedral surface 79 as defined in Sec- 
tion 2.1 and an approximation parameter ~ > 0 we discretize 
79 by adding a set of Steiner points as described in Section 
2.2. This results in an augmented vertex set V~. Then we 
consider a fixed source point ao • Vc and let Cost(a; 7 9) de- 
note the cost of the shortest path from a0 to a • V~ on 79. 
To find approximate shortest paths we simply run Algorithm 
PrunedDjikstra above and report the paths H* (ao, a) from 
the spanning tree SPT(C* (ao)) computed by the algorithm. 
According to Lemma 2.9, Lemma 2.8 and Theorem 2.1 we 
have 

IIn*(a0,a)ll = min{llnll : n • C*(ao)} 
_< (1 + ~r~/2) min{llntl : n • C(ao)} 
< (1 + 3e)(1 + ~re/2)Cost(a; 79) 

_< (1 + 15e)Cost(a; 7 ~) 

Thus we have established the following theorem: 

THEOREM 2.2. Let 7 9 be a weighted polyhedral surface and 
0 < ¢ <_ 1.The single source shortest paths on 7 9 can be ap- 
proximated with accuracy factor (1 + 15e) in 0 (  ~ log 1 1 ~(-~ + 
log n)) time. 

3.  W R P - 3 D  P R O B L E M  

3 .1  I n t r o d u c t i o n  
This section presents an approximation scheme for a given 
triangulation (tetrahedralization) 79 in 3-dimensional Eu- 
clidean space ~3 consisting of edges, faces and tetrahedra. 
The domain is discretized by placing a set of Steiner points 
on the faces and edges of the tetrahedra and inserting a 
set of segments across tetrahedra that interconnects pairs of 
Steiner points. The placement and the number of Steiner 
points depends upon the desired approximation factor e as 
well as the geometry and weights of the given configura- 
tion. Following the approach taken in solving the SPPS 
problem, to solve WRP-3D we need to address a) the place- 
ment of Steiner points, b) the discretization of SHell's law 
in 3-dimensional space, and c) the approximation quality of 
paths computed by the Pruned Dijkstra's Algorithm. Due 
to the lack of space, we can only sketch the main ideas here 
and refer the reader to the full version [3]. 

3 . 2  P r e l i m i n a r i e s  
Let 79 be a connected triangulation of space in three dimen- 
sions, with m edges, f faces (triangles) and n tetrahedra 
t l , . . .  ,t~. Positive weights Wl , . . .  ,w~ are associated with 
tetrahedra representing the costs of traveling inside them. 
The cost of traveling along a face or an edge of a tetrahedron 
is the minimum of the weights of the neighboring tetrahedra. 

r~ The cost of a path 7r on 79 is defined by 117rll = ~-'~i=1 wilTr~l, 
where I~1 denotes the Euclidean length of the intersection 
7ri fq ti. Given two vertices u and v in 79 the geodesic path 
7r(u, v) between them is the path with minimum cost join- 
ing them and remaining in 79. As for 2-D, it is well known 
that geodesic paths are simple. The segments in a geodesic 
path can be of the following types: 1) cell-crossing segments 
which cross a tetrahedra joining two points on its boundary 
that lie on a different faces, 2) face-using segments which lie 
along a face, and 3) edge-using segments which lie along an 
edge. Consecutive segments of a geodesic path obey SHell's 
law of refraction in which the path bends at the faces and 
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edges of D. Steiner points in 79 will be defined with the aid 
of the following: 

DEFINITION 3.1. For a point x E 79, define d(x) to be the 
Euclidean distance from x to the boundary of the union of 
the tetrahedra incident to x. 

For example, if x lies on a face shared by two tetrahedra, 
then 6(x) is the distance from x to the boundary of the 
union of these two tetrahedra. For a vertex v of D we define 
a radius r(v) - -  Z°min(V) dtv ~ where Wmin(V) (Wmax(V)) is CWr,~(v) ~ J '  

the minimum (maximum) weight around v and c > 1 is a 
constant. Similarly, for a point x on an edge e (not a vertex) 
of 79 we define a radius r(x) = ~m~,(~) d(x~ where Wmi.(e) 

C W m a x ( e )  \ 1 '  

(Wm~(e)) is the minimum (maximum) weights around e. 
Also we define r(e) to be the maximum of r(x), for x E e, 
i.e. r(e) = m a x ,  e, r(x). 

DEFINITION 3.2. A vertex-vicinity IX(v) is the ball, 
B(v ,¢r(v) ) ,  centered at v of radius cr(v). For an edge e = 
(v ' ,v")  we define an edge-vicinity Y(e) = V(v ' )U V(v")U 
S(e), where the spindle S(e)  of e is defined by 
S(e)  = U~e~B(x, er(x)). 

3.3 Placement of Steiner Points 
The placement of Steiner points is more complex compared 
to the placement in the SPPS problem since, a shortest 
path may bend in the interior of a face. We therefore need 
to take care of edge vicinities in addition to the vertex- 
vicinities. An infinitesimal segment may penetrate through 
these vicinities and any placement of a finite set of Steiner 
points and edges cannot provide good approximations to 
these segments. This is addressed by providing an amorti- 
zation argument for the cost of the part of the path inside 
these vicinities with respect to the total cost of the path. 
Let f be a face with vertices A, B and C and let M be 
the point in f with maximum distance d(M),  i.e., d(M)  = 
max~ef d(x). The point M is defined to be a Steiner point. 
We describe the placement of Steiner points inside the tri- 
angle A B M .  Let M H  be the height of the triangle A B M .  
Define an infinite sequence of points Po ,P1 , . . .  on M H  as 
follows: P0 = M and for i = 1 , . . . ,  IPi_lPi[ = cd(Pi). Con- 
sider the corresponding sequence of segments AiBi  that  are 
parallel to A B  and contain Pi for i = 1 , . . .  On each of the 
segments AiBi  define a set of kl + 1 equi-distantly placed 
points Pis ,  j = 0 , . . . ,  ki with 

ki = [IAi, B~l/(ed(P~+l)) ]. (24) 

The formal description of these points is given by Pi,o = 
Ai, Pi,t~ = Bi and for j = 1 , . . . , k i ,  [Pi,j-lPi,j[ = 
IAiBd/ki .  

DEFImTION 3.3. The set of Steiner points in the triangle 
A B M  consists of all points Pi,j that are outside the edge- 
vicinity V (AB) .  

The total number of Steiner points placed in 79 is given by 
the following lemma whose proof can be found in the full 
version [3]. 

LEMMA 3.1. The number of Steiner points placed in a 
face f of D does not exceed C f ( 79 ) A~ in 1 -g, where the constant 
Cy(79) depends on geometric features of 79 around f .  The 
total number of Steiner points is bounded by C(79)~v In 1_ 

e '  

where n is the number of faces of 79 and the constant C(D) 
is the arithmetic average of the constants Cf(7 9) for the faces 
0f79. 

3.4 Forming the approximation graph 
Consider a segment ab of a geodesic path lying inside a 
trapezoid ti, such that  a and b belong to two different faces 
f l  and f2 of t~, respectively. Assume that  ab does not inter- 
sect any vertex or edge vicinities. It can be shown that there 
exist Steiner points a' E f l  and b ~ E f2 so that weighted 
length of the path from a to b through a ~ and b ~ is at most 
1 + ¢ times the cost of the direct path from a to b. This 
enables us to provide e approximations to the part of the 
geodesic path that does not lie inside vertex or edge vicini- 
ties. The part of the geodesic path that  lies inside vertex- 
vicinities can be handled in a similar manner  as in the SPPS 
problem, i.e., amortizing its cost with respect to the cost of 
the path that  is outside the vertex vicinities. Now concen- 
trate on the part of the path (say II(e)) that  lies inside an 
edge vicinity ];(e). There are two cases depending on the 
cost of II(e) with respect to the parameter cr(x) (Definition 
3.2). If the two costs are comparable then use the same 
amortization argument as in the case of vertex-vicinities. If 
the cost of H(e) is more than er(x)  then there exist a pair of 
Steiner points a'  and b' on the boundary of ])(e), such that  
the cost of the path between these Steiner points is at most 
1 + ¢ times the cost of H(e). 

The above discussion suggests that  if we interconnect all 
Steiner points within a trapezoid, for every trapezoid in 79, 
and interconnect all Steiner points on the boundary of edge 
vicinities, then we can obtain a graph G, where vertices are 
Steiner points, and the edges are the interconnections. For 
any linear path I~I joining a pair of vertices of D, it follows 
that  there exists a discrete path H between the correspond- 
ing vertices in G whose cost is at most 1 + ¢ times the cost 
II. Although the approximation quality of G is the desired 
one, the number of edges, and hence the computational com- 
plexity of finding a shortest path in G, is very high. Next 
we show that  using properties of Snell's law, the search can 
be restricted to a selected set of edges when a vertex is 
"explored" (after extract-min) in an execution of Dijkstra's 
algorithm. 

3.5 Pruned Dijkstra's algorithm 
Let a be a bending point on a geodesic path II lying in 
the interior of a face f. The in-angle ~ is defined to be the 
acute clockwise angle between the normal to f at a and the 
segment s' preceding a on H. Similarly, the out-angle ¢ is 
the acute clockwise angle between the normal and the seg- 
ment s" succeeding a on II. These angles are related by 
w" sin ¢ = w' sin ~, where the cost of traveling along s' and 
s" is w' and w", respectively. Moreover the segments s', s", 
and the normal to f at a (denoted by Affb) lie in the same 
plane. This can be expressed by taking a reference direction 
in f,  and the angles ~i~ = r/out, where rli~ (flout) is the angle 
between the projection of s' (s") on f and the reference di- 
rection. Next we estimate the difference between out-angles 
of two given geodesic paths in terms of the difference be- 
tween their in-angles. 

LEMMA 3.2. Let (qo, ¢,  rli~, ~o~t) and (qol, ¢1, ~lin, Olout), 
be two pairs of angles satisfying the above equations. Then 

7 ~ W  t 

(a) 1¢1 --¢1--< 2--~g(~,~D1)l~ tgl --~DI (25) 

(b) Irh,,~ - r/,,~ I = Irho~t - r/o~t] (26) 
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where ~(~, ~,) = cos %~+/cos +,$+. 

The following lemma estimates the dispersion of a discrete 
path with respect to the geodesic path (analogous to Lemma 
2.6). 

LEMMA 3.3. Let ¢ < 1 and a, b and c be three consecutive 
bending points on a discrete path H, where the Steiner point 
b lying in the face f does not neighbour a vertex or edge 
vicinity of 79. Let co be a point on the geodesic direction 
determined by the segment (a,b) (on the ray starting at b 
and with an out-angle ¢,  ~o~t satisfying Shell's law). Then, 
(a) the angle between the two planes determined by A/'yb and 
bc0 and bc is at most e. (b) the angle between the projection 
of bc, onto the plane defined by the bco and A/'fb, and bco is 
at most d v ~  , where c' is a constant. 

The above lemma establishes that during an execution of 
Dijkstra's algorithm, it suffices to examine only those edges 
which are given by the specified angle constraint. Follow- 
ing along the lines of Section 2.4, it can be shown that for 
all Steiner points which are not neighboring vertex or edge 
vicinities, we have to explore only O(1/V~ ) edges. We sum- 
marize the result in the following theorem: 

THEOREM 3.1. Let 79 be a weighted triangulation of 3- 
dimensional space and 0 < ¢ < 1 consisting of n vertices. 
The single source shortest paths on 79 can be approximated 
to within an accuracy of (1 + c¢) in 0 ( ~  log ~ 1 (  1 + log n)) 
time, where c > 1 is a constant. 

In case all the weights are.the same, the complexity reduces 
to O ( ~  log ~ log n) time. This can used to solve the shortest 
path problem amidst obstacles in 3-dimensional Euclidean 
space (ESP-3D), provided that we are given a convex parti- 
tion (or tetrahedralization) of the free space. Convex parti- 
tion can be achieved by employing any one of the algorithms 
of [14; 4; 11]. 
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