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ABSTRACT 
Unfair metrical task systems are a generalization of online 
metrical task systems. In this paper  we introduce new tech- 
niques to combine algorithms for unfair metrical  task sys- 
tems and apply these techniques to obtain the following re- 
sults: 

1. Better  randomized algorithms for unfair metrical  task 
systems on the uniform metric space. 

2. Better  randomized algorithms for metrical task sys- 
tems on general metric spaces, O(log z n(log log n) 2) 
competit ive,  improving on the best  previous result of 
O(log s n log log n). 

3. A tight randomized competi t ive ratio for the k-weight- 
ed caching problem on k + l  points, O(log k), improving 
on the best  previous result of O(log 2 k). 

1. INTRODUCTION 
Metrical task systems, introduced by Borodin, Linial, and 

Saks [12], can be described as follows: A server in some inter- 
nal configuration receives tasks tha t  have a service cost as- 
sociated with each of the internal configurations. The server 
may  switch configurations, paying a cost given by a metr ic  
space defined on the configuration space, and then pays the 
service cost associated with the new configuration. 

Metrical task systems have been the subject  of a great  deal 
of study. A large par t  of the research into online algorithms 
can be viewed as a s tudy of some part icular  metrical  task 
system. In modeling some of these problems as metrical  task 
systems, the  set of permissible tasks is constrained to fit the  
part iculars  of the problem. In this paper  we consider the  
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original definition of metrical  task systems where the set of 
tasks can be arbitrary.  

A determinist ic algorithm for any n-configuration metri-  
cal task system with a competi t ive rat io of 2n - 1 was al- 
ready given in the original paper  [12], along with a match- 
ing lower bound for any metric space. However, realdom- 
ized algorithms for metrical  tasks systems in the oblivions 
adversary model are not fully understood. T h e f i r s t  ran- 
domized algorithm for general metrical  task systems be t te r  
than the deterministic was presented by Irani and Seiden 
[16], ~1.58n competi t ive algorithm. Bartal ,  Blum, Burch, 
and Tomkins [5] gave the first sublinear randomized com- 
peti t ive ratio, O(log 6 n / l o g l o g  n). Bartal  [3] improves this 
to O(log 5 n log logn ) .  In this paper  we obtain an O(log2 n 
(log log n) 2) upper  bound on the competi t ive ratio. 

A lower bound on the randomized competi t ive ratio for an 
arbi t rary  metric space of I2(log log n) was given by Karloff, 
Rabaali, and Ravid [18]. The best  lower bound currently 
known is ~2(x/log n / l o g l o g n )  due to Blum, Karloff, Rabani  
emd Saks [11]. 

The basic paging problem is the  ozdine problem of deciding 
what  page to evict upon a page fault. The performance 
measure is the number  of page faults. This problem has tight 
determinist ic and randomized bounds  on the competi t ive 
rat io of k and ~ In k, where k is the number  of-page slots in 
memory [22; 15; 20; 1]. 

Weighted caching is the  paging problem when all pages 
sizes are the same but  there is a different cost to fetch dif- 
ferent pages. Deterministically, a competi t ive ratio of k [13; 
23; 24] is achievable, with a matching determinist ic lower 
bound  following from the k-server bound in [19]. N o  ran- 
domized algori thm is known to have a competi t ive rat io bet-  
ter  than the determinist ic rat io of k. However, in some 
special cases progress has been made. Irani [private com- 
munication] has shown an O(log k) competi t ive algorithm 
when page fetch costs are one of two possible values. Blum, 
Furst,  and Tomkins [9] have given aax O(log 2 k) competi t ive 
algorithm for a rb i t ra ry  page costs, when the total  number 
of pages is k q- 1, they also give a lower bound of ~(log k). 
In this paper  we obtain an O(log k) competi t ive algorithm 
for the  weighted caching problem on k + 1 pages. This is 
t ight up to a constant  factor. 

To obtain the results above we make use of unfair metrical 
task systems [21; 5], we apply  algorithms for unfair metrical 
task systems on the uniform metr ic  space so as to obtain 
algorithms for hierarchically well separated trees (HST) [2], 
this technique is due to [2; 5]. In [2; 3] it  is shown how t o  
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reduce problems on general metric spaces to HST metrics. 

1.1 Contributions of  this Paper 
We introduce a general notation and technique for com- 

bining algorithms for unfair metrical task systems. This 
technique is an improvement on the previous methods [11; 
21; 5~ azld we believe that it is of independent interest be- 
yond the applications we have given in this paper. We also 
believe that using some notation similar to ours is imper- 
ative to avoid possible confusion in combining algorithms 
from different spaces. 

Using this technique, we obtain randomized algorithms for 
unfair metrical task systems on the uniform metric space 
that  are better  than the algorithm of [5]. Using the al- 
gorithm for unfair metrical task systems on uniform met- 
ric space and the new method for combining algorithms, 
we obtain O(log 2 n(loglogn)Z)-competitive randomized al- 
gorithm for metrical task systems on aa W metric space, im- 
proving on the best previous result of O(log 5 n log log n). 
Using the same techniques in a slightly different maamer, 
we obtain a tight randomized competitive ratio for the k- 
weighted caching problem on k q- 1 points, O(log k), improv- 
ing on the best previous result of O(log 2 k). 

2. PRELIMINARIES 
Unfair m~trical task systems (UMTSs) [21; 5] are a gen- 

eralization of metrical task systems [12], the terminology is 
that  of [21]. A UMTS U = (s, M, r l , . . .  , rb) cousists of a 
distance ratio s E R +, a metric space M on b configurations, 
vl ,. • • , Vb with a distance matrix dM, and a sequence of cost 
ratios r l , r 2 , . . .  ~rb E R +. 

Given some UMTS U, the associated online problem is 
defined as follows. An online algorithm A occupies some 
configuration v~ E M. When receiving some sequence of 
tasks, a task is a vector (c l , c2 , . . .  ,Cb), algorithm A can 
choose a new configuration v i E M. The cost for A asso- 
ciated with servicing the task is s • dM(Vi, vj) q- r jc j .  The 
cost for A associated with servicing a sequence of tasks a is 
simply the sum of costs for servicing the individual tasks of 
the sequence consecutively and is denoted by cOStA(a). An 
online algorithm makes its decisions based only upon tasks 
seen so far. 

An off-line player is defumd that  services the same sequence 
of tasks over U. The cost of an off-line player, if it were to do 
exactly as above, would be dM (vi, v j )+cj .  Thus, the concept 
of unfairness, the costs for doing the stone are different. 

Given a sequence of tasks a we define the work function 
[14] at v, wa,v(v),  to be the minimal cost, for any off-line 
player, to start at the initial configuration in U, deal with all 
tasks in a,  and end up in configuration v. We omit the use 
of the subscript U if the UMTS is clear from the context. 
We note that  for all u ,v  E M ,  w~(u) - wa(v) <_ dM(u,v) .  
If To(U) = wa(v) + dM(u, v), u is said to be supported by v. 
We say that  u E M is supported if there exists some v E M 
such that  u is supported by v. 

We define costoPw(a) to be rainy wa(v). This is simply 
the minimal cost, for any off-line player, to start  at the 
initial configuration and process a. Define a competition 
vector (~ = (~(vl),  a(v2), .  • • , a(vb)) to be a real valued vec- 
tor where ~]ic~(vi) = 1 aald c~(vi) _> 0 for all 1 < i < b. 
We define the a-optimal-cost of a sequence of tasks a to 
be costa-OPT(a) =<~ O~,Wa ~,  where < x ,y  > is the in- 
ner product of x and y. We observe that  costa-OPT(q) ~_ 

coStOPT(a) + A(M),  where A(M) ---- max~,veM dM(u, v) is 
the diameter of the M. 

A randomized online algorithm A for unfair metrical task is 
an online algorithm that  decides upon the next configuration 
using a random process. The expected cost of a randomized 
algorithm A on a sequence a is denoted by E[costA(a)]. A 
rmldomized online a/gorithm is called r competitive against 
an oblivious adversary [22; 17; 6] if exists c such that for all 
task sequences a, E[costA(a)] ~ r cOStoPT(a)+C. Note that  
all algorithm is r competitive if and only if exists c' such that  
for all task sequences a, E[costA(a)] < r costa-OPT(a) q- c'. 

Given a randomized online algorithm A for an UMTS U 
with configurations v l , . . .  , Vb, and a sequence of tasks a,  we 
define Pa,A to be the vector of probabilities (pa,A(Vl), . . .  , 
pa,A(Vb)) where pa,A(Vi) is the probability that  A is in con- 
figuration vi after serving the request sequence a. We drop 
the subscript A if the algorithm is clear from the context. 

Let x o y denote the concatenation of sequences x and y. 
Let U be a UMTS over the metric space M with distance 
ratio s. Given two successive probability distributions on the 
configurations of U, p~ and p~o~, where e is the next task, we 
define the set of transfer matrices from p~ to p~o¢, denoted 
T(pa,pao¢), as the set of all matrices T --- ( t i j ) l<_i , j<b with 
non negative real entries, where 

b b" 

)-~t,~=w(v,), l < i < b ;  ~t , j=p~oe( . j ) ,  l < j<b.  
j ~ l  i~1 

We define the unweighted moving cost from p~ to p~o¢: 

mcostM(pa,paoe) = rain E t i j  dM(Vi,Vj), 
(e,j)e id 

T(po ,paoe) 

the moving cost is defined as mcos tv  (pa, Paoe) : s-mcostM (pa, 
Paoe), and the local cost on e ----- (cl . . . .  ,Cb) is defined as 
~'~j paoe(vj)cjrj .  Due to linearity of expectation, E[costA(aO 
e)] -- E[costA(a)] is equal to the sum of moving costs from 
p~ to p~o¢ plus the local cost on e. Hence we can view A as a 
deterministic algorithm that  maintains the probability dis- 
t r ibutions on the configurations whose cost on task e given 
after sequence a is 

c o s t A ( a  o e) - -  costa(a) = 
b 

mcost~(p~,p.o~) + )-'~.p~o~(~j)~j. (1) 
5=1 

In the sequel we will use the terminology of changing prob~ 
abilities, with the understanding that  we are referring to a 
deterministic algorithm charged according to Equation (1). 

Elementary tasks are task vectors with only one non-zero 
entry, we use the notation (v,6), ~ >_ 0, for an elementary 
task of cost 5 at configuration v. Tasks (v, 0) can simply be 
ignored by the algorithm. 

Definition 1. A continuous randomized online algorithm for 
metrical task systems is an online algorithm so that  for aa W 
request sequence a, and any v E 2Yl, the function f(6) = 
pao(~,~)(v) is continuous for 6 >_ 0. A semi-reasonable algo- 
r i thm is an algorithm that=never assigns a positive proba- 
bility to a supported configuration. 

Definition 2. A reasonable adversary sequence for algorithm 
A, is a sequence of tasks that  obeys the following: 
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1. All tasks are elementary. 

2 .  For all a,  the next task (v, 5) must  obey that  for all 
> ~' > 0, poo(~,~,)(v) > 0. 

It  follows tha t  a reasonable adversary sequence for A never 
includes tasks (v, 5), 5 > 0, if the current probabi l i ty  of A 
on  v is zero. 

The following lemma is from [5, Assumption 1 mad Theo- 
rem 2]. 

LEMMA 1. Given a continuous algorithm A that obtains a 
competitive ratio of  r when the adversary sequences are lim- 
ited to being reasonable adversary sequences for  A,  then, for  
all e > O, there also exists a randomized algorithm A ~ that 
obtains a competitive ratio of r q-e on all possible sequences. 

Observation 1. For a semi-reasonable mad continuous online 
algorithm A competing against a reasonable adversary, any 
elementary task e = (v, 5) causes w(v) to increase by 5. This 
follows because v would not  have been suppor ted  following 
any alternative request (v, (~), (V < 5. See [5, lemma 1]. 

Definition 3. An online algorithm A is said to be reasonable 
and r-compet i t ive on UMTS U = (s, M, r ~ , . . .  , rb) against 
a reasonable adversary if it obeys the following: 

1. A is continuous mad semi-reasonable. 

2. The probabilit ies tha t  A assigns to the different con- 
figurations is purely a function of the work function. 

3. Associated with A are a competi t ion vector aA and a 
bounded potential  function ~A such tha t  

• @A is work function based, CA : R b ~ R +. 

• For all task sequences a and all tasks e, 

cOStA(~ o e) -- costa(~) + Ca(~o~)  -- VA(W.) 
< r . < a A ,  W,o¢--w~ > .  (2) 

For a potential  function ¢ we define I(I)[ = sup~ (I)(w). 
For the remainder of  this paper, we will only deal with 

reasonable algorithms competing against reasonable adver- 
saries. 

Definition 4. A reasonable r competi t ive algori thm A for 
UMTS U = (s, M, r ~ , . . .  , rb) with associated potent ial  func- 
tion ~ is called (~3, r/)-constrained, 0 <:/3 _< 1, 0 _< r/, if the 
following hold: 

1. For all u , v  • M: if w ( u ) - w ( v )  > / ~ d M ( u , v )  then the 
probabi l i ty  tha t  A assigns to u is zero (p~,A(U) = 0). 

2. 1~1 _< ~ZX(M)r. 

The concept of constrained algorithms is a useful tool to 
get semi-reasonable algorithms tha t  are combined fxom con- 
s trained algorithms. 

Observation 2. For (fl, r/)-constrained algorithm competing 
against reasonable adversary, 

Vu, v • M,  Iw(u) - w(v)l _< ~ dM(u, v). 

Observation 3. If A is (fl, rl)-constrained then it is tr ivial ly 
(]3 t, ~) -cons t ra ined  for all ]3 < fl~ < 1 and r I < r/'. 

3. C O M B I N I N G  A L G O R I T H M S  F O R  U N -  
F A I R  M E T R I C A L  T A S K  S Y S T E M S  

We are given a metr ic  space M, composed of sub-spaces 
M I , . . .  ,Mb, with minimum distances between sub-spaces 
comparable to the  diameters of the sub-spaces. A metri-  
cal task system on M induces a metrical  task system on 
Mi. Assume tha t  for every induced MTS on Mi we have 
a ~i-competitive algori thm Ai. Our goal is to combine the  
Ai algorithms so as to obtain eaa algori thm for the original 
MTS defined on M. To do so we make use of a "combin- 
ing algorithm" A . . z l  has the role of determining which of 
the  2}// sub-spaces contains t h e  server. Viewed this way, 
it  is natural  tha t  ~1 should be ma algorithm for the UMTS 

= (s, 2~/, ~a . . . .  , ~b), where M = {za . . . . .  zb} is a space 
with points corresponding to the sub-spaces and distances 
tha t  are roughly the  distmaces between the corresponding 
sub-spaces. Tasks for the original MTS are trmmlated to 
tasks for the  Mi induced metrical task systems simply by  
restriction. I t  remains to define how one translates tasks for 
the  original MTS to tasks for ~r. 

Previous papers  [11; 21; 5] use the average cost of the  task 
on the sub-space Mi as the cost for zi in the task for ~r. 
This way the cost for the online algorithm is f i  times the 
cost for the  opt imum (we assume reasonableness of the algo- 
r i thm and the adversary),  however, this is true only in the 
amortized sense. In order to botmd the amortization effect 
they have to assume tha t  the diaaneters of the sub-space are 
small compared with the distemces between Mi sub-spaces. 
We take a different approach: the cost for a point zi E ~r 
is (an upper  bound for) the cost of  Ai on the corresponding 
task, divided by ~i. In this way the amortization problem 
disappears,  and we are able to combine sub-spaces with rel- 
atively large diameter.  Following is a formal description of 
the construction. 

THEOrtEM 1. Given an U M T S U  = ( s , M ,  r l , . . .  ,r , , ) ,  where 
M is a metric space on n points. Consider an arbitrary par- 
tition of  the points of  M ,  P = ( M 1 , M a , . . .  ,Mb),  where 
IMjl = m~. U~ = (s, Mj ,r i~  . . . .  , r i ~ j )  is the UMTS in- 

duced by U on the subspace M~. Let 1Q be a metric space 
defined over the set of  points za, z2 , . . .  , zb with a distance 
metric dM(Z~, zi)  > max{dM(U,V) : u ~ M i , v  E M~}. 

Assume that 

. For all j ,  there is a ( ~ ,  rlj)-constrained f j-competi t ive 

Let 
denote the distance in M between p and q, and define 

= ma~ { m S ~,, 

d~t(z~,z~)+~ j a(MD+~ a(MO+o~aCM,) 1., (3) m a x  
i~ j  minpEMi,qEMj dM (P,q) I 

and 

,x (~)  ±(M,) 
r/---- " , / ~  -{- miax r/i A ( M ) "  (4) 

I f  fl <_ 1, then there exists a (fl, ~l)-constrained and r-compe- 
titive algorithm, A, for  the UMTS U, against a reasonable 
adversary. 

algorithm Aj  for  the UMTS Uj. 

There is a (8, O)-eonstrained r-competitive algorithm 
.4 for  the UMTS ~r = (s, i f4 ,~a, . . .  ,~b). 

A ( M )  denote the diameter of  a metric space M ,  dM (p, q' 
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3.1 T h e  C o n s t r u c t i o n  o f  A l g '  A f r o m  T h m  1 
For 1 _< j <_ b, denote by ~S azld c~j the associated po- 

tential  function and competi t ion vector of algorithm A s, 
respectively. Similarly, denote by ~ and & the associated 
potential  function and competi t ion vector of algorithm A, 
respectively. 

Given a sequence of tasks a = (vl, tfl)  o (v2,~2) o . --  o 
(vlol,61~l) , vi E M ,  we define the sequences 

, t dit, t t 7t(a) = (u~,~) o tu2, 2) o...o (Ul#l,Zl~l), where 

* u~ =vs and6~ =~S, ifvs E Me. 

* u~ is an arbitrary point in Me and 6~ = 0, if v s ~ Me. 

Define 

x d w )  =< a~, w > -~dw) le~ .  (5) 

For u E M,  de f i nex (u )  = i i f f u  ~ Mi. We define the 
sequence 

x(~) = (z~(~,),~) o (z~(~) ,~)  o . . . o  (z~(~,~),~l~), 

inductively. Let e = (v,~), X(v)  = £, then X(a  o e) = X(a)  o 

~(zt, ~) where 

= Xe(w7%,o¢),v,)  - Xt(W.tt(¢),v, ). (6) 

Note tha t  6 > 0. This is so since A t  is reasonable, and X(a)  
is a reasonable adversary sequence (see Claim 2); it  follows 
from inequality (2) tha t  $ > the  cost of A t  for the task (v, ~), 
divided by ~t , which is always > 0. 

ALOOaITrlM A. The algori thm works as follows: 

1. I t  simulates algori thm A t  on the task sequence 7 t (a ) ,  
for l < e < b .  

2. I t  also simulates algorithm /] on the task sequence 
x(~). 

3. I ts  distr ibution is computed  so tha t  the  probabi l i ty  as- 
signed to a point v ~ Me is the product  of the  proba- 
bi l i ty  assigned by A t  to v and the probabi l i ty  assigned 
by A to ze. (i .e. ,  pa,A(V) = p.re(a),Ae(V) "PX(o.),A(Zt) .) 

We remark tha t  the  simulations above cem be performed in 
an online fashion. 

3 .2  P r o o f  o f  T h e o r e m  1 
To simplify notat ion and without  loss of generality we con- 

sider an arbi t rary  sequence a and arb i t ra ry  task e. Wi th  
respect to a we define 

W = Wa,U; W ¢ ~--- Waoe,U; 

Wk=W-t~Ca),V ~, l < k < b ;  w e _ _ = w-~(~,o~),v~, 1 < k < b; 

ff~ = WxCo),O; ~v ¢ = WxCo.oe), O. 

Define p, p~, and 15 to be the  probabi l i ty  distr ibutions on 
the configurations of U, Uu and U as induced by  algorithms 
A, A~ and A on the sequences a ,  7k(a) ,  and X(o'), 1 < k < b. 
Likewise, we define p~, p~ and/~¢ where the sequences are 
a o e, 7~(a o e), m~d X(a  o e). 

We observe tha t  algori thm A is continuous because the  
probabil i t ies it  assigns are the  product  of the  probabil i t ies 
assigned by two continuous algorithms. 

CLAIM 2. I f  the adversary sequence given to algorithm A 
on U is reasonable, then the simulated task sequences for  
algorithms Ai  on Ui and the simulated task sequence for  al- 
gori thm A on [I are also reasonable task sequences. 

PROOF. If the adversary issues a task e = (v, 6) for A, it  
implies tha t  had we replaced task e by  any other task e' = 
(v, 6') where 0 < 6' < 6, then pC' (v) would have been str ict ly 

greater than  zero. This implies tha t  p~' (v) would also have 
e t  - ^ ¢ t  

been str ict ly greater than zero, since pC' (v) ---- Pt (v)p (z t)  
(where v E Me).  A similar argument implies the same for 

the  X(a)  sequence for A. [ ]  

CLAIM 3. For all a and for  all £, ff~(zt) = Xt(Wt) .  

PROOF. From Claim 2 we know tha t  the adversary sequence 
X(a)  for .4 is reasonable. As .4 is reasonable and from Ob- 
servation 1 we know tha t  ffJ(zt) is exactly the sum of costs 
in X(a)  for zt .  By the definition of X(a) in Equation (6) it  
follows tha t  this sum is Xt(Wt) .  [] 

CLAIM 4. If for all 1 <_ £ <_ b, u E Me,  it holds that w(u)  = 
wk (u) then any configuration u E U for, which there exists 
a configuration v such that w(u)  -- w (v )  ~_ f ldM(U,V)  haS 
p(u) = o. 

PROOF. Consider configurations u and v as above, i.e., w(u ) - -  
w (v )  ~_ ~ dM(u, v). We now consider two cases:,  

1. u E Mi a n d v  E Mi. We want to show tha t  w i ( u ) -  
wi (v )  ~_ ~i dMi (u, v), as Ai is (f~i, v/i)-constralned this 
implies tha t  p~(u) ---- 0, which implies tha t  p(u)  = O. 
From the conditions above we get 

w,(=) - w,(v) = w(=) - w(v) 
~__ fl dM (U, V) ~ fli dMt (U, V). 

2. We now deal with the  case where u E M~, v E MS, 
i # j .  Our  goal now will be to show tha t  ~b(z 0 -  
~)(Zj) ~_ ~dl~(Zi ,  Zj), as this implies tha t  i~(zi) = 0 
which implies tha t  p(u) = 0. 

A lower bound on @(zi) is 

~,(~,) = x,(w,)  =< '~ , ,w,  > -I.e, l /r,  (7) 
> wdu) - ~ACM,) - ICd / r~  (8) 
= w(u )  -- ~ i A ( M i )  -- 71iA(Mi). (9) 

To just i fy (7) one uses the definitions and Claim 3, (8) 
follows because a convex combinat ion of~ values is at  
least all a rb i t ra ry  value minus the  maximal  difference. 
The maximal  difference between work function values 
is bounded by fli t imes the distance, see observation 2. 
The last  equation, (9), follows from our assumption 
tha t  the  work functions are equal aald from the defini- 
tion of ~/i. 

Similarly, to obtain an upper  bound on @(zs), we de- 
rive 

~(zs) = xJCWA = 
= <  ~s,ws > - I%l / r s  < w(v) +~s~(Ms) .  (10) 
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I t  now follows from Inequalities (9) and (10) that ,  

~ ( z 0  - ~ (z#)  > 

>_ (w(u)  -- w(v)  ) -- I~, A (  Mi)  -- fl~ A(M~)  -- rliA Mi 

>__ fldM(u, v) -- ~ ,A(M~)  -- ~ j A ( M j )  -- rI, A M , 

_> ~ d ~ ( ~ , , ~ ) .  

The last inequality follows from Eq. (3). [ ]  

CLAIM 5. For all a ,  ~., and v ~ Me: we(v) = w(v) .  

PROOF. Proof by contradiction. 
Let a o e where e = (v, 6) be the shortest task sequence 

for which w~(v) ¢ we(v) .  As the sequence 7 t (a  o e) is a 
reasonable adversary sequence (from Claim 2) and At  is 
semi-reasonable, it follows tha t  w~(v) = we(v)  + ~. But 
w~(v) <. w(v)  q-~ so it  follows that  w~(v) > we(v) .  

Let  e~ = (v ,z ) ,  define di' = sup {x  : w ' "  (v) = w~" (v)} .  
Obviously, 0 < ~ <__ ¢f. Define e ~ = (v, di~). By continu- 

i ty of  the work funct ion w ~' (v) = we (v) and thus < ~. 
Therefore v is supported in w e', mad thus meets the condi- 
tions of Claim 4 (here we use the  assumption tha t /3  < 1). 

H e n c e  p~' (v) = 0 and as the  sequence a is reasonable for A 
it follows that  ~ _< ~'. A contradiction. [ ]  

LEMMA 6. For a l i a ,  and all tasks e = (vi,~), v~ ~. Mr, 

costA(a o e) -- costA(a) < costA(X(a o e)) -- cos t a (x (a ) ) .  

PROOF. We split  the cost of A into two main components,  
the moving cost mcosttr (p,p~), and the local cost rip ~ (~ )~  = 
r,~(ze)p~(v~)~ (see Equation (1)). 

We give an upper  bound on the moving cost of A by consid- 
ering a possibly suboptimal  algorithm tha t  works as follows: 

1. Move probabil i t ies between the different Mj subspaces. 
I.e., change the probabil i ty  p(v) = ~(z#)p#(v) for v 
M~ to all intermediate stage ~¢(z~)p~(v). The moving 
cost for A to produce this intermediate  probabi l i ty  is 
bounded by mcost 0 (/~, ~ )  as the distemces in M are an 
upper  bound on the real distances for A (d~(z~, z~) > 
dM(U,v) for u ~ Mi,  v ~ Mj) .  We call this cost the 
inter-space cost for A. 

2. Move probabil i t ies within the M~ subspaces. Le., move 
from the intermediate  probabil i ty  ~¢ ( zj )p~ ( v), v ~ M~ 
to the probabi l i ty  pC(v) = ~¢(z#)p~(v). As all algo- 
r i thms A~, j ~ ~, get a task of zero cost, p~ = p#, 
j ~ ~. The moving cost for A to produce pC(v), 
v ~ Me, from the intermediate  s t a g e ,  is no more than 
~ e ( z t ) .  mcostv~(pt,p~). We call this cost the intra-  
space cost for A. 

Taking the local cost for A and the intra-space cost for A: 

r,~e(zt)pe(vi)~ q- ~e(ze) . mcostv,  (pt,pee) 

= f f ' ( z t )  (costa,  (a o e) -- costA, (a))  (11) 

_< ~'(z~)e~((< ~ ,  w ~ > - ~ ( ~ ' ) / e ~ )  

-- (<  o~, w > - -@t(w)/ee))  (12) 

= ~ ' ( z ~ ) ~ ( x ~ ( w ' )  - xdw)) .  (13) 

To obtain (11) we use the  definition of online cost (see 
Eq. (1)). To obtain (12) we use the fact tha t  At is ~t com- 
peti t ive and reasonable (see Eq. (2)). The last equality (13) 
follows from the definition of Xe (see Eq. (5)). 

Let ~ be the last task in X(aoe) .  Formula (13) is s imply the 
local cost for algori thm A on task d. Thus, we've bounded 
the cost for algorithm A on task e to be no more than the 
cost for algorithm A on task & []  

PROOF OF THEOREM 1. We associate a competi t ion vector 
and a bounded potent ial  function db with algorithm A, 

where 

o~(v) = &(zt)o~t(v) for v e Me; 

¢(w) = ¢(co) + r ~ a(z,)¢,(w,)/~, 
i 

We remark tha t  from Claim 3 mad Claim 5 i t  follows tha t  
and wi are determined by  w, so ¢ (w)  is well defined. 

We derive the following upper  bound on the cost of A: 

costa(~ o e) - costa(a) 

< c o s t a ( x ( a  o e)) -- co s t a (x (a ) )  (14) 

_< 
i i 

- (~(~')- ~(~)) (15) 

=~(~ ~ ~(~,)~,(~)~(~) 
v E M i  

i v E M  i 

- ((¢(~°) + ~ ~ e4z,),~,(w~)le,) 
i 

- (¢(~)+,-}Se4~i)~i(w,)/~i)) (16) 
i 

= r ( <  c~, w e > -- < c~, w >)  -- (¢ (w ~) -- ¢(w)) .  (17) 

Inequali ty (14) follows from Lemma 6, inequality (15) is 
implied as .4 is a reasonable r competi t ive algorithm. We ob- 
tain (16) by replacing ~e(zi)  by Xi(W~) and replacing ~(z~) 
by  X~(Wi), this is possible because of Claim 3, we then sub- 
s t i tu te  the definition of Xt(W) (see Equation (5)), and re- 
arranging the summands.  Equation (17) follows from the 
definition of c~ and • above. 

We now prove tha t  A is (fl, r}) constrained. I t  follows from 
Claim 4 and Claim 5 tha t  the condition on/~ is satisfied (see 
Def. 4). I t  remains to show the condition on r/: 

I~1 < I¢1 + r~-~. a(z,) i i ,  ll~, (18) 
i 

_< # r -  A(2~/) -t- r ~ &(z,)r},~, • A(M, ) /~ ,  (19) 
i 

< r .  a ( M ) ( # ~  + m / a x  {~]i 

= r - A ( M ) r / .  

Inequali ty (18) follows by the definition of@, (19) follows be- 
cause A is (/~, #)-constrained and Ai is (/3i, r/~)-constrained, 
l < i < b .  

We have therefore shown tha t  A is a (/~, r})-coustrained mad 
r-competitive algorithm. [] 
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3.3 More  C o n s t r a i n e d  A l g o r i t h m s  
Theorem 1 assumed constrained algorithms. In this section 

we show how to obtain such algorithms. 

Definition 5. Fix  a metr ic  space M on b configurations and 
cost ratios r~, . . .  , rb. Assume that  for all s > 0 there is 
a (f~, ~}) constrained f ( s )  competi t ive algorithm A~ for the 
UMTS U~ = (s, M , r ~ , . . .  , rb) against a reasonable adver- 
sary. For p > 0 we define the p-variant of A~ (if it  exists) to 
be a (/~p, rip) constrained f ( s / p )  competi t ive algorithm for 
U.. 

LEMMA 7. Under the assumptions of Definition 5, for all 
p > 0 such that l~p <_ 1, and for all s > O, the p-variant of 
A,  exists. 

The proof of this lemma is mot ivated by  similar ideas from 
[21; 5], see the appendix. [ ]  

4. T H E  U N I F O R M  M E T R I C  SPACE 
Let Mb d denote the uniform metr ic  space on b points where 

all pairwise distmxces axe d. 
We define algorithm R~ on UMTS U = (s, M if, r l , . . .  , rb), 

b > 2. Wi thou t  loss of generality assume r~ = maxi  ri .  
Algori thm R~ is from [5, St ra tegy 1] (also called ODDEXPO- 
NENT in [7]). The following lemma applies our terminology 
to the results of [5]. 

LEMMA 8. Algorithm R~ is (1, 1)-constrained, and ( r~+6s lnb) -  
competitive. 

PROOF. Algorithm R~, competing against a reasonable ad- 
versaxy, allocates for configuration v the probabi l i ty  p(v) = 
1- + } ~(~°(~)d~(~) )~ .  t is chosen to be an odd integer in 
b 
the range [In b, In b + 2). 

Baxtal et. al. [5] prove tha t  R1 is reasonable, (r~ + 
6s lnb)-compet i t ive  and tha t  the associated potential  func- 
tion I¢~1 < ( r ~ / ( t + t ) + s ) d  <_ ( l / [ lnb])(r l  +6slnb)d .  This 
implies tha t  R~ is (1, l / [ I n  b~)-constrained. [ ]  

We define algorithm R2 on UMTS U = (s, M d, r~, r2). Al- 
gori thm R~ is from [21, T w o  STABLE] and [5, Stra tegy 2]; 
the  algorithm also appears  implici t ly in [11]. The following 
lemma applies our terminology to the results of [21; 5]. 

LEMMA 9. Algorithm R2 is (1, 4)-constrained, and r com- 
petitive where 

r l  - -  r2 r2 -- r l  
---- r2 --I- t ---- r l  -{- e(rl_r2)/8 __ 1 e( r2-r~)/a -- 1" 

PROOF. Algori thm Rz works as follows: Let y = w(v~) - 
w(v~), and z = r~ - r ~ .  The probabi l i ty  on point  v~ is 

p(v~) = (e x. - e ~ ( ½ + ~ ) ) / ( e  ~/~ - 1 ) .  Algori thm Rz is shown 
to be reasonable and r competi t ive in [5; 21] and the poten-  
t ial  function associated with R~, ~ ,  obeys I ¢~ [ ~ (2r2 + s)d. 

I t  remains to show tha t  [~1  -< 4rd. We use the fact tha t  
if Ix I _< 1/2 then 1/2 < x / ( e  ~ - 1), and do a simple case 
analysis. If max{r~, rz}  > ½s then I(I'~l <_ (2r~ + s)d < 
(2r + 2r)d ~ 4rd. Else, let z ~ = (r2 - r~)/s, and notice t ha t  gt 
Iz'l _< 1/2, so r = r2 + ~-Tr~_~ s _~> r2 q- 2"s Hence I<b~l _< 2rd. 
[] 

To gain insight about  the competi t ive rat io of R2, we have 
the following claim, whose proof appears  in the  appendix:  

Comblnlng ~ ~  

x~=l x~e[2,3) xle[4,7 ) x~e[8,15) xie[32,63) x~e[16,31) 

r~<O(ln x t lnln x) 

Figure 1: Schematic description of Algori thm R3. 

CLAIM 10. Let f ( s ,  ra,r2) = rl + (rl - r ~ ) / ( e  crl-r2)/" - 1). 
Let x l , x2  E R + such that r l  < 2 s ( l n x l + l )  and r2 <_ 
2s(ln x2 + 1). Then f ( s ,  rl, r2) <_ 2s(ln(xl  + x2) + 1). 

We now describe algori thm Rs as defined on an UMTS 
U = (s, M d, r l  . . . . .  rb) (see also Fig. 1). This algorithm is 
inspired by Stra tegy 3 from [5]. 

ALGORITHM R3. Let xi be the minimal real number such 
tha t  r~ _< 100s In xi In In xi and xi >_ e e6+1 , and let x d~notes 
~ i  xi. For a set S C M d let U(S) denote the  UMTS induced 
by  U on S. 

Let Mb d = { v l , . . .  ,Vb}~ where vi has cost ratio r i .  We 
par t i t ion the points of M b as follows: let Qt = {vi : e e-1 _< 
x,  < et}. Let t" = { Q e :  IQt[ > luz~ u {{v} : v  e 
Qe and IQtl < lnx} ,  P is a partition'-of M~,. For S E P let 
x (S )  = ~ e s  xi. Without  loss of generality we can assume 
P = {$1,$2 . . . .  ,Sb,} where b' = IPI and x ( s j )  >_ ~ ( s j + l ) ,  
t _ < j < b ' - t .  

We associate with every set Si an algori thm A(Si)  on 
UMTS U(S0. If ISd _> ln~ we choose A(Si)  to be (1/10)- 
varimlt of R1. If ISi[ < l n x  then ISil = 1 and we choose 
A(Si)  to be the  trivial algori thm on one point,  this algo- 
r i thm has a competi t ive ratio equal to the cost ratio, it  is 
also (0, 0)-constrained. Let r(Si)  denote the competi t ive ra~ 
rio of A(S~) on U(Si). 

If b ~ = 1 we choose R3 to be A(S1) mid we are done. If 
b ~ _> 2, let 2P/= Ubi'=2Si. We want to construct  an algorithm, 
A(/Q),  for U(.~/). If  b' = 2, we choose A(2t7/) to b e  A(S2). 
Otherwise, we apply Theorem 1 on M with the par t i t ion 

Mb, - 1. {$2 , . . .  ,Sb,}. We define h?/ from Theorem 1 to be a 

Likewise, A from Theorem 1 is the  applicat ion of the  (1/5)- 
vaxiant of R1 on U d = (s, Mb,_l, r (S2) , . . .  , r(Sb,)). Let r(/P/) 

denote the competi t ive rat io of A. 
Now we choose the  par t i t ion {$1,2~} of M~. We combine 

the two algorithms A(S~) and A ( M )  using a (1110) vari- 
ant  of R2 (this is the A require d in Theorem 1) on UMTS 
(s ,M~,r(S1) ,r ( l (4))  (the UMTS 0 of Theorem 1). We de- 
note the competi t ive rat io of A by r .  The result ing combined 
algorithm, A(M) ,  is Algori thm Ra. 

LEMMA l t .  Given that x = ~ i x i ,  ri <_ lOOslnx i ln lnx i ,  

and e ~6+1 < xi, Algorithm Ra for UMTS U = ( s ,M~, r l ,  
. . . .  rb) is (1, 1)-consbrained and r-competitive, where r < 
lOOs In x In In x. 

PROOF. Firs t  we calculate the  constraints  of the  algorithm. 
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From Lemma 8 and Lemma 7, A ( S  0 is (1/10, 1/10)-const- 
raiaked, for every 1 < i < b'. We would like to show tha t  
A ( M )  is (1/2, 3/10)-constrained. If b' = 2 then it obvi- 
ously (1/10, 1/10)-constrained. Else (b' > 2), the combining 
algorithm for M is a (1/5)-variant of Ra which is (1/5, 1/5)- 
constrained. Hence, from Eq. (3), fl <__ (d/5 + d/lO + d/lO + 
d/lO)/a = 1/2, and from %. (4), ~ _< (d/5 + d/lO)/d = 
3/10. From Theorem 1, A(37/) is r(37/) competit ive.  

The (/3, ~/)-constraints of algorithm Rz are calculated as 
follows: (1/10)-variant of R2 is (1/10,4/10) constrained, 
therefore /3 = (d/10 + d/lO + d/2 + 3d/ lO)/d  = 1 mad 
7/ = (4d/10 + 3d/lO)/d = 7/10. From Theorem 1, A ( M )  
is r-competit ive.  

To summarize, Ra is (1, 7/10)-constrained mad r-compe- 
t i t ive algorithm for the UMTS U. 

It  remains to prove the bound on r. Firs t  we show tha t  
r(S~) _< lOOslnx(S~) ln lnx(S  A for all 1 _< j _< b'. 

If [S~[ = 1, we are done. Otherwise, [S~[ > lnx,  mad 
S~ = Qt for some ~. Note that  ~ < lnx ,  so 

r(S¢) 
< 100s In e t In In e t + 6 . 1 0 s  In [Ss [ (20) 

< lOOs(ln e t-a ]n ]n e t -1  + In e + -~ In e t-a) + 60s In IS:I 

_< 100s (ln e ' - '  In In e ' - '  + In In x + 1~o In ]S¢ I + 1) 

_< lOOs(ln e t - '  In In e ~-a + 2 In IS¢ I) (21) 

_< lOOs ]n( IS j le t - ' )  In ln(IS¢ le t-z) 
< lOOs ]n x (S j )  In In x (Sj) .  (22) 

We derive inequality (20) by noting tha t  we apply  a (1/10) 
variant of R1 to Ss = Qt. This implies tha t  ri <_ 100s In e t In In e t 
for all vi E Sj. By the bound on the competi t ive rat io of the  
(1/10) variant of R1 (See Lemma 8 and Lemma 7) we get the 
inequality. Inequali ty (21) follows because In ISjl > i n lnx ,  
and l n l n x  > 6. The last inequality follows because e t-a is 
a lower bound on xi for vi E Sj mad thus ISjle t-a < x(Sj) .  

We note that  b ~ _< ln2x as there are at  most  l n x  sets Qi, 
and each such set contributes at  most  In x sets Si to P.  We 
now derive a bound on r ( M ) .  

Kgt) <_ max  r(Si) + 6 . 5 .  s .  ln(b' -- 1) (23) 
2<i<b' 

< 100s. In x(S~) In In x + 30- s(2 in In x) (24) 

= lOOs(lnx(S2) + 0.6) l n l n x  

Inequali ty (23) follows since the  algori thm used is a (1/5) 
variant of Ra. Inequality (24) follows by  using the previously 
derived bound on r (S  0 and noting tha t  x(S2) is maximal  
amongst x (S2 ) , : . .  , z ( S v )  and tha t  x(S~) <_ x. 

From Lemma 7 we know tha t  the  competi t ive rat io of the 
(1/10)-variant of R2 is f( lOs,  r(S1),r(]~I)) where f is the 
function as given in Lemma 9. We give all upper  bound on 
f ( lOs,  r (S1) , r (M))  using Claim 10. To do this we need to 
find values ya and y= such tha t  

r(S1) <_ lOOs In x(S1) ]n In  x = 2 ( l O s ) ( l n  ya + 1) 

r(.~l) <_ lOOs(lnx(S2) + 0 . 6 ) l n l n x  = 2( lOs)( ln  y2 + 1). 

Indeed, the following values satisfy the conditions above: 
Yl ---- X(SI) ~ lnlnz/e and Y2 = ( e ° ' 6 x ( S 2 ) ) ~  l n l n x / e .  Us- 

ing Claim 10 we get a bound on r as follows 

r < 2 .10s ( ln (u l  -4- y~) + 1) (25) 

<_ 20sln(x(S1)~°~o ° lnln= + (e0.ex(S2))2~ o lnh,=) 

= 20S In (x (S l )5  h, h, ~ .~_ 2 ]n~'~ 5 In In x .  ~(~2)5 hi In x)  

_< 20sln(=(s,)""'"" + (2""'"" -2)=(s=) ''o'"') (26) 
_~< 208 ]n((=(S1) - [ -=($2)) 51nln`) (27) 

< 100s In x In In x 

Inequali ty (25) follows from Claim 10. Inequali ty (26) fol- 
lows because In In x > 6. Inequali ty (27) follows since, in 
general, a z + ( 2  z - 2 ) b  z <_(a+b) ~ , f o r a _ > b > O a n d z > l  
- -  see Claim 15 in the appendix. [ ]  

Remark 1. Strategy 3 from [5] gives (implicitly) an r-compe- 
t i t ive algorithm for a UMTS U = (S, Mbd, ra . . . . .  rb), but  
with the weaker guarantee tha t  if r l  _< c s l o g  2 xi, then r < 
c s log 2 (~'~.i z i ) .  

We now present a bet ter  algorithm when all the cost ratios 
but  one are equal. 

LEMMA 12. Given a UMTS U = (s, Md, rl ,r2~.. .  ,rb) with 
r2  : r3  . . . . .  rb, there exists a (1, 1) constrained r com- 
petitive online algorithm, P~, where 

r =  3 0 s ( l n ( e ~ - }  + ( b -  1)e ~ ; - ~ )  + ½). 

PROOF SKETCH. We define x l ,  x2, such that  

r l  = 30s ( lnx ,  + ½) = 2 - 5 .  s(lnx13 + 1), 

r2 = 30s( lnx= + ½) = 2 . 5 .  s( ln x2 a + 1). 

Let M = {v2, . . .  vb}. We use a (1/5) variant of R1 on the 
UMTS U(37/). The competi t ive ratio of this algorithm is at  
most  

r(37/) < r2 + 30s ln(b -- 1) 

< 30s(ln((b - 1)12) + ½) = 10s(ln((b - 1)12) 3 + 1) 

mad it is (1/5, 1/5) constrained. We combine it with the 
trivial  algori thm for U({va }) using a (1/5) variant of algo- 
r i thm R2, the resulting algorithm is (1, 1) constrained, mad 
by  Claim 10 we have 

r < 1 0 s ( l n ( x l  a + ( (b  - -  1 ) x 2 )  z + 1)  

< lOs(In(x1 + (b -- 1)x2) a + 1) 

= 30s( ln(x ,  + (b -- 1)12) + ½). 

Subst i tut ing for xi gives.the required bound,. ,  [ ]  

5. A P P L I C A T I O N S  

5.1 A n  O(]og 2 n log 2 logn)  Competi t ive  algo- 
r i thm for MTSs  

Bartal  [2] defines the following: 

Definition 6. A k-hierarchical well separated tree (k-HST) is 
a rooted tree with the following properties. 

• Successive edge lengths oil any pa th  from the root to 
a leaf decrease by a factor of at least k. 
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* For any vertex, the lengths of the edges to its children 
are all equal. 

The metric space induced by a k-HST T has one point for 
each leaf of the tree, with distances given by the tree path 
lengths, let M ( T )  denote this metric space. 

Bartal [2; 3] shows how to approximate arbitrary metric 
spaces using an efficiently coustructable probability distri- 
bution over a set of k-HST spaces I , resulting in the following 
theorem. 

THEOREM 2 ([3]). Suppose there is a r-competitive algo- 
rithm for any n-points k -HST  metric space. Then there 
exists an O(rk  log n log log n)-competitive randomized algo- 
rithm for any n-point metric space. 

We seek an online algorithm for a metrical task system 
where the underlying metric space is a k-HST. Following [5] 
we use the unfair MTS model to obtain an online algorithm 
for a MTS over a k-HST metric space. 

ALGORITHM lq.HST. We define the RHST(T) algorithm on 
the metric space M ( T ) ,  where T is a k-HST. The RHST(T) 
algorithm is defined inductively on the depth of the under- 
lying HST, T. In fact, we also require that  k 3> 8, later we 
show that  k > 8 is not a real restriction. 

When [M(T)I -- 1, RI-IST(T) serves all task sequences op- 
timally. It is (0, 0)-constrained. Otherwise, let the children 
of the root of T be v l , . . .  ,vb, and let T~ be the subtree 
rooted at vi. Let the distance between the root of T '  and 
vi be D/2.  As the subtrees T~ are themselves HSTs it fol- 
lows that  A(M(Ti))  < D / k  + D / k  2 + . . .  <_ D / ( k  - 1). 
Every algorithm RHST(Ti) is an algorithm for the UMTS 
Ui = (1, M(Ti) ,  1 . . . . .  1) 

We construct a metric space M = M d where d = D k / ( k  - 
1), we define cost ratios rl . . . . .  rb where ri = r(Ti),  the 
competitive ratio of RHST(Ti). We now use Theorem 1 to 
combine algorithms RHST(T/). The role of A is played by 
the (1/2! variant of algorithm R3 on the unfair metrical task 
system U = (1, 2V/, r l , . . .  , rb). The combined algorithm is a 
RHST(T)  on the UMTS (1, M ( T ) ,  1 , . . . ,  1). 

We remark that the application of Theorem 1 requires that  
the algorithms be reasonable and constrained, we show that  
this is true in the following lemma. 

LEMMA 13. The algorithm R H S T ( T )  is O(ln n In In n) com- 
petitive against a reasonable adversary, where n = IM(T)I.  

PROOF. Let n '  = e¢~+~n. We prove by induction on the 
depth of the tree that  RHST(T)  is (1,1)-constrained and 
200 I n n '  In In n'-competitive. 

When [M(T)I = 1, it is obvious. Otherwise, let ni = 

[M(T~)[, n~ = e~6+lnl, and n' = ~"~i n~. We assume in- 
ductively that  each of the RSHT(T~) algorithms is (1, 1)- 
constrained and 200 In n~. In In n~ competitive on M ( T  O. The 
combined algorithm, RSHT(T),  is (3, rl)-constralned. From 
Eq. (3), and given that  k 3> 8, we get that  

/~ _< max{l, l/2.Dk/(k--1)+D/(k--1)+D/(k-1)+Dl(lc--1)D } 
< max{I ,  1} = 1. 

~The approximation is only in the expectation. 

From Eq. (4) we get that r/<__ 1/2- D~I~ -D q- 1)I~ -1) <_ 517, 
for k 3> 8. This proves that  the algorithm is well defined and 
(1, 1) constrained. 

We now bound the competitive ratio using Lemma 11, we 
apply a (1/2) variant of Ra, from Lemma 7 this means that  
the competitive ratio obtained by the (1/2) variant of R3 
on (1,2~/ , r l , . . .  ,rb) is the same as the competitive ratio 
attained by Ra on (2 , .~ / , r l , . . .  ,rb). Note that  xi cora- 

l puted by R3 is at most hi, hence by Lemma 11 it follows 
that  the competitive ratio is at most 100- 2 1 n x l n l n x  < 
200 I n n '  In I nn ' ,  since x = ~ i  x~, [] 

Remark 2. Every k-HST T can be approximated by a 8-HST 
T'  so the the distances in M ( T  t) dominate the distances in 
M ( T )  and the distortion is at most O ( k / ( k - 1 ) ) .  This means 
that  we have all O(~_k 1 I n n  In In n) competitive algorithm for 
any k-HST T with [M(T)[ = n and k > 1. 

Combining Theorem 2 with Lemma 13 and by choosing k = 
8, it follows that  

THEOREM 3. For any M T S  over an n-point metric space, 
the randomized competitive ratio is O(log2 n log 2 log n). 

5.2 A Tight Competitive Ratio for k-Weighted 
Caching on k + 1 Points 

The k-weighted caching problem is a paging problem where 
the cost to retrieve a page varies from page to page. It is 
known (e.g., [23; 9]) that  this problem is equivalent to a 
problem of k-server on a star metric. 2 It is well known that  
the k-server problem on a metric space on k + 1 points is 
a special case of a metrical task system on the same metric 
space, and hence any upper bound for the metrical task 
system translates to an upper bound for the corresponding 
k-server problem. 

Given a star metric space M, we construct an 8-HST T 
mad map the points of the star metric space, under map- 
ping m, to the leaves of the T. T has the special structure 
that  for every internal vertex, all children except perhaps 
one, are leaves. As before, let M ( T )  denotes the metric 
space induced by T. It is not hard to see 3 t ha t  one can 
find such a tree T such that  for any u ,v  E M ,  dM(U,v) 
dM(T) (m(u),  re(v)) < 8 . 1 5 / 7 .  dM (u, V). 

We now follow the construction of RHST given in the pre- 
vious section, on an 8-HST T, except that  we make use of 
(1/2)-variaalt of R4 rather than  (1/2)-varimlt of Ra. The 
special structure of T implies tha t  all the children of an in- 
ner vertex, except perhaps one, have trivial 1-competitive 
algorithms on their subspaces, and hence we cm~ apply Ra. 
Using induction on the depth of the tree and Lemma 12, it 
is easy to bound the competitive ratio on k + 1 leaves tree 
to be at most 60(ln(k q- !) q- 1/3). 

Combining the above with the lower bound of [9] gives us: a 

2The star metric is derived from a depth one tree with dis- 
tances on the edges, the points of the metric space are the 
leaves of the tree and the distances between a pair of points 
is the length of the (2 edge) path between them. 
~Essentially, the vertices furthest away from the root (up to 
a factor of 8) in the star are children of the root of T and 
the last child of the root is a recursive construction for the 
rest of the star metric points. 
4For the purpose of k-weighted caching on k-I-1 points, it is 
possible to replace the usage of R1 in Ra by algorithms for 
paging, such as of [20; 1], and have better  constant  factor in 
the competitive ratio. 
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THEOREM 4. The competitive ratio for the k-weighted caching 
problem on k + 1 points is O(log k). 

6. FURTHER RESEARCH 
The problem of finding all optimal algorithm for the UMTS 

on uniform metric space remains open (even for all MTS on 
the uniform metric space, no optimal algorithm is known, 
see [16]). Such a tight algorithm may give all O(log n)- 
competitive algorithm for HSTs and if so will improve the 
bound for any MTS to O(log 2 n log log n). In order to fur- 
ther improve this bound, one needs to deviate from the black 
box usage of Theorem 2. 

Analogously to the combining algorithms techlfique pre- 
sented in this paper, it is possible to define appropriate ad- 
versaries and combine them in a similar way. 5 If we would 
have matching adversaries, analogous to algorithms R1 and 

• R2, it would be possible to get 1 2 ( ~  log n~ log log n) lower 
bound on the competitive ratio for k-HST on n points. Such 
a result would imply improved f/(logn/(log log n) 2) lower 
bound on the competitive ratio for MTS on any metric 
space. Indeed, Seiden [21] proves a matching lower bound 
for UMTSs on two points, however, it is still open whether 
exists a rl q- 12(log b) lower bound on the competitive ratio 
for UMTSs on uniform metric space with b points and equal 
cost ratios of r~. 

An interesting line of research would be to apply these 
techniques to the (much harder) k-server problem, or even 
for a special case such as the k-weighted caching problem, 
see also [8]. 
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A P P E N D I X  

Given any  metr ic  space M,  we define a new metr ic  space 
pM, p > 0, tha t  is defined on a set of points  {v'lv E M},  
where the distance dpM(V t, u I) --= pdM(V,U) for all u I, v t E 
pM. 

LEMMA 14. Let 0 < /3 << 1 and 0 < f l ip <<_ 1. Assume we 
are given a (flip, rl/ p)-constrained, r-competitive online al- 
gorithm A',  against a reasonable adversary on the UMTS 
U ~ = (s/p, pM, r l , . . .  , rb). This implies that there exists an 
online algorithm A which is (fl, rl)-constrained and r com- 
petitive, against a reasonable adversary on the UMTS U = 
(s, M, r l , . . .  , rb). 

PROOF. Algor i thm A on U M T S  U simulates  a lgor i thm A'  
on U M T S  U ~ by  t rmls la t ing  every task (v, ~) to task (v t, 5). 
The  probabi l i ty  tha t  A associates with configurat ion v is 
the  same as the  probabi l i ty  tha t  algori thm A' associates 
with configurat ion v ~. If the  adversary sequence for A ~ is 
reasonable then  the  s imula ted  adversary sequence for A ~ is 
also reasonable s imply  because the probabil i t ies  for v and  v'  
are identical.  

The  costs of A or A' on task (v, ~) or (v ~, ~) can be par t i -  
t ioned into moving costs and  local costs. As the  probabi l i ty  
d is t r ibut ions  are identical ,  the  local costs for A and  mid A'  
are the  same. The  unweighted moving  costs for A are l i p  
the  tmweighted moving  costs for A t because all dis tances 
are mul t ip l ied  by  1/p. However, the moving  costs for A ~ are 
the  unweighted moving  costs mul t ip l ied by  a factor of s /p  
whereas the  moving  costs for A are the unweighted moving  
costs mul t ip l ied by  a factor of s. Thus,  the  moving  costs are 
also identical.  

To show tha t  A is (fl, r /)-constrained (and hence semi- 
reasonable) we first need to show tha t  if the  work funct ions  
in U mid U'  are equal, t hen  this implies t ha t  if u and  v are 
two configurat ions such tha t  w(u) ">__ w ( v ) +  t3 dM (u, v) t hen  
p(u) = 0. This  is t rue  because A'  is (/3/p, ~//p)-constrained,  
mid thus  w(u')  > w(v t) + (f~/p)" dpM(U', v ~) implies a proba-  
bi l i ty of zero on u ~ for A'  which implies a probabi l i ty  of zero 
on u for A. Next ,  one needs to show tha t  the  work funct ions  
are the  same, this can  be done using an a rgumen t  similar  to 
the  proof of Claim 5. 

As the  work funct ions an d  costs are the  same for the  onl ine  
algori thms A and  A'  it  follows tha t  we can use the  same 
potent ia l  function.  To show tha t  [@[ ~_ r]. A ( M )  we note  
t ha t  [0[ <_ ( t l /p)A(pM).  [] 

Observation 4. Assume tha t  there is a (/3, r /)-coustrained,  r -  
compet i t ive  a lgor i thm A for a U M T S  U = (s, M, r l , . . .  , rb) 

against  a reasonable adversary. Then ,  for all p > 0, a na tu ra l  
modificat ion of A, A' ,  is a (fl, r l)-coustrained, r -compet i t ive  
algori thm against  a reasonable adversary on the UMTS U ~ = 
(s, pM, r l , . . .  ,rb). A task (vl,~) for U'  is s imulated as a 
task (v, 5/p) in U. The  observat ion follows because there is 
a na tu ra l  isomorphism between U mid U ~ mid between the 
original sequence on U mid the  modified sequence on U ~. 

PROOF OF LEMMA 7. For all p > 0 such tha t  tip <_ 1: 

1. By assumpt ion,  there is a (fl, r /)-constrained, f ( s /p ) -  
compet i t ive  a lgor i thm for the  U M T S  (s/p, M, rl . . . . .  rb). 

2. I t  follows from L e m m a  14 tha t  there exists an online al- 
gor i thm tha t  is (p/3, p0)-constra ined,  f (s /p)-competi t ive  
for the U M T S  i s, p -  1 M, r l  . . . . .  rb). 

3. I t  now follows from Observa t ion  4 tha t  there  exists 
a (pfl, pr/)-constrained,  f (s /p)-compet i t ive  online algo- 
r i thm for the  U M T S  ( s , M ,  r l , . . .  ,rb). This  means  
tha t  the  p var iant  of A~ exists. [ ]  

PROOF OF CLAIM 10. Firs t  we show tha t  f is monoton ic  
and  non-decreasing as a funct ion of bo th  r l  and  r2. Since 
the  formula is syanmetric in r l  mid r5  it is enough to check 
monotonic i ty  in rl. Let x = (rl - r2)/s, i t  suffices to show 
tha t  g(x) = sx + r2 q- sx / ( e x. - 1) is monoton ic  in x. Taking 
the  derivative 

e ~(e ~ - (1 + ~))  e ~ 
g'(x) = s .  (e ~ _ 1) 5 >_ 0, since >_ 1 + x. 

Therefore we m ay  assume tha t  r i  ---- 2s(ln x l +  1) and  r2 ---- 
2s( ln x5 + 1). W i t h o u t  loss of general i ty we cml assume tha t  
xl  >_ x2 and  let y > 2 be such tha t  x l  ---- (Xl + x ~ ) ( 1  - l / y ) .  
By subs t i tu t ion  we get 

r l  - r2 = 2s ln (y  - 1) 

mid 

r l  - r2 
f ( s ,  r l , r 2 )  --  r l  q- e(r l_r2) / .  _ 1 - 

ln(y - 1) 
= 2 s  (ln( l + + 1 + l n ( y  - 1)  - In + _ 1 )5  - 

< _ _ 2 s ( l n ( x l + x s ) + l  1 4- l n ( y - - 1 )  

We now prove tha t  for y >_ 2, - {  + ~(u_l)X_l _< 0. W h e n  y 
approaches 2, the  l imit  of the  expression is zero. For y > 2, 
we mul t ip ly  the  left side by  ( y - l )  2 - 1 ,  mid get g(y) = - ( y -  
2) + l n ( y -  1). Since g(2) = 0 and  g'(y) = - l + l / ( y - 1 )  < 0 
for y > 2, we axe done. [ ]  

CLAIM 15. For a >_ b > 0 and z >_ 1, 

a s + (2 ~ . -  2)5 z _< C a + b )  ~. 

PROOF. 

a" + (2" - 2)b • 

< (max{a, 2b}) ~"~ (~m + (2m - 1)bin) 

< (~ + b)~"~(~ + b)t "j < (~ + b y  

The  second inequal i ty  follows since max{a ,  2b} _< a + b and  
from the  sum  of the  b inomia l  coefficients. I'q" 
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