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A B S T R A C T  

We investigate load balancing processes based on the multiple- 
choice paradigm. In these randomized processes m balls are in- 
serted into n bins. In the classical single-choice variant each ball 
is placed simply into a randomly selected bin. In a multiple-choice 
process each ball can be placed into one out of d _> 2 randomly 
selected bins. It is well known that having more than one choice 
for each ball can improve the load balance significantly. In contrast 
to previous work on multiple-choice processes, we investigate the 
heavily loaded case, that is, we assume m >> n rather than m ,.~ n. 
The best previously known results for the multiple-choice pro- 
cesses in the heavily loaded case were obtained by majorization 
from the single-choice process. This yields an upper bound of 
m/n  + O ( ~ n ) .  We show, however, that the multiple- 
choice processes are fundamentally different from the single- 
choice variant in that they have "short memory". The great conse- 
quence of this property is that the deviation of the multiple-choice 
processes from the optimal allocation (i.e., at most [m/n] balls in 
every bin) does not increase with the number of balls as in case of 
the single-choice process. 
In particular, we investigate the allocation obtained by two differ- 
ent multiple-choice allocation schemes, the original greedy scheme 
and the recently presented always-go-left scheme. We show that 
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these schemes result in a maximum load of only m/n  + O(ln in n). 
We point out that our detailed bounds are tight up to additive con- 
stants. 
Furthermore, we investigate the two multiple-choice algorithms in 
a comparative study. We present a majorization result showing that 
the always-go-left scheme obtains a better load balancing than the 
greedy scheme for any choice of n, m, and d. 

1. I N T R O D U C T I O N  

The study of balls-and-bins games or occupancy problems has a 
very long history. These very common models were used to derive 
several results in the area of probability theory with many appli- 
cations to computer science, e.g, hashing or randomized rounding. 
In particular, balls-and-bins games can be used in order to translate 
realistic problems into mathematical ones in a natural way. Exam- 
ples are load balancing and resource allocation in parallel and dis- 
tributed systems. In general, the goal of a balls-and-bins algorithm 
is to allocate a set of independent objects (tasks, jobs, balls) to a 
set of resources (servers, bins, urns) so that the load is distributed 
among the bins as evenly as possible. 

In the classical single-choice game, each ball is placed into a bin 
chosen independently and uniformly at random (i.u.r.). For the case 
of n bins and m > n in n balls it is well known that there exists 
a bin receiving m / n  + O ( V ~  l n n /  n) balls (e.g. see [9]). This 
result holds not only on expectation but with high probability 1. Let 
the max height above average denote the difference between the 
number of balls in the fullest bin and the average number of balls 
per bin. Then t h ~ h t  above average of the single choice al- 
gorithm is O ( ~ / m  I n n  / n). In other words, the deviation between 
the randomized single-choice allocation and the optimal allocation 
increases with the number of balls. 

We investigate randomized multiple-choice allocation schemes. 
The idea of multiple-choice algorithms is to reduce the maximum 
load by choosing a small subset of the bins for each ball at ran- 
dom and placing the ball into one of these bins. Usually, the ball is 
placed simply into a bin with a minimum number of balls among 
the d alternatives. It is well known that having more than one 
choice for each ball can improve the load balancing significantly. 
Previous analysis, however, are only able to deal with the lightly 
loaded case, i.e., m = O(n). We present the first fight analysis for 
the heavily loaded case, i.e., m = w(n).  In particular, we investi- 
gate two different kinds of well known multiple-choice algorithms, 
the greedy scheme and the always-go-left scheme. 

• Algorithm Greedy[d] chooses d > 2 locations for each ball 
i.u.r, from the set of bins. This process has been introduced 

lWe say an event A to occur with high probability (w.h.p.) if 
Pr[A] > 1 - n -`~ for an arbitrarily chosen constant a _> 1. 
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by Azar et al. in [1]. It is assumed that the m balls are 
inserted one by one, and each ball is placed into the least 
loaded among its d locations. (If several locations have the 
same minimum load, then the ball is placed into an arbitrary 
one among them.) Azar et al. show that the max height above 
average of Left[d] is only (ln i n n ) /  in d + O(m/n ) ,  w.h.p. 

• Algorithm Left[d] has been introduced and analyzed by 
V6cking [11]. This algorithm partitions the set of bins into 
d groups of equal size. These groups are ordered from left 
to right. For each ball, we choose the ith location for each 
ball from the ith group i.u.r. The ball is placed in one of the 
least loaded bins among these locations. If there are several 
locations having the same minimum load, the ball is always 
placed into the leftmost group containing one of these loca- 
tions. Surprisingly, the use of this unfair tie breaking mech- 
anism leads to a better load balancing than a fair mechanism 
that solves ties at random. In particular, the max height above 
average produced by Left[d] is only in lnn/d* + e ( m / n )  
with d* ,-~ d In 2. 

In the lightly loaded case, the bounds above are tight up to addi- 
tive constants. In the heavily loaded case, however, these bounds 
are even not as good as the bounds known for the classical single- 
choice process. In fact, the best known bound for the multiple- 
choice algorithms in the heavily loaded case are obtained using 
majorization from the single-choice process showing only that the 
multiple-choice algorithms does not behave worse than the single- 
choice process. 

Unfortunately, the known methods for analyzing the multiple- 
choice algorithms do not allow to obtain better results for the heav- 
ily loaded case. Both the techniques used in [1] ("layered induc- 
tion") and [11] ("witness trees") inherently assume a load of 2 m / n  
already in their base case. Altemative proof techniques using dif- 
ferential equations as suggested in [7; 8; 10; 12] fail for the heav- 
ily loaded case, too, because the concentration results obtained by 
Kurtz's theorem hold only for a limited number of balls. Therefore, 
the analysis of the heavily loaded case requires new ideas. Before 
we proceed with the detailed statement of our results we first pro- 
vide some terminology. 

1.1 Basic definitions and notations 

We model the state of the system by load vectors. A load vector 
u = (U l , . . .  , u,~) specifies that the number of balls in the/ th bin 
is ui. If u is normalized then the entries in the vector are sorted in 
decreasing order so that u~ describes the number of balls in the ith 
fullest bin. In case of Greedy[all, the order among the bins does not 
matter so that we can restrict the state space to normalized vectors. 
In case of Left[d], however, we need to consider general vectors. 

Suppose Xt  denotes the load vector at time t, i.e., after inserting t 
balls using Greedy[d] or Left[all, respectively. Then the stochastic 
process (Xt)teN corresponds to a Markov Chain 99l = (Xt)teN 
whose transition probabilities are defined by the respective alloca- 
tion process. In particular, X t  is a random variable obeying some 
probability distribution 12 defined by the allocation scheme• We use 
a standard measure of discrepancy between two probability distri- 
butions ~9 and u on a space f2. The variation distance, defined as 

1 
110 - ~'ll = ~ ~ It(~o) - u(w)l = r~c_~(O(A) - v(A))  . 

wEf~ 

A basic technique which we apply is coupling (cf., e.g., [3]). A cou- 
pling for two (possibly the same) Markov chains ffJtx = (Xt)teN 

with state space f2x and fifty = (Yt)ter~ with state space f~v is 
a stochastic process (Xt ,  Yt)teN on f ix  x f~v such that each of 
(Xt)teN and (Ye)tcN is a faithfull copy of DZx and 9Xy, respec- 
tively. 
Another basic concept that we use frequently is majorization (cf., 
e.g., [2]). We say that a vector u = ( u l , . . .  ,u,~) is majorizedby 
a vector v, written u < v, if for 1 < i < n,  if 

l < j < i  l < j < i  

where rr and a are permutations of 1 , . . .  , n  such that u,~(1) _> 
u,~(2) >_ ' "  >_ u,~(n) and v,,o) _> v,,(2) _> - "  _> vo(,q. Given an 
allocation scheme X defining a Markov Chain 9Rx = (Xt)teN 
and an allocation scheme y defining a Markov Chain 93Iv = 
(Yt)t~r~, we say that X is majorized by 3) if there is a coupling 
between the two Markov chains 93lx and 9Jig such that Xt  <_ Yt, 
for all t E N. 

In order to express our results of the always-go-left scheme we use 
Fibonacci numbers. Define Fd(k) = 0 for k <_ 0, Fa(1) = 1, and 
Fd(k) = ~ d = l  F d ( k - i )  fork  _> 2. LetCd = limk~oo ~ ,  
so that Fa(k) = O(¢dk). Notice that ¢2 corresponds to the golden 
ratio. In general 1.61 < ¢2 < Ca < • • - < 2. 

1.2 New Resu l t s  

We present the first tight analysis for multiple-choice algorithms as- 
suming an arbitrary number of balls. In particular, we show that the 
multiple-choice games are fundamentally different from the classi- 
cal single-choice game in that they have "short memory". 

THEOREM 1. Let ~ > 0. Let d > 2 be any integer. Let 
X and Y be any two load vectors describing the allocation of 
M balls to n bins. Let X t  (Yt) be the random variable that de- 
scribes the load vector after allocating t further balls on top of 
X (Y, respectively) using protocol Greedy[d]. Then there is a 
~- = O(n  2 M + n 4 ln( M e - l ) )  such that ]112(Xr) - 12(Yr ) l[ __< e. 

In other words, given any configuration with a maximum load dif- 
ference A between any pair of bins, the Greedy [d] process forgets 
this inbalance in A - po ly(n)  steps. The allocation after inserting 
further A • poly(n)  bails is undistinguishable from an allocation 
obtained by starting from a totally balanced system. This is in con- 
trast to the single-choice game requiting A 2. poly (n) steps in order 
to forget a load difference of A. 
We show that this property yields a fundamental difference between 
the allocation obtained by the multiple- and the single-choice algo- 
rithms. While the allocation of the single-choice algorithm devi- 
ates more and more from the optimal allocation with an increasing 
number of balls, the deviation between the multiple-choice and the 
optimal allocation is independent from the number of balls. 

THEOREM 2. Suppose we allocate m balls to n bins using 
Greedy[d] with d >_ 2. Then the number of  bins with load at least 
m + i + 7 is bounded above by n • e x p ( - d  i), w.h.p., where 7 
n 

denotes a suitable constant. 

This result is tight up to additive constants in the sense that, for 
m _> n, the number of bins with load at least "~,~ + i -4- O(1) is 
also bounded below by n • e x p ( - d  i), w.h.p. In particular, our 
result yields an almost exact estimation for the number of balls in 
the fullest bin, that is, the max height above average is at most 
l n l n n  ::1= O(1), w.h.p. 

in  d 

The result for the always-go-left scheme is even slightly better. The 
allocation is described in terms of Fibonacci numbers defined in the 
last section. 
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THEOREM 3. Suppose we allocate rn balls to n bins using 
Left[d] with d > 2. Then the number of  bins with load at least 
m + i + 7 is bounded above by n .  exp(--¢dd4), w.h.p., where 7 
denotes a suitable constant. 

Also this bound is tight up to additive constants because the num- 
ber of bins with load at least -~ + i 4- 0 (1 )  is lower bounded by 

n • exp(-¢ua ' i ) ,  w.h.p., too. In particular, the max height above 
average produced by Left[d] is only 1~ l ~  + 0(1) ,  w.h.p. 
In addition to these quantitative results, we investigate the relation- 
ship between the greedy and the always-go-left scheme directly. 

THEOREM 4. Left[d] is majorized by Greedy[d]. 

In other words, we show that the always-go-left scheme produces a 
better load balancing than the greedy scheme for any choices of n, 
m, andd. 

1.3 Outline 

First, we will present the analysis for the greedy process. In Section 
2, we will show that Greedy[d] has short memory. Based on this 
property, we will show in Section 3 that one only needs to consider 
a polynomial number of balls in order to analyze the allocation for 
an arbitrary number of balls. In Section 4, we will analyze the 
allocation generated by Greedy[d] assuming a polynomial number 
of balls. 

Second, we will present the analysis for the always-go-left process. 
Here we do not prove the short memory property explicitly. Instead 
our main tool is majorization of  Left[d] by Greedy[d]. In Section 
5, we will show this majorization. In Section 6, we will analyze the 
allocation obtained by Left[d] based on the knowledge about the 
allocation of Greedy[d]. 

2. GREEDY HAS SHORT M E M O R Y  

In this section we prove Theorem 1. For every k > 0, let f2k denote 
the set of normalized load vectors with k balls. Let X and Y denote 
two vectors from f~M. We add further balls on top of the allocations 
described by these vectors and asked how many balls do we have 
to add until the two allocations are almost indistinguishable. 
In our analysis, we shall investigate the following Markov chain 
~O~[d] = (Ad,)t~N, which models the behavior of protocol 
Greedy[d]: 

Input: A4o is any load vector in f~ M 

Transitions fl4t ~ J~t+l: 

Pick q E [n] at random such that 

Pr[q = k] = (n + 1 - k) d - (n - k) d 
n d 

A4t+ l is obtained from .A4t by adding 
a new ball to the qth fullest bin 

Let us remark that the choice of q is equivalent to the choice 
obtained by the following simple randomized process: Pick 
ql, q2 . . . .  , qd E [n] i.u.r, and then set q ---- max{q~ : 1 < i < d}. 
Therefore, using the notation from Theorem 1, conditioned on 
.Ado = X,  it holds X t  = .A4t, and similarly, conditioned on 
.A4o = Y it holds Yt = .A4t. 
Our main tool in the analysis of this Markov chain is a variant of 
the path coupling argument of Bubley and Dyer [4]. This variant 
was introduced in [5] and is described in the following lemma. 

LEMMA 1. (Neighboring-Coupling Lemma)  Let ~J~ = 
(Yt)ter~ be a discrete-time Markov chain with a state space fL Let 
f~* C_ fL Let F be any subset off~* × f~* (elements (X ,  Y )  E F 
are called neighbors). Suppose that there is an integer D such 
that for  every (X ,  Y )  E ~2" × f~* there exists a sequence X = 
A o , A 1 , . . .  , A t  = Y ,  where (A i ,A i+ l )  E F forO < i < r, and 
r<_D.  

I f  there exists a coupling (X t ,  Yt)t~N for  93~ such that for  some 
T E N it holds Pr[XT ~ Yv ] (Xo,  Yo) = (X ,  Y)] _< ~ for  all 
(X ,  Y )  E F, then 

[l~(X~lXo = x )  - £ ( ~ [ Y o  = Y) _< ell, 

for  every (X ,  Y )  E f~* × f]*. 

PROOF. For any pair of  neighbors (A, A') E F we have 

e 
[]£(Zt[Zo -- A) - £ ( Z t l Z o  = A')H _< 

by the well known coupling lemma (see, e.g., [3, Lemma 3.6]). As 
a consequence, 

II£(ztlZo = X )  - ~.(ZtlZo = Y)II 
r 

< ~ [I£(Zt[Zo = A,) - £(ZtlZo = A,-~)II 
i= l  

e 
< r . ~ < e .  

[ ]  

Thus, if we can find a neighboring-coupling, we obtain immedi- 
ately a bound on the total variation distance in terms of the tail 
probabilities of the coupling time, i.e., a random time qi" for which 
X t  = Yt for all t >_ T. 
In order to apply Lemma 1, we must first define the notion of neigh- 
bors. Let us fix M and n. Let us define f~* = ~'~M and let F to be 
the set of pairs of those load vectors from ~'~M which correspond 
to the balls' allocations that differ in exactly one ball. In that ease, 
if  X can be obtained from Y by moving a ball from the ith fullest 
bin into the j th  fullest bin, then we shall write X = Y - e~ + e~. 
Thus ,  

F : { ( X ,  Y)  E ~~M X ~'~M I X  : Y - e i  + e j  

for certain i, j E [n], i ¢ j}  . 

Clearly, for each X,  Y E 12M there exists a sequence X = 
Z (°) , Z O ) , . . .  , Z (z-l) , Z (t) = Y, where I is the number of balls 
on which X and Y differ, and (Z(O,Z(~+I))  E F for every i, 
0 < i < l - 1. Notice further that l < M.  Thus, we can apply 
the Neighboring-Coupling Lemma with D = M.  In this way, it 
only remains to show the following lemma in order to complete the 
proof of Theorem 1. 

LEMMA 2. Let e > 0. Let d _> 2 be integer. Then, there exists 
']I" = O ( m n 2  + n a • l n ( m / e ) ) s u c h  that for  any T >_ 7£ and any 
X ,  Y E F it holds that 

I'r[x. ¢ Y.] < 
- -  M "  

In the rest of this section, we deal with the proof of Lemma 2. For 
simplicity, we shall assume d = 2. (In fact, the case d > 2 requires 
some more arguments.) For any load vectors X = ( x l , . . .  , x~) 
and Y : (yl ,  • . .  y,~) with X = Y - e i + e j ,  i, j E [n], let us define 
the distance function A ( X ,  Y )  to be the maximum of Ix i - x j l and 
lu ,  - y J l .  
Observe that A ( X ,  Y) is always a non-negative integer, it is zero 
only if X = Y, and that it never takes the value of  1. The following 
lemma describes main properties of the desired coupling. 
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/ -&+,l-&d-,  I.+.++.+o91 
9 a O + 0 s . ~  3 ~  y .  , 0 + 0 , 3 + ,  

Figure 1: An example of vectors X and Y that differ only in one 
ball. In this case X = Y - ea + e5 so that A(X,  Y) = max{ Ix3 - 
• 51, Iw - yhl} = 2. 

LEMMA 3. I f  (X ,  Y )  E F then there exists a coupling 
(Xt, Yt)teN for  9)I[2] that, conditioned on (Xo, ]Io) = (X ,  Y) ,  
possesses the following properties: 

• for every t E N, i f X t  = Yt then Xt+l  = Yt+l, 

• for  every t C N, i f X t  ~ }It then X t  and Yt differ in at most 
one ball, 

• A ( X + + t , Y t + t ) - A ( X t , Y t )  E { - 2 , - 1 , 0 ,  1} forevery t  C 
N, and 

• for every t @ N, i f X t  ~ Yt then we have 

E [ A ( X t + I ,  Y t + l )  I X t ,  Y t ]  ~_ A ( X t ,  Y t )  - ~ , 

where ~ : min{Pr[Greedy[2] picks the j th  fullest bin] - 
Pr[Greedy[2] picks the ith fullest bin] : i, j E [hi, i < j }  
and ~ >_ 1 /n  ~. 

PROOF. We use the following natural coupling: each time we 
increase the vectors X and Y by one ball, we use the same random 
choice. That is, in each step the obtained load vectors will be ob- 
tained from X and Y, respectively, by allocating a new bail to the 
qth fullest bin for certain q C [n]. 
The lemma follows directly from the following properties of the 
coupling. Consider X, Y from ~'~M w i t h  X : Y - e i  --~ e j  f o r  c e r -  

t a i n  i < j .  Let Xq and Yq be obtained from X and Y, respectively, 
by allocating a new bail to the qth fullest bin. Then, 

® either Xq = Yq and A ( X q ,  Yq) = A ( X ,  Y) - 2, or 

® (Xq, Yq) differ in one ball and 

A ( X , Y ) - I  if and only if q = j 
A(Xq ,  Yq) = A ( X ,  Y) + 1 if and only i fq : i 

A(X ,  Y) otherwise. 

The proof for these properties is by case analysis which is tedious 
but otherwise straightforward, and therefore we omit it here. [ ]  

Finally, we define At  = A ( X t ,  Yt), for t > 0. From Lemma 3, 
we obtain that At  behaves like a random walk with drift towards 0. 
Analyzing this random walk yields that At  = 0 with probability p, 
for t = e ( M n  2 + n 4 . lnp) .  This implies Lemma 2 and, hence, 
Theorem 1. 

3. A R E D U C T I O N  TO A P O L Y N O M I A L  N U M B E R  

OF BALLS 

Now we show how to use the short memory property for the analy- 
sis of Greedy[d] in the heavily loaded case. We use the following 
corollary which follows directly from Theorem 1 assuming that n 
is sufficiently large. 

COROLLARY 1. Suppose X0 = ( x t , . . .  ,x,~) is any normal- 
ized load vector describing an allocation of  some number of  balls 
to n bins. Define A = xn - x l  to be the maximum load difference 
in Xo. Let ]Io be the load vector describing the optimal allocation 
of  the same number of balls to n bins. Let X k  and Yk, respectively, 
denote the vectors obtained after inserting k >_ I further balls to 
both systems using Greedy[d]. Then 

l[£(Xk) - ZZ(Yk)II _< k -~ ,  

for k > nh A, where ~ denotes an arbitrary constant. 

Using this corollary, we present a general transformation which 
shows that the allocation obtained by an allocation process with 
short memory is more or less independent of the number of balls. 
The following theorem shows that the allocation is basically deter- 
mined after inserting a polynomial number of balls. 

THEOREM 5. Suppose 79 is an allocation protocol that has 
short memory and is majorized by the single-choiceprocess. Let 

X m  = (x~ m) . . . .  , x(~ "~) ) be a load vector obtained after allocat- 
m _(m) m ing m balls with 79. Define f f  ~ = ( x~ m) - £ , . . .  , ~,~ - -~ ). 

Then for every M > N = n z5 and being a multiple of  n, 

IIZ:(XM) -- zz(2N)ll _< N -~, 
where a denotes an arbitrary constant. 

The following lemma shows that the variation distance between 
two systems with M and M ° s  balls, respectively, is very small. 

LEMMA 4. Suppose M and m being multiples of  n with M > 
n 25 and M > m > M °'s. Then 

[I£()(M) - - / : ( -~m)i l  < M -~ .  

PROOF. Set m '  = M - m. We use the majorization from the 
single-choice process to describe the situation after inserting ra'  
bails. With probability p, each bin contains m '  4- O (v/pro ' in n / n )  
bails. Let A = M °'~. Applying M > m '  > n and doing some 
calculations yields that every bin contains between -~- - A / 2  and 
m t 
--~ + A / 2  bails, with probability 1 - p, for p = M- '~ /2 .  

For the time being, let us assume that the entries in Xm, are 
in the A-range specified above. Let Y describe another system 
in which the first m '  balls are inserted in an optimal way, that 

rr~ t rr~ t 
is, Ym' = (--~-,.-.  ,-W)" Now we add m balls using proto- 
col 7 9 on top of X ~ ,  and Ym,, respectively. Observe that m > 
M ° s  > n ~ M  °6 > nhA.  Thus, applying Corollary 1, we obtain 
II£(XM) - t:(YM)II <_ m 2~ + P < M- '~ /2 .  [] 

For M < N 1/°'s, Lemma 4 directly implies Theorem 5. Oth- 
erwise, we have to apply the lemma repeatedly as follows. Let 
too, m l , . .  • ,mk denote a sequence of integers such that m o =  N,  

~,F~ o~ ot 0.s < m + _ l ,  and ~ > 2 m ~ _  1.Then ?T~k : M ,  m i _ 

k 

IIL(2M)- C(2N)II < ~ IIC(2m,)- C(2..,_1)1i 
i=1 

k 

< ~ rn~ ~ < N - ~  
i=1  

where the last equation follows because ra~ -'~ < 2 - ' t o o  '~ = 
2 - 1 N  -'~. This completes the proof of Theorem 5. 
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4. T H E  A L L O C A T I O N  G E N E R A T E D  B Y  G R E E D Y  

In this section, we investigate the allocation obtained by Greedy[d] 
in the heavily loaded case. In particular, we prove the bounds 
given in Theorem 2. Our arguments in the previous sections, 2 
and 3, show that we can restrict ourselves to a polynomial number 
of balls in order to analyze the allocation for an arbitrary number of 
balls. In particular, we assume m < n 25. Furthermore, we assume 
w.l.o.g, that m is a multiple of n. We will show that the number 
of bins with load m,~ + i + 7 is bounded above by n • e x p ( - d  i), 
w.h.p., where "), is a suitable constant. 
For the analysis, we divide the set of balls into batches of size n 
each. The allocation at time t describes the number of balls in the 
bins after we have inserted the balls of  the first t batches, i.e., after 
placing t n  balls, starting with a set of empty bins at time 0. 
We prove the theorem by an induction on t. Our induction must 
hold only for a polynomial number of steps. Nevertheless, we are 
not allowed to weaken the constraints on the allocation even by 
only one ball per step, as this would result in a too large deviation 
after a polynomial number of steps. Our trick that solves this prob- 
lem is considering not only the balls lying above the average load 
but also the "holes" below the average load. 
Obviously, the average number of balls per bin at time t is t. The 
bins with less than t balls are called light bins and the bins with 
more than t balls are called heavy bins. The number o f  holes at 
time t is defined as the number of balls one has to add to the bins 
so that each bin has load at least t. 
We investigate the number of holes in the light bins and the number 
of balls in the heavy bins batch by batch in an interleaved induction. 
The analyses for the light and the heavy bins are almost indepen- 
dent from each other. Each of  them uses only one simple but crucial 
induction assumption provided by the other. These assumptions are 
given by the following two invariants. 

• L(t):  at time t, there are at most 2 n holes below height t. 

• H( t ) :  at time t, there are at most n /32000 balls with height 
t + 12 or larger. 

Clearly, since t is the average number of balls per bin at time t, the 
number of holes below height t corresponds to the number of balls 
above height t. Thus, Invariant L( t )  implies that there are at most 
2n balls with height t + 1 or larger at time t. Obviously, this is a 
very helpful assumption for bounding the height of the heavy bins. 

4.1 Analysis for the light bins (Invariant L) 

In order to show the simple bound on the total number of holes 
given in invariant L, we have to give almost exact bounds on the 
distribution of the holes among the light bins. A simple coupling ar- 
gument (cf. also [2, Theorem 3.5]) shows that the number of holes 
generated by Greedy[d] with d > 2 is majorized by the number 
of holes generated by Greedy[2]. The same argument shows that 
the tie breaking mechanism is irrelevant in case of the greedy al- 
gorithm. Therefore, we only need to consider Greedy[2] using a 
randomized tie breaking mechanism. 

Let vt_<~ denote the number of bins with load at most t - i at time t. 
Define cq = 0.80, o~z = 0.55, and c~i = 1.9 - /+1,  for i > 3. We 
will show the following invariants by induction: 

• L l ( t ) :  vt<i < c~/n, for 1 < i < Cl Inn,  

• L2(t): vt_</= 0, f o r / >  c~.lnn, 

where cl ,  c2 denote suitable constants, Cl _< c2. Conditioning on 
the fact that L1, L2, and H hold up to time t - 1, we show that 

L( t ) ,  L1 (t), and L2 (t) follow, w.h.p. Notice that invariant L( t )  is 
implied by L1 (t) and L2(t)  because these invariants yield that the 
number of holes at time t is at most 

E c ~ / n  + n .  (1.9) - c l  In(n)+1 . C2 lnn ,  
i>1  

which is bounded above by 2n.(Throughout the analysis, we as- 
sume w.l.o.g, that n is sufficiently large.) Hence, it remains to 
show only L1 (t) and L2 (t). In the rest of this subsection we shall 
condition on L I ( T ) ,  L 2 ( T ) ,  and H ( T )  for all T < t. 
We start the analysis with a simple observation. The major reason 
why the number of holes is very limited is, that bins with fewer 
balls are more likely to get a ball than bins with more balls. This 
can be formalized as follows. 

OBSERVATION 1. Let g be an arbitrary integer and assume that 
at some point o f  time there exist at most aon bins with at most g 
balls and at most a l n  bins with less than g balls. Suppose that 
b is a bin with load exactly g. Then the probability, that the next 
ball allocated by Greedy[2] will be placed into bin b is at least 
(2 - ao - a l ) / n .  

Combining the bound in Observation 1 with invariant L1 (T - 1), 
for 1 ___ T < t, we conclude that the probability that a ball from 
batch T falls into a fixed bin b holding T - i or less balls is at least 
(2 - 1.9 - i+2  - 1 .9 - /+3) /n .  For example, if  b contains T - 11 
or less balls then this probability is larger than 1 .99/n which is 
almost twice the average probability over all bins. This gives a clear 
intuition why none of  the bins falls far behind, which is formalized 
in the following lemma. 

LEMMA 5. Let co, c i ,  e2 denote suitable constants. For any i 
with co < i _< cl Inn,  at most n .  1.9 -I+1 bins contain t - i or 
less balls at time t, w.h.p. Furthermore, every bin contains at least 
t - c2 I n n  balls, w.h.p. 

PROOF. Let co < i <_ Cl in n, where co and cl will be specified 
later, and consider a bin b. Let qT denote the number of holes in 
bin b below height T after round T - 11. Assume t t < t is such 
that 

qt' = 0, qt > i, and qT > O, for all t '  < T < t. 

Then, as outlined above, Observation 1 together with invariant 
L1 (T) implies that the probability that a ball from a batch t '  < 
T < t falls into a bin b is at least at least 1.99/n. That is, the 
number of balls which are placed into bin b during rounds t '  + 1 
to t is stochastically dominated by a binomially distributed random 
variable BIN((t  - t ' )  • n, 1.99/n) .  Hence, 

t--1 

Pr[qt > i] < E Pr [S lN(( t  - t ' )  . n ,  1 .99/n)  < (t - i) - t'] 
U = 0  

< ~ P r [ S I N ( r  • n ,  1 . 9 9 / n )  < r - i] . 
r > l  

We claim that, for n sufficiently large, Pr[BIN(r  • n, 1.99/n) < 
r - i] < 1 .05-"  - 4 - / .  This is easily shown by induction on r 
(condition on the outcome of the first n events). Hence, 

Pr[qt > i ]  < E 1 " 0 5  - ~ - . 4  - /  g 2 0 . 4  - /  . 
- r> l  

Consequently, qt = O(log n), w.h.p., so that we can conclude that, 
for some suitable constant c2, every bin includes at least T -  c2 In n 
balls, w.h.p. 
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Next we show that for any i with co < i <__ Cl In n at most n • 
1.9 -~+1 bins include T - i or less balls at time T,  w.h.p. Let Xb 
denote the event that bin b includes T - i or less balls. From the 
above analysis we can conclude that for any i > co = 24 

E[}-~Xb] _< n • e r [q t  _> i -  11] 

< n . 2 0 . 4  - i + n  

1 _< ~ • n .  1.9 - i+1  

for any i > Co = 24. Applying the zero-one lemma for balls and 
bins [6] we conclude that the random variables X b  are "negatively 
associated" so that we can apply a Chernoff bound, which yields 

E X b  _< m a x { n .  1.9-~+1,v/-~} , 

w.h.p. We set Cl = 1/ (21n(1 .9) )  = 0.77 . . . .  Then E X b  ~_- 
n - 1.9 - i+1 ,  w.h.p, for i < cl In n,  which yields the lemma. [ ]  

Lemma 5 yields invariant L2( t )  and invariant L~( t )  but only for 
i > co. Thus, it remains to show invariant L1 (t) for 1 < i < co. 
The following lemma estimates how the allocation of balls changes 
when placing n balls with Greedy[2] on the top of some previously 
placed balls. 

LEMMA 6. Le te  > O a n d a o , . . .  ,a4 w i thO < aa < " .ao < 
1 be constant  reals. Let  k and  ~ denote  any integers. Suppose  f o r  
i = O , . . .  , 4 there are at most  a~n bins wi th  load at most  ~ - i 
balls  at t ime t - 1. Then, at  t ime t, the number  o f  bins wi th  load at  
most  ~ is less than or equal  to g(O, k)  . n, w.h.p., where  the func t ion  
g is def ined by g( i ,  j )  = ai, i f j  = 0 or  i = 4, and  otherwise  

g ( i , j )  = 

( l + e )  - ( g ( i +  l , j - 1 )  + ( g ( i , j - 1 )  - g ( i + l , j - 1 ) ) .  E )  , 

where  

E = e x p (  2-g(i+l,j-1)-g(i,j-1))k 

The func t ion  g is monotonical ly  increasing in each o f  the (implicit) 
parameters  ao, . . . , ak. 

PROOF. We divide the allocation of the n balls into k phases in 
each of which we insert n / k  balls using Greedy[2]. (For simplicity 
we assume that n is a multiple ofk . )  For 0 < i < 4 and 0 _< j _< k, 
we show that n .  g( i ,  j )  is an upper bound on the number bins with 
load at most £ - i after phase j .  
For j = 0 or i = 4 the statement above holds trivially. Now sup- 
pose the statement is true for g(0, j - 1 ) , . . .  , g(4, j - 1). Consider 
the allocation of the n / k  balls in phase j .  Suppose b is a bin having 
load ~ - i (0 _< i < 3) at the beginning of that phase. Observation 
1 yields that the probability that b receives none of the next n / k  
balls i s a t  most 

( 1 - 2 - g ( i ' j - 1 ) - g ( i + l ' j - 1 ) )  <- E . 

Thus, the expected number  of bins that include at most ~ - i balls 
at the end of phase k is upper bounded by 

n . g ( i +  l , j - 1 )  + n . ( g ( i , j - 1 )  - g ( i +  l , j - 1 ) )  . E 

for 0 _< i < 3, which, by our definition, is equivalent to 
n • g ( i , j ) / ( 1  + e). Applying Azuma's  inequality, we can observe 
that the deviation from this expectation is only o(n) ,  w.h.p. Fur- 
thermore, as n • g ( i , j )  _> n • a 4  : O ( n ) ,  we conclude that we 
deviate only by a factor of (1 + e) from the expected value, so that 

the number  of bins that include at most ~ - i balls at the end of 
phase k is at most n .  g ( i , j ) ,  w.h.p. 
Finally, we show the monotonicity properties of g. We observe that 
g (i, j ) is monotonically increasing in g (i, j - 1 ) and g (£ + 1, j - 1), 
for any 0 < i < 3 and 1 < j < k, Thus, g(0, k) is monotonically 
increasing in ao, .  • • , a4, which completes the proof of the lemma. 
[ ]  

For 2 < i < co, setting ao = a i - l , a l  = a i , . . .  ,a4  = ai+3,  
the recurrence in Lemma 6 yields invariant L l ( t ) .  Notice that 
a o , , . .  , a4 fulfill the assumptions made in the lemma because we 
condition on invariant L l ( t  - 1). The respective calculations are 
done numerically with Maple using Using k = 40 and e = 10 -4 .  
To show L l ( t )  for i = 1, we use the recurrence in Lemma 6, too. 
Here the challenging task, however, is to find an appropriate value 
for ao. On the one hand, we require a o n  >- 1"<ot-~" On the other 

hand, we want to show that g(0, k) < a l .  For example, we may 
t--1 

set ao = 1.0 as this is a trivial upper bound on V<o / n ,  It turns out, 

however, that this value is too large so that g(0, k) > a l .  Thus, we 
have to use a more clever way to upper bound U_o . 
The number  of  holes below height t - 1 at time t - 1 is A :=  

.>. vt-~ 1. As the number  of balls above the average height is 
3 ~ _3 

equ~il to the number  of holes below the average height, we can con- 
clude that the number  of balls above height t - 1 is at least A, 
too, Furthermore, we can conclude from invariant H ( t  - 1) that, 
at the same time, there are at most B :=  n / 3 2 0 0 0  balls of height 
(t  - 1) + 12 = t + 11 or larger. Combining these two bounds, 
the number  of balls which have height from t to t + 10 is at least 
A - B. This, however, requires that at least (A - B ) / 1 1  bins are 
filled with at least t balls, which gives us the desired upper bound 

t--1 on ~'___o , i.e., 

A - B  t - 1  < n 
v<-° -- 11 

 , 000 
11 

_ n / 3 2 0 0 0  

< n - -  
- 11 

Now, we check all possible choices for ao , .  • • , a4 such that a~ < 
a~_~, for 1 < j < 4, and ao < 1 - ( ( ~ 4 = ~  as ) _ 1 /32000) /11 .  
In order to do so we make use of the monotonicity properties of 
g(0, k). On one hand, the function g(0, k) is monotonically in- 
creasing in ao and ao is monotonically decreasing in each of the 
parameters 4 1 , . . .  , 44. On the other hand, for fixed ao, the func- 
tion g(0, k) is monotonically increasing in each of the parame- 
ters 41, • • • , a4. Therefore, it is sufficient to check the parameters 
a l , . . .  , 44 in steps of 0.02 while assuming 

ao < 1 - (~--~=l(aJ - 0.02)) - 1 /32000 

- 11 

< 1 - ( E ~ = l a 3 )  - 0.09 
- 11 

We do all these computations assuming k = 40 and e = 10 -4.  
For all possible choices, we obtain the desired result, i.e., r,~_l <_ 
g(0, k) _< a l .  

4.2 A n a l y s i s  for  t h e  h e a v y  b i n s  ( I n v a r i a n t  H)  

In order to prove the bounds on the allocation of balls in the heavy 
bins, we use the upper bound on the number  of holes given by in- 
variant L. Let ~'~i denote the number  of bins with load at least 
t + 8 + i at time t_We will estimate these numbers using a function 
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f ,  which is defined as follows. Let a = [lOgd(0.91og 2 n -- 1)], 
and let b _> 1 denote a suitable constant, which will be specified 
later. Define 

exp 2 ( - d ' -  1) , fo r0  < i  < f ( i )  

f ( a )  = m a x { ¼ n - ° ' 9 , e x P 2  ( - d  ' ~ -  1)( , 

f ( n + l )  = bin  , 

For every point of time t, we will show the following invariants. 

• HI(t):  u~i _< f ( i )  .n,  for0 < i < ~; 

H2 (t): u t • ~ i > , ¢  >i -< b; 

Roughly speaking, invariant H1 states that the sequence 
u>o, u> 1 , . , .  , u>,~ decreases doubly exponentially from n down 
to-,~ n ° l ,  and i-nvariant H2 states that there is only a constant 
number of balls above the last layer considered in this sequence. 
Clearly, these invariants yield the bounds given in Theorem 2. 
We show the invariants HI  and 1-/2 by induction. Our induction 
assumptions are H I ( 0 ) , . . .  , H l ( t  - 1), H2(t  - 1), and L(t) .  
We show that these assumptions imply HI( t ) ,  H2(t) ,  and H( t ) ,  
w.h.p. Observe that H1 (t) immediately implies H(t )  because it 
states that the number of balls of height 12 or larger is at most 
~-~i> 12 u_>~-s _< }~i_>4 f ( i ) .  n <_ n/32000.  Thus, it remains only 
to show Hi ( t )  and / /2  (t). We start our analysis by summarizing 
some properties of the function f .  

OBSERVATION 2. 

A1) f(O) = 0.25; 

A2) f ( i )  > 4 f ( i  q- 1),for L < i < ~; 

A3) f ( i )  > 2 f ( i -  1)d, f o r l  < i < ~ +  1 

A4) f ( i )  >_ 0 .25n-° '9 , forO < i < ~. 

Property A2 requires that n is sufficiently large so that 
f(t~) >_ 4b/n  = 4 f ( n  + 1). Property A3 follows from 

2exp 2 ( - d  i -1 - 1) d _< exp2 ( - d  ~ - 1). Property A4 holds 
because n is defined to be the smallest integer such that 
exp 2 ( - d "  - 1) _< n - ° 9 ,  so that for all all i < ~, f ( i )  > n -°'9. 
First, we show H1 (t) using a "layered induction" on i, similar to 
the analysis presented in [2]. For the base case (i.e., i=0) we apply 
invariant L(t) .  This invariant yields that, at time t, there are at most 
2n balls of height larger than t. Consequently, the number of bins 
with t + 8 or more balls is at most 2n /8  = n /4 .  Applying property 
A1 yields v>o < n / 4  = f(O) • n. Thus, invariant Hi( t )  is shown 
for the case i = 0. 
Now we show HI( t )  for i _> 1. We assume that Hi( t )  holds for 
i - 1. Let h(i) denote the number of bins that hold already t + 8 + i 
or more balls at the beginning of round t, and let h'( i)  denote the 
number of balls from batch t that are placed into a bin containing 
at least t + 8 + i - 1 balls. Observe that v~i <_ h(i) + h'(i).  Thus, 
we only have to show that h(i) + h' (i) <_ f ( i )  • n. 
Applying induction assumption H1 (t - 1), we immediately obtain 

t--1 h(i) < //>i+1 

< f ( i  + 1). n 
(A2) 
_< f ( ~ ) . ~ / 4 ,  

f o r l  < i <  n. 
Bounding above h ~(i) requires some further arguments. For 1 < 
i < ~, the probability that a fixed ball of batch t is allocated to 
height t + 8 ÷ i is at most f ( i  - 1) d. This is because each of its 

locations has to point to one of the bins with t + 8 + i - I or more 
balls. By our induction on i, the number of these bins is bounded 
above by f ( i  - 1). Taking into account all n balls of round t, we 
obtain 

E[h(i)] _< f ( i  - 1 ) d . n  
(A3) 
_< f ( i ) - n / 2  . 

Applying a Chernoff bound yields 

Pr[h(i)  _> 1 .5 ( f ( i ) .  n /2)]  _< exp (0.52(f(i)  • n / 2 ) / 2 )  
(A4) 
_< e x p  ( ~ ° 1 / 3 2 )  , 

for 1 < i < ~. Consequently, h'(i)  < 0.75f( i )  • n, w.h.p., so that 
u~_~ <_ h( i) + h' ( i) < f ( i) . n. Hence, invariant Hi( t )  is shown. 
Finally, we prove invariant/ /2 (t). For 0 < T < t, let XT denote 
a random variable which is one if at least one ball of round T is 
allocated into a bin with load larger than T + 8 + ~, and zero, 
otherwise. Furthermore, let hT denote the number of balls that are 
allocated into a bin with load larger than T + 8 + t~ in round T. 
Because of the invariants HI  (1 ) , . . .  , H1 (t), the probability for a 
fixed ball from batch T to fall into a bin with more than T + 8 + 

balls is at most f (~ )a  _< (n-o.9)d _< n-I .S .  Therefore, the 
probability for XT = 1 is bounded above by n - n - l ' s  = n - ° s .  
Furthermore, the probability that hT >_ r, for any integer r >_ 3, is 
at most 

( 7 )  ( 1 )  r ~  < ( e ) r ~  _< n - ° ' s r  

Thus, hT < r, w.h.p., for some suitable constant r. Therefore, we 
may assume hT <_ r, for 1 < T < t. A violation of H2(t) implies 
that the bins with load at least t + 9 + a contain more than b balls 
of height at least t + 9 + t~. Observe that these balls must have been 
placed during the last b rounds, as otherwise one of the invariants 
H2(1) . . . .  , H2(t  - 1) would be violated. That is, a violation of 

t H2(t) implies implies that r • ~ T = t - b  XT > b. Consequently, 

Pr[-~H2(t)] <_ P r {  ~ XT >_b/r}  
T = t - - b  

( e," ~bi~ 
-< t no.s) 

For n sufficiently large, we obtain 

Pr[--H~(t)] _< n -°'Sb/~ . 

In other words, choosing b sufficiently large ensures that invariant 
H2 holds, w.h.p., over all rounds. This completes the proof of The- 
orem 2. 

5. G R E E D Y  M A J O R I Z E S  A L W A Y S - G O - L E F T  

In this section, we prove Theorem 4, that is, we show that Left[d] 
is majorized by Greedy[d]. 

Let u denote the load vector obtained after inserting some number 
of balls with Left [d], and let v denote the load vector obtained after 
inserting the same number of balls with Greedy[d]. W.l.o.g., we 
assume that u and v are normalized, i.e., u l  _> u2 _> • • - _> u,~ and 
Vl > v2 > - • • > vn. (Notice that the normalization of u jumbles 
the bins in the different groups used by Left[d] in some way which, 
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however, we do not need to specify here. Further, observe that 
the normalized vector does not specify the always-go-left system 
completely.) By induction we assume that u > v. 
Furthermore, let u '  and v' denote the load vectors obtained by 
adding another ball b with Left[d] and Greedy[all, respectively. 
For 1 < i < n, let es denote the ith unit vector, and define 
as = Pr[u '  = u + es] and bi = Pr[v '  = v .4- es]. For 0 < i < n, 

i a s b set As = ~-]~=1 s and Bi = ~ j = l  s. 

We use the following coupling of Left[d] and Greedy[d]. The 
random selection of the d locations of b and b's allocation to one 
of these locations is simulated by the following experiment. We 
choose uniformly at random some real number x from [0 . . .  1]. 
Left[d] allocates bail b into the ith bin (with respect to the normal- 
ization) if A i -1  < x _< As. Greedy[d] allocates b into the ith bin 
if  Bs-1 < x <_ Bs. By definition, the probabilities for these as- 
signments correspond to the probabilities for the same assignments 
of the original schemes. Thus, the coupling is well defined. We 
have to show that u' <_ v'. 

Suppose u '  = u.4. es and v '  = v.4. ej for some i and j ,  that is, i and 
j specify the bins in which Left[d] and Greedy[d], respectively, 
placed the ball b. First, we assume that the initial vectors u and v 
are equal. In this case, we have to show that u .4- es _< u .4- ej.  
Consider the plateaus of u, i.e., index sets of bins with same height. 
The first plateau U1 includes all bins with load Ul, and the kth 
plateau Uk, for k _> 2, includes all bins with load Umax{Uk_~}+l- 
Let I and J denote the index of the plateau that contain i and j ,  
respectively. Then I _> J implies u .4- es _< u .4- ej because adding 
a ball to different positions of the same plateau results in the same 
normalized vector. Thus, it remains to show I _> J .  
Let g = m a x { U / ) .  Then thellrandomly selected value x satisfies 
x < Ae <_ (g/n) , which can be seen as follows. From i _< g we 
can conclude z < Ae. Further, Ae corresponds to the probability 
P that Left[d] places b in a location with index smaller than or 
equal to g. P depends on the distribution of the balls among the 
different groups. Let gk, for 1 _< k < d, denote the number of a 
bins in group k with load ue or larger. Then P = 1-Ik=l (gk " d ) / n  
because the kth location of b has to point to one of those gk bins 
among the d i n  bins in group k that have load at least ue. Notice 
that P is maximized if we set el . . . . .  ga = g/d, because of the 
constraint ~ d = l  gk " g. Hence, x < Ae = P <_ (g/n) d. 
Next we investigate the value of j in dependence from this bound 
on x. The probability that Greedy[~  places b in a bin with index 
smaller than or equal to g is (g/n) because all d locations of b 
must have an index in 1 , . . .  , g. Consequently, Be -= (g/n) d, so 
that x <_ (g/n) d implies j _< g. Now, because g = max{Uz},  we 
obtain J _< I.  
Until now we have shown only u -4- es _< u .4- e~. This, however, 
yields the lemma almost immediately because for any two normal- 
ized load vectors w and w',  w _< w'  implies w .4- es < w'  .4- es (see 
[2, Lemma 3.4]). Consequently, we can conclude from u .4- es < 
u .4- ej that u '  = u .4- es < u .4- e5 _< v .4- e5 = v' ,  which yields 
Theorem 4. 

6. A N A L Y S I S  O F  A L W A Y S - G O - L E F T  

In this section, we investigate the allocation generated by Left[d]. 
In particular, we prove Theorem 3, that is, we show that the number 
of bins with load at least ~ + i ÷ " / i s  n . e x p ( - ¢ f ' s ) ,  w.h.p., where 
3' is a suitable constant. 
Similar to the proof for Greedy[d], we divide the set of balls into 
batches of size n, and we apply an induction on the number of 
batches. On the one hand, the proof for Left[d] is slightly more 

complicated as we have to take into account that the set of bins 
is partitioned into d groups. On the other hand, we can avoid the 
detour through analyzing the holes below average height as we can 
use the majorization of Left[d] by Greedy[d]. 
In the following, we assume that m _> n log 2 n. (It is easy to 
check, however, that a simplified variant of the following analysis 
works for the case m < n log 2 n, too.) Basically, our analysis 
starts after the insertion of the first m '  = m - n log 2 n balls, that 
is, we consider only the insertion of the last n log 2 n balls. We 
divide the set of  these balls into log 2 n batches of size n each. The 
t-th batch is inserted in round t, for 1 < t < log 2 n. Let time 0 
denote the point of time at the beginning of round 1, and let time t, 
for i < t < log 2 n, denote the point of  time after inserting batch t. 

Furthermore, set F = m ' / n  .4- 12 and let u ~  t) denote the number 
of bins with load at least F .4- t + i in group j at time t, for i, t > 0 
and l  < j < _ d .  
We use majorization from Greedy[d] do estimate the allocation at 
time 0. (Notice that already m'  balls are inserted at time 0.) For 
i >_ 0, define 

1 
fo(i)  = 4 i • 16d ' 

The following lemma gives a bound on the allocation of Left[d] 
obtained by the majorization from Greedy[d] at time 0. Based on 
this relatively weak bound, however, we will be able to prove the 
strong bounds on the allocation at the end of the process described 
in Theorem 3. (Later we will use the same lemma to estimate parts 
of the allocation also for other time steps t > 1.) 

LEMMA 7. 

~(~t) <_ f o ( i ) . n / d ,  w.h.p. , foranyi ,  j , t  > O,j < d. 

PROOF. Fix a time step t. The analysis of Greedy[d] ensures 
that, for 0 < i < ~, the number of bins with F ÷ t ÷ i or more 
balls at time t is bounded above by e x p 2 ( - d  a+s _ 1) • n, w.h.p., 
where ~ ---- log d l n n +  O(1). Furthermore, the number of balls 
above height ~ is bounded above by a constant b. Thus, for i > ~, 
the number of bins with height F .4- t .4- i or larger is bounded above 
by b/( i  - ~). Consequently, using Greedy[d], the number of bins 
with F .4- t .4- i or more balls is at most 

m a x { e x p 2 ( - d 4 + S - l ) ' n , / _ - - _ ~ b  } 
n 

-< 4 s . 32d 2 

f o ( i ) . n  
2d ' 

assuming that n is sufficiently large. Unfortunately, we need a 
bound on the number of balls above some given height rather than 
a bound on the number of bins above the height in order to apply 
the majorization. However, as the bound given above decreases 
geometrically in i, we obtain that the number of balls of height 
at least F + t + i when using Greedy[d] is bounded above by 
2 • fo(i)  • n / (2d)  = fo(i)  • n /d .  Now, because of the majoriza- 
tion, this result holds for Left[d], too. As the number of bails above 
height F + t + / - 1 upper bounds the number of bins with F + t + i 
or more balls, we obtain that the number of bins with F + t + i or 
more balls is bounded above by fo(i)  • n /d .  [] 

Based on the knowledge about the allocation at time 0 obtained by 
the majorization, we analyze the allocation generated by Left[d] at 
any point of time t with I < t < log z n. For any k, t > 0, define 

e x p 2 ( - F d ( k  - d ÷ 1)) 
f ~ ( k )  = 16d 
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and set 

f ' ( k , t )  = m a x { f o ( L k / d J ) .  2 - t , f ~ ( k ) }  . 

(Fa(k) denotes the kth d-arc Fibonacci number as defined in 
the Introduction.) Observe that f ' ( k , O )  = fo(Lk/dJ)  and 
f ' ( k ,  logzn)  < f l ( k )  + 1/ (2n) ,  for any k > 0, that is, fo de- 
termines f '  at time 0 and f l  determines f '  at time log 2 n, which is 
the time after inserting all balls. 
Let e;t denote the smallest integer such that f ' ( n t ,  t) < n -°'9. For 
0 < k < e;t, define f ( k , t )  = f ' ( k , t ) .  For ~t < k < ~t + d, 
define f ( k ,  t) = m a x { n - ° ' 9 / 4 ,  f ' ( ~ ,  t)}. Finallyffor k > ~t + d ,  
set f ( k ,  t) = c /n ,  where c denotes a suitable constant that will be 
specified later. 
For every point of time t, we will show that the following invariants 
hold w.h.p. For i, j > O, j < d, let k(i ,  j )  = i . d + j .  

• H i ( t ) :  t,(>J~ t) < f ( k ( i , j ) , t ) ,  n /d ,  for all i , j  > O, j < d 
withO < - k ( i , j )  <_ t~t. 

~,(~t) < c. • H2(t):  ~ i , j w i t h k ( i , j ) > t c t  - -  - -  

Consider the invariants for the time t = log 2 n. At this point of 
time the term f l  (k) determines f ( k ,  t). This function decreases 
"Fibonacci exponentially", that is, the invariants state that the num- 
ber of bins with F + t + i = m / n  + 13 + i or more balls is at most 
[exP2(--Fd(i • d) . h i .  Combining the two invariants yields the 
bounds given in Theorem 3. 
We show the invariants by induction on the number of  rounds t. 
Lemma 7 yields that the invariants hold at time 0, that is, / /1 (0) 
and/-/2(0) are fulfilled. In the following, we assume that H l ( t ' )  
and H2(t ' )  are shown for any t '  < t, and we show that these in- 
duction assumptions imply Hl"(t) and H2 (t). We use the following 
properties of the function f .  

L E M M A  8. 

B1) f ( k , t )  = fo(O),forO < k < d, t > O. 

B2) f ( k , t )  > 2 . f ( k + d , t - 1 ) , f o r d - 1  < k < ~ + d , t  > 1; 

B3) f ( k , t )  > (4d) d • H e = l  f ( k  - e, t), for  d < k < 8t + 2d, 
t > O ;  

B4) f(k,t) > n - ° ' 9 / 2 , f o r O  < k < 8t + d, t > O. 

PROOF. We start with the proof of property B1. For 0 < k < 
d,y~(k) = e x p 2 ( - 3 ) / d  = 1/(8d). Thus, for t > 0, 

f ( k ,  t) = f ' ( k ,  t) = m a x { f o ( L k / d J ) .  2 - t ,  f l ( k )  } 

= 1/(8d) = fo(0) . 

Next we show property B2. For k > d - 1, 

f ' ( k , t )  = m a x { f o ( [ k / d J ) .  2 - t , f l ( k ) }  

> max{2f0( [ (k  + d ) /d J ) .  2 - ( t - l ) ,  2 f l ( k  + d)} 

= 2 f ' ( k + d , t -  1) . 

For d - 1 < k < ~t - d, this implies 

f ( k , t )  = f ' ( k , t )  > 2 f ' ( k  + d , t -  1) = 4 f ( k  + d , t -  1). 

For nt - d < k < nt, the last equation may not hold, that is, 
f ' ( k  + d , t  - 1) < f ( k  + d , t  - 1). In this case, however, the 
definition of  f ensures that f ( k  q- d, t - 1) = n - ° 9 / 4 .  Now we 
obtain directly from the definition of ~t that 

f ( k , t )  > n - ° 9  = 2 f ( k  + d , t -  1). 

For~t  _< k < n t + d , f ( k , t )  > n - ° 9 / 4  > 2c /n  = 2 f ( k  + d , t -  
1), for n sufficiently large. 

Property B3 can be shown as follows. Fix d < k < t~t • d + 2d. 
Depending on the outcome of f ( k  - 1,t) ,  we distinguish three 
cases. 

• S u p p o s e / ( k  - 1, t) = f o ( [ ( k  - 1)/dJ)  • 2 - t .  In this case, 

d d 

~=1 ~=2 

f o ( [ k / d J ) .  2 - t  
4d 

< f ( k , t )  
- 4d 

• Suppose f ( k -  1, t) = 
f l ( k ' ) ,  too. Thus, 

I I  f ( k - ~ . , t )  = e x p 2 ( - F d ( k - e - d +  l)) 
16d e = l  l = l  

exp2 (-)--]~ff= 1 Fa(k - e - d + 1)) 

(16d) d 

< e x p 2 ( - F d ( k - d + l ) )  
-- (4d)(16d) 

_ f ~ ( k )  

4d 
< f ( k , t )  
- 4d 

• Suppose f ( k  - 1, t) = n - ° ' 9 / 4 .  Then f ( k ,  t) < n - ° ' 9 / 4 .  
In this case either f ( k ,  t) = n - ° 9 / 4  or f ( k ,  t) = c /n .  If 
f ( k ,  t) = n - ° 9 / 4  then 

/ l ( k - 1 ) .  Then, fo rk '  < k , f ( k ' )  = 

d n _ o .  9 d 

1-Is(k-e,t) _ T , l - I s (k -e , t )  
£ : 1  £=2 

~l, -0"9  1 

< 4 4 ~  
_ f ( k ,  t )  

4d 

If f ( k , t )  = c / n  then k > nt + d so that f ' ( k  - £, t)  < 
f ( n t , t )  < n -° '9 ,  for 1 < e < d. Thus, f ( k , t )  = c / n  > 
(~r~--O'9)d//(4d) ~-~ (YXff=l f(] 'g - -  e,  t ) ) / ( 4 d ) .  

Finally, we show property B4. For 0 < k < nt, this property 
follows immediately from the definition of ~t, and, for n < k < 

+ d, the property is ensured by the definition of f .  
[ ]  

Now, exploiting the properties B1 to B4, we show that H l ( t  - 1) 
implies Hi( t ) .  We use an induction on k = i . d + j .  First, we show 
that H1 (t) holds for k < d, corresponding to / = 0. In this case, 

Lemma 7 yields v(>_J~ t) < fo(0) - n /d .  Furthermore, Property B1 

yields fo(0) = f ( k , t ) .  Thus, v~J~ t) < f ( k , t ) ,  n /d ,  for k < d, 
i = 0 .  
Now assume that / /1 (t) is shown for all k' < k. Let h(k)  = h(i, j )  
denote the number of bins of group j that include F + t + i balls 
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already at the beginning of round t, and let h' (k) = h' (i, j )  denote 
the number of balls from batch t that are placed into a bin of group 
j containing at least F + t + i - 1 balls. Clearly, 

< h(k) + h'(k). 

Therefore, we calculate upper bounds for h(k) and hi(k). 
By definition, h(k) = h(i, j )  is equal to v(>_J~;ll). Thus, applying 
induction assumption H1 (t - 1), we can conclude that 

. ( j , t - - 1 )  
h(k) < ">i+1 

< f ( ( i + l ) . d + j , t - 1 ) . n / d  

= f ( k  + d , t -  1). n / d  
(B2) 

< 0 .5 f (k) .  n /d  . 

The term h'(k) = h ' ( / , j )  can be estimated as follows. If a ball 
is placed into a bin of group j with I" + t + i - 1 balls, the d 
possible locations for that ball fulfill the following constraints. The 
location in group 6, for 0 _< g < j ,  points to a bin with load at least 
I" + t + i. (Otherwise, the always-go-left scheme would assign the 
ball to that location instead of location jr)  The number of these 

. (e,t) < f ( i  . d + e , t ) . n / d .  (e,t) By the induction on k, v>~ _ bins is v>i . 
Thus, the-probability that the location points to a suitable bin is at 
most f ( i .  d + 6, t). Besides, the location in group g, for j < g < d, 
points to a bin with load at least F + t + i - 1. The number of 
these bins is v(>e~t) 1._ Thus, the probability for this event is at most 
f ( ( i  - 1) • d + 6, t). Now multiplying the probabilities for all d 
locations yields that the probability that a fixed ball is allocated to 
group j with height F + t + i or larger is at most 

j - 1  d - 1  

[ I  f ( i  . d + 6, t) . I ~  f ( ( i  - 1). d + 6 ,  t) 
~=0  e=j 

d 

<_ I-[ f ( k - e , t )  
e = l  

(B3) f(k, t) < 
- 4d 

Taking into account all n balls of round t, we obtain E[h'(k)] <__ 
f (k, t) • n~ (4d). Applying a Chemoff bound yields 

Pr[h'(k) >_ 2.  f ( k ,  t ) .  n/(4d)] 

_< exp(-f(k,t).~/(Sd)) 
(s4) 
< e x p ( - n ° l / ( 1 6 d ) )  . 

As a consequence, h'(k) < 0.5f(k,  t) • n/d,  w.h.p. 
Combining both bounds, we obtain 

v~. t) <_ h(k) + h'(k) <_ f ( k ,  t) . n /d ,  

for i _> 0, 0 _< j < d, and k = i - d + j .  Thus, invariant H1 (t) is 
shown. 
Invariant H2 (t) states that there are at most c balls above layer 
F + t + ~. This layer is reached by at most n°A/4  bins. Because 
of the invariants H1 (1 ) , . . .  , H1 (t), the probability for a fixed ball 
from batch t to fall above this layer (i.e., to be placed into a bin with 
more than F + t + ~ balls) is at most ( n - ° 9 )  d _< n -I '8 .  Thus, the 
probability that there are more than c balls above height F + t + 
at the end of the process is at most 

( n l ° g 2 n )  ( 1 )  c ~  < \cnO.S ] (e l°gn~ c <__ n - ° s c  

Hence, H2(t) is shown as well. This completes the proof of Theo- 
rem 3. 
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