
Normalization by evaluation for call-by-push-value and polarized lambda
calculus

Downloaded from: https://research.chalmers.se, 2024-04-26 20:45 UTC

Citation for the original published paper (version of record):
Abel, A., Sattler, C. (2019). Normalization by evaluation for call-by-push-value and polarized lambda
calculus. ACM International Conference Proceeding Series.
http://dx.doi.org/10.1145/3354166.3354168

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Normalization by Evaluation for Call-By-Push-Value and
Polarized Lambda Calculus

Andreas Abel

Department of Computer Science and Engineering,

Chalmers and Gothenburg University

Göteborg, Sweden

Christian Sattler

School for Computer Science, University of Nottingham

Nottingham, United Kingdom

ABSTRACT
We observe that normalization by evaluation for simply-typed

lambda-calculus with weak coproducts can be carried out in a weak

bi-cartesian closed category of presheaves equipped with a monad

that allows us to perform case distinction on neutral terms of sum

type. The placement of the monad influences the normal forms we

obtain: for instance, placing the monad on coproducts gives us eta-

long beta-pi normal forms where pi refers to permutation of case

distinctions out of elimination positions. We further observe that

placing the monad on every coproduct is rather wasteful, and an

optimal placement of the monad can be determined by considering

polarized simple types inspired by focalization. Polarization classi-

fies types into positive and negative, and it is sufficient to place the

monad at the embedding of positive types into negative ones. We

consider two calculi based on polarized types: pure call-by-push-

value (CBPV) and polarized lambda-calculus, the natural deduction

calculus corresponding to focalized sequent calculus. For these two

calculi, we present algorithms for normalization by evaluation. We

further discuss different implementations of the monad and their

relation to existing normalization proofs for lambda-calculus with

sums. Our developments have been partially formalized in the Agda

proof assistant.

CCS CONCEPTS
• Theory of computation → Type theory; Type structures;
Functional constructs; Proof theory; Categorical semantics; Opera-
tional semantics.

KEYWORDS
Evaluation, Intuitionistic Propositional Logic, Lambda-Calculus,

Monad, Normalization, Polarized Logic, Semantics

ACM Reference Format:
Andreas Abel and Christian Sattler. 2019. Normalization by Evaluation for

Call-By-Push-Value and Polarized Lambda Calculus. In PPDP 2019: 21st
International Symposium on Principles and Practice of Declarative Program-
ming, 7-9 October 2019, Porto, Portugal. ACM, New York, NY, USA, 12 pages.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PPDP 2019, 7-9 October 2019, Porto, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9999-9/18/06. . . $0.00

1 INTRODUCTION
The idea behind normalization by evaluation (NbE) is to utilize a

standard interpreter that evaluates closed terms to compute the

normal form of an open term, i. e., a term that may contain free

variables. The normal form is obtained by a type-directed reifica-
tion procedure after evaluating the open term to a semantic value,

mapping (reflecting) the free variables to corresponding unknowns
in the semantics. The literal use of a standard interpreter can be

achieved for the pure simply-typed lambda-calculus [9, 14] by mod-

elling uninterpreted base types as sets of neutral (aka atomic) terms.

More precisely, base types are interpreted as presheaves, or sets of

neutral term families, in order to facilitate the generation of fresh

variables of base type during reification of functions to lambdas.

Thanks to η-equality at function types, free variables of function
type can be reflected into the semantics as functions applying the

variable to their reified argument, forming a neutral term. This

mechanism provides us with unknowns of base and function type

which can be faithfully reified to normal forms.

For the extension to sum types (logically, disjunctions, and cat-

egorically, weak coproducts), this reflection trick does no longer

work. A semantic value of binary sum type is either a left or a right

injection, but the decision between left or right cannot be taken

at reflection time, since a variable of sum type does not provide

us with such information. A literal standard interpreter for closed

terms can thus no longer be used for NbE; instead, we can utilize

a monadic interpreter. When the interpreter attempts a case dis-

tinction on an unknown of sum type, it asks an oracle whether

the unknown is a left or a right injection. The oracle returns one

of these alternatives, wrapping a new unknown in the respective

injection. The communication with the oracle can be modeled in a

monad C, which records the questions asked and the continuation

of the interpreter for each of the possible answers. A monadic se-

mantic value is thus a case tree where the inner nodes are labeled
with unknowns and the leaves with non-monadic values [5].

In this article, we only consider weak sum types, lacking the

universal property of coproducts. As a consequence, terms with the

same denotation may have different normal forms under NbE. In

particular, case trees are not normalized, allowing, e. g., redundant

case splits (i. e., asking the same question twice). Further, the order

of case splits is not normalized: changing the order in which the

questions are asked (commuting case splits), alters the normal form.

The model would need refinement for extensional sums (strong

coproducts) with unique normal forms [3, 5, 7, 8, 28], i. e., where

NbE decides equality of denotations.

Filinski [15] studied NbE for Moggi’s computational lambda cal-

culus [23], shedding light on the difference between call-by-name

(CBN) and call-by-value (CBV) NbE, where Danvy’s type-directed

DOI: 10.1145/3354166.3354168

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

PPDP 2019, 7-9 October 2019, Porto, Portugal Andreas Abel and Christian Sattler

partial evaluation [13] falls into the latter class. The contribution

of the computational lambda calculus is to make explicit where

the monad is invoked during monadic evaluation, and this place-

ment of the monad carries over to the NbE setting. Moggi’s studies

were continued by Levy [19] who designed the call-by-push-value

(CBPV) lambda-calculus to embed both the CBN and CBV lambda

calculus. Equational theories and reduction-based normalization

for CBPV were recently studied and formalized in Coq [16, 26]

In this work, we formulate NbE for CBPV (Section 3). In contrast

to the normal forms of CBN NbE—which is the algorithmic coun-

terpart of the completeness proof for intuitionistic propositional

logic (IPL) using Beth models—CBPV NbE gives us more restrained

normal forms, where the production of a value via injections cannot

be interrupted by more questions to the oracle. In the research field

of focalization [6, 20] we speak of chaining non-invertible introduc-
tions. Invertible introductions are already chained in NbE thanks to

extensionality (η) for function, and more generally, negative types.

Non-invertible eliminations are also happening in a chain when

building neutrals. What is missing from the picture is the chaining

of invertible eliminations, i.e., case distinctions and, more generally,

pattern matching. The picture is completed by extending NbE to

polarized lambda calculus [11, 27, 29] in Section 4.

In our presentation of the various lambda calculi we ignore the

concrete syntax, only considering the abstract syntax obtained by

the Curry-Howard-Isomorphism. A term is simply a derivation

tree whose nodes are rule invocations. Thus, an intrinsically typed,

nameless syntax is most natural, and our syntactic classes are all

presheaves over the category of typing contexts and renamings.

The use of presheaves then smoothly extents to the semantic con-

structions [4, 12].

Concerning the presentation of polarized lambda calculus, we

depart from Zeilberger [29] who employs a priori infinitary syntax,

modelling a case tree as a meta-level function mapping well-typed

patterns to branches. Instead, we use a graded monad representing

complete pattern matching over a newly added hypothesis, which

is in spirit akin to Filinski’s [15, Section 4] and Krishnaswami’s [18]

treatment of eager pattern matching using a separate context of

variables to be matched on.

Our design choices were guided by an Agda formalization of

sections 2 (complete, see https://andreasabel.github.io/ipl/html/

NfModelMonad.html), 3 (in a variantion, see https://andreasabel.

github.io/ipl/html-cbpv/NfCBPV.html) and 4 (partial, see https://

andreasabel.github.io/ipl/html-focusing/Polarized.html). Agda was

particularly helpful to correctly handle the renamings abundantly

present when working with presheaves.

To summarize, in this article we make the following contribu-

tions:

• We retell the story of normalization by evaluation (NbE) for

intrinsically typed lambda terms with weak sum through

a generic monadic interpreter. We isolate the services the

monad needs to offer in order to facilitate reification.

• We observe that the placement of the monad in the process

of the type interpretation can be determined by polarization,

i. e., separating types into positive and negative types. The

most economic placement of the monad is achieved with

deep polarization such as in focused calculi.

• As a first focused calculus, we consider call-by-push-value

(CBPV) which identifies positive types with value types and

negative types with computation types. To our best knowl-

edge, we are the first to study NbE for pure, effect-free CBPV.

Therein, we observe that the structures of CBPV to control

effects naturally structure the NbE process as well.

• Finally, we define NbE for a fully focused calculus, the po-

larized lambda calculus. We use a factored presentation of

terms and normal forms, which uses advanced features of

Agda (nested and sized types) in our partial formalization.

2 NORMALIZATION BY EVALUATION FOR
THE SIMPLY-TYPED LAMBDA CALCULUS
WITH SUMS

In this section, we review the normalization by evaluation (NbE)

argument for the simply-typed lambda calculus (STLC) with weak

sums, setting the stage for the later sections. We work in a con-

structive type-theoretic meta-language, with the basic judgement

t : T meaning that object t is an inhabitant of type T . However, to
avoid confusion with object-level types such as the simple types of

lambda calculus, we will refer to meta-level types as sets. Conse-
quently, the colon : takes the role of elementhood ∈ in set theory,

and we are free to reuse the symbol ∈ for other purposes.

2.1 Contexts and indices
We adapt a categorical aka de Bruijn style for the abstract syntax of

terms, which we conceive as intrinsically well-typed. In de Bruijn

style, a context Γ is just a snoc list of simple types A, meaning we

write context extension as Γ.A, and the empty context as ε . Mem-

bership A ∈ Γ and sublist relations Γ ⊆ ∆ are given inductively

by the following rules:

zero
A ∈ Γ.A

suc
A ∈ Γ

A ∈ Γ.B

ε
ε ⊆ ε

lift
Γ ⊆ ∆

Γ.A ⊆ ∆.A
weak

Γ ⊆ ∆

Γ ⊆ ∆.A

We consider the rules as introductions of the indexed types _∈_

and _⊆_ and the rule names as constructors. For instance, suc zero :

A ∈ Γ.A.B for any Γ, A, and B; and if we read sucn zero as unary

number n, then x : A ∈ Γ is exactly the (de Bruijn) index of A in Γ.
We can define

id : Γ ⊆ Γ
: Γ ⊆ ∆ → ∆ ⊆ Φ → Γ ⊆ Φ

by recursion, meaning that the (proof-relevant) sublist relation

is reflexive and transitive. Thus, lists Γ form a category Cxt with
morphisms τ : Γ ⊆ ∆, and the category laws hold propositionally,

e.g., we have id # τ ≡ τ in propositional equality for all morphisms

τ . The singleton weakening wkAΓ : Γ ⊆ Γ.A, also written wkA or

wk, is defined by wk = weak id.
In category theory, a presheafA over a categoryC is a contravari-

ant functor fromC into the category Set of sets and functions, i. e., a
(covariant) functor from the category Cop with flipped morphisms

to Set. In this paper, we are only interested in (covariant) func-

tors from Cxt to Set, thus, by a presheaf we will always mean a

presheaf over the category Cxtop. For example, given any type A,

https://andreasabel.github.io/ipl/html/NfModelMonad.html
https://andreasabel.github.io/ipl/html/NfModelMonad.html
https://andreasabel.github.io/ipl/html-cbpv/NfCBPV.html
https://andreasabel.github.io/ipl/html-cbpv/NfCBPV.html
https://andreasabel.github.io/ipl/html-focusing/Polarized.html
https://andreasabel.github.io/ipl/html-focusing/Polarized.html

NbE for CBPV and Polarized Lambda Calculus PPDP 2019, 7-9 October 2019, Porto, Portugal

we can consider A∈_ as such a presheaf, with the action on objects

mapping Γ to the set A ∈ Γ of indices of A in Γ, and the action on

morphisms being reindex : Γ ⊆ ∆ → A ∈ Γ → A ∈ ∆. The asso-
ciated functor laws reindex idx ≡ x and reindexτ2 (reindexτ1 x) ≡
reindex (τ1 # τ2)x hold propositionally.

2.2 STLC and its normal forms
Simple types shall be distinguished into positive types P and nega-

tive types N , depending on their root type former (for now). Func-

tion (⇒) and product types (× and 1) are negative, while base types

(o) and sum types (+ and 0) are positive.

A,B,C ::= P | N simple types

P ::= 0 | A + B | o positive types

N ::= 1 | A × B | A ⇒ B negative types

Intrinsically well-typed lambda-terms, in abstract syntax, are just

inhabitants t of the indexed set A ⊣ Γ , inductively defined by the

following rules.

var
A ∈ Γ

A ⊣ Γ
abs

B ⊣ Γ.A

A ⇒ B ⊣ Γ
app

A ⇒ B ⊣ Γ A ⊣ Γ

B ⊣ Γ

unit
1 ⊣ Γ

pair
A1 ⊣ Γ A2 ⊣ Γ

A1 ×A2 ⊣ Γ
prji

A1 ×A2 ⊣ Γ

Ai ⊣ Γ

inji
Ai ⊣ Γ

A1 +A2 ⊣ Γ
case

A1 +A2 ⊣ Γ B ⊣ Γ.A1 B ⊣ Γ.A2

B ⊣ Γ

abort
0 ⊣ Γ

B ⊣ Γ

The skilled eye of the reader will immediately recognize the proof

rules of intuitionistic propositional logic (IPL) under the Curry-

Howard isomorphism, where A ⊣ Γ is to be read as “A follows from

Γ”. Using shorthand vn = var (sucn zero) for the nth variable, a

term such as

abs (abs (pair v1 (abs (app v1 v0))))

could in concrete syntax be rendered as λx . λy. (x , λz.y z). We

leave the exact connection to a printable syntax of the STLC to

the imagination of the reader, as we shall not be concerned with

considering concrete terms in this article.

Terms of typeA form a presheafA⊣_ as witnessed by the standard
weakening operation

1

ren : Γ ⊆ ∆ → A ⊣ Γ → A ⊣ ∆

defined by recursion over t : A ⊣ Γ, and functor laws for ren
analogously to reindex.

Normal forms
2
are logically characterized as those fulfilling

the subformula property [17, 25]. Normal forms n : Nf A Γ are

mutually defined with neutral normal forms u : Ne A Γ . In the

1
Here, ren is short for renaming, but in a nameless calculus we should better speak of

reindexing, which could, a bit clumsily, be also abbreviated to ren.
2
There is also a stronger notion of normal form, requiring that two extensionally equal
lambda-terms, i. e., those that denote the same set-theoretical function, have the same

normal form [3, 22, 28]. Such normal forms do not have a simple inductive definition,

and we shall not consider them in this article.

following inductive definition, we reuse the rule names from the

term constructors.

var
A ∈ Γ

Ne A Γ
prji

Ne (A1 ×A2) Γ

Ne Ai Γ

app
Ne (A ⇒ B) Γ Nf A Γ

Ne B Γ
ne

Ne o Γ

Nf o Γ

unit
Nf 1 Γ

pair
Nf A1 Γ Nf A2 Γ

Nf (A1 ×A2) Γ

abs
Nf B (Γ.A)

Nf (A ⇒ B) Γ
inji

Nf Ai Γ

Nf (A1 +A2) Γ

case
Ne (A1 +A2) Γ Nf P (Γ.A1) Nf P (Γ.A2)

Nf P Γ

abort
Ne 0 Γ

Nf P Γ

These rules only allow the elimination of neutrals; this restriction
guarantees the subformula property and prevents any kind of com-

putational (β) redex. The new rule ne embeds Ne into Nf, but only
at base types o [4, Section 3.3]. Further, case distinction via case
and abort is restricted to positive types P . As a consequence, our
normal forms are η-long, meaning that any normal inhabitant of a

negative type is a respective introduction (abs, unit, or pair). This
justifies the attribute negative for these types: the construction

of their inhabitants proceeds mechanically, without any choices.

In contrast, constructing an inhabitant of a positive type involves
choice: whether case distinction is required, and which introduction

to pick in the end (inj
1
or inj

2
).

As expected,NeA andNfA are presheaves, i. e., support reindex-

ing with ren just as terms do. From a normal form we can extract

the term via an overloaded function

⌜_⌝ : Nf A Γ → A ⊣ Γ
⌜_⌝ : Ne A Γ → A ⊣ Γ

that discards constructor ne but keeps all other constructors. This
erasure function naturally commutes with reindexing, making it a

natural transformation between the presheaves NfA (NeA, resp.)
and A⊣_. We shall simply write, for instance, NfA Û→A⊣_ for such
presheaf morphisms. (The point on the arrow is mnemonic for

pointwise.) Slightly abusive, we shall extend this notation to n-ary
morphisms, e. g., write A Û→ B Û→ C for ∀Γ. A Γ → (B Γ → C Γ).

We use the ∀ quantifier as implicit dependent function type

former in our meta-language, similar to the polymorphic quantifier

in functional programming languages such as Haskell. We may

instantiate a polymorphic function such as f : A Û→ B silently,

e. g., when a : A Γ then f a : B Γ. For clarity, we may sometimes

provide the instantiation explicitly via subscript, e. g., fΓ : A Γ →

B Γ and fΓ a : B Γ. Similarly, to introduce a polymorphic function

we may provide the implicit abstraction as subscript, such as in

λ Γ a. b : A Û→ B or λ Γ (a : A Γ). b : A Û→ B, or omit it, e. g.,

λ (a : A Γ). b : A Û→ B.

PPDP 2019, 7-9 October 2019, Porto, Portugal Andreas Abel and Christian Sattler

Remark 1 (Positive eliminations into negative types).

While the coproduct eliminations case and abort are limited to nor-
mal forms of positive types P , their extension caseB and abortB to
negative types is admissible, for instance:

abortB : Ne 0 Û→ Nf B
abort1 u = unit
abortP u = abort u
abortA1×A2 u = pair (abortA1 u) (abortA2 u)

abortA⇒B u = abs (abortB (renwkA u))

case generalizes analogously, with a bit of care when weakening the
branches.

2.3 Normalization
Normalization is concerned with finding a normal form n : Nf A Γ
for each term t : A ⊣ Γ. The normal form should be sound, i. e.,
⌜n⌝ � t with respect to an equational theory � on terms. Further,

normalization should decide �, i. e., terms t , t ′ with t � t ′ should
have the same normal form n. In this article, we present only the

normalization function norm : A ⊣ Γ → Nf A Γ without proving

its soundness and completeness.
3
From a logical perspective, we

will compute for each derivation of A ⊣ Γ a normal derivation

Nf A Γ.
The method normalization by evaluation (NbE)

norm (t : A ⊣ Γ) = ↓AL t MfreshΓ

decomposes normalization into evaluation

L_ M : (t : A ⊣ Γ) → [[Γ]] Û→ [[A]]

in the identity environment

freshΓ : [[Γ]]Γ

followed by reification

↓A : [[A]] Û→ NfA

(aka quoting). The role of evaluation is to produce from a term

the corresponding semantic (i. e., meta-theoretic) function, which

is finally reified to a normal form. Since we are evaluating open

terms t , we need to supply an environment freshΓ which will map

the free indices of t to corresponding unknowns. To accommodate

unknowns in the semantics, types A are mapped to presheaves

[[A]] (rather than just sets), and in particular each base type o is

mapped to the presheaf Ne o with the intention that the neutrals

take the role of the unknowns. The mapping ↑A : NeA Û→ [[A]]
from neutrals to unknowns is called reflection (aka unquoting), and

defined mutually with reification by induction on type A.
At this point, let us fix some notation for sets to prepare for

some constructions of presheaves. Let 1 denote the unit set and () its
unique inhabitant, 0 the empty set andmagic : 0 → T the ex falsum
quod libet elimination into any set T . Given sets S1 and S2, their
Cartesian product is written S1×S2 with projections πi : S1×S2 →

3
An Agda formalization of NbE for IPL with soundness-by-construction is listed at

https://andreasabel.github.io/ipl/html/NbeModel.html. It is demonstrated that normal-

ization does not change the interpretation of a term as function in the meta-language.

Instead of presheaves, we work with Kripke predicates there. The main contribution of

our work, the utilization of a cover monad for NbE, is however more clearly presented

by just constructing the normalization function, as we do in this article.

Si , and their disjoint sum S1 + S2 with injections ιi : Si → S1 + S2
and elimination [f1, f2] : S1 + S2 → T for arbitrary fi : Si → T .

Presheaf (co)products 0̂, 1̂, +̂, and ×̂ are constructed pointwise,

e. g., 0̂ Γ = 0, and given two presheaves A and B, (A +̂ B) Γ =
A Γ + B Γ. For the exponential of presheaves, however, we need
the Kripke function space (A ⇒̂ B) Γ = ∀∆. Γ ⊆ ∆ → A ∆ → B ∆.

We will interpret simple types A as corresponding presheaves

[[A]]. Let us start with the negative types, defining reflection ↑A :

NeA Û→ [[A]] and reification ↓A : [[A]] Û→ NfA along the way.

[[1]] = 1̂

↑1Γ u = ()

↓1Γ () = unit

[[A × B]] = [[A]] ×̂ [[B]]

↑A×BΓ u = (↑AΓ (prj1 u), ↑
B
Γ (prj2 u))

↓A×BΓ (a,b) = pair (↓AΓ a) (↓
B
Γb)

[[A ⇒ B]] = [[A]] ⇒̂ [[B]]

↑A⇒B
Γ u = λ ∆ (τ : Γ ⊆ ∆)a. ↑B∆(app (renτ u) (↓A∆a))

↓A⇒B
Γ f = abs (↓BΓ.A(f wkAΓ freshAΓ))

In the reification at function types ↓A⇒B
, the renaming wkAΓ : Γ ⊆

Γ.A makes room for a new variable of type A, which is reflected

into [[A]] by freshAΓ = ↑AΓ.Av0 : [[A]](Γ.A) . The ability to introduce

fresh variables into a context, and to use semantic objects such

as f : [[A ⇒ B]]Γ in such an extended context, is the reason for

utilizing presheaves instead of just sets as semantic types.

Note also that in the equation for ↑A⇒B
, the neutralu : Ne (A ⇒

B) Γ is transported into Ne (A ⇒ B) ∆ via reindexing with τ : Γ ⊆

∆, in order to be applicable to the normal form ↓A∆a reified from the

semantic value a : [[A]]∆.
A direct extension of our presheaf semantics to positive types

cannot work. For instance, with [[0]] = 0̂, simply fresh0ε : 0 would

give us an inhabitant of the empty set, which means that reflection

at the empty type would not be definable. Similarly, the setting [[A+
B]] = [[A]] +̂ [[B]] is refuted by freshA+Bε : [[A]](A+B) + [[B]](A+B),
which would require us to make a decision of whether A holds

or B holds while only be given a hypothesis of type A + B. Not
even the usual interpretation of base types [[o]] = Ne o works in

the presence of sums, as we would not be able to interpret the

term abs (case v0 v0 v0) : (o + o) ⇒ o in our semantics, because

Ne o (o + o) is empty. What is needed are case distinctions on

neutrals in the semantics, allowing us the elimination of positive

hypotheses before producing a semantic value, and we shall capture

this capability in a strong monad C which can cover the cases.
Recall that a monad C on presheaves is first an endofunctor,

i.e., it maps any presheaf A to the presheaf C A and any presheaf

morphism f : A Û→ B to the morphism mapC f : C A Û→ C B

satisfying the functor laws for identity and composition. Then,

there are natural transformations returnC : A Û→ CA (unit) and

joinC : C (C A) Û→CA (multiplication) satisfying the monad laws.

We are looking for a monad C, called a cover monad, that takes
the role of the oracle alluded to in the introduction, and offers us

https://andreasabel.github.io/ipl/html/NbeModel.html

NbE for CBPV and Polarized Lambda Calculus PPDP 2019, 7-9 October 2019, Porto, Portugal

the following services:

runNfC : C (Nf P) Û→ Nf P
abortC : Ne 0 Û→ C B

caseCΓ : Ne (A1 +A2) Γ

→ CB (Γ.A1) → C B (Γ.A2) → C B Γ

Method runNfC enables us to run a monadic computation of a

normal form, C (Nf P) Γ, and delivers a normal form Nf P Γ. While

runNfC is a left inverse of returnC , the converse is not true. Instead,
the information contained in C is reified and becomes part of the

normal form delivered by runNfC . Technically, (Nf P , runNfC) is
a monad algebra for monad C. Besides runNfC ◦ returnC = idNf P ,
the square runNfC ◦ joinC = runNfC ◦mapCrunNfC stands. This

means that given a case tree whose leaves are again case trees

ending in normal forms, it does not matter whether we first join the

nested case trees and then assemble the normal form, or whether we

first turn the inner case trees into normal forms via mapCrunNfC ,
and then the outer one.

Method abortCΓ allows us to end a computation by exhibiting an

inconsistency witnessed by a neutral term u : Ne 0 Γ. Remember

that, ultimately, computations in C produce a normal form extracted

by runNfC . With abortC we notify the oracle that we are in an

absurd case and the desired normal form can be trivially constructed

by the abort-function of Remark 1.

Method caseCΓ allows us, in a computation C B Γ, to ask the ora-

cle about a neutral termNe (A1+A2) Γ of sum type. We have to sup-

ply handlers for both possible answers: a computation C B (Γ.A1)

that can utilize an additional hypothesis of type A1 in the case of

a left injection, and analogously a computation C B (Γ.A2) for the

case of a right injection.

[[o]] = C (Ne o)

↑o = returnC

↓o = runNfC ◦mapCne

[[0]] = C 0̂

↑0 = abortC

↓0 = runNfC ◦mapCmagic

[[A + B]] = C ([[A]] +̂ [[B]])

↑A+BΓ u = caseC u (returnC (ι1 freshAΓ))

(returnC (ι2 freshBΓ))

↓A+B = runNfC ◦mapC[inj
1
◦ ↓A, inj

2
◦ ↓B]

Figure 1: Interpretation of positive types.

The similarity of the monad services abortC and caseC to the

corresponding constructors for normal forms, or their generaliza-

tion of Remark 1, is hard to miss. Unsurprisingly, just case trees are
a first instance of a cover monad: the free cover monad Cov defined
as an inductive family with constructors returnCov , abortCov , and
caseCov . One can visualize an element c : CovA Γ as a binary case

tree whose inner nodes (case) are labeled by neutral terms of sum

type A1 + A2 and its two branches by the context extensions A1

and A2, resp. Leaves are either labeled by a neutral term of empty

type 0 (see abort), or by an element of A (see return). Functorial-
ity amounts to replacing the labels of the return-leaves, and the

monadic bind (aka Kleisli extension) replaces these leaves by further

case trees. Bind is realized via joinCov , which flattens a 2-level case

tree, i. e., a case tree with case trees as leaves, into a single one. Fi-

nally, runNfCov is a simple recursion on the tree, replacing caseCov

and abortCov by the case and abort constructions on normal forms,

and returnCov by the identity.

Using the services of a generic cover monad C, we can complete

our semantics, see Figure 1.

Since positive types P have a monadic interpretation, there is

a monad algebra C [[P]] Û→ [[P]], which is simply joinC . It can be

extended to a monad algebra runA : C [[A]] Û→ [[A]] for any simple

type A, meaning we can run the monad,
4
pushing its effects into

[[A]].We proceed by induction on A. At negative types we can re-

curse pointwise at a smaller type, exploiting that values of negative

types are essentially (finite or infinite) tuples.

runA : C[[A]] Û→ [[A]]

runP c = joinC c
run1 c = ()

runA×B c = (runA (mapC π1 c), runB (mapC π2 c))

runA⇒B c = λ ∆ τ a. runB (m̂apC (λ Φ τ ′ f . f id (ren τ ′ a))
(ren τ c))

For the case of function types A ⇒ B, we require the monad C

to be strong, which amounts to having m̂apCΓ ℓ : CA Γ → CB Γ
already for a “local” presheaf morphism ℓ : (A ⇒̂B)Γ. The typings
are c : C[[A ⇒ B]]Γ and τ : Γ ⊆ ∆ and a : [[A]]∆, and now

we want to apply every function f : [[A ⇒ B]] in the cover c to

argument a. Clearly, mapC is not applicable since it would expect

a global presheaf morphism [[A → B]] Û→ [[B]], i. e., something that

works in any context. However, applying to a : [[A]]∆ can only

work in context ∆ or any extension τ ′ : ∆ ⊆ Φ, since we can

transport a to such a Φ via a′ := ren τ ′ a : [[A]]Φ, but not to a

context unrelated to ∆. We obtain our input to runB of type C[[B]]Γ

as an instance of m̂apCΓ applied to the local presheaf morphism

(λ Φ τ ′ f . f id a′) : ∆ ⊆ Φ → [[A ⇒ B]]Φ → [[B]]Φ and the

transported cover ren τ c : C[[A ⇒ B]]∆.
We extend the type interpretation pointwise to contexts, i. e.,

[[ε]] = 1̂ and [[Γ.A]] = [[Γ]] ×̂ [[A]], and obtain a natural projection

function lookup (x : A ∈ Γ) : [[Γ]] Û→ [[A]] from the semantic envi-

ronments. The evaluation function L t : A ⊣ Γ M : [[Γ]] Û→ [[A]] can

now be defined by recursion on t , see Figure 2. Herein, the environ-
ment γ lives in [[Γ]]∆, thus, L t Mγ : [[A]]∆. For the interpretation of

the binders abs and case we use the mutually defined λL _ M. The
coproduct eliminations Labort M and L case M targeting an arbitrary

semantic type [[B]] are definable thanks to the weak sheaf property,

i. e., the presence of pasting via runB for any type B, and strong

functoriality of C. It is noteworthy that the interpreter L_ M does not
use any of the services of the cover monad; in fact, it only requires

the monad C to be strong. The interpreter is completely generic
for the CBN monadic semantics of types. This restores the spirit

of STLC NbE for sum types: Take an off-the-shelf interpreter for

4
In categorical terminology, the existence of runA means that all semantic types [[A]]
fulfill the weak sheaf condition, aka weak pasting.

PPDP 2019, 7-9 October 2019, Porto, Portugal Andreas Abel and Christian Sattler

L t : A ⊣ Γ M : [[Γ]] Û→ [[A]]
Lvarx Mγ = lookupx γ
Labs t Mγ = λL t Mγ
Lapp t u Mγ = L t Mγ id Lu Mγ
Lunit Mγ = ()

Lpair t1 t2 Mγ = (L t1 Mγ , L t2 Mγ)
Lprji t Mγ = πi L t Mγ
L inji t Mγ = ιi L t Mγ
L case u t1 t2 Mγ = L case M Lu Mγ λL t1 Mγ λL t2 Mγ
Labortu Mγ = Labort M Lu Mγ

. .

λL t : B ⊣ Γ.A M : [[Γ]] Û→ [[A ⇒ B]]
= λ ∆ (γ : [[Γ]]∆) Φ (τ : ∆ ⊆ Φ) (a : [[A]]Φ). L t M(ren τ γ , a)

. .

Labort MB : [[0]] Û→ [[B]]

Labort MB = runB ◦mapC magic

L case MB : [[A1 +A2]] Û→ [[A1 ⇒ B]] Û→ [[A2 ⇒ B]] Û→ [[B]]

L case MB = λ c f1 f2. runB (m̂apC (λ τ . [f1 τ , f2 τ]) c)

Figure 2: Evaluation of terms.

terms, implement reflection and reification after interpreting base

types as sets (presheaves) of neutrals, plug them together with the

interpreter, and voila!, there is your normalizer! Our insight here

is that off-the-shelf interpreter means monadic in the presence of

positive types.

To complete the normalization function norm (t : A ⊣ Γ) =
↓AΓ L t MfreshΓ we define the identity environment freshΓ : [[Γ]]Γ,
which maps each free index to its corresponding unknown in the

semantics, by recursion on Γ:

freshε = ()

freshΓ.A = (ren wkA freshΓ , freshAΓ)

We have obtained a computable function norm that yields for any

derivationA ⊣ Γ a normal derivation Nf A Γ. This amounts to prov-

ing consistency and canonicity of intuitionistic propositional logic,

the Curry-Howard counterpart of our STLC with products and

sums. The normalization function is parametrized by an arbitrary

cover monad C, which can be implemented via case trees (Cov).
However, different implementations are possible. In the next sec-

tion, we exhibit another canonical choice for C: the parameterized

continuation monad on presheafs.

2.4 Continuation monad
Besides the free cover monad Cov, there is another canonical imple-

mentation of its interface, the continuation monad. Filinski [14, Sec-

tion 5.4] [15, Section 3.2] already utilized the continuation monad

for normalization by evaluation. In our setting, we use a continua-

tion monad CC on presheaves B defined by

CC B = ∀P . (B ⇒̂ Nf P) ⇒̂ Nf P .

The answer type of this continuation monad is always Nf, however,
we are polymorphic in the positive type P of normal forms we emit

in the end.

Agda has been really helpful to produce the rather technical but

straightforward evidence that CC is a strong monad. The method

runNfCC : CC (Nf P) Û→Nf P exists by definition, using the identity

continuation Nf P ⇒̂ Nf P . In the following, we demonstrate that

CC enables matching on neutrals:

abortCCΓ (u : Ne 0 Γ) : CCB Γ

abortCCΓ u ∆ (τ : Γ ⊆ ∆) (k : (B ⇒̂ Nf P)∆) =
abort (renτ u)

caseCCΓ (u : Ne (A1 +A2) Γ) ∆
(c1 : CCB (Γ.A1)) (c2 : CCB (Γ.A2)) : CCB Γ

caseCCΓ u c1 c2 (τ : Γ ⊆ ∆) (k : (B ⇒̂ Nf P)∆) =
case (renτ u) n1 n2
where
ni : Nf P (∆.Ai)

ni = ci (liftAi τ : Γ.Ai ⊆ ∆.Ai)

(λ Φ (τ ′ : ∆.Ai ⊆ Φ) (j : B Φ). k (wkAi # τ ′) j)

It is noteworthy (yet unsurprising) that abortCC discards continua-

tion k , while caseCC uses it twice, once in each case. Thus, normal

forms can be of exponential size; for example, the normal form of

the identity function over n-tuples of booleans has a case tree of
height n, hence, size Θ(2n).

The NbE algorithm using CC is comparable to Danvy’s type-

directed partial evaluation [13, Figure 8]. However, Danvy uses

shift-reset style continuations, which can be expressed via the con-

tinuation monad, and relies on Scheme’s gensym to produce fresh

variables names rather than presheaves and the Kripke function

space.

3 NORMALIZATION TO CALL-BY-PUSH
VALUE

The placement of the monad C in the type semantics of the previous

section is a bit wasteful: Each positive type is prefixed by C. In our

grammar of normal forms, this corresponds to the ability to perform

case distinctions (case, abort) at any positive type P . In fact, our

type interpretation [[A]] corresponds to the translation of call-by-

name (CBN) lambda-calculus into Moggi’s monadic meta-language

[19, 23].

It would be sufficient to perform all necessary case distinctions

when transitioning from a negative type to a positive type. Introduc-

tion of the function type adds hypotheses to the context, providing

material for case distinctions, but introduction of positive types

does not add anything in that respect. Thus, we could focus on
positive introductions until we transition back to a negative type.

Such focusing is present in the call-by-value (CBV) lambda-calculus,

where positive introductions only operate on values, and variables

stand only for values. This structure is even more clearly spelled

out in Levy’s call-by-push-value (CBPV) [19], as it comes with a

deep classification of types into positive and negative ones. In the

following, we shall utilize pure (i. e., effect-free) CBPV to achieve

chaining of positive introductions.

3.1 Types and polarization
CBPV calls positive types P value types A and negative types N
computation types B, yet we shall stick to our terminology which

NbE for CBPV and Polarized Lambda Calculus PPDP 2019, 7-9 October 2019, Porto, Portugal

is common in publications on focalization. However, we shall use

Thunk for switch ↓ and Comp for switch ↑, to avoid confusion with

our notation for reflection and reification.

Ty+ ∋ P ::= o+ | 1 | P1 × P2 | 0 | P1 + P2 | Thunk N
Ty− ∋ N ::= o− | ⊤ | N1 & N2 | P ⇒ N | Comp P

CBPV uses U for Thunk and F for Comp, however, we find these

names uninspiring unless you have good knowledge of the intended

model. Further, CBPV [19] employs labeled sums ΣI (Pi)i :I and

labeled records ΠI (Pi)i :I for up to countably infinite label sets I
while we only have finite sums (0,+) and records (⊤,&). However,

this difference is not essential, our treatment extends directly to

the infinite case, since we are working in type theory, which allows

infinitely branching inductive types. As a last difference, CBPV

does not consider uninterpreted base types; in anticipation of the

next section, we add them as both positive atoms (o+) and negative

atoms (o−).
Getting a bit ahead of ourselves, let us consider the mutually de-

fined interpretations [[P]] and [[N]] of positive and negative types as

presheaves (see Figure 3). This interpretation is parametrized by a

strong monad C on presheaves. Semantically, we do not distinguish

[[1]] = 1̂

[[P1 × P2]] = [[P1]] ×̂ [[P2]]
[[0]] = 0̂

[[P1 + P2]] = [[P1]] +̂ [[P2]]
[[Thunk N]] = [[N]]

[[o+]] = o+∈_

[[⊤]] = 1̂

[[N1 & N2]] = [[N1]] ×̂ [[N2]]

[[P ⇒ N]] = [[P]] ⇒̂ [[N]]

[[Comp P]] = C[[P]]
[[o−]] = C(Ne o−)

Figure 3: Interpretation of polarized types

between positive and negative products. Notably, sum types can

now be interpreted as plain (pointwise) presheaf sums. The Thunk
marker is ignored, yet Comp, marking the switch from the negative

to the positive type interpretation, places the monad C. Positive

atoms o+, standing for value types without constructors, are only
inhabited by variables x : o+ ∈ Γ. Negative atoms o− stand for com-

putation types without own eliminations. Thus, their inhabitants

stem only from eliminations of more complex types. They are built

from positive eliminations captured in C and negative eliminations

chained together as neutral Ne o−, which we shall define below.

The multiplication joinC of the strong monad C can be extended to

a monad algebra runN : C[[N]] Û→ [[N]] for negative types N . The

construction proceeds by recursion on N , exactly as in Section 2.3.

This makes the effects of C available at any negative type, in other

words, makes all negative types monadic.
Contexts are lists of positive types since in CBPV variables stand

for values. Interpretation of contexts [[Γ]] is again defined pointwise
[[ε]] = 1̂ and [[Γ.P]] = [[Γ]] ×̂ [[P]].

3.2 Terms and evaluation
Value terms v : Val P Γ , or short, values, and computation terms

t : TmN Γ , or short, terms, are defined mutually by the rules in

Figure 4. Values inhabit positive types P and are given by intro-

duction rules only, whereas terms inhabit negative types N and

comprise both introduction rules for negative types as well as elimi-

nation rules for both positive (split, case, abort) and negative types.
Note that function application is restricted to value arguments. Val-

ues of typeThunk N are embedded by force. Further, values of type
P can be embedded via ret, producing a term of type Comp P . Such
terms are eliminated by bind which is, unlike the usual monadic

bind, not only available for Comp-types but for arbitrary negative

typesN . This is justified by the monadic character of negative types,

by virtue of runN .

var
P ∈ Γ

Val P Γ
thunk

TmN Γ

Val (Thunk N) Γ

unit+
Val 1 Γ

pair+
Val P1 Γ Val P2 Γ

Val (P1 × P2) Γ

inji
Val Pi Γ

Val (P1 + P2) Γ
. .

ret
Val P Γ

Tm (Comp P) Γ
abs

TmN (Γ.P)

Tm (P ⇒ N) Γ

unit−
Tm⊤ Γ

pair−
TmN1 Γ TmN2 Γ

Tm (N1 & N2) Γ
. .

force
Val (Thunk N) Γ

TmN Γ

app
Tm (P ⇒ N) Γ Val P Γ

TmN Γ
prji

Tm (N1 & N2) Γ

TmNi Γ

bind
Tm (Comp P) Γ TmN (Γ.P)

TmN Γ
. .

split
Val (P1 × P2) Γ TmN (Γ.P1.P2)

TmN Γ
abort

Val 0 Γ

TmN Γ

case
Val (P1 + P2) Γ TmN (Γ.P1) TmN (Γ.P2)

TmN Γ

Figure 4: Value and computation terms (CBPV)

Figure 5 defines interpretation of values Lv : Val P Γ M : [[Γ]] Û→

[[P]] and terms L t : TmN Γ M : [[Γ]] Û→ [[N]]. It is straightforward,

thanks to the pioneeringwork ofMoggi [23] and the design of CBPV

by Levy [19]. SinceThunk serves only as an embedding of negative

into positive types in our semantics, we interpret thunking and

forcing by the identity. The eliminations split, case and abort for
positive types deal now only with values, thus, need not reference

PPDP 2019, 7-9 October 2019, Porto, Portugal Andreas Abel and Christian Sattler

Lvarx Mγ = lookupx γ
Lunit+ Mγ = ()

Lpair+v1v2 Mγ = (Lv1 Mγ , Lv2 Mγ)
L inji v Mγ = ιi Lv Mγ
L thunk t Mγ = L t Mγ

. .

Labs t Mγ = λL t Mγ
Lunit− Mγ = ()

Lpair− t1 t2 Mγ = (L t1 Mγ , L t2 Mγ)
. .

Lapp t v Mγ = L t Mγ id Lv Mγ
Lprji t Mγ = πi L t Mγ
L forcev Mγ = Lv Mγ

. .

L splitv t Mγ = (λ (a1,a2). L t M(γ ,a1,a2)) Lv Mγ
L casev t1 t2 Mγ = [λa1. L t1 M(γ ,a1), λa2. L t2 M(γ ,a2)] Lv Mγ
Labortv Mγ = magic Lv Mγ

. .

L retv Mγ = returnC Lv Mγ
Lbindu t Mγ = runC (m̂apC λL t Mγ Lu Mγ)

Figure 5: Evaluation (CBPV).

the monad operations. The use of the monad is confined to ret and
bind. Note the availability of runC : C[[N]] → [[N]] at any negative

type N for the interpretation of bind.

3.3 Normal forms and normalization
The design of normal forms for pure CBPV follows the same princi-

ples as for the STLC with sums in Section 2.2. We prevent β-redexes,
i.e., eliminations of a type immediately following its introduction,

by restricting the terms in elimination positions to neutrals. Due

to the focused nature of CBPV, neutrals of positive type are just

variables. We achieve η-long forms by only embedding neutrals

of negative base type o− into normal forms. Maximal focusing for

positive types is achieved by only admitting variables of base type

o+ in values. In the following, we present the grammar for normal

forms in detail.

Positive normal forms are values v : Vnf P Γ referring only to

atomic variables and whose thunks only contain negative normal

forms.

var
o+ ∈ Γ

Vnf o+ Γ
thunk

Nf N Γ

Vnf (Thunk N) Γ

unit+
Vnf 1 Γ

pair+
Vnf P1 Γ Vnf P2 Γ

Vnf (P1 × P2) Γ

inji
Vnf Pi Γ

Vnf (P1 + P2) Γ

Neutral normal forms Ne N Γ are negative eliminations start-

ing from a forced Thunk rather than from variables of negative

types (as those do not exist in CBPV). However, due to normality

the Thunk cannot be a thunk, but only a variable Thunk N ∈ Γ.

force
Thunk N ∈ Γ

Ne N Γ
prji

Ne (N1 & N2) Γ

Ne Ni Γ

app
Ne (P ⇒ N) Γ Vnf P Γ

Ne N Γ

Variables are originally introduced by either abs or the binding of

a neutral of type Comp P to a new variable of type P . Variables of
composite value type can be broken down by pattern matching,

introducing variables of smaller type. These positive eliminations

plus bind are organized in the inductively defined strong monad

Cov . In the following rules, parameter J (for “judgement”) stands

for an arbitrary presheaf.

return
J Γ

Cov J Γ
bind

Ne (Comp P) Γ Cov J (Γ.P)

Cov J Γ

split
P1 × P2 ∈ Γ Cov J (Γ.P1.P2)

Cov J Γ
abort

0 ∈ Γ

Cov J Γ

case
P1 + P2 ∈ Γ Cov J (Γ.P1) Cov J (Γ.P2)

Cov J Γ

Finally, normal forms of negative types are defined as inductive

family Nf N Γ . They are generated by maximal negative introduc-

tion (abs, pair−, unit−) until a negative atom or Comp P is reached.

Then, elimination of neutrals and variables is possible through the

Cov monad until an answer can be given in form of a base neutral

(Ne o−) or a normal value.

ne
Cov (Ne o−) Γ

Nf o− Γ
ret

Cov (Vnf P) Γ

Nf (Comp P) Γ

unit−
Nf ⊤ Γ

pair−
Nf N1 Γ Nf N2 Γ

Nf (N1 & N2) Γ

abs
Nf N Γ.P

Nf (P ⇒ N) Γ

Note that we do not have a function runNfCov this time,
5
instead,

we directly employ Cov in the definition of Nf at the base cases o−

and Comp P .
Reification ↓P : [[P]] Û→ Vnf P at positive types P produces a nor-

mal value, and ↓N : [[N]] Û→Nf N at negative types N a normal term.

During reification of function types P ⇒ N in context Γ we need to
embed a fresh variable x : P ∈ (Γ.P) into [[P]], breaking down P to

positive atoms o+ and negative remainders Thunk N . However, in

[[P]] we do not have case analysis available, thus, positive reflection
↑PΓ : P ∈ Γ → Cov [[P]] Γ needs to run in the monad. Luckily, we

can unwind the monad using runN before we recursively reify at

type N . Negative reflection ↑N : Ne N Û→ [[N]] is, as before, gener-

alized from variables to neutrals, to handle the breaking down of

5
A trivial runNfCov : Cov (Nf N0) Û→ Nf N0 for N0 ::= o− | Comp P could be given

by induction on the cover, essentially being a join . However its extension to arbitrary

negative types N would fail for the case of pushing a binder (bind, split or case) under
an abstraction. This is because our base category Cxt of order-preserving embeddings

does not permit swapping of variables in the context.

NbE for CBPV and Polarized Lambda Calculus PPDP 2019, 7-9 October 2019, Porto, Portugal

N via eliminations. In the following definition of reflection we use

the abbreviation freshPΓ = ↑PΓ.P v0 : Cov [[P]] (Γ.P) .

↑PΓ : P ∈ Γ → Cov [[P]] Γ

↑o
+

Γ x = x

↑1Γ x = return ()

↑
P1×P2
Γ x = split x

(
(↑
P1
Γ.P1 .P2

v1)⋆ (↑
P2
Γ.P1 .P2

v0)
)

↑0Γ x = abort x

↑
P1+P2
Γ x = case x (map ι1 fresh

P1
Γ) (map ι2 fresh

P2
Γ)

↑Thunk N
Γ x = return (↑NΓ (forcex))

↓P : [[P]] Û→ Vnf P

↓o
+

= var

↓1Γ () = unit+

↓
P1×P2
Γ (a1,a2) = pair+ (↓P1Γ a1) (↓

P2
Γ a2)

↓0 = magic

↓P1+P2 = [inj
1
◦ ↓P1 , inj

2
◦ ↓P2]

↓Thunk N = thunk ◦ ↓N

Reflection at positive pairs uses monoidal functoriality C A1 Û→

CA2 Û→ C (A1 ×̂ A2) called ⋆ by McBride and Paterson [21,

Section 7], which in our case can be defined by e. g. c1 ⋆ c2 =
join (m̂ap (λ τ1 a1. m̂ap (λ τ2 a2. (ren τ2 a1, a2)) (ren τ1 c2)) c1).

For negative types, reflection and reification works as before:

↑N : Ne N Û→ [[N]]

↑
Comp P
Γ u = bindu freshPΓ

↑o
−

Γ u = return u

↑⊤Γ u = ()

↑
N1&N2

Γ u = (↑
N1

Γ (prj
1
u), ↑N2

Γ (prj
2
u))

↓N : [[N]] Û→ Nf N

↓
Comp P
Γ c = map (↓P) c

↓o
−

Γ c = ne c

↓⊤Γ () = unit−

↓
N1&N2

Γ (b1,b2) = pair− (↓
N1

Γ b1) (↓
N2

Γ b2)

Reflection for function types is also unchanged, except that app
expects a value argument now.

↑P⇒N
Γ u = λ ∆ τ a. ↑N∆ (app (renτ u) (↓P∆a))

↓P⇒N
Γ f = (abs ◦ ↓NΓ.P ◦ runNΓ.P

◦ m̂ap (λ τ a. f (wkP # τ) a)) freshPΓ
For reification of a (Kripke) function f : [[P ⇒ N]]Γ we extend

context Γ to Γ.P and create a case tree freshPΓ : Cov [[P]] (Γ.P)
representing the new variable. Using strong functoriality m̂ap, we
then apply f to all leaves a of that case tree, which may live in

further extended contexts ∆ reachable by τ : Γ.P ⊆ ∆. The resulting
case tree Cov [[N]] (Γ.P) is then run giving us a value in [[N]](Γ.P),
which can be reified to a Nf N (Γ.P). Finally, abstraction gives the

desired normal form in Nf (P ⇒ N) Γ.

This time, the identity environment freshΓ : Cov [[Γ]] Γ can only

be generated in the monad, due to monadic positive reflection.

freshε = return ()

freshΓ.P = (renwkP freshΓ)⋆ freshPΓ
Putting things together, we obtain the normalization function

norm (t : TmN Γ) =
(
↓NΓ ◦ runNΓ ◦map L t M

)
freshΓ .

Taking stock, we have arrived at normal forms that eagerly in-

troduce (Nf) and eliminate (Ne) negative types and also eagerly

introduce positive types (Vnf). However, the elimination of positive

types is still rather non-deterministic: It is possible to only partially

break up a composite positive type and leave smaller, but still com-

posite positive types for later pattern matching. The last refinement

of normal forms, chaining also the positive eliminations, will be

discussed in the following section.

4 FOCUSED INTUITIONISTIC
PROPOSITIONAL LOGIC

Polarized lambda-calculus [27, 29] is a focused calculus, it eagerly

employs so-called invertible rules: the introduction rules for nega-

tive types and the elimination rules for positive types. As a conse-

quence of the latter, variables are either of atomic or negative type.

Types in contexts Γ,∆ are of one of the forms o+ or N .

To add a variable of positive type P to the context, we need to

break it apart until only atoms and negative bits remain. This is

performed by maximal pattern matching, called the left-invertible

phase of focalization.
6
We express maximal pattern matching on

P as a strong functor [P] in the category of presheaves, mapping

a presheaf J (“judgement”) to [P]J and a presheaf morphism

f : (J ⇒̂ K)Γ to m̂ap[P]Γ f : [P] J Γ → [P]K Γ. For arbitrary

J and Γ, the family [P] J Γ is inductively constructed by the

following rules:

hyp+
J (Γ.o+)

[o+] J Γ
hyp−

J (Γ.N)

[Thunk N] J Γ

branch0
[0] J Γ

branch2
[P1] J Γ [P2] J Γ

[P1 + P2] J Γ

split
0

J Γ

[1] J Γ
split

2

[P1] ([P2] J) Γ

[P1 × P2] J Γ

Note the recursive occurrence of [P2] as argument to [P1] in split
2
,

which makes [P] a nested datatype [10]. Agda supports such nested

inductive types; but note that [P] is uncontroversial, since it could
also be defined by recursion on P . It is tempting to name split

2
“join”

and split
0
“return” since [P] is a graded monad on the monoid (1,×)

of product types; however, this coincidence shall not matter for our

further considerations.

Remark 2. The notation [P] is chosen in analogy of the next-time
operator of dynamic logic [24]. The deeper reason is that the category
Cxt can be seen as branching time where a context represents a point
in time and an extension a possible future. The modality [P] picks a

6
Filinski [15, Section 4] achieves maximal pattern matching through an additional,

ordered context Θ for positive variables which are eagerly split.

PPDP 2019, 7-9 October 2019, Porto, Portugal Andreas Abel and Christian Sattler

certain future, the “proposition” [P] J states that J should hold in
the future determined by P .

While in dynamic logic P would be a regular expression, our positive
types represent the fragment featuring choice (0,+) and sequence
(1,×). The introduction rules for [P] J resemble the axioms of choice
(branch0, branch2) and sequence (split0, split2) in dynamic logic.

Focalization is a technique to remove don’t-care non-

determinism from proof search, and as such, polarized lambda

calculus is foremost a calculus of normal forms. These normal

forms are given by four mutually defined inductive families of

presheaves Vnf P ,Ne N , Cov J , andNf N . As they are very similar

to the CBPV normal forms given in the last section, we only report

the differences. Values v : Val P Γ are unchanged, they can refer

to atomic positive hypotheses (var+) and normal thunks. Neutrals
Ne N Γ start with a negative variable instead of with force, as
forcing thunks is already performed in hyp− when adding hypothe-

ses of Thunk type. The normal forms Nf N Γ of negative type

are unchanged with the exception that pattern matching happens

eagerly in abs, by virtue of [P].

var−
N ∈ Γ

Ne N Γ
abs

[P] (Nf N) Γ

Nf (P ⇒ N) Γ

The Cover monad Cov J Γ lacks constructors split, case and

abort since the pattern matching is taken care of by [P].

return
J Γ

Cov J Γ
bind

Ne (Comp P) Γ [P] (Cov J) Γ

Cov J Γ

All these inductive families are presheaves, however, due to the

factored presentation using [P] and Cov, the proof is not a simple

mutual induction. Yet, in Agda, the generic proof goes through

using a sized typing for these inductive families. Similarly, defining

the join for monad Cov relies on sized typing [1].

join : ∀i . Covi (Cov∞J) Û→ Cov∞J

joini+1 (returni c) = c
joini+1 (bindi t k) = bind∞ (t : Ne P Γ)

(m̂ap[P]Γ joini (k : [P] (CoviJ) Γ))

Herein, we used the sized typing of the constructors of Cov:

return : ∀i . J Û→ Covi+1J
bind : ∀i . Ne (Comp P) Û→ [P] (CoviJ) Û→ Covi+1J

Due to the eager splitting of positive hypotheses, reflection at

type P now lives in the graded monad [P] rather than Cov. Further,
as pattern matching may produce n ≥ 0 cases, reflection cannot

simply produce a single positive semantic value; instead, one such

value is needed for every branch. We implement reflectP : ([[P]] ⇒̂
J) Û→ [P]J as a higher-order function expecting a continuation

k which is invoked for each generated branch with the semantic

value of type P constructed for this branch, see Figure 6.

Reflecting at a positive atomic type o+ is the regular ending

of a reflection pass: we call continuation k with a fresh variable

var+ zero of type o+, making space for the variable using wko
+
. In

case we end at type Thunk N , we add a new variable var− zero of
type N and pass it to k , after full η-expansion via ↑N . Two more

endings are possible: At type 0, we have reached an absurd case,

meaning that no continuation is necessary since we can conclude

reflectP : ([[P]] ⇒̂ J) Û→ [P]J

reflecto
+

k = hyp+(k wko
+
(var+ zero))

reflectThunk N k = hyp−(k wkN (↑N (var− zero)))
reflect0 k = branch0
reflectP1+P2 k = branch2 (reflectP1 (λ τ . k τ ◦ ι1))

(reflectP2 (λ τ . k τ ◦ ι2))
reflect1 k = split

0
(k id ())

reflectP1×P2 k = split
2
(reflectP1 (λ τ1 a1.
reflectP2 (λ τ2 a2.
k (τ1 # τ2) (renτ2 a1, a2))))

Figure 6: Positive reflection (polarized lambda calculus).

with ex falso quodlibet. At type 1, there is no need to add a new

variable, as values of type 1 contain no information. We simply pass

the unit value () to k in this case. Reflecting at P1 + P2 generates
two branches, which may result in several uses of the continuation

k . In the first branch, we recursively reflect at P1. Its continuation
will receive a semantic value in [[P1]], which we inject via ι1 into
[[P1 + P2]] to pass it to k . The second branch proceeds analogously.

Finally reflecting at P1 × P2 means we first have to analyze P1, and
in each of the generated branches we continue to analyze P2. Thus
reflectP2 is passed as a continuation to reflectP1 . Each reflection

phase gives us a semantic value ai of type Pi , which we combine to

a tuple before passing it to k . Note also that the context extension

τ1 created in the first phase needs to be composed with the context

extension τ2 of the second phase to transport k into the final context.

Further, the value a1 was constructed relative to the target of τ1
and still needs to be transported with τ2 before being paired up

with a2.
The method reflectP replaces previous uses of freshP in reflec-

tion and reification at negative types.

↓P⇒N
Γ f = abs

(
reflectPΓ

(
λ ∆ (τ : Γ ⊆ ∆) a. ↓P∆(f τ a)

))
↑
Comp P
Γ u = bind u

(
reflectPΓ (λ τ a. return a)

)
Due to the absence of composite positive types in contexts, the

identity environment freshΓ can be built straightforwardly using

negative reflection.

freshΓ : [[Γ]]Γ
freshε = ()

freshΓ.o
+
= (ren wko

+
freshΓ , var+ zero)

freshΓ.N = (ren wkN freshΓ , ↑NΓ (var− zero))

The terms TmN Γ of the polarized lambda calculus are the

ones of CBPV minus the positive eliminations (split, case, abort),
the added negative variable rule (var−), and the necessary changes

to the binders abs and bind.

var−
N ∈ Γ

TmN Γ
abs

[P] (TmN) Γ

Tm (P ⇒ N) Γ

bind
Tm (Comp P) Γ [P] (TmN) Γ

TmN Γ

NbE for CBPV and Polarized Lambda Calculus PPDP 2019, 7-9 October 2019, Porto, Portugal

Term interpretation L_ M : TmN Γ → [[Γ]] Û→ [[N]] shall be as for

CBPV except that we need to exchange the interpretation function

for binders

λL _ M : TmN (Γ.P) → [[Γ]] Û→ [[P ⇒ N]].

Since a binder for P performs a maximal splitting on P and takes the

form of a function defined by a case (and split) tree, applying it to a

value v of type P amounts to a complete matching of v against the

case tree and binding the remaining atomic and negative crumbs.

This matching can be defined for a generic evaluation function of

type EvJ ∆ Γ = [[Γ]]∆ → J ∆.

match : [[P]]∆ → [P] (EvJ ∆) Û→ EvJ ∆
match x (hyp+ e) γ = e (γ , return x)
match b (hyp− e) γ = e (γ , b)
match a branch0 γ = magic a
match (ι1 a1) (branch2 e1 e2) γ = match a1 e1 γ
match (ι2 a2) (branch2 e1 e2) γ = match a2 e2 γ
match () (split

0
e) γ = e γ

match (a1,a2) (split2 e) γ =

match a1 (map[P] (match a2) e) γ

With instantiations J = [[N]] and L_ M : TmN Û→ Ev [[N]]∆, the
interpretation λL t M of binder t : [P] (TmN) Γ is defined as follows:

λL t M(γ :[[Γ]]∆) (τ : ∆ ⊆ Φ) (a : [[P]]Φ) =

match a (map[P] L_ M t) (renτ γ)

This completes the definition of the normalization function norm (t :
TmN Γ) = ↓N L t MfreshΓ .

5 CONCLUSION AND FURTHER WORK
We have defined NbE for CBPV and polarized lambda calculus,

formulated with intrinsically well-typed syntax and presheaf se-

mantics. At the heart of our development stands the notion of a

cover monad, as alternative to the more common sheaf semantics,

to handle sum types.

As a side result, we have proven semantically that the normal

forms of both systems are logically complete, i. e., each derivable

judgement Γ ⊢ N has a normal derivation. It remains to show that

NbE for these calculi is also computationally sound and complete,

i.e., the computational behavior of term and normal form should

agree, and normalization should decide a suitable equational the-

ory on terms. To this end, we may switch from the category of

presheaves to the category of Kripke predicates, as investigated

through an Agda formalization.
7

Additionally, a natural question to investigate is whether known

CBN and CBV NbE algorithms can be obtained from our NbE al-

gorithms by embedding simply-typed lambda calculus into our

polarized calculi, using known CBN and CBV translations. Further,

we would like to study the NbE algorithm for STLC arising from

the optimal translation, i.e., the one inserting a minimal amount

of Thunk and Comp transitions. Finally, we might revisit our in-

terpretation of Thunk as a monoidal comonad as suggested by the

categorical models of modal logic S4 [2].

7
https://andreasabel.github.io/ipl/html/NbeModel.html

ACKNOWLEDGMENTS
The first author took initial inspiration from some unpublished

notes by Thorsten Altenkirch titledAnother topological completeness
proof for intuitionistic logic received by email on 16th March 2000.

Thorsten in turn credits his inspiration to an ALF proof by Thierry

Coquand. Thanks to Hugo Herbelin for encouraging feedback and

spotting some typos. Thanks to the anonymous referees of previous

versions of this paper for the valuable feedback and remarks that

helped improving the text of this article.

The first author acknowledges financial support from VR Grant

2014-04864 Termination Certificates for Dependently-Typed Programs
and Proofs via Refinement Types and the EU Cost Action CA15123

EUTYPES Types for Programming and Verification.

REFERENCES
[1] Andreas Abel. 2006. A Polymorphic Lambda-Calculus with Sized Higher-Order

Types. Ph.D. Dissertation. Ludwig-Maximilians-Universität München.

[2] Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike Ritter. 2001.

Categorical and Kripke Semantics for Constructive S4 Modal Logic. In Computer
Science Logic, 18th International Workshop, CSL 2004, 13th Annual Conference of
the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings (Lecture Notes in
Computer Science), Laurent Fribourg (Ed.), Vol. 2142. Springer, 292–307. https:

//doi.org/10.1007/3-540-44802-0_21

[3] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott. 2001.

Normalization by Evaluation for Typed Lambda Calculus with Coproducts. In

16th IEEE Symposium on Logic in Computer Science (LICS 2001), 16-19 June 2001,
Boston University, USA, Proceedings. IEEE Computer Society Press, 303–310. https:

//doi.org/10.1109/LICS.2001.932506

[4] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995. Categorical

Reconstruction of a Reduction Free Normalization Proof. In Category Theory
and Computer Science, 6th International Conference, CTCS ’95, Cambridge, UK,
August 7-11, 1995, Proceedings (Lecture Notes in Computer Science), David H. Pitt,

David E. Rydeheard, and Peter Johnstone (Eds.), Vol. 953. Springer, 182–199.

https://doi.org/10.1007/3-540-60164-3_27

[5] Thorsten Altenkirch and Tarmo Uustalu. 2004. Normalization by Evaluation for

λ→2
. In Functional and Logic Programming, 7th International Symposium, FLOPS

2004, Nara, Japan, April 7-9, 2004, Proceedings (Lecture Notes in Computer Science),
Yukiyoshi Kameyama and Peter J. Stuckey (Eds.), Vol. 2998. Springer, 260–275.

https://doi.org/10.1007/978-3-540-24754-8_19

[6] Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs in Linear

Logic. Journal of Logic and Computation 2, 3 (1992), 297–347. https://doi.org/10.

1093/logcom/2.3.297

[7] Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. 2004. Extensional normal-

isation and type-directed partial evaluation for typed lambda calculus with sums.

In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, Neil D. Jones
and Xavier Leroy (Eds.). ACMPress, 64–76. https://doi.org/10.1145/964001.964007

[8] Freiric Barral. 2008. Decidability for non-standard conversions in lambda-calculus.
Ph.D. Dissertation. Ludwig-Maximilians-University Munich.

[9] Ulrich Berger and Helmut Schwichtenberg. 1991. An Inverse to the Evaluation

Functional for Typed λ-calculus. In Sixth Annual Symposium on Logic in Computer
Science (LICS ’91), July, 1991, Amsterdam, The Netherlands, Proceedings. IEEE
Computer Society Press, 203–211. https://doi.org/10.1109/LICS.1991.151645

[10] Richard S. Bird and Lambert G. L. T. Meertens. 1998. Nested Datatypes. In

Mathematics of Program Construction, MPC’98, Proceedings (Lecture Notes in
Computer Science), Johan Jeuring (Ed.), Vol. 1422. Springer, 52–67. https:

//doi.org/10.1007/BFb0054285

[11] Taus Brock-Nannestad and Carsten Schürmann. 2010. Focused Natural Deduction.

In Logic for Programming, Artificial Intelligence, and Reasoning - 17th International
Conference, LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Proceedings (Lec-
ture Notes in Computer Science), Christian G. Fermüller and Andrei Voronkov

(Eds.), Vol. 6397. Springer, 157–171. https://doi.org/10.1007/978-3-642-16242-

8_12

[12] Catarina Coquand. 1993. From Semantics to Rules: A Machine Assisted Analysis.

In Computer Science Logic, 7th Workshop, CSL ’93, Swansea, United Kingdom,
September 13-17, 1993, Selected Papers (Lecture Notes in Computer Science), Egon
Börger, Yuri Gurevich, and Karl Meinke (Eds.), Vol. 832. Springer, 91–105. https:

//doi.org/10.1007/BFb0049326

[13] Olivier Danvy. 1996. Type-Directed Partial Evaluation. In Conference Record of
POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Papers Presented at the Symposium, St. Petersburg Beach, Florida,
USA, January 21-24, 1996, Hans-Juergen Boehm and Guy L. Steele Jr. (Eds.). ACM

https://andreasabel.github.io/ipl/html/NbeModel.html
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.1007/978-3-540-24754-8_19
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1145/964001.964007
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/BFb0054285
https://doi.org/10.1007/BFb0054285
https://doi.org/10.1007/978-3-642-16242-8_12
https://doi.org/10.1007/978-3-642-16242-8_12
https://doi.org/10.1007/BFb0049326
https://doi.org/10.1007/BFb0049326

PPDP 2019, 7-9 October 2019, Porto, Portugal Andreas Abel and Christian Sattler

Press, 242–257. https://doi.org/10.1145/237721.237784

[14] Andrzej Filinski. 1999. A Semantic Account of Type-Directed Partial Evaluation.

In Principles and Practice of Declarative Programming, International Conference,
PPDP’99, Paris, France, September 29 - October 1, 1999, Proceedings (Lecture Notes
in Computer Science), Gopalan Nadathur (Ed.), Vol. 1702. Springer, 378–395. https:
//doi.org/10.1007/10704567_23

[15] Andrzej Filinski. 2001. Normalization by Evaluation for the Computational

Lambda-Calculus. In Typed Lambda Calculi and Applications, 5th International
Conference, TLCA 2001, Krakow, Poland, May 2-5, 2001, Proceedings (Lecture Notes
in Computer Science), Samson Abramsky (Ed.), Vol. 2044. Springer, 151–165. https:

//doi.org/10.1007/3-540-45413-6_15

[16] Yannick Forster, Steven Schäfer, Simon Spies, and Kathrin Stark. 2019. Call-

By-Push-Value in Coq: Operational, Equational, and Denotational Theory. In

Proceedings of the 8th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, AssiaMahboubi

and Magnus O. Myreen (Eds.). ACM Press, 118–131. https://doi.org/10.1145/

3293880.3294097

[17] Felix Joachimski and Ralph Matthes. 2003. Short proofs of normalization for the

simply-typed lambda-calculus, permutative conversions and Gödel’s T. Archive
of Mathematical Logic 42, 1 (2003), 59–87. https://doi.org/10.1007/s00153-002-

0156-9

[18] Neelakantan R. Krishnaswami. 2009. Focusing on patternmatching. In Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and

Benjamin C. Pierce (Eds.). ACM Press, 366–378. https://doi.org/10.1145/1480881.

1480927

[19] Paul Blain Levy. 2006. Call-by-push-value: Decomposing call-by-value and call-

by-name. Journal of Higher-Order and Symbolic Computation 19, 4 (2006), 377–414.
https://doi.org/10.1007/s10990-006-0480-6

[20] Chuck Liang and Dale Miller. 2007. Focusing and Polarization in Intuitionistic

Logic. In Computer Science Logic, 21st International Workshop, CSL 2007, 16th

Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007,
Proceedings (Lecture Notes in Computer Science), Jacques Duparc and Thomas A.

Henzinger (Eds.), Vol. 4646. Springer, 451–465. https://doi.org/10.1007/978-3-

540-74915-8_34

[21] Conor McBride and Ross Paterson. 2008. Applicative programming with effects.

Journal of Functional Programming 18, 1 (2008), 1–13. https://doi.org/10.1017/

S0956796807006326

[22] John Mitchell. 1996. Foundations of Programming Languages. MIT Press.

[23] Eugenio Moggi. 1991. Notions of Computation and Monads. Information and
Computation 93, 1 (1991), 55–92. https://doi.org/10.1016/0890-5401(91)90052-4

[24] Vaughan R. Pratt. 1976. Semantical Considerations on Floyd-Hoare Logic. In

17th Annual Symposium on Foundations of Computer Science, Houston, Texas, USA,
25-27 October 1976. IEEE Computer Society Press, 109–121. https://doi.org/10.

1109/SFCS.1976.27

[25] Dag Prawitz. 1965. Natural Deduction. Almqvist & Wiksell, Stockholm.

[26] Christine Rizkallah, Dmitri Garbuzov, and Steve Zdancewic. 2018. A Formal

Equational Theory for Call-By-Push-Value. In Interactive Theorem Proving - 9th
International Conference, ITP 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings (Lecture Notes in Computer
Science), Jeremy Avigad and Assia Mahboubi (Eds.), Vol. 10895. Springer, 523–541.

https://doi.org/10.1007/978-3-319-94821-8_31

[27] José Espírito Santo. 2017. The Polarized λ-calculus. Electronic Notes in Theoretical
Computer Science 332 (2017), 149–168. https://doi.org/10.1016/j.entcs.2017.04.010

[28] Gabriel Scherer. 2017. Deciding equivalence with sums and the empty type. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and
Andrew D. Gordon (Eds.). ACM Press, 374–386. https://doi.org/10.1145/3009837

[29] NoamZeilberger. 2009. The Logical Basis of Evaluation Order and Pattern-Matching.
Ph.D. Dissertation. Carnegie Mellon University.

https://doi.org/10.1145/237721.237784
https://doi.org/10.1007/10704567_23
https://doi.org/10.1007/10704567_23
https://doi.org/10.1007/3-540-45413-6_15
https://doi.org/10.1007/3-540-45413-6_15
https://doi.org/10.1145/3293880.3294097
https://doi.org/10.1145/3293880.3294097
https://doi.org/10.1007/s00153-002-0156-9
https://doi.org/10.1007/s00153-002-0156-9
https://doi.org/10.1145/1480881.1480927
https://doi.org/10.1145/1480881.1480927
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1007/978-3-540-74915-8_34
https://doi.org/10.1007/978-3-540-74915-8_34
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1007/978-3-319-94821-8_31
https://doi.org/10.1016/j.entcs.2017.04.010
https://doi.org/10.1145/3009837

	Abstract
	1 Introduction
	2 Normalization by Evaluation for the Simply-Typed Lambda Calculus with Sums
	2.1 Contexts and indices
	2.2 STLC and its normal forms
	2.3 Normalization
	2.4 Continuation monad

	3 Normalization to Call-By-Push Value
	3.1 Types and polarization
	3.2 Terms and evaluation
	3.3 Normal forms and normalization

	4 Focused Intuitionistic Propositional Logic
	5 Conclusion and Further Work
	Acknowledgments
	References

