Functional Reactive Programming, restated

Guerric Chupin
University of Nottingham
Nottingham, United Kingdom
Guerric.Chupin@nottingham.ac.uk

ABSTRACT

Functional Reactive Programming is an approach to declarative
programming of reactive systems by describing interactions be-
tween time-varying values. FRP implementations are often realised
as an embedding in a functional host language, making for very ex-
pressive reactive programming frameworks. However, this expres-
siveness comes at a cost: current embedded FRP implementations
incur substantial performance overheads, in particular for values
that (notionally) vary continuously. The basic idea of FRP is closely
related to synchronous data-flow and continuous system simula-
tion languages. In contrast to FRP, these handle values that vary
continuously efficiently, but are less expressive. This paper seeks
to bridge this gap by proposing a novel approach to embedded
FRP-implementation that uses the fundamental implementation
approach of synchronous dataflow and simulation languages for
efficient handling of continuously varying values, while retaining
the expressiveness normally associated with FRP, as well as paying
attention to values that only change relatively infrequently. These
ideas are applicable beyond FRP, for example for implementing flex-
ible embedded simulation languages. We evaluate our approach on a
range of benchmarks, including an existing full-fledged video game
where using our new FRP implementation as a drop-in replacement
for the old one gave a three-fold performance improvement.

ACM Reference Format:

Guerric Chupin and Henrik Nilsson. 2019. Functional Reactive Program-
ming, restated. In Principles and Practice of Programming Languages 2019
(PPDP °19), October 7-9, 2019, Porto, Portugal. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3354166.3354172

ACKNOWLEDGMENTS

The authors would like to thank Jéréme Mahuet, author of the
Yampa Flappy bird that we used to evaluate our library, as well as
Olivier Nicole and anonymous reviewers for helpful feedback on
this paper.

1 INTRODUCTION

Reactive programming is everywhere: from embedded systems, via
video games, to distributed web-applications and modern mobile
applications. Functional Reactive Programming (FRP) [11, 37] is a
principled, declarative approach to programming reactive systems,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PPDP 19, October 7-9, 2019, Porto, Portugal

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7249-7/19/10...$15.00
https://doi.org/10.1145/3354166.3354172

Henrik Nilsson
University of Nottingham
Nottingham, United Kingdom
Henrik.Nilsson@nottingham.ac.uk

Figure 1: A version of a Haskell Flappy Birds game [19], mod-
ified to run using our Scalable FRP library

focusing on describing interactions between time-varying values
rather than reacting to individual events, and commonly support-
ing both continuous! and discrete notions of time. As such, FRP
addresses some of the inherent difficulties in programming reactive
systems, and, in various concrete incarnations, it has had a consid-
erable uptake [1, 4, 13, 32] as well as inspired related approaches
such as ReactiveX [29] and (the original) Elm [9]. Further, being
based on time-varying values, FRP is not intrinsically limited to re-
active applications, but can be a useful way to structure time-aware
programs more generally, such as simulations [35].

FRP is often realised as an Embedded Domain-Specific Lan-
guage (EDSL) in a functional host language like Haskell. Yampa is
a prominent representative of this approach. It is structured using
arrows [17] and has been used for various kind of applications such
as games [8], musical applications [14, 22] or robot simulators [16].

However, current embedded FRP implementations incur substan-
tial performance overhead, in particular for continuously varying
values. In fact, most recent FRP endeavours has focused mainly on
discrete time [1, 9, 36]. This is in contrast to synchronous dataflow
languages: while they might not conceptually provide a continuous
notion of time, implementations support values that change “all
the time” very efficiently [3]. Similarly, continuous system simula-
tion relies on efficient realisation of continuously varying values
[5, 15]. On the other hand, embedded FRP implementations tend
to make the flexibility of the functional host language available
also at the reactive level, allowing for higher-order programming
and description of systems that evolve structurally over time, a
level of flexibility usually not offered by synchronous dataflow lan-
guages in order to allow for efficient implementation offering static
performance guarantees.

!Conceptually continuous: Implementations discretize time, but the aim is to still allow
programmers to mostly think in terms of continuous time.

https://doi.org/10.1145/3354166.3354172
https://doi.org/10.1145/3354166.3354172

PPDP ’19, October 7-9, 2019, Porto, Portugal

In the case of arrowized implementations, like Yampa, the overall
performance relies heavily on the efficiency of the “wiring” of the
networks, the way the communication between different parts
of the network is realised. As we highlight in the following, the
overhead can be significant, and worse, at least in the case of Yampa,
it grows with the system size, leading to poor scalability.

This paper shows how the performance of arrowized FRP im-
plementations can be improved manifold by making use of a state-
ful implementation, in many ways similar to that of synchronous
dataflow languages and code for continuous system simulation, to
mostly eliminate the wiring overhead, while retaining the flexibility
normally associated with FRP. Additionally, and unlike Yampa, we
maintain a strict separation, enforced at the type level, between
continuously varying values and those that change, or exist, only at
discrete points in time. This allows for more precise descriptions of
reactive networks. We refer to this new implementation approach as
Scalable FRP (SFRP). It makes use of extensions to the Haskell type
system as implemented by the Glasgow Haskell Compiler (GHC),
such as Generalized Algebraic Data Types (GADT) [28] and data
type promotion [39]. While the setting of this work is arrowized
FRP, our techniques are applicable beyond FRP, e.g. for embedding
of flexible simulation languages.

We evaluated SFRP on a range of benchmarks designed to sys-
tematically test various performance aspects. Performance over
Yampa improved consistently, in some specific cases even asymp-
totically. Additionally, both to check the maturity of our new FRP
implementation, and to get an indication of what performance gains
one might expect in real applications, we used the new implemen-
tation as a mostly drop-in replacement for Yampa in an existing
game, Flappy Birds [19], see figure 1. In this case, we got a three-fold
performance improvement over the original Yampa-based version,
which already had more than adequate performance. Our Scalable
FRP implementation does not yet cover all of Yampa; for example,
collection-based switching [23] and general feedback remain future
work (section 7). Nevertheless, the library is evidently already a
performant alternative for many real FRP applications, particularly
when continuously varying values feature prominently.

The rest of the paper is organized as follows. Section 2 reviews
the basics of FRP and related notions, while section 3 looks specifi-
cally at how Yampa is implemented and its performance shortcom-
ings. Section 4 then presents the implementation of Scalable FRP,
showing in particular how the wiring overhead of Yampa can be
eliminated. Section 5 evaluates our work both qualitatively and
quantitatively with a particular emphasis on performance. Finally,
we consider related work in section 6, focusing in particular on
how the work here differs from other FRP systems with effectful
implementations, and give conclusions in section 7.

2 TECHNICAL BACKGROUND

This section gives a rapid overview of the concepts used in Func-
tional Reactive Programming (FRP) with a focus on Yampa.

2.1 Signals and signal functions

Yampa is centred around two abstractions: signals and signal func-
tions. A signal represents a time-varying value: conceptually, it is a

Guerric Chupin and Henrik Nilsson

Figure 2: Main arrow combinators

O} e 12

(b)f > g

T o
o

(c) first f

(d)f 38& g () f »xx g (f) loop f

function from time to values:
Signal & ~ Time — «a
A signal function is a function from signal to signal:
SF a B = Signal @ — Signal

Signal functions are first-class citizens while signals are not.

Signal functions are an example of arrows [17], an abstract inter-
face unifying “function-like” types. Programming in Yampa is done
by composing primitive signal functions using arrow combinators.
Some combinators are, for instance, the arr signal function that
lifts an ordinary function to a signal functions, serial compositions
>, two versions of parallel composition =+ and 88, the latter of-
ten called “fan-out” and a feedback combinator loop, that instantly
feedbacks one output of a signal function to itself:

arr :(a—>b)—> SFab
(>»)::SFab—>SFbc— SFac

first ::SF ab— SF (a,c) (b,c)

(&&) ::SFab— SF ac— SF a(b,c)
(#0x) :SFab— SF ¢ d— SF (a,c) (b,d)
loop :: SF (a,c) (b,c) > SFab

The main combinators are illustrated on figure 2 in the form of
“boxes and arrows” diagrams, a style Yampa is reminiscent of.

It quickly becomes tedious to program solely using combina-
tors. Fortunately, arrows, such as Yampa signal functions, can be
constructed using Paterson’s arrow notation [27], also called proc-
notation. It allows intermediate signals to be named and explicitly
give them as arguments to signal functions. Just like the monadic do-
notation is desugared using the monad combinators, proc-notation
is desugared using the arrow combinators.

Let us look at an example. Consider the problem of calculating
the trajectory of a ball in free fall. Naming the vertical position
of the ball y and its velocity v, such a system is described by the
following equations:

t
u(t) = vy +f —gdr
0

t
y(t) = yo + fo o(r) de

Yampa provides an integral combinator that computes the inte-
gral of a signal. The equations above are thus readily translated
into the following:

Functional Reactive Programming, restated

freeFall :: (Double, Double) — SF a (Double, Double)
freeFall (y_0,v_0) = proc _ — do

let g =9.81

v« arr (v_0+) << integral < —g

y «— arr (y_0+) << integral < v

returnA —< (y, v)

The proc keyword introduces names for the input signal of the sig-
nal function, like A in lambda-abstractions. Then a list of statements
instantiate subordinate signal functions, with inputs to the signal
functions to the right of —, and their outputs to the left of <. The
last statement’s output is the output of the defined signal function.
Here we use returnA, which is a synonym for the identity arrow.

2.2 Discrete behaviour

Yampa supports dynamic changes in the network structure through
a switching combinator:

switch :: SF a (b,Event ¢) —» (¢ —> SFab) - SFab

The Event type is isomorphic to an option type and is used to
model discrete-time signals:

data Event ¢ = NoEvent | Event ¢

The output of a switch is the b output from the first signal func-
tion, until an event is produced, after which the output is the output
from the second signal function, computed from the value carried
by the event.

Using switch, we can use our freeFall signal function to model a
bouncing ball. A bouncing ball is a free-falling ball until it reaches
the ground (at coordinate y = 0). When it reaches the ground, its
position remains the same, but its velocity is inverted (assuming
bouncing is lossless):
bouncing :: (Double, Double) — SF a (Double, Double)
bouncing (y_0,v_0) = switch bounceAux bouncing

where

bounceAux = proc _ — do
(y,v) « freeFall (y_0,v_0) =< ()
let bounce = if y > 0 then NoEvent else Event (y,—v)
returnA —< ((y,v), bounce)

3 THE YAMPA IMPLEMENTATION

In this section, we describe a typical Yampa-like FRP implementa-
tion as a continuation-based embedding. While the current Yampa
implementation [21] is slightly more complicated than the version
presented here, it has the same problems we highlight here.

3.1 Implementation principles
Although Yampa is meant for programming hybrid continuous-time
and discrete-time systems, it is, of course, fundamentally discrete in
its implementation, emulating hybrid features, such as integration,
by approximations as we will see.

We define signal functions as:

type DTime = Double

data SFa b=
SF {sfTF :: DTime — a — (b,SF a b)}

PPDP ’19, October 7-9, 2019, Porto, Portugal

A signal function computes, from the time passed since its pre-
vious invocation (or time 0) and an input, the output and the signal
function to execute at the next step. This representation makes
it very easy to implement the various combinators discussed in
section 2. For example the “fan-out” operator 88&:

(8&)::SFab— SFac— SF a(b,c)
SF tf _188&SF tf_2 = SF {sfTF = tf_3}
where tf_3 dt a = ((b,c),tf _1'8&if_2’)
where (b,tf _1')=tf _1dta
(c.tf 2))=tf_2dta

Synchrony is maintained by passing the same time difference to
both subordinate signal functions of fan-out.

The continuation allows local state to be maintained, as illus-
trated by the implementation of integral using the rectangle rule
approximation:

integral :: SF Double Double
integral = SF {sfTF = tf 0}
where tf i dt v = (ni,SF (tf ni))
where ni =i+ dt*v

It also allows for dynamic structural changes, exemplified by switch:

switch :: SF a (b,Event ¢) = (¢ > SFab) > SFab
switch (SF tf) mknext = SF {sfTF = stf }
where stf dt a =
case evt of
NoEvent — (b, switch sf’ mknext)
Event ¢ — sfTf (mknext c) dt a
where ((b,evt),sf’) = if dt a

Finally, one can make use of Haskell’s laziness to implement the
loop combinator, by simply using the output of the application of
the transition function as its input:

loop :: SF (a,c) (b,c) > SFab
loop (SF tf) = SF {sfTF = lif }
where ltf dt a = (b, loop tf")
where ((b,¢),tf’) = tf dt (a,c)

3.2 Performance shortcomings

A natural assumption when writing arrow code is that the “wiring”
is essentially free. We refer to wiring, or routing, as the process of
guiding a signal from the output of the signal function producing it
to the inputs of the consuming signal functions. After all, the way
signals flow between signal functions is mostly static, with switch
being the prominent exception.

However as can be see from the implementation of && above,
routing is not free: we have to perform a tuple allocation at each
step to pack its result, a tuple that other combinators, like ##, then
have to unpack later.

This looks like a small price to pay, especially when allocations
are cheap like in most functional language implementations. How-
ever this wiring code is often a large part of an FRP network, par-
ticularly when using the proc-notation. Consider this block:

proc x — do
ye—sf—<x

PPDP ’19, October 7-9, 2019, Porto, Portugal

Ze—sg—<y
returnA —< (x,z)

It is desugared by GHC into a slightly more complicated version of
the following:

arr (Ax = (x,x)) >> first sf >>
arr (Ax — (x,x)) 3> first (arr (A(x,y) — y) >> sg) >>
arr (A(z,(x,y)) = (x,z)) >> returnA

Most of the combinators in the above code handle routing, and
all of them allocate and deallocate tuples. In fact, as shown in
section 5, the cost associated with routing grows quadratically with
the number of lines in a proc-notation block.

Surely we can do better? Indeed, the intuition that the wiring is,
for the most part, static, is correct. For static routing, there are well-
known techniques used in e.g. the implementation of synchronous
dataflow languages [3] and continuous system simulation [5] that
essentially eliminate the routing overhead by representing signals
with shared imperative variables. All that is required is that the
writing and reading of each variable, for each time step, is care-
fully coordinated, which in the setting of (first-order) synchronous
dataflow languages and simulation of structurally static continuous
systems can be achieved through static scheduling of the computa-
tions; i.e., generation of a sequence of imperative assignments in a
suitable order.

These observations lead us to consider a similarly imperative
implementation of FRP networks, where reading and writing of
references is mostly scheduled statically, but where the defining
flexibility of FRP, such as a dynamic system structure, is retained.

The fact that there is no distinction between tuples used for
routing and tuples that are just data in the standard arrows setting
becomes problematic when attempting to implement incremental
evaluation for avoiding recomputing parts of a network that have
not changed, thus improving overall scalability. The reason is that
if one component of a tuple changes, then the entire tuple must be
considered to have changed, meaning that it often becomes impossi-
ble to pinpoint how changes flow through a network. This problem
is eliminated if producers and consumers are connected directly
through a dedicated channel, such as a shared variable. We have so
far not systematically pursued an incremental implementation, but
the sketched imperative implementation provides a good setting for
such an approach in the future, and, as discussed in the following,
the implementation of arr is optimized taking change into account.

3.3 Signal kinds

So far, we have considered signals to be (notionally) continuously
varying over time. In a hybrid systems setting, there are, as we have
seen, other kinds of signals, such as signals defined only at discrete
points in time. A discrete-time signal can, of course, be represented
by a continuous time signal, and this is, as we have also seen, the
approach taken in Yampa. However, there are both conceptual
and practical advantages of making a more profound distinction
between different kinds of signal. For example, as discrete-time
signals can be expected to change relatively infrequently compared
to continuous-time signals, exploiting this through a different im-
plementation strategy for such signals can lead to efficiency gains.

Guerric Chupin and Henrik Nilsson
Figure 4: Signal kinds
t t

(a) Continuous sig- (b) Step signals
nals

t

(c) Event signals

Indeed, many FRP-implementations make a fundamental distinc-
tion between continuous-time signals, commonly called behaviours,
and discrete-time signals, called events [10, 11].

Following the distinctions introduced in [2, 30], we consider
three kinds of signals: continuously varying signals, e.g. the position
of a physical object; discrete time signals, e.g. information about a
collision or a mouse click in a game; and signals that are defined
at all points in time, but only changes at discrete points in time.
Enforcing the distinction between these signal kinds allows for a
more precise and meaningful description of FRP networks and for
optimised implementation strategies.

4 SCALABLE FRP IMPLEMENTATION

This section presents an implementation of the above ideas. We
first explain how different kinds of signals are distinguished. Then,
drawing from compilation techniques for synchronous dataflow
languages [3], we show how to compile networks of signal functions
to an imperative representation that eliminates most of the routing
costs while still allowing for a dynamic system structure. We call
this implementation Scalable FRP, or SFRP for short.

4.1 Signal representation

We wish to distinguish between three kinds of signals, illustrated
on figure 4:

e Continuous signals (C): (notionally) continuously varying
time signals (but may exhibit discontinuities). Typically rep-
resenting a physical quantity such as time, position, etc.

e Step signals (S): piecewise constant continuous-time signals.
For instance input from a discrete controller.

e Event signals (E): signals that are present only at discrete
points in time.

We capture the distinctions by a type SD, for signal descriptor:

data SD a where

C:a—>SDa
Sta—SDa
E:a—SDa

SD is not for use at the value level, but at the type level to
describe the kind of signals a signal function operates on. In GHC,
it is possible to lift a data constructor to the type level [39]. To avoid
ambiguities, a lifted data constructor can be prefixed by a quote.
Thus, 'C Double is a descriptor of continuous signals carrying
doubles. Much as data constructors are lifted to the type level, type
constructors are lifted to the kind (type-of-type) level. The kind of
’C Double is SD =, where * is the kind of Haskell types.

Functional Reactive Programming, restated

For grouping signals we use pairs instead of the vectors used in
Sculthorpe and Nilsson [30]. A descriptor denoting a signal that car-
ries no value is also needed to describe the input to signal functions
that ignore their input, such as our free falling ball examples:

P :SDa— SDb— SD (a,b)
N :: SD Void

Pairs of signals are now distinct from signals of pairs. For instance
’P ('C Double) ("E Bool) is a pair of a continuous signal of Double
and of an event signal carrying a Bool. Void is the empty type
meaning SD Void is a signal carrying no values.

These descriptors can now be used in GADT declarations as
constraints on the type of data-constructors. For instance, we define
the type of values associated to a signal descriptor as:

data SDVal a where
CVal ::a — SDVal ('C a)
SVal :: (Bool, a) — SDVal ('S a)
EVal :: Maybe a — SDVal (’E a)
PVal :: SDVal a — SDVal b — SDVal (P a b)

NvVal :: SDVal ’'N

As a minor optimization, we represent SVal as a tuple of a Boolean
and a value, the Boolean indicating whether the signal has changed
since the previous step. This allows to avoid some computation
when a signal changes rarely, like a step signal is expected to.

For the compilation of the network, we need references to infor-
mation about the value carried by a signal at a point in time. We
thus define a reference type associated to a signal descriptor:

data SDRef a where
CRef :: IORef a — SDRef ('C a)
SRef :: IORef (Bool, a) — SDRef ('S a)
ERef :: IORef (Maybe a) — SDRef ('E a)
PRef :: SDRef a — SDRef b — SDRef ("P a b)
NRef :: SDRef 'N

Haskell’s IORef's are used as the actual reference. Note how the ref-
erences associated to a pair of signals and the reference associated
to a signal of pairs are different: the former, a pair of imperative
references; the latter, a reference to a pair.

In the following, for readability, we use {.,.} to denote a pair of
signal descriptors, { } to denote a signal carrying no value, and we
omit the quote of lifted constructors. Thus P ("C Double) (’E Bool)
will be written { C Double, E Bool}. We also introduce readSDRef ::
SDRef i — IO (SDVal i) for reading and writeSDRef :: SDRef i —
SDVal i — IO () for writing an SDVal to/from an SDRef.

4.2 Signal function representation

Next, the signal function type is refined to use signal descriptors:
data SF (i SD p) (0::SD q) ...

As our goal is to compile signal functions to an imperative rep-
resentation, we need to represent them in a way that is easy to
inspect; i.e., as a deep embedding or abstract syntax tree, except
that parts we do not intend to compile can be represented shallowly.
We thus introduce constructors for arrow-like combinators:

PPDP ’19, October 7-9, 2019, Porto, Portugal

(:>»>:)=:SFab—SFbc— SFac

First =SFab— SF{a,d}{b,d}

(:88&:) ::SFab— SFac— SFa{b,c}
(so0:) :SFac— SFbd— SF{ab} {cd}

Similarly we introduce constructors for a range of primitive signal
functions, for example:

Switch ::SF a{E c¢,b} > (c—> SFab) > SFab
Integral :: SF (C Double) (C Double)

In the following, we will give further examples, including what
we term “routers”, as we neither can, nor desire to (section 3.2), rely
on lifting using arr for grouping and ungrouping signals. The set of
constructors we provide is complete in the sense that, just as with
basic arrows, any network topology can be realised, except that we
leave handling feedback as future work (see section 7). In terms of
functionality, the set of constructors is also fairly complete in the
sense that it covers what is available in Yampa which has proved
to suffice in practice, with some exceptions left as future work.

4.3 Interactions between signals of different
kinds

Yampa, as discussed in section 3.3, does not make a strict distinction
between different kinds of signals. However, enforcing type-level
separation between signal kinds is useful for a number of reasons.

As an example of the utility of this separation, consider Yampa’s
timed delay combinator delay :: Time — a — SF a a. This combi-
nator allows any signal to be delayed a specific amount of time. In
terms of implementation, it is essentially a buffer for signal samples.
However, as Yampa makes no assumptions as to the regularity of
sampling, it may happen that individual samples either needs to be
discarded or duplicated in order to make up for variations in the
sampling frequency. This is fine for signals that conceptually are
continuous. However, it is a disaster for signals carrying events,
as this can mean that events get lost or are duplicated. Therefore
Yampa provides a separate delay combinator for events that works
by scheduling a single output event a fixed time into the future.
However, because Yampa does not fundamentally differentiate be-
tween continuous-time signals and events, there is nothing that
stops a user from using the continuous-time delay also for events.
In the setting of SFRP this distinction can be enforced, allowing us
to provide versions of timed delay with an appropriate implementa-
tion for each kind of signal. For this distinction to be meaningful, it
must come with restrictions on how to go from one kind of signal
to the other.

First, consider arr. Clearly, applying a pure function to a signal
cannot change its kind. The type of arr thus becomes:

arr:: (a— b) — SF (k a) (k)

Because a and b are types, k must have kind * — SD =, thus one
of C, S or E, but not a partially applied P. This means that events
cannot be created out of thin air using arr as the function inside arr
will only be applied if an event is present. As to S-kinded signals,
an optimisation becomes possible. S signals, being expected to
change rarely, carry a Boolean flag indicating if they have changed.
Hence when we use arr on such a signal, we can save work by not
recomputing the output if the input didn’t change.

PPDP ’19, October 7-9, 2019, Porto, Portugal

As there is now a distinction between pairs of signals and signals
of pairs, we need a new combinator arr2 to apply a pure function
to a pair of signals:

arr2:(a— b—c¢) - SF{k ak b} (kc)

While arr could be expressed in terms of arr2, we prefer not to as
that would lose some optimisation opportunities.
We also need primitive operations to mediate between signals
of different kinds for specific purposes. Here are some examples:
o Tagging the event with the value of the signal at the time it
occurs:

Tag:(a— b—c) > SF{CaEb} (Ec)
o Edge detection for continuous signals:

Edge::s — (a — s — (s,Maybe b)) — SF (C a) (E b)
e Change detection for step-signals.

Jump ::s — (a = s — (s,Maybe b)) — SF (S a) (E b)
e Accumulation:

Accum s — (a— s — (s,b)) — SF (E a) (S b)
e Removal of events from an event signal:

FilterE :: (a — Maybe b) — SF (E a) (E b)
e Event merging:

MergeE :: (a = a — a) — SF {E a,E a} (E a)

Events act as mediators between step and continuous signals,
akin to what is being done in hybrid simulation languages [2]. The
combinators we obtain often have equivalences in Yampa.

4.4 Routers

Suppose we wish to compose two signal functions of type:

sf :: SF k {{E a,C b},S c}
sg:SF {Cb{EaSc}} K

Surely sf and sg should be composable, provided we can rear-
range the output signal of sf to match the way the signals are
paired in sg. In Yampa, this would be done by interleaving an arr
rearranging the signals:

sf >> arr (A((ea, cb), sc) — (cb,(ea,sc))) =>> sg

However, in our case, the arrow combinators we have introduced
at this point are not able to express this. Indeed, with the limitations
we introduced on arr and arr2, it is not possible to use these to
perform that task. Even if it had been, doing so would have lost us
all the benefits of using our new representation, since we would
have to read the inputs and write the outputs at each iteration and
pay the cost of wiring again.

Instead, we need a way to describe transformations between
signal “shapes”: signal functions that only act on the way single
signals are paired, but not on the signals themselves. This way, it will
be possible to route signals by simply reorganizing the references
representing the signal, which can be done once.

Notice that signal descriptors have the shape of binary trees: P
being the nodes and N, C, S and E being the leaves. This means that
the set of transformation we need is the set of transformation to
match the shape of any binary tree into any other, provided all the

Guerric Chupin and Henrik Nilsson

non-N leaves of the destination tree are present in the original tree.
We will show in section 4.6 that a sufficient set of transformations
to do so are left- and right-rotations, to modify the shape of the tree
without changing the order of the leaves; duplication and deletion
of a tree, to remove unused leaves, or add extra ones; and swapping
two children of a node, to change the order of the leaves in the tree.
In addition, we also need combinators to compose routers together
or to apply them to a specific subtree on a node. This points to a
type defined in a way similar to SF:
data Router i o where
IdRout
-- Tree rotations
LeftRot :: Router {a,{b,c}} {{a,b},c}
RightRot :: Router {{a,b},c} {a,{b,c}}
-- Subtree deletions
DelRout :: Router i N
FstRout :: Router {a,b} a
SndRout :: Router {a,b} b
-- Leaves duplications
DupRout :: Router a {a,a}
-- Swapping leaves
SwapRout :: Router {a,b} {b,a}
-- Combining routers
AppLeft :: Router a b — Router {a,c} {b,c}
AppRight :: Router ¢ d — Router {a,c} {a,d}
CompRout :: Router a b — Router b ¢ — Router a c

:: Router a a

From a Router, it is possible to define a function route that will
rearrange the shape of references accordingly. In fact, the types are
precise enough that there is only one possible implementation for
the function in each cases:

route :: Router i 0 — SDRef i — SDRef o

route IdRout ir = ir

route DelRout _ = NRef

route DupRout ir = PRef ir ir

route LeftRot (PRef a (PRef b c)) = PRef (PRef a b) ¢

A router can then be lifted into a signal function with a dedicated
constructor:

Router :: Router i o — SF i o
The composition of sf and sg above can now be written as:
sf >> Router (CompRout (AppLeft SwapRout) RightRot) > sg

We do not expect users to use routers directly, except maybe for
simple ones; much like we do not observe in Yampa code uses of
complex calls to arr in the code user write. However it is crucial to
implement an efficient desugaring for the proc-notation.

4.5 Compilation

We now describe a translation from a description of a network to
an executable machine. In the process, we will see how the same
features of GHC’s type system we have used to enable more precise
specification of FRP networks are useful to make the compilation
easier.

Functional Reactive Programming, restated

This section is organized as to guide the reader from an imple-
mentation of a simple, static FRP to implementations of growing
complexity as we progress to support more complicated structures.

The simplest idea is to have a compilation function of the fol-
lowing type:

compile :: SF i 0 — SDRef i — IO (SDRef 0,10 ())

The compile function takes an input reference, and produces
both an output reference and a stepping action. When executed,
the stepping action advances the state of the network by one step
and updates the output reference accordingly. Executing it many
times advances the network by that many steps. One can quickly
see that this representation has the advantages we were looking
for in terms of routing. When we compile a router, we can simply
use the route function to transform the input reference into the
output reference, while the updating action does nothing. Using
pure::a — IO a, that lifts a pure value into an effectful context, not
performing side effects, we have:

compile (Router rr) ir = pure (route rr ir, pure ())

Most combinators can also be neatly expressed this way, for
instance serial composition:

compile (sf :>>: sg) ir = do
(orf, stprSF) « compile sf ir
(or, stprSG) « compile sg orf
pure (or, stprSF > stprSG)

> being the sequence operator for two IO actions. Notice how
the output reference of sf can be reused as the input reference of
sg, as one would expect.

Similarly, the parallel composition also benefits from the more
precise representation:

compile (sf weex: sg) (PRef ir_1ir_2) = do
(or_1,stpr_1) « compile sf ir_1
(or_2,stpr_2) « compile sg ir_2
pure (PRef or_1 or_2,stpr_1>> stpr_2)

The dispatching of the input and output references to both sub-
signal functions can be done at the compilation step, and there is
no need to repeat the process at each iteration.

4.5.1 The difficult case of switching. While it is possible to imple-
ment switching using a function like above, it would lead to space-
and time-leaks in lots of cases. In essence, this could be done by
having extra levels of indirection. The switch’s stepping action
would store the current signal function stepping action and output
reference in an imperative reference. It would execute that stepping
action at each step and then update its output reference based on
the signal function’s output reference. Upon switching, it would
simply overwrite the imperative reference with the new output
reference and the new stepping action. This leads to the following
implementation:

compile (Switch sf next) ir = do
(PRef or (ERef evtRef), stprSF) « compile sf ir
let swStpr stprRef outRef = do
stprSF
evt < readlORef evtRef

PPDP ’19, October 7-9, 2019, Porto, Portugal

case evt of
Nothing — pure ()
Fust ¢ — do
(newOr, newStpr) « compile (next c) ir
newStpr
writelORef stprRef newStpr
writelORef outRef newOr
outRef « newlORef or
rec stprRef < newIORef (swStpr stprRef outRef)
let switchStpr = do
stpr « readIORef stprRef
() & stpr
or « readlORef outRef
readSDRef or >= writeSDRef switchOr
pure (switchOr, switchStpr)

While relatively simple, this approach has a subtle problem. As
we saw in section 2, a common pattern in Yampa is to have switches
switching back on themselves. In that case, the outermost switch
would have to traverse an additional indirection to access its output
value, which is stored in the output reference of the innermost
switch, and the same traversal to access its stepping action.

There are two problems that we need to fix: how to handle the
fact that the stepping action of a switch changes during execution,
and how to handle the change of output reference.

Handling changing output references. We considered two fixes.
The first one is to introduce a notion of variable references. Instead
of using IORef's directly in SDRef, we could use a type like so:

data Ref a = FixRef (IORef a)
| VarRef (IORef Bool) (IORef (Ref a))

A reference is either a fixed reference or a variable reference,
pointing on another reference. In the latter case, we also have a
reference on a Boolean flag that, when True, indicates that the vari-
able reference will always point to the same Ref": it has become
non-variable. This means that it has become an unnecessary indi-
rection and can be “skipped”: another variable reference pointing
to it can simply point at the next one.

We preferred to follow another route that did not require to
change the type of references. Indeed the problem can be solved by
simply passing both output and input references to the compilation
function. Then switch can pass the same output reference to the
first and then the next signal function. Since it is not practical to
do so in general, as it neutralizes the benefits of making routing
explicit, we opted for a compromise solution of optionally passing
the output to the compilation function that will optionally produce
the output reference. The following type would suffice:

SDRef i — Maybe (SDRef o) — IO (Maybe (SDRef 0),10 ())

However, we would prefer to encode the relation that when one
of the Maybe (SDRef o) is Nothing, then the other must be Just.
This constraint can be encoded in GHC’s type system, with the
same tools that we used to constrain signals. We introduce a tagged-
optional type that witnesses at the type-level which constructor it
is made of:

PPDP ’19, October 7-9, 2019, Porto, Portugal

data Opt (b :: Bool) a where
Opt False a
Some :: a — Opt True a

None :

Type families [6, 7] are type-level functions that are treated as
synonyms by the GHC’s type-checker. We can then define a type-
level Not family:

type family Not (b :: Bool) :: Bool where

Not False = True

Not True = False
and use it to encode the desired invariant:
compile :: ¥b.SDRef i

— Opt b (SDRef o)
— IO (Opt (Not b) (SDRef 0),10 ())

Since we quantify on the presence or absence of an output ref-
erence, compile must work in both cases. Consider the implemen-
tation of the compilation of a router with this type. In the case
where no output reference is passed, then we can simply perform
the routing of references like we did previously. However, in the

case where an output reference is given, it will be necessary to
synchronize both references at runtime:

compile (Router rr) ir None =
pure (Some (route rr ir), pure ())
compile (Router rr) ir (Some or) =
pure (None, readSDRef (route rr ir) >= writeSDRef or)

One could argue that a simpler solution would have been to
have two compile functions: one where the output reference is
provided and one where it is not. However, having a single function
is advantageous as in many cases the code for the compile function
is identical in both cases. The present approach avoids duplicating
this code. For instance, serial composition can be compiled without
knowing if it has been passed an output reference:
compile (sf :>>: sg) ir or = do

(Some orf, stprF) « compile sf ir None

(nor, stprG) « compile sg orf or

pure (nor, stprF > stprG)

Note how we can reuse the output reference of the first signal
function as the input to the second in this new setting.

Handling changing stepping actions. We propose solving the prob-
lem of the variable stepping action by extending the type of actions
to be able to return a new stepper to execute at the next time step:
data Stepper = FStpr (IO ())

| VStpr (IO Stepper)

We define a few functions to execute steppers, also returning

the stepper to execute at the next step:

execStepper :: Stepper — 10 Stepper

execStepper (FStpr stpr) = stpr > pure (FStpr stpr)
execStepper (VStpr vstpr) = vstpr

and to sequence two steppers:

seqStepper :: Stepper — Stepper — Stepper
seqStepper (FStpr s_1) (FStpr s_2) = FStpr (s_1>> s_2)

Guerric Chupin and Henrik Nilsson

seqStepper (VStpr vs_1) (FStpr s_2) =
VStpr $ do
s 1« wvs_1
(0 es2
pure (seqStepper s_1 (FStpr s_2))

Note how, in the case of a variable stepper, the recursive call to
seqStepper allows the simplification of the stepper as parts of the
network evolve over time. Suppose we sequence VStpr vs_I and
FStpr s_2, like above, and that the execution of vs1 yields a fixed
stepper, FStpr s_1’. Then the variable stepper resulting from the
sequencing will also yield a fixed stepper, FStpr (s_1’ > s_2).

With this new machinery, we can implement switching in a
much simpler way:

compile (Switch sf mknext) ir or = do
(Some (PRef (ERef evtRef) orf), stprSF) « compile sf ir None
let switchStpr stpr =
VStpr $ do
stpr « execStepper stpr
evt « readlORef eviRef
case evt of
Nothing — pure (VStpr (switchStpr stpr))
Just ¢ — do
(None, stprNext) < compile (mknext c) ir (Some orf)
stprNext « execStepper stprNext
pure stprNext
case or of
None — pure (Some orf, switchStpr stprSF)
Some or — do
let updateRef = readSDRef orf >= writeSDRef or
stpr = seqStepper (switchStpr stprSF) (FStpr updateRef)
pure (None, stpr)

On the absence of loop. As we saw in 3.1, the implementation of
feedback in Yampa exploits laziness to dynamically schedule the
computation of values such that, if there is no cycle in the feedback,
a result can be computed. Implementing such a combinator in
a setting like SFRP is a lot more complicated because the order
of reads and writes to imperative references is fixed during the
compilation of the network which means we cannot make use of
the dynamic scheduling provided by lazy evaluation.

For now, a loop combinator in SFRP remains future work. So
far, we have considered two approaches. The first is to analyse the
dependency graph and statically schedule the reads and writes in a
correct order, like is done in most synchronous language implemen-
tations. While this would require major changes to the library, it is
more principled and flexible solution. The other approach, in the
vein of [38] is to only implement delayed feedback, meaning that
the input to the feedback is the output of the previous step. This
would not require any change to the implementation. However,
we find it unsatisfactory to tie the notion of delay and feedback
together. First, while there has to be decoupling somewhere in a
feedback loop to make the feedback well-defined, this decoupling
need not necessarily be along the designated back edge. Second,

Functional Reactive Programming, restated

there are many possible ways to decouple (various kinds of delays,
integrals), and having to introduce one loop combinator for each
kind of decoupling would be unfortunate.

Further optimizations. Our implementation makes some addi-
tional optimizations to the compilation. For instance, we have a
Done stepper, that denotes a stepper that does nothing. It enables
further simplification by seqStepper, which is useful for code that
uses routers a lot, since these will simply disappear rather than
remaining in the form of pure () actions otherwise. We can also
perform some optimizations by retaining the information that a
signal function is a router in the compiled form, to simplify par-
allel composition for example. Thus the type of the output of the
compilation is either a compilation function or a router.

4.6 Custom proc-notation implementation

The SF type is not a standard arrow which means that we cannot
make use of the proc-notation as supported by GHC. The Rebindable
Syntax extension [34] is not enough to get around that problem.
This extension allows to use GHC’s desugarers with custom ar-
row combinators, rather than the standard ones. However, our arr
combinator is too restrictive to be compatible with the way GHC
operates, since it is used for routing, while we would need to use
the routing combinator introduced in section 4.4.

Fortunately, GHC supports extensions to its syntax through
quasi-quoting [20]. Thus, we can define our own proc-notation that
we can desugar by our own means.

Our notation is as close as possible to GHC’s, in an attempt to
make porting existing Yampa programs (and users) easier. In our
setting, the falling ball of example of section 2 is written like so:

freeFall :: (Double, Double)
— SF a [sd|{ C Double, C Double}|]
freeFall (y_0,v_0) =
[sflproc i — do
v« arr (v_0+) < integral —< {| — 9.81|}
y « arr (y_0+) << integral —< v
returnA —< {y,v}|]

The syntax [sf| - |] introduces a quasi-quote, instructing GHC to
translate the string between the bracket using a quasi-quoter named
sf. Inside the quasi-quote, most things can be read as normal proc-
notation code. Since we insist on distinguishing signal kinds, pairs
of signals are denoted using {-,-}. When introducing a signal name,
it is possible to also indicate its kind with the syntax x :: C, here
indicating that x is of kind C. It can be used to improve clarity or to
give information to GHC’s typechecker. Although we have never
found a case where annotations where necessary for GHC to infer
a signal’s kind, it can at least help to generate better error messages.
Using Haskell expressions as input to signal functions is supported,
but they must be enclosed in {| - |}. They may refer to signals but
all signals being referred to must be of the same single kind, since
we do not wish to mix signals of different kinds implicitly. Pattern
matching on Haskell constructors is not supported, however. There
is also an sd quasi-quoter for typesetting signal descriptors in a
more convenient way.

Let’s go back to the example we looked at in section 3. The
following:

PPDP ’19, October 7-9, 2019, Porto, Portugal

proc x — do
yesf<x
zesg—<y
returnA —< (x,z)

is desugared by GHC to:

arr (Ax — (x,x)) >> first sf >>
arr (Ax — (x,x)) 3> first (arr (A(x,y) — y) >> sg) >>
arr (A(z,(x,y)) = (x,z)) >> returnA

The general form for desugaring a statement is:
arr (Ax — (x,x)) >> first (<glue> >> sf)

First, the inputs are duplicated, as one must conserve the current
inputs so that later statements can use them. For instance, x is used
by both sf and returnA. One of the duplicated input is then fed into
sf. However some “glue” must filter and rearrange the inputs so
that sf can use them.

Our idea is to use a similar scheme for desugaring, but using
routers instead of arr to maintain the efficiency of our setting.
Readily, the duplication can be done by using the Router Dup signal
function. However, the problem of computing the glue remains. As
we mentioned when we introduced routers in section 4.4, routers
are transformations of binary trees. Hence the glue is simply the
transformation between the tree representing all the inputs at this
point in the network and the tree of inputs expected by the signal
function. We present an algorithm to compute this transformation.

The first step consists in computing the transformation that
deletes unused leaves from the initial tree, and duplicates the leaves
that appear more than once. That is done simply using the du-
plicating and deleting routers. For instance, when desugaring the
statement where sg appears in the above, the current set of inputs
is {x, ¥}, but since only y is necessary, we use Router SndRout to
obtain the right number of leaves in the tree.

After this transformation, the tree has the correct leaves in the
correct number, however it may not be in the right shape. Since it
is a well-known problem to match the shape of two binary trees
when the leaves are in the same order (typically, in a binary search
tree) using only tree-rotations [31], we will first sort the leaves of
the tree, in the order the signal function expects them in, and then
shape it correctly.

Computing the sorting transformation is fairly complicated. In-
deed, we do not know of a general way to compute the transforma-
tion that exchanges two leaves of a tree. We know however that it
is simple in one case: when the tree is “list shaped”, i.e. when for
every node, the left branch points to a leaf, and when the leaves
we wish to swap are consecutive, the transformation is simple: a
right-rotation, followed by swapping on the node created on the
left, followed by a right transformation. This is illustrated on fig-
ure 6. This makes computing the transformation to sort this tree
feasible by bubble-sort. The way we match the shape of the tree is
then as follows: we first compute a transformation from the current
tree to a list-shaped tree, then the transformation to bubble sort
the list-shaped tree and finally the transformation to the shape the
signal function excepts.

The transformations obtained from each step are then composed
together in one router that makes the glue.

PPDP ’19, October 7-9, 2019, Porto, Portugal

Figure 6: Swapping two leaves in a list-shaped tree

We do not expect this algorithm to be optimal in any way. In
practice, however, one should recall that this transformation runs
at compile-time inside GHC, where we can expect programs to be
fairly small. In our cases, for networks of less than around 100 lines
(more than what we expect to encounter), we have not noted signif-
icantly different compilation times from the ones of the equivalent
Yampa programs. In terms of the optimality of the router being gen-
erated, we observe that it produces fairly large routers. However a
simple simplifying pass, doing obvious optimizations, like deleting
composition of identity routers, is already enough to obtain a much
cleaner result.

5 EVALUATION

In this section, we evaluate our implementation both in terms of
ease of use compared to Yampa and in terms of performance, to
verify that our scalability objective is attained. Our implementation
can be found on Gitlab?.

5.1 Ease of writing

In order to evaluate how different SFRP and Yampa are from a user
perspective, we modified a version of the game Flappy bird written
using Yampa [19] to use SFRP? (see a screenshot on figure 1).

For a large part of the code, the port was as straightforward as
the port of the falling ball example from section 4.6, mostly a matter
of surrounding the code written in proc-notation by quasi-quote
brackets and modify the few parts where the syntax is different. The
only difficult point was handling inputs to the network. The original
game used, as is common, a record of several fields, essentially
containing information coming from the Graphical User Interface
(GUI) such as the mouse position, mouse clicks, etc. In our setting,
this record is a collection of heterogeneous signals: the mouse
position is a continuous signal while the mouse clicks are events.
However the only collection of signals SFRP supports is nested-
pairs. The choice was then between getting rid of the input record
in favour of nested pairs of signals, which is inelegant and tedious
to write or read; or slightly “lying” and keeping the input record as
a continuous signal (even if its components are not all continuous
signals) and writing accessor signal functions that convert each
field into the relevant signal with the right kind. We decided to go
for the latter solution.

Zhttps://gitlab.com/chupin/scalable-frp
3The SFRP version can be found at https://gitlab.com/chupin/flappy-haskell/tree/
scalable

Guerric Chupin and Henrik Nilsson

Flappy bird, being a light game, did not directly benefit from an in-
crease in performance from SFRP, since the GUI was, by far, the bot-
tleneck. Turning off the GUIL, we were able to measure that, although
the Yampa version was already running at a respectable 30 000 itera-
tions per second, the SFRP version was running at 90 000 iterations
per second, thus a three-fold improvement. This particular measure-
ment was done on a PC with a 4-core Intel i3-7100T @ 3.40 GHz
with 8 GB of memory.

5.2 Precise performance measurements

To test the relative performance of SFRP and Yampa in a more
meaningful and systematic way, we auto-generated networks of
various size and characteristics. These networks, in their Yampa and
SFRP versions, were then benchmarked using the Criterion library*.

5.2.1 Random network generation. The networks were generated
in proc-notation. Doing so is much easier than to generate networks
in “combinator form” and allows to measure the hidden impact of
wiring over the network in a clearer way.

The generated network has one input and one output, both
continuous signals of doubles as are all intermediate signals in the
network. Using continuous signals means that their representation
is not optimized in any way, unlike step signals, meaning that any
improvement over Yampa can be attributed to the difference in
routing. We make sure that every signal is used at least once in
the computation of the output, as to not have parts of the network
removed. The network is made of three basic blocks: integrals, with
one input and one output; sums and negations of two input signals
in one output and switches, with one input and one output and a
subnetwork.

The network is generated with a target size. Each block counts
for 1 except for switches, that count for the size of their subnetwork.

We control the proportion of switches as well as the average
number of iterations at which a switch should occur. We make sure
that not all switches switch in the same iteration by adding a bit
of random noise to the number of iteration a switch should switch
after (if n is that number, the noise is chosen between + min (10, %))
When a switch is generated, a subnetwork is generated with a size
randomly chosen between 1 and the target size of the network it is
in. The switch switches back on itself when an event occur. This
is both in order to model a very common pattern in this kind of
programs and to prevent switches from disappearing entirely from
the network.

Once a network has been generated, the time taken for it to
run 100 000 iterations is benchmarked, in SFRP and Yampa form.
We used a PC with a 8-core Intel Xeon W-2123 @ 3.60 GHz and
32 GB of memory®. Results are presented in figure 7. The graphs
show the average time a network of a given size has taken to
execute 100000 iterations for each library. The average is taken
over 1000 trials. Each trial attempts to average out measurement
artifacts, such as the computer’s clock precision, potentially by
running the program to benchmark several times [24]. We plot on
the same graph the ratio of the speedup of SFRP network over the

“http://hackage haskell.org/package/criterion

5This amount of memory was not necessary to run the benchmarks, but to compile
them, as it seems GHC is fairly memory hungry when it encounters programs with
large literals, as is the case with our auto-generated networks.

https://gitlab.com/chupin/scalable-frp
https://gitlab.com/chupin/flappy-haskell/tree/scalable
https://gitlab.com/chupin/flappy-haskell/tree/scalable
http://hackage.haskell.org/package/criterion

Functional Reactive Programming, restated

Yampa network, as the ratio of the two average running times. The
general observation is that SFRP is significantly faster in all cases,
except in one, rarely encountered in practice, where it is on par
with Yampa.

5.2.2 Performance of static networks. The static benchmarks show
that networks are consistently faster when using SFRP, by an order
of magnitude for networks of size larger than 10.

Observing the benchmarks when there are no switches in the
network confirms the fact that wiring is a major cost in Yampa
compared to SFRP. We observe that Yampa’s running time is qua-
dratic in the size of the network, while SFRP’s is linear. This can be
explained by the following observation: as the network grows, the
number of combinators introduced for the purpose of wiring grows
linearly, but the complexity of these routers also grows linearly
with the size of the network as each of them has to route a lin-
early growing number of signals. This observation was confirmed
when we focus on the cost of switch for SFRP as we will show
that it exhibits the same behaviour when it has to switch on large
networks.

5.2.3 Evaluation of performance with the number of switches. Fig-
ure 7b and 7c¢ show two of the benchmarks for networks that were
generated with respectively 10% and 25% of each line being a switch
and then run by triggering each switch every 50 iterations on av-
erage. These benchmarks, by their very nature cannot be used to
precisely predict a trend. Indeed, we only control the proportion of
switches in a network but leave the size of the subnetwork to be
picked randomly. However, we consistently see that, as the number
of switches increases, the gain from using SFRP shrinks. Not only
because SFRP becomes slower, but also because Yampa becomes
faster.

The reason for this gain is quite subtle, and has to do with the
fact that, when a network contains a switch, its structure is simpler
with regard to routing. This is eminently beneficial to Yampa but
not particularly to SFRP. Consider the case of a network of size
n, without switches. To produce its output, it must wire n signals
together. Consider a network of the same size, but made of two
switch blocks, each of size % Since each switch is made to take
one input and produce one output, to produce their output, both
subnetworks must wire % signals, and then the two output signals
must be wired together. Since the cost of routing is quadratic in
the size of the network, it is more efficient to do the latter that the
former, as witnessed by the benchmark results.

This is also why Yampa exhibits somewhat better behaviour
in practice than in the first benchmarks, since most networks are
made in a modular fashion, from small networks linked together,
the overall cost of routing is reduced. However, the performance
advantage of using SFRP is always significant. It can only increase
as the network grows in size, remaining constant at worse.

5.24 Evaluation of the cost of switching. To get a more meaningful
idea of the cost of switch, we slightly modified our network gener-
ator. This time, we generated purely switchless networks that were
then enclosed in a switch, switching at a certain rate. By that we
mean that, if the generated network is n, the network we bench-
mark is of the form n’ = switch (r&&&n) (A_ — n’), where r is the

PPDP ’19, October 7-9, 2019, Porto, Portugal

signal function generating the event for the switch to occur. Some
results are shown in figure 9.

We observe that when a switch occurs at every iteration (fig-
ure 9c), SFRP is as slow as Yampa and that it presents the same
quadratic behaviour in the size of the network that we observed
for Yampa. This confirms that routing is the cause of the quadratic
behaviour: in this case, SFRP compiles a new network at every
iteration, having to route references at every iteration, much like
Yampa has to route signals at every iterations. Fortunately, net-
works written this way are rarely seen in practice, and often only
with small subnetworks.

6 RELATED WORK

Push-pull FRP. Elliott, in his 2009 paper [12], revisits FRP. He
provides a modernised monadic and applicative interface, but the
main motivation is to resolve the tension between supporting con-
tinuously changing values efficiently, which calls for a pull-based
implementation, and events, which calls for a push-based implemen-
tation. The answer is to combine both, and the paper achieves this
through an elegant derivation from a denotational semantics. How-
ever, the basic behaviours® are represented by piece-wise constant
behaviours (like our step signals) with overlaid known functions, ac-
counting for the behaviour between the points of discrete changes.
For example, the time behaviour is in essence a single step with an
overlaid identity function. This means that the basic behaviours
cannot account for the case where the behaviour is not predictable
until the next discrete change, such as is the case with integration
(in general). A separate interface is provided for this kind of be-
haviour, but the paper does not give many details and it is thus
difficult to comment on the efficiency. It is also unclear to what
extent feedback is supported as the paper does not provide the
required primitives, neither for behaviours nor for events. As to
the implementation, it relies on an “unambiguous choice” operator
that works by spawning threads, using unsafePerformIO to provide
a pure interface, and then picking the first available result. The
specific setup is such that this indeed is safe and does not violate
referential transparency. The implementation is thus very different
from that of SFRP, and its ultimate efficiency hinges on how well the
runtime can handle lots of light-weight threads and how efficiently
the sophisticated machinery required to keep everything pure from
a user perspective can be compiled. The paper does not provide any
performance evaluation. In contrast, the code that ultimately is exe-
cuted when SFRP programs are run is in essence just conventional,
single-threaded imperative code.

Stream-based FRP. Patai [25, 26] proposes a representation of
reactive programs as infinite streams of values, where streams
are constructed using stream generators in a way that make them
suitable to be represented as an stepping action in the IO monad, the
elements of the stream being produced by repeatedly performing
the action. The implementation retains a high degree of dynamicity,
as streams can be higher-order and recursively defined, to account
for feedback for instance. By nature, there is no notion of continuous
time in this implementation. Behind the scenes, the implementation
is imperative. A stream network is constructed, where streams

°In some implementations, continuous-time signals are called behaviours. We keep
this terminology if it is used in the work being discussed.

PPDP ’19, October 7-9, 2019, Porto, Portugal Guerric Chupin and Henrik Nilsson

Figure 7: Benchmark results for arbitrarily generated net- Figure 9: Benchmark results for networks with a single
works. Average runtime and speedup over 100 000 iterations switch enclosing an otherwise switchless network. Average
18 40 runtime and speedup over 100 000 iterations
I | I I I I
Speedup —+—) 25 30
16 = [=9 I [I I I I
SFRP 35 g Speedup —— <
14 L Yampa _ S SFRP ——— | g“
— 30 25
S 20 Yampa — S
- 12 — ©
@ 1% 3 > 420 £
g 10 - s) p
& -4 20 8 g 15 |- 7 &
g 8 - = g s
o =y B - 15 ©
< - 15 2 o g
= 6 . o s 10 m g
o} 9 / =
4 - 10 é« = ; -4 10 73
2,
= 5 5 _| “
2 B 45
o L 0 2
0 50 100 150 200 250 300 0 L Iy I N BN
Network size 0 50 100 150 200 250 300
Network size
(a) No switches W z
18 ‘ ‘ ‘ ‘ 40 (a) Switching every 50 iterations
Speedup —— < 25 30
16 — = [} I I I I I I
SFRP * 35 g Speedup —— ©
14 L Yampa - S SFRP ——— | g
30 25
S 20 Yampa — <
> 12 — ©
:: -4 25 = —_ -1 20 2
g 10 ~] =) @
£ - 20 O o 15 |- - B
g 8 |- - = g =
I = = - 15 "o
S - 15 2 o 8
= 6 . 2 g 10 | . &
) Y =
4 L 4 10 é; = -4 10 73
o,
= 5 - — @
2 ?/\ 3 5 15 =
0 Le \ \ \ L KA &
0 50 100 150 200 250 300 0 L | | \ \ 0
Network size 0 50 100 150 200 250 300
. L . Network size
(b) Networks where 10% of nodes are switches, switching every 50 it-
erations (b) Switching every 10 iterations
18 § P I I I 40 25 I S‘ P I I I 30
eedup —+— o eedup ——
16 = P SFRE —— I 3% £ P SFRE —— 4 5 %
14 L Yampa 4 30 = 20 Yampa - K
2 Q
512 . o = =420
" 1%z <15 L . z
E 10 - 7 5 £ 5
g - 20 © -5 - 15 ©
g 8 |- 7 e g S
g - 15 B § 10 - . !
= 6 |- — 2 = -1 10 §
4 - 0 10 & =
- i -
2 B 7 7 .) X ‘) e
0 L \ \ \ \ 0 0 L= T T 1 1 L1y
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Network size Network size
(c) Networks where 25% of nodes are switches, switching every 50 iter- (c) Switching every iteration

ations

Functional Reactive Programming, restated

may depend on others in arbitrary ways. Carefully coordinated
sampling and update is then carried out, with each stream being
represented by an imperative variable that indicates that the stream
either is being ready to be sampled, or that it has been sampled,
along with its current value, to ensure the results of computations
are shared and break cycles. The traversal of this graph at each
time step thus amounts to dynamic scheduling of the computations,
unlike in Scalable FRP (SFRP) where sequential code for reading
and writing the imperative signal variables in an appropriate order
is constructed once and for all.

Ultrametric FRP. Krishnaswami and Benton [18] propose a deno-
tational semantics for reactive programs represented as programs
over streams, like in Patai’s work. Also like Patai’s work, time is
discrete. The authors propose a language abiding to this semantics
and an efficient translation to a low-level imperative dataflow graph
that preserves the high-level semantics. The dataflow graph is a
network of imperative references containing thunks over streams.
The evaluation of these thunks is dynamically scheduled as the
values of the head of each stream is required. Upon evaluation,
each references is updated to point to a new thunk to the tail of
the stream. The flexibility of the stream representation means that
dynamic higher-order recursive FRP programs can be expressed in
this setting. However, unlike Patai’s work, the well-foundedness of
recursively defined streams as well as the causality is guaranteed.

FRPNow! Van der Ploeg and Claessen [36] propose a new monadic
FRP interface, close to the original FRP interface, that by careful
construction rules out space leaks and allows monadic IO actions
to be performed directly from FRP code. They give a denotational
semantics and derive an implementation from this, proving that
the stated freeness from leaks indeed hold. While the interface
provides both behaviours and events, the value of a behaviour can
only change at discrete points in time, by switching, and the only
assumption regarding time is that there is a total order between
time points. Behaviours in this system are thus akin to our step
signals: there is no direct support for continuous signals in the
SFRP sense. Feedback is limited to behaviours. The implementa-
tion is effectful, using Haskell’s IO monad. Imperative variables
are used to share the latest version of events and behaviours, with
unsafePerformIO used to ensure that those variables are properly
shared even though the provided interface is pure, not mentioning
the IO context. IO actions generating primitive events are spawned
using threads, and the resulting events are batched into so called
rounds to give the illusion of IO actions not taking any time. The
system keeps track of what computations are ready to run in re-
sponse to primitive or derived events, ensuring they are run as
soon as possible but at most once. Also, computations of which
the results are no longer needed and that have no observable side
effects are also removed. The scheduling of computations is thus
done dynamically, and the overhead for frequently changing signals
is consequently substantial. Again, we note that this is different
from SFRP where the scheduling is done statically.

Causal commutative arrows. Causal Commutative Arrows (CCAs)
[38] are a particular class of arrows that can be put into causal com-
mutative normal form, meaning either a pure function or a single
loop containing one pure function and one initial state value. Use

PPDP ’19, October 7-9, 2019, Porto, Portugal

of causal commutative arrows has been shown to lead to great
improvements in performance over the continuation-based repre-
sentation presented in section 3, in part by using an imperative
representation. In this representation, the actions modifications
to the internal state are scheduled statically, however it does not
tackle the problem of wiring in the way we do, which remains fully
dynamic. Note that, although feedback is supported, it always come
with an implicit delay. Unlike SFRP or Yampa, CCAs do not support
dynamic change to the network structure.

Reactive Banana. Reactive Banana [1] is a first-class FRP library,
oriented around programming an event network between signals,
which is then compiled into a stepping action. Although Reactive
Banana supports notionally continuous behaviours, the implemen-
tation is completely event driven, meaning the network only steps
forward when an event occurs. Reactive Banana networks can be
dynamic in a way similar to other implementations, by having
events carrying new behaviours to switch to.

Netwire and Wires. Netwire, and its successor Wires [32, 33], are
libraries very similar to Yampa, where signal functions support
monadic effects and errors. To the best of our knowledge, no par-
ticular optimization effort is made compared to Yampa. However,
given the similarities between these libraries, we believe that the
techniques explored in this paper could be applicable to Netwire
and Wires.

7 FUTURE WORK AND CONCLUSIONS

In this paper, we showed how the performance of arrowized FRP
programs could be greatly improved by making use of an imperative
representation, similar to how synchronous dataflow languages
are compiled, and helped by a precise type-level description of a
network. We presented quantitative evidence of this improvement.
We also showed that our library is mature enough to, in many cases,
be used as a (mostly) drop-in replacement for Yampa.

The current implementation of SFRP is however lacking in some
respects compared to Yampa. In particular, SFRP does not yet sup-
port collection-based switches and “freezing” of running signal
functions [23].

Also, the arrow loop combinator for feedback is not yet supported.
The problem here is that loop calls for an instantaneous feedback
edge which makes static scheduling more difficult. In principle this
can be solved by analysing the dataflow graph: there must be some
decoupling somewhere in a feedback loop to make it well-defined,
but the decoupling need not necessarily be along the back edge
itself. Alternatively, if that is too complicated, we could resort to
a pragmatical solution where feedback is always decoupled e.g.
though a delay element. This solution is actually quite common,
even if it fuses distinct concepts (delay and a back edge). It is also
worth noting that many of the systems considered in the section
on related work also do not support instantaneous feedback edges
for various reasons.

Finally, to further improve the scalability, it would be interesting
to explore systematic incremental evaluation. As discussed briefly
in section 3.2, the SFRP implementation does have an appropriate
structure thanks to direct communication between producers and
consumers through shared variables.

PPDP ’19, October 7-9, 2019, Porto, Portugal Guerric Chupin and Henrik Nilsson

REFERENCES [26

[1] Heinrich Apfelmus. Reactive-Banana: Library for Functional Reactive Program-
ming (FRP). https://hackage.haskell.org/package/reactive-banana. (????).
Albert Benveniste, Timothy Bourke, Benoit Caillaud, Bruno Pagano, and Marc
Pouzet. 2017. A Type-Based Analysis of Causality Loops in Hybrid Systems
Modelers. Journal of Nonlinear Analysis Hybrid Systems (2017).

[3] Dariusz Biernacki, Jean-Louis Colaco, Marc Pouzet, and Grégoire Hamon. 2008.

Gergely Patai. 2011. Efficient and Compositional Higher-Order Streams. In Func-
tional and Constraint Logic Programming, Julio Marifio (Ed.). Vol. 6559. Springer
Berlin Heidelberg, Berlin, Heidelberg, 137-154. DOI:http://dx.doi.org/10.1007/
978-3-642-20775-4_8

Ross Paterson. 2001. A New Notation for Arrows. In International Conference on
Functional Programming. ACM Press, Firenze, Italy, 229-240. http://www.soi.city.
ac.uk/ross/papers/notation.html

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey

[2

—

[27

[28

Clock-Directed Modular Code Generation for Synchronous Data-flow Languages.
In ACM International Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES). Tucson, Arizona, 10.

Washburn. 2006. Simple Unification-Based Type Inference for GADTs. In
Proceedings of the Eleventh ACM SIGPLAN International Conference on Func-

tional Programming (ICFP ’06). ACM, New York, NY, USA, 50-61. DOI:http:
//dx.doi.org/10.1145/1159803.1159811

ReactiveX. Reactive extensions. http://en.wikipedia.org/wiki/Reactive_
extensions. (????). Accessed: 2019-05-09.

Neil Sculthorpe and Henrik Nilsson. 2011. Keeping Calm in the Face of Change:
Towards Optimisation of FRP by Reasoning about Change. Journal of Higher-
Order and Symbolic Computation 23, 2 (2011), 227-271. DOI :http://dx.doi.org/10.
1007/510990-011-9068-x

D D Sleator, R E Tarjan, and W P Thurston. 1986. Rotation Distance, Trian-
gulations, and Hyperbolic Geometry. In Proceedings of the Eighteenth Annual
ACM Symposium on Theory of Computing (STOC '86). ACM, New York, NY, USA,
122-135. DOI:http://dx.doi.org/10.1145/12130.12143

[4] Daniel Biinzli. React, Functional Reactive Programming for OCaml. https:
//erratique.ch/talks/react-ocamlum-2010.pdf. (??22?). Accessed: 2019-05-09.

[5] Francois E. Cellier and Ernesto Kofman. 2006. Continuous System Simulation.
Springer-Verlag, Berlin, Heidelberg.

[6] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. 2005. Asso-
ciated Type Synonyms. In Proceedings of the Tenth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’05). ACM, New York, NY, USA,
241-253. DOI:http://dx.doi.org/10.1145/1086365.1086397

[7] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon
Marlow. 2005. Associated Types with Class. In Proceedings of the 32Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL "05).
ACM, New York, NY, USA, 1-13. DOI: http://dx.doi.org/10.1145/1040305.1040306 - ' ¢) . .

(8] Antony Courtney, Henrik Nilsson, and John Peterson. 2003. The Yampa Arcade. [32] Ertugrul Séylemez. Netwire: Library for Fpnctlonal Reactive Programming (FRP).
In Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell (Haskell *03). ACM, http://hackfige.haskell.grg/packagg/netwnre. (????)‘ ACCGSS‘?df 2015-05-09.
Uppsala, Sweden, 7-18. DOI: http://dx.doi.org/10.1145/871895.871897 [33] Ertugrul S6ylemez. eresS Functional Reactive Programming Library. //hack-

[9] Evan Czaplicki. 2012. Elm: Concurrent FRP for Functional GUIs. Undergraduate age.haskell org/package/wires. (2777). Acc.essed: 2?19'0_5'09'

Thesis. Harward University. [34] The GHC Team. Glasgow Haskell Compiler User’s Guide. https://downloads.

[10] Conal Elliott. 1996. A Brief Introduction to ActiveVRML. Technical Report MSR- haskell.org/~ghc/8.6.5/docs/html/ ulsersiguide/ Accessefi: 2019-07-01.

TR-96-05. Microsoft Research. [35] Jonathan Thaler, Thorsten Altenkirch, and Peer-Olaf Siebers. 2018. Pure Func-

[11] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In Interna- tional Eplden}lcs: An AgerAlt—BAased Approgch. In IFL 2018: The 30th symposium on
tional Conference on Functional Programming. Implementation and Application of Functional Languages. ACM, 1-12.

[12] Conal M. Elliott. 2009. Push-Pull Functional Reactive Programming. In Proceed- [36] Atze van der Ploeg and Koen Claessen. 2015. Pl’é?.Cthal Principled FRP: Forget
ings of the 2nd ACM SIGPLAN Symposium on Haskell - Haskell *09. ACM Press, the Pasti Change the Future, FRPNOW!. In Procee.dmgs of the 20th ACM SIGPLAN
Edinburgh, Scotland, 25. DOT : http://dx.doi.org/10.1145/1596638.1596643 International Conference on Functional Programming (ICFP 2015). ACM, New York,

[13] FRP. Functional reactive programming. http://en.wikipedia.org/wiki/Functional NY, USA, 302-314. DOI :http://dx.dol.org/lo.1.145/27847??1.2784752 .
reactive_programming. (????). Accessed: 2019-05-09. Zhanyong Wan and Paul Hudak. 2000. Functional Reactive Programming from

[14] George Giorgidze and Henrik Nilsson. 2008. Switched-On Yampa. In Practi- First Principles. SIGPLAN Not. 35, 5 (May 2000), 242-252. DOI :http://dx.doi.org/

cal Aspects of Declarative Languages, Paul Hudak and David S. Warren (Eds.). 10.1145/358438.349331 L . =

Vol. 4902. Springer Berlin Heidelberg, Berlin, Heidelberg, 282-298. DOI:http: (38] Jeremy){allop and Hai Liu. 2916‘ Causal .Commutatlve Arrows Revisited. In
//dx.doi.org/10.1007/978-3-540-77442-6_19 Proceedings of the 9th International Symposzum on Haskell (Haskell 2016). ACM,
New York, NY, USA, 21-32. DOI :http://dx.doi.org/10.1145/2976002.2976019

™~
20,

[30

[31

[37

[15] George Giorgidze and Henrik Nilsson. 2011. Embedding a Functional Hybrid b ot ! - S
Modelling Language in Haskell. In Implementation and Application of Functional [39] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios
Languages: 20th International Symposium, IFL 2008, Revised Selected Papers (Lecture Vytmlo.tls, and José Pedro Magalhdes. 2012. Giving H?skell a Promot}on. In
Notes in Computer Science), Sven-Bodo Scholz and Olaf Chitil (Eds.), Vol. 5836. Proceedings Of the 8th A,CM SIGPLAN Wor_kshop on Types in L“”g““ge Design and
Springer-Verlag, 138-155. DOI: http://dx.doi.org/978-3-642-24451-3 Implementat'wn - TLDI ’12. ACM Press, Philadelphia, Pennsylvania, USA, 53. DOI:

[16] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. 2003. Arrows, http://dx.doi.org/10.1145/2103786.2103795
Robots, and Functional Reactive Programming. In Summer School on Advanced
Functional Programming 2002, Oxford University (Lecture Notes in Computer Sci-
ence), Vol. 2638. Springer-Verlag, 159-187.

[17] John Hughes. 2000. Generalising Monads to Arrows. Science of computer pro-

gramming 37, 1-3 (2000), 67-111.
[18] Neelakantan R. Krishnaswami and Nick Benton. 2011. Ultrametric Semantics of
Reactive Programs. In 2011 IEEE 26th Annual Symposium on Logic in Computer
Science. IEEE, Toronto, ON, Canada, 257-266. DOI:http://dx.doi.org/10.1109/
LICS.2011.38
Jérome Mahuet. 2015. Flappy Haskell. https://github.com/Rydgel/flappy-haskell.
(2015).
[20] Geoffrey Mainland. 2007. Why It’s Nice to Be Quoted: Quasiquoting for Haskell.
In Proceedings of the ACM SIGPLAN Workshop on Haskell Workshop - Haskell
’07. ACM Press, Freiburg, Germany, 73. DOI:http://dx.doi.org/10.1145/1291201.
1291211
[21] Henrik Nilsson. 2005. Dynamic Optimization for Functional Reactive Program-
ming Using Generalized Algebraic Data Types. In Proceedings of the Tenth ACM
SIGPLAN International Conference on Functional Programming (ICFP *05). ACM,
New York, NY, USA, 54-65. DOI:http://dx.doi.org/10.1145/1086365.1086374
Henrik Nilsson and Guerric Chupin. 2017. Funky Grooves: Declarative Program-
ming of Full-Fledged Musical Applications. In 19th International Symposium on
Practical Aspects of Declarative Languages (PADL 2017) (Lecture Notes in Computer
Science), Yuliya Lierler and Walid Taha (Eds.), Vol. 10137. Springer, Paris, 163-172.
DOI : http://dx.doi.org/10.1007/978-3-319-51676-9_11
Henrik Nilsson, Antony Courtney, and John Peterson. 2002. Functional Reactive
Programming, Continued. In Proceedings of the 2002 ACM SIGPLAN Haskell
Workshop (Haskell’02). ACM, Pittsburgh, Pennsylvania, USA, 51-64.
Brian O’Sullivan. 2009. Criterion, a New Benchmarking Library for Haskell.
http://www.serpentine.com/blog/2009/09/29/criterion-a-new-benchmarking-
library-for-haskell/. (Sept. 2009).
[25] Gergely Patai. Eventless Reactivity from Scratch. (????), 15.

[19

[22

[23

[24

https://erratique.ch/talks/react-ocamlum-2010.pdf
https://erratique.ch/talks/react-ocamlum-2010.pdf
http://dx.doi.org/10.1145/1086365.1086397
http://dx.doi.org/10.1145/1040305.1040306
http://dx.doi.org/10.1145/871895.871897
http://dx.doi.org/10.1145/1596638.1596643
http://en.wikipedia.org/wiki/Functional_reactive_programming
http://en.wikipedia.org/wiki/Functional_reactive_programming
http://dx.doi.org/10.1007/978-3-540-77442-6_19
http://dx.doi.org/10.1007/978-3-540-77442-6_19
http://dx.doi.org/978-3-642-24451-3
http://dx.doi.org/10.1109/LICS.2011.38
http://dx.doi.org/10.1109/LICS.2011.38
https://github.com/Rydgel/flappy-haskell
http://dx.doi.org/10.1145/1291201.1291211
http://dx.doi.org/10.1145/1291201.1291211
http://dx.doi.org/10.1145/1086365.1086374
http://dx.doi.org/10.1007/978-3-319-51676-9_11
http://dx.doi.org/10.1007/978-3-642-20775-4_8
http://dx.doi.org/10.1007/978-3-642-20775-4_8
http://www.soi.city.ac.uk/ross/papers/notation.html
http://www.soi.city.ac.uk/ross/papers/notation.html
http://dx.doi.org/10.1145/1159803.1159811
http://dx.doi.org/10.1145/1159803.1159811
http://en.wikipedia.org/wiki/Reactive_extensions
http://en.wikipedia.org/wiki/Reactive_extensions
http://dx.doi.org/10.1007/s10990-011-9068-x
http://dx.doi.org/10.1007/s10990-011-9068-x
http://dx.doi.org/10.1145/12130.12143
http://hackage.haskell.org/package/netwire
https://downloads.haskell.org/~ghc/8.6.5/docs/html/users_guide/
https://downloads.haskell.org/~ghc/8.6.5/docs/html/users_guide/
http://dx.doi.org/10.1145/2784731.2784752
http://dx.doi.org/10.1145/358438.349331
http://dx.doi.org/10.1145/358438.349331
http://dx.doi.org/10.1145/2976002.2976019
http://dx.doi.org/10.1145/2103786.2103795

	Abstract
	Acknowledgments
	1 Introduction
	2 Technical background
	2.1 Signals and signal functions
	2.2 Discrete behaviour

	3 The Yampa implementation
	3.1 Implementation principles
	3.2 Performance shortcomings
	3.3 Signal kinds

	4 Scalable FRP implementation
	4.1 Signal representation
	4.2 Signal function representation
	4.3 Interactions between signals of different kinds
	4.4 Routers
	4.5 Compilation
	4.6 Custom proc-notation implementation

	5 Evaluation
	5.1 Ease of writing
	5.2 Precise performance measurements

	6 Related work
	7 Future work and conclusions
	References

