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Fig. 1. Our deep generative neural network, SDM-NET, produces structured meshes composed of deformable parts. Part structures and geometries are jointly

encoded into a latent space by an autoencoder, enabling quality 3D shape generation. We show shape interpolation results exhibiting flexible structure and

fine geometric details. This is achieved by linearly interpolating airplane and chair latent codes and then reconstruction from the in-between codes.

We introduce SDM-NET, a deep generative neural network which produces

structured deformable meshes. Specifically, the network is trained to generate

a spatial arrangement of closed, deformable mesh parts, which respects the

global part structure of a shape collection, e.g., chairs, airplanes, etc. Our

key observation is that while the overall structure of a 3D shape can be

complex, the shape can usually be decomposed into a set of parts, each

homeomorphic to a box, and the finer-scale geometry of the part can be

recovered by deforming the box. The architecture of SDM-NET is that of a

two-level variational autoencoder (VAE). At the part level, a PartVAE learns

a deformable model of part geometries. At the structural level, we train a

Structured Parts VAE (SP-VAE), which jointly learns the part structure of a

shape collection and the part geometries, ensuring the coherence between

global shape structure and surface details. Through extensive experiments

and comparisons with the state-of-the-art deep generative models of shapes,

we demonstrate the superiority of SDM-NET in generating meshes with

visual quality, flexible topology, and meaningful structures, benefiting shape

interpolation and other subsequent modeling tasks.
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1 INTRODUCTION

Triangle meshes have been the dominant 3D shape representation

in computer graphics, for modeling, rendering, manipulation, and

animation. However, as deep learning becomes pervasive in visual

computing, most deep convolutional neural networks (CNNs) de-

veloped for shape modeling and analysis have resorted to other

representations including voxel grids [Girdhar et al. 2016; Qi et al.

2016; Wu et al. 2016, 2015], shape images [Sinha et al. 2016; Su et al.

2015], and point clouds [Qi et al. 2017a; Yin et al. 2018]. One of the

main reasons is that the non-uniformity and irregularity of triangle

tessellations do not naturally support conventional convolution and

pooling operations [Hanocka et al. 2019]. Yet, advantages of meshes

over other shape representations should not be overlooked.

Compared to voxels, meshes are more compact and better suited

to representing finer surface details. Compared to points, meshes are

more controllable and exhibit better visual quality. There have been

recent attempts at developing mesh-specific convolutional operators

designed for triangle tessellations [Hanocka et al. 2019; Poulenard

and Ovsjanikov 2018]. Current deep generative models for meshes

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2019.
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are limited to either genus-zero meshes [Hamu et al. 2018; Maron

et al. 2017] or meshes sharing the same connectivity [Gao et al.

2018; Tan et al. 2018]. Patch-based models which cover a shape with

planar [Wang et al. 2018b] or curved [Groueix et al. 2018] patches,

are more adaptive, but surface quality is often tampered by visible

seams and the patches are otherwise unstructured and incoherent.

In this paper, we introduce a novel deep generative neural net-

work for meshes which overcomes the above limitations. Our key

observation is that while the overall structure of a 3D shape can

be complex, the shape can usually be decomposed into a set of

parts, each homeomorphic to a box, and the finer-scale geome-

try of the part can be recovered by deforming the box. Hence, the

architecture of our network is that of a two-level variational autoen-

coder (VAE) [Kingma and Welling 2013] which produces structured

deformable meshes (SDM). At the part level, a PartVAE learns a

deformable model of shape parts, by means of autoencoding fixed-

connectivity, genus-zero meshes. At the structural level, we train a

Structured Parts VAE (SP-VAE), which jointly learns the part struc-

ture of a shape collection and the part geometries, ensuring the

coherence between global shape structure and surface details.

We call our network SDM-NET, as it is trained to generate struc-

tured deformable meshes, that is, a spatial arrangement of closed,

deformable mesh parts, which respects the global part structure

(e.g., symmetry and support relations among shape parts) of a shape

collection, e.g., chairs, airplanes, etc. However, our network can

generate shapes with a varying number of parts, up to a maximum

count. Besides the advantages afforded by meshes mentioned above,

a structured representation allows shapes generated by SDM-NET to

be immediately reusable, e.g., for assembly-based modeling [Mitra

et al. 2013]. In addition, the deformability of the mesh parts further

facilitates editing and interpolation of the generated shapes.

SDM-NET is trained with a shape collection equipped with a

consistent part structure, e.g., semantic segmentation. However,

the shapes in the collection can be with arbitrary topologies and

mesh connectivities. Such data sets are now widely available, e.g.,

ShapeNet [Chang et al. 2015] and PartNet [Mo et al. 2019b], to

name a few. While direct outputs from SDM-NET are not watertight

meshes, each part is.

In summary, the main contributions of our work are:

• The first deep generative neural network which produces

structured deformable meshes.

• A novel network architecture corresponding to a two-level

variational autoencoder which jointly learns shape struc-

ture and geometry. This is in contrast to the recent work,

GRASS [Li et al. 2017], which learns shape structure and part

geometry using separate networks.

• A support-based part connection optimization to ensure the

generation of plausible and physically valid shapes.

Figure 1 demonstrates the capability of our SDM-NET to recon-

struct shapes with flexible structure and fine geometric details. By

interpolating in the latent space, new plausible shapes with substan-

tial structure change are generated.

Through extensive experiments and comparisons with the state-

of-the-art deep generative models of shapes, we demonstrate the

superiority of SDM-NET in generating quality meshes and shape

interpolations. We also show the structured deformation meshes

produced by SDM-NET enable other applications such as mesh

editing, which are not directly supported by the output from other

contemporary deep neural networks.

2 RELATED WORK

With the resurgence of deep neural networks, in particular CNNs,

and an increasing availability of 3D shape collections [Chang et al.

2015], a steady stream of geometric deep learning methods have

been developed for discriminative and generative processing of 3D

shapes. In this section, we mainly discuss papers mostly related to

our work, namely deep generative models of 3D shapes, and group

them based on the underlying shape representations.

Voxel grids. The direct extension of pixels in 2D images to 3D

is the voxel representation, which has a regular structure conve-

nient for CNNs [Girdhar et al. 2016; Qi et al. 2016; Wu et al. 2016].

Variational autoencoders (VAEs) [Kingma and Welling 2013] and

Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]

can be built with this representation to produce new shapes. Wu et

al. [2019] utilize an autoencoder of two branches to encode geome-

try features and structure features separately, and fuse them into a

single latent code to intertwine the two types of features for shape

modeling. However, these voxel based representations have huge

memory and calculation costs, when the volumetric resolution is

high. To address this, sparse voxel-based methods use octrees to

adaptively represent the geometry. However, although such adap-

tive representations can significantly reduce the memory cost, their

expressiveness of geometric details is still limited by the resolution

of leaf nodes of octrees [Tatarchenko et al. 2017; Wang et al. 2017].

As an improvement, recent work [Wang et al. 2018b] utilizes local

planar patches to approximate local geometry in leaf nodes. How-

ever, planar patches still have limited capability of describing local

geometry, especially for complex local shapes. The patches are in

general not smooth or connected, and require further processing,

which might degrade the quality of generated shapes.

Multi-view images. To exploit image-like structures while avoid-

ing the high cost of voxels, projecting shapes to multiple 2D views is

a feasible approach. Su et al. [2015] project 3D shapes to multi-view

images, along with a novel pooling operation for 3D shape recogni-

tion. This representation is regular and efficient. However, it does

not contain the full 3D shape information. So, although it can be

directly used for recognition, additional efforts and processing are

needed to reconstruct 3D shapes [Soltani et al. 2017]. It also may not

fully recover geometric details due to the incomplete information

in multi-view images.

Point clouds. Point clouds have been widely used to represent 3D

shapes, since they are flexible and can easily represent the raw data

obtained from 3D scanners. The major challenge for deep learn-

ing on point clouds is their irregular structure. Qi et al. [2017a;

2017b] propose PointNet and PointNet++ for 3D classification and

segmentation, utilizing pooling operations that are order indepen-

dent. Yang et al. [2017] exploit an interactive system for segmenting

point clouds of indoor scenes. Fan et al. [2017] use point clouds to

reconstruct 3D objects from a given image. Achlioptas et al. [2018]
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introduce a deep autoencoder network for shape representation

and generation. However, learning from irregular point clouds is

still challenging and their method is only able to produce relatively

coarse geometry.

Meshes and multi-chart representations. Deformable modeling of a

shape collection, especially of human models [Anguelov et al. 2005;

Pons-Moll et al. 2015], operates on meshes with the same connec-

tivity while altering the mesh vertex positions; the shape collection

can be viewed as deformations of a template model. For high quality

shape generation, especially with large deformations, a manually

crafted deformation representation [Gao et al. 2019] is employed

by [Gao et al. 2018; Tan et al. 2018]. Although these methods can

represent and generate shapes with fine details, they require meshes

to have the same connectivity. Wang et al. [2018c] reconstruct a

mesh-based 3D shape from an RGB image by deforming a sphere-

like genus-zero mesh model. Dominic et al. [2018] use a CNN to

infer the parameters of free-form deformation (FFD) to deform a

template mesh, guided by a target RGB image. Both methods require

an image as input to provide guidance, and thus cannot be used for

general shape generation tasks without guidance. Moreover, deform-

ing a single mesh limits the topological and geometric complexity

of generated shapes.

Multi-chart representations attempt to overcome the above re-

striction by generating multiple patches that cover a 3D shape.

This similar methodology has been applied in Zhou et al. [2004]

previously to create texture atlases with less stretches for texture

mapping. Hamu et al. [2018] generate a 3D shape as a collection

of conformal toric charts [Maron et al. 2017], each of which pro-

vides a cover of the shape with low distortion. Since toric covers

are restricted to genus-zero shapes, their multi-chart method still

has the same limitation. AtlasNet [Groueix et al. 2018] generates

a shape as a collection of patches, each of which is parameterized

to a 2D domain as an atlas. While the patches together cover the

shape well, visible seams can often be observed. In general, neither

the atlases nor the toric charts correspond to meaningful shape

parts; the collection is optimized to approximate a shape, but is

otherwise unstructured. In contrast, SDM-NET produces structured

deformable meshes.

Implicit representations. Several very recent works [Chen and

Zhang 2019; Mescheder et al. 2019; Park et al. 2019] show great

promise of generative shape modeling using implicit representa-

tions. These deep networks learn an implicit function which defines

the inside/outside statuses of points with respect to a shape or a

signed distance function. The generative models can be applied

to various applications including shape autoencoding, generation,

interpolation, completion, and single-view reconstruction, demon-

strating superior visual quality over methods based on voxels, point

clouds, as well as patch-based representations. However, none of

these works generate structured or deformable shapes.

Shape structures. Man-made shapes are highly structured, which

motivates structure-aware shape processing [Mitra et al. 2013].

Works on learning generative models of 3D shape structures can

be roughly divided into two categories [Chaudhuri et al. 2019]:

probabilistic graphical models and deep neural networks.

Huang et al. [2015] propose a probabilistic model which com-

putes part templates, shape correspondences, and segmentations

from clustered shape collections, and their points in each part are in-

fluenced by their correspondence in the template. Similar to [Huang

et al. 2015], ShapeVAE [Nash and Williams 2017] generates point

coordinates and normals based on different parts, but uses a deep

neural network instead of a probabilistic model. Compared to the

above two works, our method does not require point-wise corre-

spondences, which can be difficult or expensive to obtain reliably.

Moreover, our method encodes both global spatial structure like sup-

port relations, and local geometric deformation, producing shapes

with reasonable structures and fine details.

Li et al. [2017] introduce GRASS, a generative recursive autoen-

coder for shape structures, based on Recursive Neural Networks

(RvNNs). Like SDM-NET, GRASS also decouples structure and ge-

ometry representations. However, a key difference is that SDM-NET

jointly encodes global shape structure and part geometry, while

GRASS trains independent networks for structure and part geome-

try generations. In terms of outputs, GRASS generates a hierarchical

organization of bounding boxes, and then fills them with voxel

parts. SDM-NET produces a set of shape parts, each of which is a

deformable mesh to better capture finer surface details. Lastly, the

structural autoencoder of GRASS requires symmetry hierarchies

for training while SDM-NET only requires consistent semantic seg-

mentation and employs the support information to produce shapes

with support stability.

Concurrent to SDM-NET, Mo et al. [2019a] develop StructureNet,

which learns a generative autoencoder of shape structures based

on graph neural networks. StructureNet shares much commonality

with GRASS but extends it in two important ways. First, unlike

GRASS, which is limited to encoding binary trees, StructureNet

can directly encode shapes represented as n-ary graphs, aimed to

facilitate a consistent hierarchical representation of shapes within

the same category. Second, StructureNet also accounts for hori-

zontal inter-part relationships between siblings. The outputs from

StructureNet are either box structures or point cloud shapes. Our

SDM-Net analyzes and encodes shape structures by not only using

the consistent representation across the same shape families but

also with support stability. In addition, it is expected our mesh-based

representation with deformable parts is able to capture more geom-

etry details than box and point cloud based representations adopted

by StructureNet.

3 METHODOLOGY

Given a collection of shapes of the same category with part-level

labels, our method represents them using a structured set of de-

formable boxes, each corresponding to a part. The pioneering works

[Kim et al. 2013; Ovsjanikov et al. 2011] have shown the repre-

sentation power of using a collection of boxes to analyze and ex-

plore shape collections. However, it is highly non-trivial to extend

their techniques to shape generation, since boxes are generally of

a coarse representation. We tackle this challenge by allowing indi-

vidual boxes to be flexibly deformable and propose a two-level VAE

architecture called SDM-NET, including PartVAE for encoding the

geometry of deformable boxes, and SP-VAE for joint encoding of

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2019.
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Encode

Fig. 2. Encoding of each shape part, including its structure and geometry in-

formation. The former includes both the support and symmetry information,

and the latter describes the deformation of the bounding box, compactly

represented as the latent vector of PartVAE. Detailed explanation of each

entry of the code is presented in Section 3.1.

part geometry and global structure such as symmetry and support.

Moreover, to ensure that decoded shapes are physically plausible and

stable, we introduce an optimization based on multiple constraints

including support stability, which can be compactly formulated and

efficiently optimized. Our SDM-NET model allows easy generation

of plausible meshes with flexible structures and fine details.

We first introduce the encoding of each part, including both the

geometry and structure information. We then introduce our SDM-

NET involving VAEs at both the local part geometry level (PartVAE),

and global joint embedding of structure and geometry (SP-VAE).

Thenwe briefly describe how the support relationships are extracted,

and finally present our optimization for generating plausible and

well supported shapes.

3.1 Encoding of a Shape Part

Based on semantic part-level labels, a shape is decomposed into a

set of parts. Each part is represented using a deformable bounding

box, as illustrated in Figure 3. Let n be the total number of part

labels that appear across different shapes in the specified object

category. For a given shape, it may contain a fewer number of parts

as some parts may not be present. To make analysis and relationship

representation easier, we assume the initial bounding box (before

deformation) of each part is axis aligned. This is sufficient in practice,

since each bounding box is allowed to have substantial deformation

to fit the target geometry. The initial bounding primitive being a box

does not prevent the internal part geometry from being complex,

since geometric details can be captured and preserved through

non-rigid registration (see Section 3.2 for details). Without loss of

generality, the bounding boxes are used in our framework.

The geometry and associated relationships of each part are en-

coded by a representation vector rv, as illustrated in Figure 2. The

detailed definition of this vector is given as follows.

• rv1 ∈ {0, 1} indicates the existence of this part.

• rv2 ∈ {0, 1}n is a vector with n dimensions to indicate which

parts are supported by this part.

• rv3 ∈ {0, 1}n is a vector with n dimensions to indicate which

parts support the current part.

(a) (b) (c) (d) (e)

Fig. 3. An example of representing a chair leg with detailed geometry by a

deformable bounding box. (a) a chair with one of its leg parts highlighted, (b)

the targeted part in (a) with the bounding box overlaid, (c) the bounding box

used as the template, (d) deformed bounding box after non-rigid registration,

(e) recovered shape using PartVAE.

• rv4 ∈ R3 is the 3D position of the bounding box center.

• rv5 ∈ {0, 1} indicates the existence of a symmetric part.

• rv6 ∈ R4 records the parameters a-d of the symmetry plane

represented in an implicit form, i.e., ax + by + cz + d = 0.

• rv7 is the encoded vector from the PartVAE described in

Section 3.2, which encodes its geometry. By default, rv7 ∈

R
64.

The ID of each part, used in rv2 and rv3, is pre-determined and

stored in advance for the dataset. Each value in rv1, rv2, rv3 and

rv5 is 1 if exists and 0 otherwise. For generated vectors, we treat

a value above 0.5 as true and below as false. The length of this

vector is 2n + 73 and between 77 and 101 for all the examples in

this paper. Note that other information such as the label of the

part that is symmetric to the current one (if exists) is fixed for a

collection (e.g. the right armrest of a chair is symmetric to the left

armrest of the chair) and therefore not encoded in the vector. In our

current implementation, we only consider reflection symmetry and

keep one symmetric component (if any) for each part. Although

this is somewhat restrictive, it is very common and sufficient to

cope with most cases. In practice, we first perform global reflection

symmetry detection [Podolak et al. 2006] to identify components

that are symmetric to each other w.r.t. a symmetry plane. This is then

supplemented by local reflection symmetry detection by checking

if pairs of parts have reflective symmetry.

3.2 PartVAE for Encoding Part Geometry

For each part, the axis-aligned bounding box (AABB) is first calcu-

lated. The bounding box of the same part type provides a uniform

domain across different shapes, and the geometry variations are

viewed as different deformation functions applied to the same do-

main. We take a common template, namely a unit cube mesh box0
with 19.2K triangles, to represent each part. We first translate and

scale it to fit the bounding box of the part. Denote by bi, j the bound-

ing box transformed from box0 for the j
th part ci, j on the ith shape

si . We treat it as initialization, and apply non-rigid coarse-to-fine

registration [Zollhöfer et al. 2014], which deforms bi, j to b ′i, j , as

illustrated in Figure 3 (d). b
′

i, j shares the geometry details with the
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part ci, j and has the same mesh connectivity as the unit cube box

box0.

The variational autoencoder has been used to encode the geo-

metric priors for point cloud segmentation [Meng et al. 2019] and

mesh generation [Tan et al. 2018]. Similar to [Tan et al. 2018], us-

ing meshes of the same connectivity makes it feasible to build a

variational autoencoder to represent the deformation of b ′i, j . The

convolutional VAE architecture in [Gao et al. 2018] is employed for

compactly representing plausible deformation of each part, allow-

ing new variations to be synthesized. The architecture is shown in

Figure 4. The input is a V × 9 dimensional matrix, where V is the

number of vertices for the template bounding box mesh. Each row

of the matrix is a 9-dimensional vector that characterizes the local

deformation of 1-ring neighborhood of each vertex including the

rotation axis, rotation angle and scaling factor. It passes through two

convolutional layers followed by a fully connected layer to obtain

the mean and variance. The decoder mirrors the structure of the en-

coder to recover the deformation representation, but with different

trainable weights. Since each part type has its own characteristics,

we train a PartVAE for all the parts with the same part type across

different shapes.

3.3 Supporting Structure Analysis

Structure captures the relationships between parts, and proper en-

coding of shape structure is crucial to generate plausible shapes.

Symmetry as one of the structural relationships has been well ex-

plored, for example effectively used in GRASS [Li et al. 2017]. Besides

symmetry, support relationships have been demonstrated useful for

structural analysis to synthesize physically plausible new structures

with support and stability [Huang et al. 2016]. Compared to sym-

metry, support relationships provide a more direct mechanism to

model the relations between adjacent parts. We thus use both sym-

metry and support to encode the structural relationships between

parts (Section 3.1). Note that our work is the first attempt to encode

support-based shape structures in deep neural networks.

Following [Huang et al. 2016], we detect the support relations be-

tween adjacent parts as one of three support sub-structures, namely,

łsupport from belowž, łsupport from abovež, and łsupport from sidež.

As illustrated in Figure 5, the detected support relations turn an

undirected adjacency graph to a directed support graph. For each

detected support relation of a part, we encode the labels of its sup-

ported and supporting parts in our part feature vector (Section 3.1).

Our feature coding is flexible to represent the cases including one

part being supported by multiple parts, as well as multiple parts

being supported by one part. Since for all the cases in our shape

dataset, the sub-structure type for each support relation between

two adjacent parts is fixed, the support sub-structure types are kept

in a look-up table but not encoded in our part feature vector. Given

the supporting and supported part labels from a decoded part feature

vector, we can efficiently obtain the corresponding sub-structures

from this look-up table.

3.4 SP-VAE for Structured Deformable Mesh Encoding

We build SP-VAE to jointly encode the structure of a shape rep-

resented as the layout of boxes, and the geometry of its parts. By

analyzing their joint distribution, it helps ensure that the geometry

of the generated shape is coherent with the structure and the ge-

ometries of individual parts are consistent (i.e., of compatible styles).

Our SP-VAE takes the concatenation of representation vectors for

all the parts as input (see Section 3.1). It encodes parts in a consis-

tent order during encoding and decoding. This concatenated vector

covers both the geometric details of individual parts encoded using

PartVAE, and the relationships between them. The SP-VAE uses

multiple fully connected layers, and the architecture is illustrated

in Figure 6.

Let EncS (·) and DecS (·) denote the encoder and decoder of our

SP-VAE network, respectively. x represents the input concatenated

feature vector of a shape, x̃ = EncS (x) is the encoded latent vector,

and x′ = DecS (x̃) is the reconstructed feature vector. Our SP-VAE

minimizes the following loss:

LSP−VAE = λ1Lr econ + λ2LKL + LReдVAE , (1)

where λ1 and λ2 are the weights of different loss terms, and

Lr econ =
1

N

∑

x∈S

| |x − x′ | |22 (2)

denotes the MSE (mean squared error) reconstruction loss. Here S

is the training dataset and N = |S| is the number of shapes in the

training set.

LKL = DKL(q̂(x̃|x)|p̂(x̃)) (3)

is the KL divergence to promote Gaussian distribution in the latent

space, where q̂(x̃|x) is the posterior distribution given feature vector

x, and p̂(x̃) is the Gaussian prior distribution.LReдVAE is the squared

ℓ2 norm regularization term of the network parameters used to

avoid overfitting. The Gaussian distribution makes it effective to

generate new shapes by sampling in the latent space, which is used

for random generation and interpolation.

3.5 Shape Generation and Refinement

The latent space of SP-VAE provides a meaningful space for shape

generation and interpolation. Extensive experimental results are

shown in Section 5. Random sampling in the latent space can gen-

erate novel shapes. Although the desired geometry and structure

from the decoded feature vector are generally reasonable, they may

not satisfy supporting and physical constraints exactly, resulting

in shapes which may include parts not exactly in contact, or may

be unstable. Inspired by [Averkiou et al. 2014], we propose to use

an effective global optimization to refine the spatial relations be-

tween parts by mainly using the associated symmetry and support

information.

Denote the center position and size (half of the length in each

dimension) of the ith part as pi and qi , each being a 3-dimensional

vector corresponding to x ,y and z axis, where pi is directly obtained

from the representation vector, and qi is determined by the bound-

ing box after recovering the part geometry. Denote by p′i and q′i
the position and size of the ith part after global optimization. The

objective of this optimization is to minimize the changes between

the optimized position/scale and the original position/scale
∑

i

∥p′i − pi ∥
2
+ α ∥q′i − qi ∥

2
, (4)
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Fig. 4. Architecture of PartVAE for encoding the geometry details of a part represented as the deformation of the associated template box. V is the number of

vertices in the template box. N (0, I) is the Gaussian distribution with 0 mean and identity covariance.

Adjacent

Support

Symmetry

Fig. 5. Illustration of support and symmetry relations between parts of an

airplane model. The support relations, detected by the approach in [Huang

et al. 2016], turn an undirected adjacency graph (Middle) to a directed

support graph (Right).

while ensuring the following constraints are satisfied. α is a weight

to balance the two terms, and is fixed to 10 in our experiments.

The symmetry and equal length constraints are from [Averkiou

et al. 2014], though we use the support relationships to help identify

equal length constraints more reliably. The remaining constraints

are unique in our approach. Figure 7 illustrates typical problematic

cases which are handled by our refinement optimization.

Symmetry Constraint. If the generated ith part has the symmetry

indicator flagged in its representation vector, its symmetry part

(denoted using index j) also exists. Let ni and di denote the normal

and the intercept of the symmetry plane, respectively. Enforcing

the symmetry constraint leads to the following constraints to be

satisfied:
(p′i−p

′
j )

2 · ni + di = 0, (p′i − p′j ) × ni = 0. The symmetry of

two parts is viewed as an undirectional relationship. If the symmetry

indicator (rv5 of the representation vector) of either part i or j is 1,

we consider these two parts as symmetric.

Equal Length Constraint. A set of parts which are simultaneously

supported by a common part, and simultaneously support another

common part, are considered as a group to have the same length

along the supporting direction. For this purpose, the ground is

considered as a virtual part. For example, the four legs of a table

supporting the same table top part and at the same time being

supported by the ground should have the same height. These can be

easily detected by traversing the support structure. An example that

violates this constraint is illustrated in Figure 7 (a). The equal length

constraints can be formulated as q′i [t] = q′
k
[t],k ∈ дi , whereдi is an

equal-length group containing the ith part, and t is the supporting

direction. t = 0, 1, 2 respectively represents x , y and z directions

where y is the upright direction.

Support Relationship Constraint. In order for a supporting part to

well support a part being supported, two requirements are needed: 1)

in the supporting direction, the bounding box of the supporting part

should have tangential relation (or a small amount of intersection

in practice) with the bounding box of the part being supported (see

Figure 7 (e) for a problematic case violating this constraint). If the

ith part supports the jth part, the following inequality should be

satisfied along the supporting direction. p′j [t] − q′j [t] + εq′j [t] ≤

p′i [t] + q′i [t] ≤ p′j [t] − q′j [t] + 2εq′j [t], where t is the supporting

direction, and ε controls the amount of overlap allowed and is set to

ε = 0.1 in our experiments. 2) assuming b̃i and b̃j are the bounding

boxes of parts i and j projected onto the plane orthogonal to the

supporting direction t , it should satisfy that either b̃i ⊆ b̃j or b̃j ⊆ b̃i
(see Figure 7 (c-d) for examples). This constraint can be formulated

as an integer programming problem and solved efficiently during the

optimization. The detailed formulation is provided in the Appendix.

Stable Support Constraint. For the łsupport abovež relation (t = 1),

the center of a supported part should be located in the supporting

bounding box (the bounding box that covers all the bounding boxes

of the supporting parts) for stable support (see Figure 7 (b) for an

example violating this constraint). For a single supported part, the

following constraints should be followed. p′i [l] − q′i [l] ≤ p′j [l] ≤

p′i [l] + q
′
i [l], l ∈ {0, 2}. For multiple supporting parts (e.g. four legs

supporting the table top), the lower bound and upper bound of the

x and z directions will be chosen from the corresponding parts.

This quadratic optimization with linear integer programming is

solved by TOMLAB [Holmström and Edvall 2004] efficiently. We

show an example of shape refinement in Figure 8.
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Fig. 6. Architecture of Structured Parts VAE (SP-VAE). The detailed geometry is encoded by PartVAE. The support- and symmetry-induced structure and the

associated latent code of PartVAE are encoded by the Structured Parts VAE.

(a) (b) (c) (d) (e)

Fig. 7. Illustration of different cases addressed by refinement optimiza-

tion: (a) equal length constraint, (b) stable support constraint, (c-e) support

constraint.

（a） （b）

Fig. 8. An example showing the effect of shape refinement. (a) shape de-

coded by SDM-NET directly, (b) shape after optimization. The artifacts of

gap and unstable support are fixed. The sub-figures show the same shape

from two viewpoints, with problematic areas highlighted.

4 DATASET AND NETWORK IMPLEMENTATION

We now give the details of our network architecture and training

process. The experiments were carried out on a computer with an

I7 6850K CPU, 64GB RAM, and a GTX 1080 Ti GPU. The code and

data are available at http://geometrylearning.com/sdm-net.

4.1 Dataset Preparation

The mesh models used in our paper are from [Yi et al. 2016], includ-

ing a subset of ShapeNet Core V2 models [Chang et al. 2015], as well

as ModelNet [Wu et al. 2015]. These datasets include pre-aligned

models. However, ModelNet does not contain semantic segmen-

tation, and models from [Yi et al. 2016] sometimes do not have

sufficiently detailed segmentation to describe support structure (e.g.

the car body and four wheels are treated as a single segment). To

facilitate our processing, we use an active learning approach [Yi

et al. 2016] to perform a refined semantic segmentation. We further

use refined labels to represent individual parts of the same type, e.g.,

to have left armrest and right armrest labels for two armrest parts.

The statistics of the resulting dataset are shown in Table 1.

Our network takes 3D shapes with consistent segmentation as

input. The segmentation of test shapes can be obtained by some

supervised methods such as [Qi et al. 2017a,b]. Each segmented

part is registered from the bounding box by non-rigid deformation.

Our method allows each part type to include substantial geometric

variations, e.g., the swivel leg and bar stool in Figure 14. Within

the confines of the consistent segmentation, the SP-VAE is capable

of handling variations of part structure and topologies, as well as

varying part counts (by marking certain parts as non-existing).

Table 1. The numbers of meshes and total part labels for each category in

our dataset (after label refinement).

Category Airplane Car Chair Table Mug Monitor Guitar

# Meshes 2690 1824 3746 5266 213 465 787

# Labels 14 7 10 9 2 3 3

4.2 Network Architecture

The whole network includes two components, namely PartVAE for

encoding the deformation of each part of a shape, and SP-VAE for

jointly encoding the global structure of the shape and the geometric

details of each part.

As illustrated in Figure 4, the structure of the PartVAE has two

convolutional layers and one fully connected layer. We use tanh as

the activation function, and in the last convolution layer, we use the

linear output. The output of the last convolution layer is reshaped

to a vector and mapped into a 64-dimensional latent space by the

fully connected layer. The decoder has a mirrored structure, but not

sharing weights with the encoder. We train the PartVAE once for

each part type.

The input of the SP-VAE is the concatenated representation vector

of all parts as shown in Figure 6. The input is fully connected with
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(a) Input shape (b) PSG (c) AtlasNet (d) Our Method

Fig. 9. Representative results of decoded shapes with different methods. Compared with PSG [Fan et al. 2017] and AtlasNet [Groueix et al. 2018], our method

produces the decoded shapes of higher quality. PSG results are rather coarse point samples. The results by AtlasNet exhibit clearly noticeable patch artifacts.

(a) Input shape (b) Adaptive O-CNN (c) Our Method

Fig. 10. Visual comparison of the decoded shapes with Adaptive O-

CNN [Wang et al. 2018b] and our method. Compared with Adaptive O-CNN,

while the planar regions of the chair can be decoded by both methods, the

curved regions such as the top of the chair back can be recovered only by

our method.

dimensions 1024, 512 and 256, respectively, and the latent space

dimension is 128. Leaky ReLU is set as the activation function.

4.3 Parameters

We use fixed hyper-parameters in our experiments for different

shape categories. In the following, we perform experiments on the

table data in the ShapeNet Core V2 to demonstrate how the method

behaves with changing hyper-parameters. The dataset is randomly

split into the training data (75%) and test data (25%). The gener-

alization of SP-VAE is evaluated with different hyper-parameters

in Table 2, where the bidirectional Chamfer distance is used to

measure the reconstruction error on the test data (as unseen data).

We perform such tests for 10 times and report the average errors

in Table 2. As can be seen, SP-VAE has the lowest error with the

hyper-parameters λ1 = 1.0 and λ2 = 0.5, where λ1 and λ2 are

the weights of the reconstruction error term and KL divergence

term, respectively. The hyper-parameters (weights of reconstruc-

tion, KL-divergence, and regularization) of PartVAE are set to the

same numbers in [Gao et al. 2018]. We set the dimension of the

latent space of PartVAE to 64, and the dimension of the latent space

of SP-VAE to 128. These two parameters are evaluated in Tables 3

and 4 with the reconstruction error. When adjusting the dimension

of one VAE, we leave the dimension of the other VAE unchanged.

Table 2. Comparison of average SP-VAE reconstruction errors (measured in

bidirectional Chamfer distance) for unseen data on the table dataset w.r.t.

changing hyper-parameters.

(λ1, λ2) (0.5, 0.5) (1.0, 0.5) (0.5, 1.0) (1.0, 1.0)

Recons. Error (×10−3) 2.01 1.85 2.24 1.94

4.4 Training Details

Since a PartVAE encodes the geometry of a specific type of parts,

it is trained separately. SP-VAE is then trained using PartVAE for

encoding part geometry. Training of both VAEs is optimized using

the Adam solver [Kingma and Ba 2015]. The PartVAE is trained with

Table 3. Comparison of average reconstruction errors (measured by bidirec-

tional Chamfer distance) for PartVAE and SP-VAE w.r.t. changing dimension

of the PartVAE latent space.

PartVAE Embedding Dimension 32 64 128 256

PartVAE Recons. Error (×10−3) 1.92 1.76 1.74 1.82

SP-VAE Recons. Error (×10−3) 2.16 1.85 1.91 2.03
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Table 4. Comparison of average reconstruction errors (measured by bidirec-

tional Chamfer distance) of SP-VAE w.r.t. changing embedding dimension.

SP-VAE Embedding Dimension 32 64 128 256

SP-VAE Recons. Error (×10−3) 2.23 1.99 1.85 1.91

(a) (b) (c) (d)

Fig. 11. Visual comparison of shape reconstruction with GRASS [Li et al.

2017] and our technique. (a) input shape, (b)(c) GRASS results in voxels and

extracted mesh, (d) Our result.

(a) (b)

Fig. 12. Visual comparison between the global-to-local method [Wang et al.

2018a] (a) and our technique (b) for shape generation.

20,000 iterations and SP-VAE with 120,000 iterations by minimizing

their loss functions. For both VAEs, we set the batch size as 512 and

learning rate starting from 0.001 and decaying every 1000 steps with

the decay rate set to 0.8. The training batch is randomly sampled

from the training data set.

For a typical category, the training of both PartVAE and SP-VAE

takes about 300 minutes. Once the networks are trained, shape

generation is very efficient: generating one shape and structure

optimization take only about 36 and 100 milliseconds, respectively.

5 RESULTS AND EVALUATION

We present the results of shape reconstruction, shape generation and

shape interpolation to demonstrate the capability of ourmethod, and

compare them with those generated by the state-of-the-art methods.

We also perform ablation studies to show the advantages of our

design. Finally, we present examples to show generalizability (i.e.,

applying our learned model to new shapes of the same category),

editability and limitations of our technique.

Shape Reconstruction. We compare our method with PSG [Fan

et al. 2017], AtlasNet [Groueix et al. 2018] andAdaptiveO-CNN [Wang

et al. 2018b] on the ShapeNet Core V2 dataset. In this experiment,

we choose four representative categories commonly used in the

(a) (b) (c)

Fig. 13. Visual comparison of shape generation using different methods. (a)

3DGAN [Wu et al. 2016], (b) the global-to-local method [Wang et al. 2018a],

(c) our technique.

Fig. 14. Comparison between GRASS [Li et al. 2017] and our method for

random generation. We visualize the structures generated by GRASS and

shapes generated by our method.

literature to perform both qualitative and quantitative comparisons.

Each dataset is randomly split into the training set (75%) and test set

(25%). For fair comparison, we train PSG, AtlasNet, and Adaptive

O-CNN for individual shape categories, similar to ours. To prepare

the input for PSG, we use rendered images under different view-

points. Given the same input models in the test set, we compare the

decoded shapes by different methods. Figures 9 and 10 show the

visual comparison of representative results on several test shapes.

It can be easily seen that the decoded shapes by PSG, Adaptive

O-CNN and AtlasNet cannot capture the shapes faithfully. Atlas-

Net and Adaptive O-CNN are able to produce more details than

PSG, but suffer from clearly noticeable patch artifacts. In contrast,

SDM-NET recovers shapes with higher quality and finer-detailed

geometry. Note that we compare the existing methods with SP-VAE

followed by structure optimization instead of SP-VAE alone, since

structure optimization, which is dependent on the output of SP-VAE,

is a unique and essential component in our system, and cannot be

directly used with the methods being compared due to their lack of

structure information.

Moreover, we quantitatively compare our method with the ex-

isting methods using common metrics for 3D shape sets, including

Jensen-Shannon Divergence (JSD), Coverage (COV) and Minimum

Matching Distance (MMD) [Achlioptas et al. 2018]. The latter two

metrics are calculated using both the Chamfer Distance (CD) and

Earth Mover’s Distance (EMD) for measuring the distance between

shapes. For JSD and MMD, the smaller the better, while for COV,
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Fig. 15. Random generation of monitor shapes using our method, where

the training data is from ModelNet [Wu et al. 2015].

Fig. 16. Visual comparison of shape interpolation by AtlasNet [Groueix et al.

2018] (top) and our technique (bottom). The first and last columns are the

two shapes to be interpolated (which are decoded by respective methods).

Fig. 17. Shape interpolation of cups and chairs with different topologies

using our method. The first and last columns are the input shapes for

interpolation.

the larger the better. The average results for different methods on

these datasets are shown in Table 5. It can be seen that our method

achieves the best performance for nearly all the metrics.

In Table 6 we compare our method with three recent shape gen-

eration methods, namely, GRASS [Li et al. 2017], G2L [Wang et al.

2018a] and SAGNet [Wu et al. 2019]. For fair comparison, both of our

reconstructed shapes and input shapes are voxelized. Particularly,

we make comparisons with GRASS on their chair data since GRASS

requires symmetry hierarchies as input for training. The results

show that our method outperforms the compared methods in most

cases with several metrics. We also show a visual comparison result

between GRASS and our method in Figure 11. The GRASS result

exhibits some artifacts due to the voxel representation. Even after

surface extraction GRASS still fails to capture fine geometric details

compared with our method.

Shape Generation. In Figure 12, we make a qualitative comparison

between our technique and the global-to-local method [Wang et al.

2018a] by randomly generating shapes of airplanes. Their method

uses an unconditional GAN architecture and thus cannot recon-

struct a specific shape. So two randomly generated, visually similar

planes are selected for comparisons. Their voxel based method fails

to represent smooth, fine details of 3D shapes. We make further

comparison with the global-to-local method [Wang et al. 2018a] as

well as 3DGAN [Wu et al. 2016] in Figure 13. Again, we select visu-

ally similar shapes for comparison, and our method produces high

quality shapes with plausible structure and fine details, whereas al-

ternative methods have clear artifacts including fragmented output

and rough surfaces. We also compare our technique with GRASS [Li

et al. 2017] for random shape generation. As shown in Figure 14,

the structures synthesized by GRASS might be problematic, contain-

ing parts which are disjoint and/or not well supported. In addition,

since it is trained on symmetry hierarchies constructed on top of the

shape segmentations, once trained, for new inputs GRASS utilizes

automatically generated symmetry hierarchies, which, however,

can be inconsistent. This is one of the main causes for GRASS to

produce results with a greater level of structural noise including

disconnections and asymmetries. In contrast, our results are phys-

ically stable and well connected. Note that our refinement step is

an integral part of our pipeline and requires structure relations, so

cannot be directly applied to GRASS.

As a generative model, our technique is able to generate new

shapes. Because our architecture consists of two VAEs, i.e., PartVAE

and SP-VAE, we can acquire different information from their latent

spaces. Specifically, we extract various types of parts and structural

information from the latent space of SP-VAE, and combine them

with the deformation information from PartVAE, to produce novel

shapes. Figure 15 gives an example, where our method is used to

generate computer monitors with various shapes by sampling in the

learned latent space. In this example, the training data is obtained

from ModelNet [Wu et al. 2015].

Shape Interpolation. Shape interpolation is a useful technique to

generate gradually changing shape sequences between a source

shape and a target shape. With the help of SP-VAE, we first encode

the source and target shapes into latent vectors and then perform

linear interpolation in the latent space of VAE. A sequence of shapes

between the input shape pairs are finally decoded from the linearly

interpolated latent vectors. In Figure 16, we compare our technique

with AtlasNet [Groueix et al. 2018] for their performance on shape

interpolation. It can be easily seen that the results by AtlasNet suffer

from patch artifacts and the surfaces of the interpolated shapes are

often not very smooth. The interpolation in our latent space leads

to much more realistic results. For example, the armrests gradually

become thinner and then disappear in amore natural manner. This is

because we combine the geometry and structure during the training

of SDM-NET, which thus learns the implicit joint distribution of the

geometry and structure.

The effectiveness of shape interpolation with SDM-NET is consis-

tently observed with additional experiments on different datasets.

Figure 17 shows two examples of natural interpolation between

shapes with different topologies, thanks to our flexible structure

representation. Figure 18 shows an additional interpolation result

with substantial change of geometry.

Ablation Studies. We perform several ablation studies to demon-

strate the necessity of key components of our architecture.

Support vs. adjacency relationships. We adopt support relation-

ships in our method, rather than adjacency relationships to get well

connected shapes, because support relationships ensure generating

physically stable shapes, and provide a natural order which is useful
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Table 5. Quantitative comparison of reconstruction capabilities of different methods on several metrics. For JSD and MMD, the smaller the better, while for

COV, the larger the better.

Dataset Methods

Metrics

JSD MMD-CD MMD-EMD COV-CD COV-EMD

Airplane

AOCNN 0.0665 0.0167 0.0157 84.3 95.5

AtlasNet 0.0379 0.0147 0.0132 79.6 82.1

PSG 0.0681 0.0244 0.0172 33.5 38.9

Our 0.0192 0.00462 0.00762 87.2 90.6

Car

AOCNN 0.0649 0.0264 0.0223 60.6 60.8

AtlasNet 0.0393 0.0228 0.0137 75.4 81.9

PSG 0.0665 0.0365 0.0247 49.8 59.4

Our 0.0280 0.00247 0.00101 87.2 88.5

Chair

AOCNN 0.0384 0.0159 0.0196 43.5 39.3

AtlasNet 0.0369 0.0137 0.0124 51.1 52.6

PSG 0.0391 0.0131 0.0152 42.9 49.1

Our 0.0364 0.00375 0.00764 47.3 55.3

Table

AOCNN 0.0583 0.0393 0.0256 55.2 40.1

AtlasNet 0.0324 0.0154 0.0146 59.1 63.7

PSG 0.0354 0.0271 0.0276 41.2 42.5

Our 0.0123 0.00183 0.00127 63.3 76.8

Table 6. Quantitative comparison of reconstruction capabilities of different methods (G2L [Wang et al. 2018a], GRASS [Li et al. 2017], SAGNet [Wu et al.

2019]) on several metrics. For JSD and MMD, the smaller the better, while for COV, the larger the better.

Dataset Methods

Metrics

JSD MMD-CD MMD-EMD COV-CD COV-EMD

Chair

G2L 0.0357 0.0034 0.0682 83.7 83.4

GRASS 0.0374 0.0030 0.0744 46.0 44.5

SAGNet 0.0342 0.0024 0.0608 75.1 74.3

Our 0.0289 0.00274 0.00671 89.3 84.1

Fig. 18. Interpolating cars with different geometries using our method. The first and last columns are the shapes to be interpolated. The other columns are the

in-between models by linear interpolation in the latent space.
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(a) Generated shape (b) Adjacency constraint (c) Support constraint

Fig. 19. Comparison between adjacency relationship constraint and support

relationship constraint. (a) is a randomly generated extreme case by SDM-

NET before refinement. (b) and (c) are the results after refinement with only

the adjacency constraint and the support constraint, respectively.

(a) Input shape (b) Separate training (c) Joint training

Fig. 20. Qualitative comparison between two different training strategies,

i.e., separate training vs. end-to-end training. It can be seen that separate

training keeps more geometric details.

(a) Decoupled structure and geometry (b) Our joint encoding

Fig. 21. Results of our method (b), compared with decoupled structure and

geometry (a). The latter is produced by decoupling the geometry information

from SP-VAE, and generating the geometry of individual parts independently.

to simplify the structure refinement optimization. In contrast, using

a bidirectional adjacency, it would be much more complicated to

formulate and optimize constraints between two adjacent parts. To

evaluate the effectiveness of the support relationships, we replace

the support constraints by simply minimizing the distance between

every pair of adjacent parts to approximate the adjacency relation-

ships. The effects of using support and adjacency constraints are

shown in Figure 19. It can be seen that the support constraints lead

to a physically more stable result.

Separate vs. end-to-end training. We adopt separate training for

the two-level VAE, i.e. PartVAEs are trained for individual part

types first, before training SP-VAE where the geometries of parts

are encoded with the trained PartVAEs. The two-level VAE could

Table 7. Comparison of reconstruction errors (×10−3) under the metric of

bidirectional Chamfer distance with two different training strategies, i.e.,

separate training vs. end-to-end training.

Dataset Car Chair Guitar Airplane Table

Separate 2.77 3.89 3.58 4.87 1.85

End-to-End 5.07 6.73 7.44 11.38 4.86

also be trained end-to-end, i.e., optimizing both PartVAEs and SP-

VAE simultaneously. We compare the average bidirectional Chamfer

distance of the reconstruction of each part between end-to-end

training and separate training adopted in our solution, as given

in Table 7. The visual comparisons are shown in Figure 20. Since

without the help of the well-trained distribution of the latent space

of individual parts, end-to-end training would result in optimization

stuck at a poor local minimum, leading to higher reconstruction

errors and visually poor results.

Joint vs. decoupled structure and part geometry encoding. In this

paper, the geometry details represented as part deformations are

encoded into the SP-VAE embedding space jointly (see Section 3.4).

This approach ensures that generated shapes have consistent struc-

ture and geometry, and the geometries of different parts are also

coherent. We compare our solution with an alternative approach

where the structure and geometry encodings are decoupled: SP-

VAE only encodes the structure and the geometry of each part is

separately encoded using a PartVAE. Figure 21 shows randomly

generated shapes with both approaches. The structure of the first

example implies the shape is a sofa, but the geometry of the seat part

in (a) does not look like a sofa, whereas our method generates part

geometry consistent with the structure. For the second example,

our method produces parts with coherent geometry (b), whereas

using decoupled structure and geometry leads to inconsistent part

styles (a).

Resolution of bounding boxes. By default, our method uses bound-

ing boxes each with 19.2K triangles. We also try using lower and

higher resolution bounding boxes. As shown in Figure 22, using

lower resolution (b) cannot capture the details of the shape, and us-

ing higher resolution (d) produces very similar result as our default

setting (c), but takes longer time. Our default setting (c) provides a

good balance between efficiency and quality.

PartVAE per part type vs. single PartVAE In our paper, we train

a PartVAE for each part type. We compare this with an alternative

approach where a single PartVAE is trained for all part categories.

As shown in Figure 22 (e), this approach is not effective in captur-

ing unique geometric features of different parts, leading to poor

geometric reconstruction.

Generalizability. Figure 23 shows an example that demonstrates

the generalizability of our method, to process new shapes of the

same category without input semantic segmentation. We first train

PointNet++ [Qi et al. 2017b] on our labeled dataset, which is then

used for semantic segmentation of the new shape. Finally, we obtain

the reconstruction result by our SDM-NET. An example is shown in

Figure 23, which demonstrates that semantic segmentation obtained

automatically can be effectively used as input to our method.
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(a) (b) (c) (d) (e)

Fig. 22. Shape reconstruction using our SDM-NET with changing bounding box resolutions and using a single PartVAE for all part categories. (a) input shape,

(b) our method with low-resolution bounding boxes (4.8K triangles), (c) our method with default resolution bounding boxes (19.2K triangles), (d) our method

with high-resolution bounding boxes (76.8K triangles), (e) result with a single PartVAE for all part categories.

(a) Input Shape (b) Segmentation (c) Reconstruction

Fig. 23. An example demonstrating the generalizability of our method. (a) in-

put shape without semantic segmentation, (b) segmentation by PointNet++,

(c) the reconstruction result by our method.

Watertight models. The direct output of our method includes wa-

tertight meshes for individual parts, but not the shape as a whole. As

demonstrated in Figure 24, by applying a watertight reconstruction

technique [Huang et al. 2018], watertight meshes can be obtained,

which benefit certain downstream applications.

Editability. Our generative model produces Structure Deformable

Meshes, which are immediately editable in a structure-aware man-

ner. This is difficult for other generative methods (e.g. [Li et al. 2017;

Wu et al. 2016]). An example is given in Figure 25, which shows an

editing sequence, including removing parts (when a part is removed,

its symmetric part is also removed), making a chair leg longer, which

also affects other chair legs due to the equal length constraint, and

further deforming the chair back using an off-the-shelf deformation

method [Sorkine and Alexa 2007]. During shape deformation, the

editing constraints are treated as hard constraints and the equal

length constraints are used in the refinement step (see Section 3.5).

Limitations. Although our method can handle a large variety

of shapes with flexible structures and fine details, it still suffers

from several limitations. While our method can handle shapes with

holes formed by multiple parts, if a part itself has holes in it, our

deformable box is unable to represent it exactly as the topology of

parts cannot be different from genus-zero boxes. In this case, our

method will try to preserve the mesh geometry but cannot maintain

the hole. For certain parts which are unusual (e.g. the legs and back

of the chair and the headstock of the guitar in Figure 26), our VAE ar-

chitecture considers such cases as outliers, and łprojectsž them back

to deformations consistent with the training set. Another limitation

is that currently SDM-NET is trained using a collection of shapes

(a) Decoded models (b) Watertight models

Fig. 24. Watertight models derived from our decoded models using [Huang

et al. 2018]

(a) (b) (c) (d) (e)

Fig. 25. Our generated Structured Deformable Mesh is directly editable. We

show an example editing sequence. (a) is the decoded shape of our method.

After applying the deletion operation (b), we obtain a chair without armrests

(c). Dragging a leg of the chair makes all four legs longer due to the equal

length constraint (d). Finally, we deform the back of the chair to obtain (e).

with the same category. It thus cannot be used for interpolating

shapes of different categories.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented SDM-NET, a novel deep generative

model that generates 3D shapes as Structured Deformable Meshes. A

shape is represented using a set of deformable boxes, and a two-level

VAE is built to encode local geometry variations of individual parts,

and global structure and geometries of all parts, respectively. Our

representation achieves both flexible topology and fine geometric

details, outperforming the state-of-the-art methods for both shape

generation and shape interpolation.
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(a) Input Shapes (b) Reconstructed Shapes

Fig. 26. Failure cases: the headstock of the guitar with a hole, the chair

with complex legs and the chair with grid back could not be decoded by

our SDM-NET since it requires each part to have the fixed topology, i.e., the

same as a genus-zero box.

As future work, our method could be generalized to reconstruct

shapes from images. Similar to [Xin et al. 2018], which uses a deep

neural network to learn the segmentation masks of cylinder re-

gions from a given image for reconstructing 3D models composed

of cylindrical shapes, a possible approach to extend our method

is to learn the segmentation of different parts in images and use

such segmentation results as the conditions of the SP-VAE for 3D

shape reconstruction. In this case, our SDM-NET makes it possible

to generate rich shapes with details to better match given images.

By exploiting the latent space of our network, our approach could

also be generalized for data-driven deformation by incorporating

user editing constraints in the optimization framework. It is also in-

teresting to investigate how to extend our method to encode shapes

of different categories using a single network. Our current approach

can generate parts with the same resolution as the primitive bound-

ing box mesh.We currently utilize a high-resolution mesh with fixed

size, and therefore our generated shapes take up large storage space

because of richer geometric details and higher resolution of meshes.

However, since different kinds of parts have different geometric

richness, it would be better to exploit (possibly different types of)

primitives with adaptive resolutions for different parts so that we

can preserve the same level of details but with significantly less

storage space.
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APPENDIX: SUPPORT RELATIONSHIP FORMULATION.

Let b̃i and b̃j be the bounding boxes of parts i and j projected onto

the plane orthogonal to the supporting direction. They should satisfy

either b̃i ⊆ b̃j or b̃j ⊆ b̃i . This constraint can be formulated as an

integer programming problem and solved efficiently during the

optimization as follows:

Let t1 and t2 be the two directions in the tangential plane. Denote

by δ
i, j
1 and δ

i, j
2 two auxiliary binary variables, δ

i, j
1 ,δ

i, j
2 ∈ {0, 1},

this is equivalent to

p′j [t1] − q′j [t1] ≤ p′i [t1] − q′i [t1] +Mδ
i, j
1 ,

p′i [t1] + q
′
i [t1] ≤ p′j [t1] + q

′
j [t1] +Mδ

i, j
1 ,

p′j [t2] − q′j [t2] ≤ p′i [t2] − q′i [t2] +Mδ
i, j
1 ,

p′i [t2] + q
′
i [t2] ≤ p′j [t2] + q

′
j [t2] +Mδ

i, j
1 , (5)

p′i [t1] − q′i [t1] ≤ p′j [t1] − q′j [t1] +Mδ
i, j
2 ,

p′j [t1] + q
′
j [t1] ≤ p′i [t1] + q

′
i [t1] +Mδ

i, j
2 ,

p′i [t2] − q′i [t2] ≤ p′j [t2] − q′j [t2] +Mδ
i, j
2 ,

p′j [t2] + q
′
j [t2] ≤ p′i [t2] + q

′
i [t2] +Mδ

i, j
2 , (6)

δ
i, j
1 + δ

i, j
2 ≤ 1, (7)

where M is a large positive number (larger than any possible co-

ordinate in the shape), Eq. (7) is true if at most one of δ
i, j
1 or δ

i, j
2

can be 1, i.e., at least one of them is 0. Without loss of generality,

assuming δ
i, j
1 = 0, then the set of equations in (5) without the term

involving M is true, meaning b̃i ⊆ b̃j . Similarly, when δ
i, j
2 = 0, it

satisfies that b̃j ⊆ b̃i .
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