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Fig. 1. Equal-lookup comparisons of various estimators in a scene with both homogeneous (chess board) and heterogeneous (chess pieces) media. Our
proposed estimators (in bold) trade more extinction lookups for lower-variance estimates of transmittance. RMSE and render times are for the entire image.

Computing the light attenuation between two given points is an essential yet
expensive task in volumetric light transport simulation. Existing unbiased
transmittance estimators are all based on “null-scattering” random walks
enabled by augmenting the media with fictitious matter. This formulation
prevents the use of traditional Monte Carlo estimator variance analysis,
thus the efficiency of such methods is understood from a mostly empirical
perspective. In this paper, we present several novel integral formulations
of volumetric transmittance in which existing estimators arise as direct
Monte Carlo estimators. Breaking from physical intuition, we show that the
null-scattering concept is not strictly required for unbiased transmittance
estimation, but is a form of control variates for effectively reducing variance.
Our formulations bring new insight into the problem and the efficiency of
existing estimators. They also provide a framework for devising new types
of transmittance estimators with distinct and complementary performance
tradeoffs, as well as a clear recipe for applying sample stratification.
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1 INTRODUCTION
The accurate reproduction of lighting in participating media, such
as clouds, fog, or smoke, is important in realistic image synthesis
as well as other fields, ranging from medical imaging to fire safety
and building design. A vast body of research has been devoted to
efficient volumetric light transport simulation over the past two
decades [Cerezo et al. 2005; Novák et al. 2018]. State-of-the-art
Monte Carlo methods sample a large number of random light tra-
jectories between sensors and emitters to approximate the light
transport in the scene. These include (bidirectional) path tracing,
many-light methods, and Metropolis light transport; for a compre-
hensive overview we refer the reader to Novák et al. [2018].
Common to all these approaches is the task of computing the

transmittance, i.e. fractional visibility, between any two points in the
scene. The transmittance is traditionally formulated as an exponen-
tial of the medium optical thickness, i.e. integrated extinction, along
the line segment connecting the points. Computing the transmit-
tance is trivial when the optical thickness integral takes an analytic
form, e.g. in homogeneous media. Heterogeneous media, however,
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require numerical estimation. Using an approximation of the optical
thickness, even when unbiased, produces a biased transmittance
estimate after exponentiation [Raab et al. 2008].

Instead, unbiased transmittance estimation can be constructed by
augmenting the medium with fictitious, “null-scattering” particles,
altering its density so as to admit analytic distance sampling between
successive photon-particle collisions. An estimate of the transmit-
tance between any two points can then be obtained by initiating
a random walk along the connecting segment from one end, and
measuring its weight (a.k.a. score) at the other end [Spanier 1966;
Woodcock et al. 1965; Křivánek et al. 2014; Novák et al. 2018]. While
unbiasedness can be proven here by showing their expected score
equals the desired transmittance [Coleman 1968], the efficiency
of the resulting estimators is understood from a mostly empirical
perspective. Moreover, the deviation from traditional Monte Carlo
integration makes the comparative analysis between estimators
difficult. The adherence to the null-scattering particle interpreta-
tion has limited the options for improving existing estimators to
the realm of physical plausibility. Of note, Galtier et al. [2013] re-
formulated null-scattering algorithms as estimators of a modified
radiative transfer equation (RTE) [Chandrasekhar 1960], and Kutz
et al. [2017] built atop this formulation to develop random walks
for spectrally-varying media. While these works establish a more
concrete integral formulation of the problem, they still only treat
estimators with design decisions restricted by the aforementioned
null-scattered particle interpretation.

We present several novel integral formulations of medium trans-
mittance that, unlike the traditional exponential formulation, are
amenable to direct, unbiased Monte Carlo estimation. While our
formulations are derived from the RTE, they do not necessarily have
any physical interpretation, yet provide new insight into the struc-
ture of the problem. Purely mathematical interpretation of light
transport, divorced from physical analogies, has previously lead to
the development of completely new algorithms, including bidirec-
tional path tracing [Veach and Guibas 1994; Lafortune and Willems
1993] and Metropolis light transport [Veach and Guibas 1997]. We
show how taking a similar stance, in the context of the transmittance
problem, leads to new and powerful unbiased estimators.
We first show (Section 3) that existing unbiased estimators can

all be viewed as direct Monte Carlo estimators of a Volterra integral
equation of the second kind [Gripenberg et al. 1990]. It is known
that the rendering equation [Kajiya 1986; Immel et al. 1986] is a
Fredholm integral equation of the second kind, and Volterra integral
equations are similar to those but with variable integration domains.
This connection allows us to draw analogies between estimators
for the rendering equation and estimators for our Volterra integral
equation for transmittance. Moreover, we show that under this
formulation, the null-scattering concept is not strictly necessary
for unbiased transmittance estimation, yet it can be interpreted as
a purely mathematical manipulation for reducing variance of the
integrand (Section 3.3).
We then derive three entirely new integral formulations (Sec-

tion 4) from a power-series expansion of the classical transmit-
tance exponential: one reminiscent of the recursive rendering equa-
tion [Kajiya 1986; Immel et al. 1986], another reminiscent of its
iterative Neumann series expansion [Arvo 1995], and one analogous

to its (hypercube) path integral formulation [Veach 1997; Kelemen
et al. 2002]. These base formulations can be directly estimated using
Monte Carlo and optionally manipulated mathematically to inter-
pret null scattering as a control-variate transformation (Section 4.2).

Importantly, by deriving the integral formulations (Section 4) sep-
arately from any particular estimation strategy (Section 5), we can
formally reason about what properties are intrinsic to the integral
problem, and how particular choices during Monte Carlo estima-
tion impact variance and performance. This leads in turn to several
novel transmittance estimators with efficiency tradeoffs distinct
and complementary to current estimators; Fig. 1 highlights two of
our estimators. Finally, our formulations provide a clear recipe for
applying sample stratification to further reduce estimation variance.

2 BACKGROUND AND PREVIOUS WORK
We first review the physical law of light attenuation along straight
lines and summarize prior research efforts in computing the trans-
mittance between two points.
As light travels a distance t along a ray with origin o and direc-

tion ω through a medium, it collides at location x = o + tω with
particles that either absorb or out-scatter some of its energy. In
media with particles distributed statistically independently from
each other, the change in radiance L along a differential distance
dt is quantified by a reduced version of the differential radiative
transfer equation (RTE) [Chandrasekhar 1960] that does not account
for radiance gains due to self-emission and in-scattering at x:

dL(o + tω)
dt = −µ(o + tω)L(o + tω), or dL(t)

dt = −µ(t)L(t), (1)

where the spatially varying extinction coefficient µ(x) gives the prob-
ability density for such collisions to occur per unit distance at x.
In rendering, light transport is often simulated in direction op-

posing the natural flow of light (see Fig. 2). Making the change
of variable t ≡ −x and writing L and µ as functions of the dis-
tance x along this opposing direction, i.e. L(x) ≡ L(o − xω) and
µ(x) ≡ µ(o−xω), yields a variant of the reduced RTE (1) atop which
we base all remaining formulations in this paper:

− dL(x)
dx = −µ(x)L(x). (2)

2.1 Exponential formulation
To obtain an expression for the transmittance T (a,b) = L(a)/L(b),
i.e. the fraction of radiance at point b reaching point a < b (see
Fig. 2, top), one can solve Eq. (2) for L, yielding the well-known
expression (see Appendix A, also notation in Table 1)

T (a,b) = e−
∫ b
a µ(x ) dx

= e−τ (a,b). (3)

Obtaining an unbiased estimate of T is difficult in general heteroge-
neous media, where the optical thickness integral τ is not available
in analytic form. The classical approach to estimate τ alone, e.g.
via ray marching [Perlin and Hoffert 1989], even if done in an un-
biased way [Pauly et al. 2000], yields a biased estimate of T after
exponentiation [Raab et al. 2008; Novák et al. 2018].
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Fig. 2. Illustration of the problem setup (top), the delta- and ratio-tracking
estimators (middle), and the next-flight estimator (bottom). Note that esti-
mation is typically performed in direction opposite of light flow.

2.2 Null-scattering estimators
Existing unbiased transmittance estimators are all based on the
concept of null scattering. Here, one augments the medium with
fictitious, perfectly forward-scattering matter with spatially varying
extinction µn chosen to produce a combinedmajorant medium with
simpler, e.g. constant, extinction µ(x) = µ(x)+ µn(x). The free-flight
distance di = xi − xi−1 between successive collisions along a ray in
this augmented medium can then be sampled analytically, with the
pdfp(di ) = µ(xi )e−τ (xi−1,xi ). Choosing the scattering type at xi , real
or fictitious, according to the respective local albedos, µ(xi )/µ(xi )
and µn(xi )/µ(xi ), respectively, produces an analog random walk,
a.k.a. delta tracking or Woodcock tracking [Woodcock et al. 1965;
Raab et al. 2008]. Below we recapitulate existing transmittance
estimators based on this concept.

Track-length estimator. Delta tracking can be used to estimate trans-
mittance between a and b by starting a walk from a and terminating
it if real scattering occurs before reachingb. The probability of reach-
ing b without scattering in the real medium is equal to the transmit-
tance T (a,b), motivating the track-length estimator name [Spanier
1966; Spanier and Gelbard 1969; Cramer 1978; Raab et al. 2008]. The
estimator scores one if b is reached and zero otherwise:

T̂tl(a,b) =
{
1 if b ≤ xk+1,

0 otherwise,
(4)

where xk+1 is the first event after k null-scattering events.

Ratio-tracking estimator. Instead of relying on stochastic chance
to reach b, the ratio-tracking estimator deterministically chooses
to continue forward at each collision with the majorant medium.
It then returns the accumulated null-scattering probabilities as a
weight [Cramer 1978; Novák et al. 2014]:

T̂rt(a,b) =
k∏
i=1

µ(x) − µ(x)
µ(xi ) =

k∏
i=1

µn(xi )
µ(xi ) , (5)

where xk is the last collision before reaching b: xk < b ≤ xk+1. This
estimator has lower variance than the binary track-length estimator
but also higher computation cost.

Residual-tracking estimator. Novák et al. [2014] applied control vari-
ates to reduce the variance of transmittance estimation, decompos-
ing the extinction µ into a sum of an analytically integrable control
component µ and a residual component: µ(x) = µ(x)+ [µ(x) − µ(x)].

Table 1. List of commonly used notations throughout the document. While
occasionally we call µ and µ extinction majorant and minorant, we allow
these to be set arbitrarily. The only scene-dependent quantity is µ .

Notation Description

µ(x) medium extinction coefficient at distance x
µ(x), µ(x) extinction upper control (e.g. majorant) and lower

control (e.g. minorant); free parameters, µ(x)≤ µ(x)
µn(x) null extinction coefficient: µn(x) = µ(x) − µ(x)
τ , τ , τ , τn optical thickness

∫
□(x)dx for □∈ {µ, µ, µ, µn}; unless

given as function arguments, integral bounds are a,b
T , T̂ , τ̂n transmittance, transmittance estimator, τn estimator

The control transmittance e−τ is then computed analytically and
the residual transmittance eτ−τ is estimated, e.g. via ratio tracking:

T̂rrt(a,b) =

control transm.

e−τ (a,b)
k∏
i=1

residual majorant[
µ(xi ) − µ(xi )

] −
residual extinction[
µ(xi ) − µ(xi )

]
µ(xi ) − µ(xi ) (6a)

= e−τ (a,b)
k∏
i=1

µn(xi )
µ(xi ) − µ(xi ) , (6b)

where, as with Eq. (5), xk is the last collision before reaching b.
Szirmay-Kalos et al. [2011] proposed a similar decomposition, but
instead estimated the residual transmittance using delta tracking (4).

Next-flight estimator. At each step xi in the ratio-tracking random
walk, we can analytically compute the uncollided transport e−τ (xi ,b)
to b through the majorant medium, rather than estimating it ran-
domly based on the next free-flight distance. Summing these next-
flight estimates yields [Cramer 1978]

T̂nf (a,b) = e−τ (a,b) +
k∑
i=1

e−τ (xi ,b)
i∏
j=1

µn(x j )
µ(x j ) . (7)

This next-flight estimator has only recently been introduced to
graphics [Kutz et al. 2017; Novák et al. 2018].

Discussion. The track-length estimator has been originally con-
structed following physical principles, and the ratio-tracking and
next-flight estimators have been derived from it by manipulation
that preserves the expected value. Since these estimators are not
formalized in a common Monte Carlo integration framework, the
understanding of their efficiency has been limited to intuition and
numerical experiments. For example, the ratio-tracking and next-
flight estimators remain unbiased even when the null extinction µn
is (locally) negative, even though such configurations are physically
implausible. How to choose µn, how to improve the efficiency of
these estimators, and how to devise new unbiased transmittance es-
timators have remained open questions. We believe the main reason
for this is that the connection between the estimators, e.g. Eq. (7),
and the quantity they estimate, Eq. (3), is not obvious.
One of our goals in this paper is to reformulate transmittance

estimation in terms of a simple integration problem. To this end, in
the following two sections we derive several integral formulations
of transmittance from Eqs. (2) and (3) that are amenable to direct
and unbiased Monte Carlo estimation.
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3 VOLTERRA INTEGRAL FORMULATIONS
Our first transmittance formulation is a recursive integral equation.
A base formulation follows almost trivially from Eq. (2). We also de-
rive a null-scattering extension from which the estimators discussed
in Section 2.2 arise naturally.

3.1 Base formulation
Integrating Eq. (2) from a to b yields

−
∫ b

a

dL(x)
��dx

��dx = L(a) − L(b) (2)
= −

∫ b

a
µ(x)L(x)dx (8a)

L(a) = L(b) −
∫ b

a
µ(x)L(x)dx, (8b)

where, for clarity, we explicitly denote that the second equality in
Eq. (8a) holds due to Eq. (2). Dividing Eq. (8b) by L(b) yields an
expression for the transmittance T (a,b) = L(a)/L(b):

T (a,b) = 1 −
∫ b

a
µ(x)T (x,b) dx . (9)

The integral on the RHS can be interpreted as the medium opacity
between a and b, i.e. the fraction of collided light, which is absorbed
and out-scattered; transmittance is the complement of opacity.
Equation (9) is an inhomogeneous Volterra integral equation of

the second kind [Gripenberg et al. 1990], where T is the unknown
function (of the first argument; the second argument b is considered
a fixed parameter), the source term in front of the integral is one,
and the kernel is −µ. Its structure is similar to the well-known
surface rendering Fredholm integral equation [Kajiya 1986], with
the difference that the integration bounds in Eq. (9) change at every
recursion level, as we illustrate in Fig. 3, left.

3.2 Monte Carlo estimation of the base formulation
Due to their similarities, many numerical methods used to solve
Fredholm integral equations can be applied to Volterra integral equa-
tions. For instance, we can first trivially estimate Eq. (9) by replacing
the integral with a one-sample Monte Carlo (MC) estimator at each
recursive level on the RHS: T (a,b) ≈ T̂ (a,b) = 1 − µ(x)T̂ (x,b)/p(x),
where x is drawn proportionally to some pdf p(x). Applying Rus-
sian roulette with continuation probability Prec < 1 to terminate
the recursion results in the following unbiased estimator:

T̂ (a,b) = 1 −
with probability Prec

µ(x)
p(x)Prec T̂ (x,b) . (10)

This estimator is akin to a unidirectional path tracer with Russian-
roulette termination applied to the surface rendering equation. How-
ever, unlike that equation where the kernel, i.e. the bidirectional
scattering distribution function (BSDF), is normalized to integrate
to at most one, here the kernel, −µ, can have arbitrarily high magni-
tude over the entire integration domain. This makes µ(x)/(p(x)Prec)
susceptible to extreme variation, since p(x) has to be a valid nor-
malized pdf. Equation (10) is thus prone to producing high-variance
estimates whose sign will also be a random variable due to the
changing sign at each recursion level.

3.3 Null-scattering reinterpretation
We will now manipulate Eq. (2) (prior to integration and MC estima-
tion) in a manner that will afford flexibility for reducing variance,
and which is mathematically equivalent to the concept of augment-
ing the media with fictitious null-scattering matter. We start by
introducing a free parameter µ(x), which we will later on call ex-
tinction upper control, to rewrite the extinction coefficient µ(x) as

µ(x) = µ(x) − [
µ(x) − µ(x)] = µ(x) − µn(x), (11)

which can then be substituted into Eq. (2):

− dL(x)
dx = −[

µ(x) − µn(x)
]
L(x). (12)

Note that this transformation is valid for any choice of µ, even
though the physical interpretation of introducing fictitious matter
makes sense only when its corresponding “null” density µn is non-
negative everywhere, i.e. when µ(x) ≥ µ(x). We therefore adhere to
a purely mathematical view of Eq. (12) as a manipulation of Eq. (2)
that is not conditioned on physical plausibility. This also avoids the
need to assign a non-physical delta forward-scattering phase func-
tion to the fictitious matter, as done in prior formulations [Galtier
et al. 2013; Kutz et al. 2017; Novák et al. 2018].

Equation (12) is a first-order linear differential equation that can
be written in canonical form and solved for L using standard tech-
niques. We do that in Appendix B to obtain a null-scattering exten-
sion to our base integral formulation (9) (see notation in Table 1):

T (a,b) = e−τ (a,b) +
∫ b

a
e−τ (a,x )

[
µ(x) − µ(x)]

µn(x )
T (x,b) dx . (13)

Note the appearance of two exponential terms, as well as the re-
placement of the extinction µ by the null extinction µn which also
absorbs the negative sign in front of the integral.
Recall that µ is a free functional parameter; setting µ(x) = µ(x)

makes the integral vanish, yielding the traditional exponential trans-
mittance formulation (3). Another special case is µ(x) = 0, where
both exponentials simplify to one, yielding our base Volterra for-
mulation (9). The parameter µ thus defines a continuum of formu-
lations. Importantly, if µ(x) ≥ µ(x) for every x ∈ [a,b], the kernel
e−τ (a,x )µn(x) is strictly non-negative and integrates to at most one
(just like the BSDF in the rendering equation), which has implica-
tions on the variance of estimators, as we will discuss below.
Note that our formulation in Eq. (13) is equivalent to that of

Kutz et al. [2017, Appendix B]. However, theirs is written around a
specific class of estimators that use a certain sampling distribution
for x . In practice, any valid distribution can be used, and we adhere
to a clear distinction between the integral formulations and their
numerical estimation, which we discuss next.

3.4 Monte Carlo estimation of null-scattering formulation
As before, Eq. (13) is a Volterra integral equation. A direct application
of Monte Carlo estimates the integral by evaluating the integrand at
a location x ∈ [a,b] drawn from a pdf p(x). The term T (x,b) can be
estimated recursively, terminating via Russian roulette with contin-
uation probability Prec. We can additionally apply Russian roulette
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Fig. 3. Graphical illustrations of our formulations for the transmittance T (a, b) and their integration bounds (highlighted in yellow), here showing four terms
from each formulation which are either multiplied (left and middle) or summed (right) together. Note how in the Volterra formulations the integration bounds
shrink at every recursion level. The power-series based formulations instead maintain the original bounds [a, b] but progressively scale the integral.

to stochastically evaluate the source term e−τ with probability Psrc.
This leads to the following general unidirectional estimator :

T̂ (a,b) =

with prob. Psrc

e−τ (a,b)
Psrc

+

with probability Prec

e−τ (a,x )µn(x)
p(x)Prec T̂ (x,b) . (14)

This estimator again bears similarity to a unidirectional path tracer
with Russian roulette. Below we discuss how, for specific choices of
sampling pdf p(x) and Russian roulette probabilities Psrc and Prec,
this estimator reduces to the four existing estimators we reviewed
in Section 2.2 (illustrated schematically in Fig. 2).

3.5 Reduction to existing estimators
We start by noting that a good choice for p(x) is one that impor-
tance samples one or more of the integrand’s non-recursive terms,
e.g. the exponential term. Using p(x) = µ(x)e−τ (a,x ) we can also
terminate the recursion when x is sampled past b, corresponding to
the continuation probability Prec = Pr{x > b} = 1 − e−τ (a,b). Note
that p(x) then needs to be re-normalized over the interval [a,b]with
a factor equal to 1/Prec. Cancelling out the relevant terms in the
rightmost term of Eq. (14) simplifies it to µn(x)/µ(x)T̂ (x,b).
Next-flight estimator. Using the above density p(x) and recursion
probability Prec, and always evaluating the source term (via Psrc = 1),
yields the next-flight estimator (7) after expanding the recursion.

Ratio-tracking estimator. Alternatively, we can choose to evaluate
exactly one of the two additive terms in Eq. (14) at each recursion
level. Setting Psrc = 1 − Prec = e−τ (a,b) correlates the sampling of
Prec and Psrc, making the estimator evaluate the source term if x > b
and estimate the integral otherwise. Expanding the recursion yields
the ratio-tracking estimator (5).

Track-length estimator. The score of the ratio-tracking estimator is
multiplied by the “null”-albedo factor µn(x)/µ(x) at every recursion
level. Multiplying Prec by another Russian roulette continuation
probability Pnull = µn(x)/µ(x) cancels this factor to maintain a
running score of one, akin to the albedo-based termination com-
monly used in path tracing. Expanding the recursion yields the

binary track-length estimator (4). Note that the Pnull sampling is
independent from Psrc and Prec which are dependent on the integral
estimation variable x . Additionally, Pnull is a valid probability only
when µn(x) ≥ 0 ⇔ µ(x) ≥ µ(x), i.e. when the physical interpreta-
tion of null scattering is valid.

Residual-tracking estimator. Equation (6) has been originally formu-
lated as analytical control-transmittance evaluation coupled with
residual-transmittance estimation. In our framework, we can inter-
pret that entire equation as a direct MC estimator for Eq. (13), just
like ratio tracking but with a different pdfp(x). This follows from the
observation that distance sampling in the residual medium is driven
by the residualmajorant µ−µ, i.e.p(x) = [µ(x)−µ(x)]e−[τ (a,x )−τ (a,x )].
Plugging this pdf into Eq. (14), adjusting the probabilities Psrc =
1−Prec = e−[τ (a,b)−τ (a,b)], simplifying, and expanding the recursion
yields Eq. (6b). Thus, the only difference to regular ratio tracking (5)
is the use of a mean sampling distance of 1/(µ − µ) instead of 1/µ.
The concept of residual estimation has also been applied to the

track-length estimator [Novák et al. 2014] and suggested for the
next-flight estimator [Novák et al. 2018]. In our framework these
correspond to plugging the above residual-majorant exponential
pdf into the track-length and next-flight variants of estimator (14).

3.6 Discussion
Eq. (14) provides a framework to help interpret transmittance esti-
mators, mindfully separating the impact of the underlying integrand,
sampling distribution, and continuation probabilities. We show that
certain sampling choices yield known estimators. Importantly, set-
ting µ(x) ≥ µ(x) bounds their estimates between 0 and 1, avoiding
potentially high variance in the base Volterra estimator Eq. (10).
We call the free parameter µ the extinction upper control due to its
effectiveness when bounding the extinction µ.
Beyond that, however, it remains difficult to reason about the

efficiency of existing estimators. To date, the modern understanding
of efficiency is built empirically and can sometimes lead to counter-
intuitive behavior. For example, next-flight estimation uses Rao-
Blackwellization [Blackwell 1947] to substitute a random decision—
the conditional evaluation of the source term e−τ—by its expected
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value, and so one would expect it to consistently outperform ratio-
tracking estimators. This does not hold, as experiments in prior work
have shown [Novák et al. 2018]. Another example is the inconsistent
impact that µ has on different estimators: increasing µ reduces the
average sampled distance (i.e. estimators take smaller steps), but
this only improves ratio-tracking estimators and not next-flight esti-
mators, as also observed in earlier work [Novák et al. 2018]. Finally,
residual tracking samples distances according to a distribution that
produces larger steps on average, yet it never under-performs ratio
tracking [Novák et al. 2014].
These apparent inconsistencies hint to a gap in the current un-

derstanding. The Monte Carlo estimates we have explored treat the
recursive nature of the integration problem implicitly, focusing on
minimizing the variance of sub-estimates at a fixed recursion level
using local stochastic decisions (e.g. drawing samples proportionally
to a local density, continuation probabilities). Here, we again draw
an analogue between our Volterra formulation and the surface ren-
dering equation, both of which provide local uni-dimensional views
of an infinite-dimensional integration problem. For the rendering
equation, a more global view of the problem falls from an integral
reparameterization onto the space of full light transport paths. This
opens up opportunities to extend beyond incremental estimation
with local sampling techniques (e.g. BSDF importance sampling)
to more global techniques (e.g. bidirectional sampling [Veach and
Guibas 1994; Lafortune and Willems 1993]). We will present a trans-
mittance formulation that similarly informs more global interpreta-
tions of our problem, and so too new estimators.

4 POWER-SERIES FORMULATIONS
In this section we present three novel integral formulations of trans-
mittance derived from a power-series expansion of the classical
exponential formulation (3). This will allow us to write transmit-
tance analogously to the rendering path integral, and to interpret
the null-scattering transformation as an application of control vari-
ates. This, in turn, will enable us to more easily apply and analyze
new Monte Carlo estimation techniques to this problem (Section 5).

4.1 Base formulations
While the classical formulation (3) includes an integral, its expo-
nentiation prevents the direct application of MC integration for
unbiased transmittance estimation. To this end, our idea is to trans-
form that exponential to make it amenable to direct MC estimation.

Iterative formulation. Applying the standard power-series expansion
of the exponential function, e−τ =

∑∞
k=0(−τ )k/k!, and writing out

the optical thickness integral τ , yields

T (a,b) =
∞∑
k=0

Tk (a,b) =
∞∑
k=0

(−τ )k
k! =

∞∑
k=0

1
k!

k∏
i=1

[
−
∫ b

a
µ(x) dx

]
. (15)

This equation expresses transmittance as an infinite sum of inte-
gral products. Similar power-series expansions have been applied
to other integral transformations, e.g. reciprocals [Booth 2007] to
eliminate the bias in the photon mapping algorithm [Qin et al. 2015].
Note that the terms Tk resemble the probability mass function

(pmf) of a Poisson distribution Pr{X = k} = e−λλk/k! with mean

λ = τ , only unnormalized andwith alternating signs for the even and
odd k . This insight will later help us to gain a better understanding
of the efficiency of existing transmittance estimators.

Recursive formulation. Expanding the sum in Eq. (15) and regrouping
the terms gives

T (a,b) =
∞∑
k=0

k∏
i=1

(
−τ
i

)
= 1 − τ

1

[
1 − τ

2

[
1 − τ

3
[ · · · ] ]

]
. (16)

Extracting the following recurrence relation from the RHS of Eq. (16):

T (a,b, i) = 1 − τ

i
T (a,b,i+1) = 1 − 1

i
T (a,b,i+1)

∫ b

a
µ(x)dx, (17)

the transmittance between two points is given byT (a,b) = T (a,b, 1).
Note that unlike Eq. (9), the integration bounds here do not change
at every recursion level. Each level therefore computes the same in-
tegral, and this expansion of the integration bounds is compensated
for by the scaling factor 1/i . We illustrate this in Fig. 3, middle.

Hypercube formulation. Every summand Tk in Eq. (15) can be writ-
ten as a k-dimensional integral:

T (a,b) =
∞∑
k=0

1
k!

∫ b

a
· · ·

∫ b

a
k times

[ k∏
i=1

−µ(xi )
]
dx1 · · · dxk . (18)

Each such integral runs over a k-hypercube Hk = [a,b]k . Their
sum can be merged into one integral over the unionH = ⋃∞

k=0Hk :

T (a,b) =
∞∑
k=0

∫
Hk

fk (x) dx =
∫
H

f (x) dx, (19)

where x = (x1, . . . , xk ) ∈ Hk for k ≥ 0,1 and the integrand f (x) and
volume measure dx are defined for each k separately as

f (x) = 1
k!

k∏
i=1

−µ(xi ), dx =
k∏
i=1

dxi . (20)

Equation (19) expresses transmittance as a pure integration problem,
with the unknownT appearing only on the LHS, where the integral
runs over the union of all hypercubes [a,b]k . We illustrate this
formulation in Fig. 3, right.

Analogies to rendering formulations. Along with our Volterra for-
mulation (9), our recursive power-series formulation (17) is remi-
niscent of the rendering equation [Kajiya 1986], and its iterative
expansion (15) is the counterpart to the Neumann series expansion
of that equation [Arvo 1995]. Our hypercube formulation (19) bears
similarity to the hypercube path integral formulations of light trans-
port of Kelemen et al. [2002]. Similarly to that formulation, it enables
the application of general variance reduction techniques, such as
the multiple importance sampling (MIS) combination of different
sampling techniques [Veach and Guibas 1995], whichwewill demon-
strate in Section 5. In Appendix C we show how Eqs. (15) and (19)
can instead be derived from our base Volterra formulation (9).

1Note that for k = 0, the zero-hypercube H0 is a single point, thus the integral∫
H0

f (x) dx simplifies to f (·) = 1/0! = 1, which is indeed the 0th summand in Eq. (15).
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Fig. 4. Plots of the first few terms Tk in Eq. (15) for two values of τ , along
with their prefix sums (in lighter colors) which converge to the respective
transmittance values,T = 0.1 andT = 0.1× 10−9, at infinity. Note the large
magnitudes of individual terms relative to the small transmittance values.

Discussion. The above formulations express transmittance as an infi-
nite summation problem. In practice this sum can only be estimated
by evaluating a finite number of terms, and we will discuss specific
techniques in Section 5. The efficiency of such estimation will be
directly influenced by the values of these terms, and it is therefore
useful to study their shape. In Fig. 4 we plot the first few terms Tk
of Eq. (15) for two values of τ . We also plot the prefix sums which
converge to the transmittance T as k → ∞. In accordance with our
earlier observation, each plot resembles the pmf of a Poisson distri-
bution with mean τ , only that it is unnormalized and the terms have
alternating signs. More importantly, note the high dynamic range
in the plots: individual terms can have extremely large magnitudes,
positive and negative, though these cancel out when summed up
to a transmittance value in the range [0, 1]. The mode (i.e. peak) of
the Poisson-like distribution is (−τ )⌊τ⌋/⌊τ⌋! and is located at the mean
index k = ⌊τ ⌋. Since τ can be any non-negative number, the terms
of the transmittance sum can have arbitrary magnitude. Estimators
for this sum are thus susceptible to extreme variance, especially if
they are unaware of the location of high-magnitude terms.

The cause of the extreme magnitude variation in the above base
formulations is the presence of negative terms Tk in the underlying
infinite sum. If we could transform this sum to ensure each term is
non-negative, then each one would have to be bounded between
zero and one for the sum to converge to a valid transmittance value.
This is what null-scattering approaches effectively do, and in the
next subsection we show how this transformation can be viewed as
a control variate on the base integral formulations.

4.2 Null-scattering formulations as control variates
To derive the null-scattering extensions of our power series integral
formulations, we begin by substituting the transformation from
Eq. (11) into the exponential transmittance expression (3):

T (a,b) = e−
∫ b
a µ(x ) dx = e−

∫ b
a µ(x ) dx e

∫ b
a [µ(x )−µ(x )] dx = e−τ eτn. (21)

Control variates use an analytically integrable control function,
which is correlated with the original integrand, to reduce variance
during Monte Carlo estimation. Here the task is to compute the in-
tegral −τ = −

∫ b
a µ(x) dx but we have another function µ(x) whose

integral τ we can obtain analytically. Adding µ(x) to our original
integrand and also subtracting τ keeps the problem unchanged since

−τ =
∫ b
a [µ(x) − µ(x)]dx −τ ; however, subsequent MC estimation of

the remaining integral will have reduced variance if the functions µ
and µ are positively correlated. Note that this control-variate trans-
formation is identical to that of Novák et al. [2014, Sec. 3.2], though
instead of µ theirs uses an extinction lower control µ parameter (e.g.
set to the extinction minorant). We will discuss how their method
maps to our framework in more detail in Section 5.1.

Iterative formulation. We can expand the term eτn in Eq. (21) into a
power series to obtain a control-variate extension of Eq. (15):

T (a,b) =
∞∑
k=0

e−τ
τkn
k!

Tk (a,b)

= e−τ
∞∑
k=0

1
k!

k∏
i=0

∫ b

a

[
µ(x) − µ(x)]

µn(x )
dx . (22)

Just like in our null-scattering Volterra formulation (13), the negative
sign in front of the integral is now absorbed by the integrand µn(x),
which is non-negative whenever µ(x) ≥ µ(x). Moreover, note that
the terms Tk are proportional to the terms e−τnτkn /k! of a Poisson
pmf with mean τn. (The terms are exactly equal when τn = τ ⇔ τ =
0, i.e. when T (a,b) = 1.) This insight is useful when constructing
estimators for this formulation, as we will see in Section 5.

Recursive formulation. The recursive form of Eq. (22) is derived
analogously to Eq. (17):

T (a,b, i) = e−τ + 1
i
T (a,b, i + 1)

τn∫ b

a

[
µ(x) − µ(x)]

µn(x )
dx . (23)

As before, the transmittance is given by T (a,b) = T (a,b, 1).
Hypercube formulation. The control-variate extension to our hyper-
cube formulation (19) can be derived from Eq. (22) by following the
steps we took in Eqs. (18) and (19), obtaining

T (a,b) =
∫
H

fn(x) dx. (24)

The volume measure dx is the same as in Eq. (20) and the contribu-
tion function fn(x) is now defined (for each k separately) as

fn(x) = e−τ 1
k!

k∏
i=1

µn(xi ).. (25)

Discussion. The formulations in Eqs. (22) to (24) extend their base
counterparts from Section 4.1 by introducing the free extinction
upper control parameter µ. Recall that the purpose of transforming
the sum in Eq. (15) was to ameliorate the extreme variation of its
terms. To that end, it is interesting to study the effect of the control
optical thickness τ =

∫ b
a µ(x) dx on Eq. (22). In Fig. 5 we plot the

terms Tk and their prefix sums for a fixed real optical thickness
τ = 2.3 and four different control thicknesses τ . Expectedly, all four
prefix sums converge to the same transmittance value T = e−2.3 =
0.1, however their shapes are heavily affected by τ . When τ = 0,
Eq. (22) simplifies to Eq. (15); the result is plotted Fig. 4, left. When
0 ≤ τ < τ (Fig. 5, far left), the magnitude of the terms is reduced but
negative values still remain. Another special case is τ = τ (Fig. 5,
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Fig. 5. Plots of the first few terms Tk of Eq. (22) and their prefix sums (in
lighter colors) for τ = 2.3 and four different values of τ . Note that all prefix
sums converge to the same transmittance value T = e−2.3 = 0.1. For τ ≥ τ
(green plots), individual terms are always in the range [0, 1]; prefix-sum
convergence is then monotone, with rate depending on τ . Notice that the
terms Tk form an unnormalized Poisson pmf with mean τn = τ − τ , with
their prefix sum being the corresponding CMF. The normalization factor
for this to be a valid pmf is the inverse of the transmittance T .

middle left), where τn = 0 and all “mass” is concentrated in the first
term T0 whose value equals the transmittance T .
When τ ≥ τ (Fig. 5, middle right and far right), the terms Tk in

Eq. (22) form a proper Poisson pmf, only unnormalized. Individ-
ual values are bounded between 0 and 1, and their prefix sum is
the corresponding (unnormalized) Poisson cumulative mass func-
tion (CMF). The normalization factor is the inverse of the total sum,
i.e. the inverse of the transmittance e−τ . The mode of this pmf (i.e. its
maximum value) is e−τ τ ⌊τn⌋

n /⌊τn ⌋!, located at the mean index k = ⌊τn⌋,
with τn = τ − τ . Note that as τ increases, the mode decreases but
also moves further to the right. This reduces the variation in the
pmf, but at the same time pushes the center of mass to the right and
makes the CMF converge more slowly.
In summary, for τ > 0, the values of the terms Tk in Eq. (22)

always vary less than those in Eq. (15). The control-variate (i.e. null-
scattering) transformation thus effectively tames the variation in
the base formulations, bounding it to be between 0 and 1 for τ ≥ τ .

5 POWER SERIES ESTIMATION
In this section, we explore the Monte Carlo estimation of our three
control-variate formulations from Section 4.2, noting that they sim-
plify to their base counterparts from Section 4.1 when µ(x) = 0.

We first reformulate the existing random-walk based estimators
(Section 2.2) in our power-series framework, which reveals new in-
sight into their efficiency. We then propose several novel estimators
tailored to our formulations, and show how different estimators can
be combined via MIS. Finally, we discuss how to correctly apply
sample stratification to further improve the estimators’ efficiency,
which we will analyze further in Section 6.

5.1 Single-term estimation
We begin by addressing our iterative power-series formulation (22).
The simplest way to estimate this infinite sum is to evaluate a single
termTk = e−τ τkn /k! with index k chosen with probability P(k). The
value of Tk needs to be estimated too as it contains an integral:

T̂ (a,b) = T̂k (a,b)
P(k) =

e−τ
k!P(k)

k∏
i=1

τ̂ni =
e−τ

k!P(k)
k∏
i=1

µn(xi )
p(xi ) . (26)

Here, τ̂ni = µn(xi )/p(xi ), for i = 1, . . . ,k , are k independent esti-
mates of the null thickness integral τn using samples xi ∈ [a,b]with
some density p(xi ). Note that while each of the samples xi is used to
estimate the same integral, they all have to be mutually uncorrelated
in order for the expectation of their product to be equal to τkn .

Ratio-tracking, residual-tracking, and track-length estimators. To eval-
uate Eq. (26), one way to distribute uncorrelated points xi ∈ [a,b] is
through a Poisson point process. One way to realize this is by sam-
pling the distances between neighboring points from an exponential
distribution [Ross 1996]. We observe that this, in fact, is precisely
how the random-walk estimators reviewed in Section 2.2 operate,
using the exponential distance pdf p(xi − xi−1) = µ(xi )e−τ (xi−1,xi ).
The number k of generated samples xi ∈ [a,b] cannot be explicitly
controlled with this method, but it is a discrete random variable that
follows a Poisson distribution with mean τ . This is a result of the
Poisson point process, and so is the density of the samples [Ross
1996]. Using the above distance pdf, these are respectively

P(k) = e−τ τ
k

k! and p(x) = µ(x)
τ
. (27)

Substituting P(k) and p(xi ) into Eq. (26), all terms cancel out except
for µn(xi ) and µ(xi ), arriving at the ratio-tracking estimator (5). Ad-
ditionally applying Russian roulette termination with probability
µn(xi )/µ(xi ) at every xi yields the track-length estimator (4). Anal-
ogously to ratio tracking, residual tracking (6) can be viewed as
a Poisson point process with Poisson pmf P(k) with mean τ − τ
(instead of τ ) and sample density p(x) = (µ(x) − µ(x))/(τ − τ ).
P-series ratio/residual-tracking estimators. Havingmapped ratio track-
ing to our power-series framework, an alternative novel implemen-
tation of that estimator arises: Instead of having the number of
steps k being the result of a Poisson point process, as above, we can
first choose the index k of the summand to estimate, with Poisson
probability P(k), and then generate k independent samples xi in
the interval [a,b] with pdf µ(xi )/τ . These samples are used to con-
struct k independent one-sample estimates τ̂ni of the null optical
thickness. This approach produces samples with the same density as
the random-walk based ratio-tracking estimator, and thus the same
estimator (5). However it uses a different sampling procedure that
generates the points xi in an arbitrary order unlike the traditional
Poisson point process implementation where xi ≤ x j for i < j.
We will refer to it as our p-series ratio-tracking estimator. We can
analogously create a power-series variant of residual tracking by
explicitly sampling from its corresponding pmf P(k) and pdf p(x).
Discussion. Recall that the summands of Eq. (22) are proportional to
a Poisson pmf with mean τn. That pmf is thus ideal for single-term
estimation (26), however its parameter τn = τ −τ is unknown (since
τ is unknown). An approximation can be used instead: the closer it
is to τn, the lower the variance of the estimator.

Ratio tracking uses a Poisson sampling pmf with mean τ , which
has the property limτ→∞ τn = τ , since τn = τ−τ . The estimator thus
becomes better at importance sampling the transmittance sum as
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Fig. 6. Single-term estimation of the sum in Eq. (22) (blue bars, normalized
for display to a Poisson pmf with mean τn = 3) for the extinction function µ
on the left. Ratio tracking selects one term using a Poisson pmf with mean
τ = 18. Residual tracking uses a pmf with mean τ −τ = 6. Once chosen, the
cost of estimating the term (in terms of medium lookups) is proportional to
its index. Note that the residual-tracking pmf is more closely proportional
to the ideal (blue) pmf than the ratio-tracking pmf is. It thus achieves better
importance sampling, also at a lower cost due to its smaller pmf mean.

the extinction upper control µ increases, which is in line with prior
empirical observations [Novák et al. 2014, 2018]. Residual tracking
instead uses a pmf with mean τ − τ , which can be a much closer
approximation to τn when µ and µ tightly bound the variation of the
extinction µ, respectively from above and below. We illustrate this
in Fig. 6, where we plot the transmittance terms (normalized to a
pmf for display) for a sinusoidal extinction function, along with the
sampling pmfs of ratio and residual tracking. Note that the green
residual pmf is more closely proportional to the blue transmittance
terms than the pink ratio pmf is. Moreover, the average cost of using
the residual pmf is lower, since on average it chooses terms with
lower index k , and estimation cost is proportional to k in terms of
the number of medium extinction lookups µn(xi ) = µ(xi ) − µ(xi ).

In Appendix D we derive analytical expressions for the variance
and the efficiency of the ratio-tracking, track-length, and residual-
tracking estimators as functions of τ and τ , for the case where τn is
estimated with zero variance, i.e. when µ(x) ∝ µ(x).

5.2 Prefix-sum estimation: iterative
Another way to estimate the infinite sum in Eq. (22) is to evaluate
not just a single term Tk , but all terms up to and including Tk :

T̂ (a,b) =
k∑
j=0

Tj (a,b)
Pr{k ≥ j}=

k∑
j=0

e−τ
∏j

i=1τ̂ni
j! [1 −C(j)] =

k∑
j=0

e−τ
∏j

i=1
µn(xi )
p(xi )

j! [1 −C(j)] , (28)

where the index k follows some pmf P(k), and C(k) = ∑k−1
j=0 P(j) is

the corresponding cumulative mass function (CMF). Thus 1 −C(j)
above is the probability of k ≥ j, i.e. of evaluating term j. As in
Eq. (26), xi ∼ p(xi ) are k independent samples for estimating τn, and
a prefix x1, . . . , x j of these are used to evaluate each term j. Thus
the cost of this estimator is identical to that of Eq. (26), even though
it evaluates k terms instead of just one.

P-series next-flight estimator. To evaluate the prefix-sum estima-
tor (28), we can use the distributions from Eq. (27). We will refer to
this variant as our p-series next-flight estimator since it is similar to
the next-flight estimator (7), which evaluates a prefix-sum for an
expansion of our Volterra formulation (13) instead.

5.3 Prefix-sum estimation: recursive
We can also construct a prefix-sum estimator for our power-series
formulation (22) based on its recursive form (23):

T̂ (a,b, i) = e−τ +

with probability Pi
µn(xi )
ip(xi )Pi

wi

T̂ (a,b, i + 1) , (29)

where xi ∈ [a,b] is a random sample with pdf p(xi ) used to estimate
the null-thickness integral τn at every level i of the recursion which
is continued with probability Pi . We propose two estimators based
on Eq. (29), both using the sample pdf p(x) = µ(x)/τ from Eq. (27)
and differing only in the choice of continuation probabilities Pi .

P-series cumulative estimator. This estimator accumulates theweights
wi during the recursion and uses continuation probabilities

Pi = min
(|Wi |, 1

)
= min

( ��� µn(xi )ip(xi )
∏i−1

j=0w j

��� , 1), (30)

which try to maintain a cumulative weightWi = 1 during the recur-
sion. Since the weight can be negative when µn(xi ) < 0, we take its
absolute value. The same style of Russian-roulette termination is
often used in path tracing, where the continuation probability is set
proportionally to the throughput along the path [Pharr et al. 2016].

P-series CMF estimator. To achieve low-variance prefix-sum esti-
mation, we can take advantage of the knowledge that the terms
of the power-series sum (22) form an (unnormalized) Poisson pmf
(see Fig. 5). We can start applying Russian roulette termination only
after we have accumulated a certain fraction t of the corresponding
(unnormalized) CMF. The Poisson parameter τn is unknown (i.e. to
be estimated), but we can use the free parameter τ as a proxy. We
define the continuation probability at recursion level i as

Pi =

{
τ/i if Cτ (i) ≥ t,

1 otherwise,
(31)

whereCτ is the CMF of the Poisson pmfwithmean τ .We set t = 0.99,
and use τ/i as a proxy for the expected weight τn/i = E

[
µn(xi )
ip(xi )

]
at

level i . When τ ≥ τ , the delayed termination guarantees that the
accuracy of the estimate will be at least t (99% in our case). Unlike
the above cumulative estimator, the cost of this estimator is only
dependent on µ (via τ ), and not on µ, just like ratio tracking.

5.4 Hypercube estimation
A primary (i.e. one-sample) estimator for the pure integral transmit-
tance formulation in Eq. (24) has the well-known general form

T̂ (a,b) = fn(x)
p(x) , (32)

where x = (x1, . . . , xk ) is a point in the k-hypercube Hk sampled
with density p(x). In this formulation, the only difference between
estimators can be due to the pdfs p(x) of their corresponding sam-
pling techniques. Inspired by bidirectional path tracing in global
light transport, we explore a family of techniques, each denoted as
(k, t) that constructs x = (x1, . . . , xt , xt+1, . . . , xk ), where the first
t ∈ [0..k] coordinates are sampled via a random walk starting from
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a and the remaining k − t coordinates starting from b. Denoting
x0 ≡ a and xk+1 ≡ b, the pdf for such a technique is

pk ,t (x) =
1
k!

from a
t∏
i=1

µ(xi )e−τ (xi−1,xi )
from b

k∏
i=t+1

µ(xi )e−τ (xi ,xi+1) (33a)

=
1
k! e

−τ (a,xt )−τ (xt+1,b)
k∏
i=1

µ(xi ). (33b)

This technique samples the coordinates of x in a sorted order, i.e. in a
k-simplex of the hypercubeHk , with volume |Hk |/k !. The factor 1/k!
is a Jacobian that converts the pdf measure to that of the hypercube.

Hypercube ratio-tracking and next-flight estimators. Ratio tracking
corresponds to using the technique (k,k +1); writing out the estima-
tor (32) with pk ,k+1 in the denominator yields Eq. (5) after canceling
out the relevant terms. The next-flight estimator uses techniques
(i, i), for i = 0, . . . ,k , to construct a set of points xi = (x1, . . . , xi )
with pdfs pi ,i (xi ) that share common coordinate prefixes. Summing
up corresponding estimates (32) yields Eq. (7).

Unidirectional MIS estimator. Our hypercube transmittance formula-
tion allows us to combine the ratio-tracking and next-flight estima-
tors via MIS, just like path tracing combines unidirectional sampling
and next-event estimation. This starts a random walk from a, and
at every step xi constructs a next-flight estimate with pdf pi ,i (xi ),
which is weighted by a balance-heuristic weight [Veach and Guibas
1995] that also accounts for the corresponding ratio-tracking tech-
nique with pdf pi ,i+1(xi ). Upon reaching b, a ratio-tracking estimate
with pdf pk ,k+1(xk ) is accumulated, where the MIS weight also ac-
counts for the next-flight technique with pdf pk ,k (xk ).
Bidirectional MIS estimator. We can also combine all techniques
(k, t) for every point x via MIS, similarly to how bidirectional path
tracing (BPT) combines all possible vertex connection techniques for
a given light transport path [Veach and Guibas 1995]. Our implemen-
tation samples coordinates by starting two random walks—one from
a and one from b, and then constructs points x by concatenating
coordinate prefixes, analogously to a standard BPT implementation
that connects pairs of vertices on sensor and emitted paths.

5.5 Sample stratification
Due to the sequential sample placement in prior formulations, it has
not been clear how stratification can be correctly applied to improve
the efficiency of the transmittance estimation without introducing
bias. Sample stratification is best understood in an integration frame-
work, which is what our formulations provide. Every term Tk in
the power-series sum (22) contains a product of k one-dimensional
optical thickness integrals. Estimates of these integrals have to be
uncorrelated so that the expectation of their product is the product
of their expectations, τkn . Multiple estimation samples within each
of these integrals, however, can be correlated, i.e. stratified.
In practice, our estimators take one sample per integral, but we

stratify samples across estimation calls, i.e. across theN paths traced
for an individual image pixel. Since the power-series sum is infinite,
we need to be able to construct the N -sample pattern on-the-fly as
its dimensionality can be arbitrarily high depending on the index

k of the term being estimated. One option is to use quasi-Monte
Carlo patterns, such as Hammersley [Wong et al. 1997]. Noting that
individual integrals are one-dimensional, we can also utilize on-the-
fly Latin-hypercube/N -rooks sampling [McKay et al. 1979; Shirley
1991], which ensures stratification along each 1D projection. We
also stratify the discrete sampling decisions in our estimators, i.e. the
choice of index k and Russian roulette termination. Effectively, each
sampling decision, continuous or discrete, consumes one dimension
of the sampling pattern. This logic can be also applied to stratify
the distance and termination decisions in the Volterra estimators.

6 SUMMARY AND RESULTS
In this section we recapitulate our transmittance formulations and
the various estimators we discussed above. We then benchmark
these estimators on a range of scenes, summarizing the results as
simple guidelines for which estimators to use in different conditions.

6.1 Estimator summary
Our Volterra formulations (Section 3) express transmittance as an
integral equation. Existing techniques (Section 2.2) arise as direct,
recursive Monte Carlo estimators for that formulation (Section 3.5).

Our power-series formulations (Section 4) express the same quan-
tity as an infinite sum. We explore three types of estimators for that
sum. The existing track-length, ratio-tracking, and residual-tracking
estimators are single-term estimators (Section 5.1). We propose novel
power-series variants of these, also of the existing next-flight esti-
mator which can be viewed as a prefix-sum estimator (Section 5.2).
We additionally devise two novel recursive prefix-sum estimators
that only differ in their termination probabilities: p-series cumu-
lative and p-series CMF (Section 5.3). Existing estimators can also
be expressed as sampling techniques in our hypercube formulation;
we propose two novel estimators that combine such techniques via
MIS, unidirectionally and bidirectionally, respectively (Section 5.4).
The ideal discrete distribution for single-term power-series esti-

mation is the Poisson pmf with mean τn. In practice, close approxi-
mations of the unknown τn will yield low variance. Unfortunately,
no ideal target termination pmf exists for prefix-sum estimators,
whose variance drops as more terms are accumulated, approaching
zero only in the limit where the estimator never terminates. Low-
variance estimation can still be achieved by delaying the termination
until after the majority of the contribution has been accumulated,
i.e. after the prefix sum has almost converged to the sought trans-
mittance value (see the plots in Fig. 5 for intuition). This of course
comes at increased cost for evaluating a larger number of terms.

6.2 Numerical experiments
We benchmark the efficiency of the various estimators on both
canonical configurations and real scenes. To compare only trans-
mittance estimation, we use a path tracer that follows all surface
reflection and refraction branches and avoids all forms of Russian
roulette external to evaluating transmittance. In our rendering com-
parisons, we hold the number of medium extinction lookups con-
stant and report the root mean squared error (RMSE) and render
time of the images. Equal-lookup comparisons are renderer-agnostic
and arguably more representative for large, complex scenes, where
medium lookups dominate the render time [Novák et al. 2014, 2018].
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Fig. 7. Canonical comparison of estimators (ours are in bold) on several extinction functions. Each pixel in every 2D plot represents a transmittance estimation
experiment with a unique combination of extinction function µ and (constant) extinction upper control µ . In each plot, we scale µ exponentially along the
x-axis so that the transmittance drops linearly from 1 to 0. Along the y-axis we scale µ so that the control thickness efficiency τ /τ increases linearly from 0.01
to an extinction-dependent upper bound. For each pixel, we run the estimator several times to compute its variance and cost (i.e. number of µ lookups). We
then plot the variance and cost× variance (i.e. inverse efficiency), where lower is better. In the bottom-row plots we show the best estimator for every pixel in
color code. Our p-series CMF estimator performs best overall, in terms of both metrics, thanks to trading slightly higher cost for lower variance. A notable
exception is the Gaussian extinction function, where the upper control is naturally loose and the less costly ratio-tracking estimator performs marginally better.
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RMSE: 1.3e−2RMSE: 1.3e−2RMSE: 1.3e−2
Time: 253sTime: 253sTime: 253s

RMSE: 3.6e−3RMSE: 3.6e−3RMSE: 3.6e−3
Time: 269sTime: 269sTime: 269s

RMSE: 2.2e−3RMSE: 2.2e−3RMSE: 2.2e−3
Time: 272sTime: 272sTime: 272s

RMSE: 3.8e−3RMSE: 3.8e−3RMSE: 3.8e−3
Time: 210sTime: 210sTime: 210s

RMSE: 6.0e−3RMSE: 6.0e−3RMSE: 6.0e−3
Time: 261sTime: 261sTime: 261s

RMSE: 1.7e−6RMSE: 1.7e−6RMSE: 1.7e−6
Time: 111sTime: 111sTime: 111s

Reference Ratio tracking Next-flight Unidir-MIS Bidir-MIS P-Cumulative P-CMF

Fig. 8. Equal-cost (92.5M extinction lookups) comparison of several estimators (ours are in bold) on a homogeneous medium with extinction upper control set
to µ = 1.5 × µ . The relatively tight µ favors next-flight and MIS estimators over ratio tracking. Our p-series CMF estimator produces a virtually noise-free
result; its render time is also low since lookups are cheap in this scene and this estimator makes more lookups per ray than the others.

Canonical configuration. In Fig. 7 we study the performance of seven
estimators across four extinction functions in a canonical configura-
tion previously used by Novák et al. [2014, 2018]. We plot the esti-
mators’ variance and variance× cost (i.e. inverse efficiency), where
lower is better. In each 2D plot, we scale the extinction function
µ such that the transmittance to be estimated varies linearly from
1 to 0, left to right. Vertically, we scale the (constant) extinction
upper control µ such that the control thickness efficiency τ/τ [Lep-
pänen 2010] increases linearly from 0.01 to an extinction-dependent
upper bound, bottom up. The plots convey the relative differences
in performance between estimators on the full range of possible
transmittance values and (bounding) constant upper controls: from
tight (top) to almost infinitely loose (bottom).

The performance of existing estimators (top three rows in Fig. 7)
has been studied experimentally in prior work [Novák et al. 2014,
2018].2 Our power-series reformulations (Section 5.1) provide a more
rigorous understanding of their behavior. As the upper control in-
creases, ratio tracking’s Poisson pmf becomes better at importance
sampling the transmittance sum, making up for the increased cost
to improve the estimator’s overall efficiency. The track-length es-
timator’s variance is never smaller than that of ratio tracking, but
its cost can be lower to result in higher efficiency, as is the case
when the optical thickness is large and the upper control is tight
(top right regions of the plots). These observations match what our
analytical efficiency expressions for these estimators in Appendix D
suggest. The next-flight estimator has been known to perform bet-
ter when the upper control is tight [Novák et al. 2018]. In such
cases, the mean of its termination Poisson pmf is larger than that of
the (unnormalized) transmittance pmf, so this prefix-sum estimator
terminates after accumulating the majority of the transmittance
contribution. For loose controls, termination comes too early; when
infinitely loose, the two pmf means coincide and on average only
half the contribution is accumulated. The estimator is thus bound to
produce high variance when constant controls are naturally loose,
e.g. with Gaussian-shaped extinctions.

Our p-series cumulative prefix-sum estimator is designed to delay
termination until its cumulative weightWi (30) (i.e. the analog of

2Note that the ‘variance’ and ‘variance× cost’ plots of Novák et al. [2014, Fig. 9] and
Novák et al. [2018, Fig. 5] incorrectly use the estimators’ standard deviation instead of
their variance, hence the discrepancies between their plots and ours.

path throughput in surface rendering) drops below one. This typ-
ically occurs well past the transmittance pmf mean, resulting in
better performance than the next-flight estimator for the majority
of cases. The estimator is still susceptible to some higher variance
when the extinction control is loose (i.e. the thickness efficiency
τ/τ is low) and also the null thickness τn = τ − τ is small, e.g. with
values τ = 0.7 and τn = 0.5 (bottom left plot regions). In this case
the true transmittance is e−τ = e−0.2 ≈ 0.82, and the estimator
terminates at the first iteration with probability P1 =W1 ≈ τn, i.e.
half the time, scoring e−τ ≈ 0.5; otherwise it terminates almost
surely at the second iteration, scoring 2e−τ ≈ 1.

Our p-series CMF estimator mitigates such high variance by mak-
ing sure to suppress Russian roulette termination until almost all
of the contribution has been accumulated. This allows it to have
the lowest variance among all estimators. It also has the highest
efficiency, except for the Gaussian extinction where ratio tracking
performs slightly better due to p-series CMF being more conserva-
tive, i.e. trading higher cost for lower variance.

Our Unidir-MIS is theMIS combination of ratio-tracking and next-
flight estimators enabled by our theory, and Bidir-MIS additionally
includes other sampling strategies (see Section 5.4). MIS improves
robustness by eliminating theworst-case behaviors of any individual
strategy, but it also does not attain the best-case behavior of any
strategy in isolation.

Homogeneous medium. In media with constant density, such as
the one in Fig. 8, the null-thickness integral τn is estimated with
zero variance when using a constant extinction upper control. Thus
the only source of variance in the transmittance estimators is the
discrete random choice of terms/recursion termination in their cor-
responding power-series formulations.

The upper control is relatively tight in this scene, so ratio tracking
performs poorly as its Poisson pmf does not importance sample the
transmittance sum well. Next-flight does better than ratio tracking
and also p-series cumulative, though terminates relatively early
and some noise remains. P-series CMF is more conservative and
provides near-perfect estimation. It also does so in a fraction of the
time as it makes more lookups per ray, and lookups are cheap in
this simple medium. The benefits of combining techniques via MIS
suggested by the plots in Fig. 7 can also be seen visually here.
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Reference

EV+4EV+4EV+4

Ratio track. Next-flight Unidir-MIS Bidir-MIS P-Next-fl. P-Cumul. P-CMF

µ
=
1×

m
ax(µ)

RMSE: 2.0e−2RMSE: 2.0e−2RMSE: 2.0e−2
Time: 202sTime: 202sTime: 202s

RMSE: 7.6e−2RMSE: 7.6e−2RMSE: 7.6e−2
Time: 203sTime: 203sTime: 203s

RMSE: 6.1e−2RMSE: 6.1e−2RMSE: 6.1e−2
Time: 198sTime: 198sTime: 198s

RMSE: 7.0e−2RMSE: 7.0e−2RMSE: 7.0e−2
Time: 295sTime: 295sTime: 295s

RMSE: 9.5e−2RMSE: 9.5e−2RMSE: 9.5e−2
Time: 196sTime: 196sTime: 196s

RMSE: 2.6e−2RMSE: 2.6e−2RMSE: 2.6e−2
Time: 134sTime: 134sTime: 134s

RMSE: 2.3e−2RMSE: 2.3e−2RMSE: 2.3e−2
Time: 155sTime: 155sTime: 155s

µ
=
5×

m
ax(µ)

RMSE: 1.1e−2RMSE: 1.1e−2RMSE: 1.1e−2
Time: 255sTime: 255sTime: 255s

RMSE: 1.0e−1RMSE: 1.0e−1RMSE: 1.0e−1
Time: 266sTime: 266sTime: 266s

RMSE: 7.9e−2RMSE: 7.9e−2RMSE: 7.9e−2
Time: 258sTime: 258sTime: 258s

RMSE: 7.5e−2RMSE: 7.5e−2RMSE: 7.5e−2
Time: 3335sTime: 3335sTime: 3335s

RMSE: 1.4e−1RMSE: 1.4e−1RMSE: 1.4e−1
Time: 259sTime: 259sTime: 259s

RMSE: 1.6e−2RMSE: 1.6e−2RMSE: 1.6e−2
Time: 197sTime: 197sTime: 197s

RMSE: 1.1e−2RMSE: 1.1e−2RMSE: 1.1e−2
Time: 237sTime: 237sTime: 237s

Fig. 9. Equal-cost (0.5B and 1.3B lookups, top and bottom respectively) comparisons of estimators (ours are in bold) on a heterogeneous medium for two upper
controls. Even the tighter control (top rows) is relatively loose, favoring ratio tracking. Our p-series cumulative and CMF estimators do almost as well.

Heterogeneous medium. We now consider the more complex hetero-
geneous medium in Fig. 9 and compare the estimators’ performance
for two constant upper controls µ: one tight (top rows), equal to the
medium’s majorant extinctionmax(µ), and one loose (bottom rows),
equal to 5 ×max(µ). The extinction along rays through the globe
resembles that of the Gaussian function in Fig. 7. The tighter µ thus
still produces a loose control thickness τ , which is a good case for
ratio tracking. P-series CMF has a slightly worse RMSE but is faster
in terms of render speed as it evaluates fewer samples per pixel for
an equal number of extinction lookups. As the upper control loosens,
it closes the gap to ratio tracking. P-series cumulative comes a close
third. The next-flight and MIS estimators perform relatively poorly
due to the next-flight techniques terminating too early. Estimating
a transmittance value of 1 with a loose upper control is particularly
difficult for such estimators, as can be seen in the orange zoom-ins
and also in the bottom left corners of the plots in Fig. 7.
Despite its high overall error, Bidir-MIS performs well in the

dense, low-transmittance region of the medium (top green zoom-in
in Fig. 9), which corresponds to the right part of the estimator’s
plots in Fig. 7. However, not scale well to loose upper controls as the
number of techniques it needs to evaluate and weigh is proportional
to the upper control thickness. This is reflected by the drastically
increased render time in the bottom green zoom-in in Fig. 9. Never-
theless, it provides motivation for future work in attempting to use
different weighting schemes or combining other estimators.

Non-bounding upper control. In practice, it can be difficult or costly
to compute a bounding (i.e. majorant) upper control, e.g. if the
medium density is modified procedurally. In addition, the time re-
quired to evaluate transmittance using any known or proposed esti-
mators depends proportionally on the control value. So for sparse
media, where only a few small regions reach the maximum density,
it would be desirable for an estimator to support non-bounding
controls to reduce render time.

Reference µ = 1/8× µ = 1/4× µ = 1/2× µ =1×
RMSE: infRMSE: infRMSE: inf
Time: 2492sTime: 2492sTime: 2492s

RMSE: infRMSE: infRMSE: inf
Time: 1292sTime: 1292sTime: 1292s

RMSE: 2.7e−2RMSE: 2.7e−2RMSE: 2.7e−2
Time: 690sTime: 690sTime: 690s

RMSE: 1.0e−2RMSE: 1.0e−2RMSE: 1.0e−2
TIME: 388sTIME: 388sTIME: 388s

Ratio
tracking

RMSE: infRMSE: infRMSE: inf
Time: 2549sTime: 2549sTime: 2549s

RMSE: infRMSE: infRMSE: inf
Time: 1276sTime: 1276sTime: 1276s

RMSE: 1.2e−2RMSE: 1.2e−2RMSE: 1.2e−2
Time: 687sTime: 687sTime: 687s

RMSE: 1.7e−2RMSE: 1.7e−2RMSE: 1.7e−2
TIME: 391sTIME: 391sTIME: 391s N

ext-flight

RMSE: 2.8e−2RMSE: 2.8e−2RMSE: 2.8e−2
Time: 270sTime: 270sTime: 270s

RMSE: 1.4e−2RMSE: 1.4e−2RMSE: 1.4e−2
Time: 298sTime: 298sTime: 298s

RMSE: 8.6e−3RMSE: 8.6e−3RMSE: 8.6e−3
Time: 340sTime: 340sTime: 340s

RMSE: 8.3e−3RMSE: 8.3e−3RMSE: 8.3e−3
TIME: 218sTIME: 218sTIME: 218s P-C

um
ul.

RMSE: infRMSE: infRMSE: inf
Time: 352sTime: 352sTime: 352s

RMSE: 1.6e−1RMSE: 1.6e−1RMSE: 1.6e−1
Time: 287sTime: 287sTime: 287s

RMSE: 6.8e−3RMSE: 6.8e−3RMSE: 6.8e−3
Time: 229sTime: 229sTime: 229s

RMSE: 5.5e−3RMSE: 5.5e−3RMSE: 5.5e−3
TIME: 180sTIME: 180sTIME: 180s P-C

M
F

Fig. 10. Equal-cost (160M lookups) render comparison, where in each col-
umn we set the extinction upper control µ to a different fraction of the
medium’s majorant extinction, max(µ). Our p-series estimators (in bold)
are more resilient to non-bounding controls than the state of the art.

In Fig. 10 we compare our p-series estimators against the current
state of the art when utilizing varying degrees of non-bounding
controls. The render times and variance of the existing estimators
explode, even reaching numerical infinity for a handful of pixels. For
ratio tracking, this aligns with the result in Eq. (44) which suggests
the variance grows exponentially with decreasing controls.
Referring back to the leftmost plot in Fig. 5, non-bounding con-

trols produce high-magnitude terms with alternating signs. The
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Reference Next-flight Ratio track. P-Ratio P-Next-fl. P-Cumul. P-CMF

Ra
nd

om

RMSE: 1.8e−2RMSE: 1.8e−2RMSE: 1.8e−2
Time: 300sTime: 300sTime: 300s

RMSE: 1.4e−2RMSE: 1.4e−2RMSE: 1.4e−2
Time: 299sTime: 299sTime: 299s

RMSE: 1.4e−2RMSE: 1.4e−2RMSE: 1.4e−2
Time: 289sTime: 289sTime: 289s

RMSE: 2.0e−2RMSE: 2.0e−2RMSE: 2.0e−2
Time: 290sTime: 290sTime: 290s

RMSE: 8.0e−3RMSE: 8.0e−3RMSE: 8.0e−3
Time: 387sTime: 387sTime: 387s

RMSE: 3.8e−3RMSE: 3.8e−3RMSE: 3.8e−3
Time: 434sTime: 434sTime: 434s

St
ra
tifi

ed

RMSE: 1.5e−2RMSE: 1.5e−2RMSE: 1.5e−2
Time: 291sTime: 291sTime: 291s

RMSE: 7.9e−3RMSE: 7.9e−3RMSE: 7.9e−3
Time: 290sTime: 290sTime: 290s

RMSE: 6.4e−3RMSE: 6.4e−3RMSE: 6.4e−3
Time: 287sTime: 287sTime: 287s

RMSE: 1.0e−2RMSE: 1.0e−2RMSE: 1.0e−2
Time: 288sTime: 288sTime: 288s

RMSE: 3.5e−3RMSE: 3.5e−3RMSE: 3.5e−3
Time: 369sTime: 369sTime: 369s

RMSE: 1.9e−3RMSE: 1.9e−3RMSE: 1.9e−3
Time: 427sTime: 427sTime: 427s

Fig. 11. Comparing the benefits from Latin-hypercube sample stratification that various estimators (ours are in bold) get, using 8 samples/pixel. The
power-series ratio-tracking and next-flight variants benefit more from stratification than their traditional (Volterra) counterparts.
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Fig. 12. Convergence plots of ratio tracking vs. our p-series ratio tracking
using various sampling methods on a cosine extinction function for two
choices of τ and τ . Stratification benefits are dependent on both parameters.

prefix sum of these terms also has significant variation initially,
but after accumulating enough terms the oscillation stops and the
sum starts approaching the transmittance value. The next-flight
estimator performs poorly as it always terminates too early. Our
p-series prefix-sum estimators degrade much more gracefully. The
cumulative estimator effectively suppresses Russian roulette termi-
nation until the absolute value its cumulative weight drops below 1.
The CMF estimator does slightly worse as its termination is directly
driven by the upper control: when the control is low, the estimator
can terminate too early and its variance can explode.

Stratification. In Fig. 11 we show the benefit of sample stratifica-
tion, notably comparing the traditional Volterra formulations of the
ratio-tracking and next-flight estimators and our p-series variants.
Expectedly, the two variants of ratio tracking perform identically
with independent sampling, but our p-series formulation benefits
more from stratification. In our variant, the discrete choice of term
Tk is explicit and easily stratified, thereby significantly reducing
variance. The plots in Fig. 12 also show an improvement in the
variance convergence rate. The amount of improvement depends
on the configuration, and the Hammersley point set consistently

Table 2. RMSE numbers for the rendered scenes above, where in each
row the extinction upper control µ set to a different scale of the medium
majorant extinction, max(µ). Cell colors are interpolated per row between
the best (green) and worst (red) estimator. Black means numerical infinity or
not applicable (e.g. track-length does not work with non-bounding controls).

µ Track-length Ratio track. Next-flight P-Ratio P-Next-fl. Unidir-MIS Bidir-MIS P-Cumul. P-CMF

Fi
g.
8

0.1 1.3 × 10−1 6.3 × 101 3.5 × 101 4.6 × 10−2 1.5 × 100
0.3 7.1 × 10−2 2.1 × 100 2.8 × 10−1 8.8 × 10−1 1.8 × 10−1 7.3 × 10−1 9.6 × 10−2 2.3 × 10−2 8.8 × 10−3
0.6 3.0 × 10−2 3.4 × 10−2 9.3 × 10−3 3.4 × 10−2 8.1 × 10−3 1.6 × 10−2 1.1 × 10−2 8.0 × 10−3 2.7 × 10−5
1.0 8.6 × 10−3 8.5 × 10−3 0.0 × 100 8.5 × 10−3 0.0 × 100 4.6 × 10−3 0.0 × 100 0.0 × 100 0.0 × 100
1.5 8.2 × 10−3 1.3 × 10−2 3.6 × 10−3 1.3 × 10−2 2.9 × 10−3 2.2 × 10−3 3.8 × 10−3 6.0 × 10−3 1.7 × 10−6
2.5 7.8 × 10−3 8.8 × 10−3 6.1 × 10−3 8.8 × 10−3 4.9 × 10−3 4.5 × 10−3 6.1 × 10−3 4.5 × 10−3 7.9 × 10−6
5.0 7.6 × 10−3 5.6 × 10−3 7.9 × 10−3 5.6 × 10−3 6.7 × 10−3 6.2 × 10−3 7.1 × 10−3 2.5 × 10−3 1.7 × 10−5

Fi
g.
9

0.1 9.9 × 10−2 4.9 × 10−2
0.3 3.7 × 10−2 3.1 × 101 2.9 × 100 4.1 × 101 2.7 × 100 8.6 × 100 1.7 × 10−1 1.7 × 10−2 2.5 × 10−2
0.6 1.6 × 10−2 2.2 × 10−2 1.8 × 10−2 2.2 × 10−2 1.7 × 10−2 1.3 × 10−2 2.0 × 10−2 1.1 × 10−2 8.9 × 10−3
1.0 1.2 × 10−2 1.0 × 10−2 1.7 × 10−2 1.0 × 10−2 1.9 × 10−2 1.2 × 10−2 2.1 × 10−2 8.3 × 10−3 5.5 × 10−3
1.5 1.2 × 10−2 7.4 × 10−3 1.8 × 10−2 7.4 × 10−3 2.0 × 10−2 1.3 × 10−2 1.9 × 10−2 6.1 × 10−3 3.9 × 10−3
2.5 1.1 × 10−2 5.1 × 10−3 1.8 × 10−2 5.1 × 10−3 2.1 × 10−2 1.3 × 10−2 1.8 × 10−2 4.0 × 10−3 2.8 × 10−3
5.0 1.1 × 10−2 3.4 × 10−3 1.8 × 10−2 3.4 × 10−3 2.4 × 10−2 1.3 × 10−2 1.6 × 10−2 2.4 × 10−3 1.8 × 10−3

Fi
g.
10

0.1 9.0 × 10−2 3.0 × 101 4.5 × 10−1 3.5 × 100
0.3 3.0 × 10−2 8.9 × 10−2 3.5 × 10−2 1.1 × 10−1 3.6 × 10−2 4.9 × 10−2 2.7 × 10−2 1.6 × 10−2 1.7 × 10−2
0.6 1.7 × 10−2 2.4 × 10−2 1.9 × 10−2 2.4 × 10−2 2.0 × 10−2 1.6 × 10−2 2.3 × 10−2 1.4 × 10−2 1.1 × 10−2
1.0 1.4 × 10−2 1.5 × 10−2 2.0 × 10−2 1.5 × 10−2 2.1 × 10−2 1.4 × 10−2 2.3 × 10−2 1.3 × 10−2 6.9 × 10−3
1.5 1.7 × 10−2 1.4 × 10−2 2.5 × 10−2 1.4 × 10−2 2.8 × 10−2 1.8 × 10−2 2.6 × 10−2 1.2 × 10−2 6.0 × 10−3
2.5 1.6 × 10−2 9.6 × 10−3 2.5 × 10−2 9.6 × 10−3 3.0 × 10−2 1.9 × 10−2 2.6 × 10−2 6.7 × 10−3 4.3 × 10−3
5.0 1.6 × 10−2 6.5 × 10−3 2.6 × 10−2 6.6 × 10−3 3.2 × 10−2 2.0 × 10−2 2.5 × 10−2 3.8 × 10−3 2.7 × 10−3

Fi
g.
11

0.1 1.7 × 10−1 6.9 × 101
0.3 6.0 × 10−2 3.7 × 10−1 3.7 × 10−1 3.7 × 10−1 2.3 × 10−1 3.5 × 10−1 2.0 × 10−1 1.4 × 10−1 1.4 × 10−1
0.6 2.4 × 10−2 3.3 × 10−2 8.2 × 10−2 3.3 × 10−2 9.7 × 10−2 6.7 × 10−2 8.4 × 10−2 3.8 × 10−2 3.6 × 10−2
1.0 1.9 × 10−2 2.0 × 10−2 7.6 × 10−2 2.0 × 10−2 9.5 × 10−2 6.1 × 10−2 7.0 × 10−2 2.6 × 10−2 2.3 × 10−2
1.5 1.9 × 10−2 1.5 × 10−2 7.4 × 10−2 1.5 × 10−2 9.5 × 10−2 5.9 × 10−2 6.3 × 10−2 2.2 × 10−2 1.7 × 10−2
2.5 1.9 × 10−2 1.1 × 10−2 7.3 × 10−2 1.1 × 10−2 9.6 × 10−2 5.7 × 10−2 5.7 × 10−2 1.7 × 10−2 1.2 × 10−2
5.0 2.7 × 10−2 1.1 × 10−2 1.0 × 10−1 1.1 × 10−2 1.4 × 10−1 7.9 × 10−2 7.5 × 10−2 1.6 × 10−2 1.1 × 10−2

outperforms Latin-hypercube sampling. Our other novel p-series
estimators in Fig. 11 benefit from stratification as well, roughly
halving the error on average.

6.3 Discussion
In summary, for scenes containing large, sparse media with loose
upper controls, ratio tracking is the preferred estimator if the extinc-
tion lookups dominate the render time (Fig. 9). When stratification is
available, our p-series variant should be used instead (Figs. 11 and 12).
Our p-series cumulative estimator is the only one whose variance
does not explode with non-bounding upper controls (Fig. 10). Our p-
series CMF is the preferred estimator in all other cases, as suggested
by the best-estimator plots at the bottom of Fig. 7. Figure 9 also
shows that p-series CMF can be faster than ratio tracking in terms
of render time, and Table 2 indicates its performance will approach
that of ratio tracking as the extinction upper control becomes looser.
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7 CONCLUSION
Our integral formulations lead to both better theoretical understand-
ings of the transmittance problem and more effective numerical esti-
mators. We showed that the existing, seemingly very different, esti-
mators can be reformulated as Monte Carlo estimators of a Volterra
integral equation. This reformulation allows us to concretely reason
about the discrepancies between their expected and actual (relative)
performance. It also reveals that the commonly used null-scattering
concept is not strictly necessary for numerical estimation and can
be viewed as a simple mathematical manipulation.
We then presented three novel formulations—iterative power-

series, recursive power-series, and hypercube—whose key benefit is
their amenability to direct and unbiased Monte Carlo estimation,
along with an interpretation of null scattering as a control-variate
transformation for variance reduction. These formulations also bear
similarity to different forms of the surface rendering equation, and
this analogy leads to several novel estimators with distinct per-
formance characteristics. The additional benefit of direct Monte
Carlo estimation is that it enables the effective application of sample
stratification.

While our framework establishes a solid mathematical foundation
of the problem of estimating medium transmittance, we believe we
have only scratched the surface of a plethora of different estimators
that are now possible by our formulations. Future work could ex-
plore better importance sampling techniques for optical thickness
estimation and power-series prefix-sum termination. Incorporating
our formulations into a path integral formulation of global light
transport [Miller et al. 2019] is also of practical importance. Our in-
terpretation of the null-scattering concept as control variates implies
that it is theoretically possible to remove the concept of majoran-
t/control media altogether which can be challenging to define in
some practical cases. We also believe that our formulations can be
generalized to handle correlated media [Jarabo et al. 2018; Bitterli
et al. 2018] by deriving corresponding formulations.
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A EXPONENTIAL FORMULATION DERIVATION
Here we derive the classical exponential formulation of transmit-
tance in Eq. (3). We begin by dividing both sides of Eq. (2) by L(x):

− dL(x)
L(x)dx = −d ln

(
L(x))
dx

(2)
= −µ(x). (34)

Integrating from a to b gives (recall that T (a,b) = L(a)/L(b))

−
[
ln

(
L(x)) ]b

a
= ln

(
L(a)
L(b)

)
= ln

(
T (a,b)) (34)

= −
∫ b

a
µ(x)dx . (35)

Finally, exponentiating the last equality in Eq. (35) yields Eq. (3).

B NULL-SCATTERING VOLTERRA DERIVATION
Here we derive the null-scattering extension (13) to our Volterra
integral formulation (9). We start from Eq. (12), noting that it can
be written as a canonical first-order linear differential equation:

− dL(x)
dx + µ(x)L(x) =

д(x )
µn(x)L(x) . (36)

We now multiply both sides of Eq. (36) by the integrating factor
h(x) = exp

(−∫ x
a µ(x ′)dx ′) , using its property dh(x)/dx = −h(x)µ(x):

− h(x)dL(x)dx − dh(x)
dx L(x) = −dh(x)L(x)dx

(36)
= h(x)д(x). (37)

Integrating both sides of the last equality from a to b yields

−
∫ b

a
dh(x)L(x)

��dx
��dx = h(a)L(a)−h(b)L(b) (37)=

∫ b

a
h(x)д(x) dx . (38)

Dividing by h(a)L(b) and rearranging the terms yields an expression
for T (a,b) = L(a)/L(b):

T (a,b) = h(b)
h(a) +

∫ b

a

h(x)
h(a)

д(x)
L(b) dx . (39)

Substituting back д(x) and h(x), we finally obtain Eq. (13).

C VOLTERRA EXPANSION TO POWER SERIES
Here we derive our hypercube formulation (19) from our Volterra
formulation (9). Expanding the recursion in Eq. (9) once gives

T (a,b) = 1 −
∫ b

a
µ(x1) dx1 +

∫ b

a

∫ b

x1
µ(x1)µ(x2)T (x2,b) dx2dx1. (40)

Continuing the expansion infinitely, we get

T (a,b) = 1 +
∞∑
k=1

∫ b

a

∫ b

x1
· · ·

∫ b

xk−1

[ k∏
i=1

−µ(xi )
]
dxk · · · dx2dx1 (41a)

= 1 +
∞∑
k=1

∫
Hs
k

[ k∏
i=1

−µ(xi )
]
dx =

∞∑
k=0

∫
Hs
k

[ k∏
i=1

−µ(xi )
]
dx, (41b)

where dx =
∏k

i=1 dxi is the standard k-dimensional differential
volume measure. Each integral k in Eq. (41b) runs over a k-simplex

H s
k =

{
x = (x1, . . . , xk ) : a ≤ x1 ≤ · · · ≤ xk ≤ b

} ⊂ Hk (42)

of a k-hypercube Hk = [a,b]k with volume |Hk | = (b − a)k .
The coordinates xi in every summand in Eq. (41) can be permuted

freely without changing the value of the corresponding simplex
integral, since the integrand is invariant to permutation. Each such
permutation corresponds to integrating over one of k! pair-wise
congruent simplices with equal volumes |Hk |/k!. We can extend
each integralk in Eq. (41b) to run over the union of thesek! simplices,
i.e. over the full k-hypercubeHk , scaling the result by 1/k!:

T (a,b) =
∞∑
k=0

∫
Hk

1
k!

[ k∏
i=1

−µ(xi )
]
dx =

∞∑
k=0

1
k!

k∏
i=1

[
−

∫ b

a
µ(x) dx

]
.

The LHS is identical to Eq. (19) and the RHS is identical to Eq. (15).

D EFFICIENCY OF SINGLE-TERM ESTIMATORS
We leverage our power-series formulation (26) to derive expressions
for the variance and efficiency of the ratio-tracking, track-length,
and residual-tracking estimators. We assume the upper and lower
controls are proportional to the extinction, i.e. µ ∝ µ ∝ µ, thus the
null thickness τn is estimated with zero variance. The only source of
variance are then the discrete sampling decisions that the estimators
make.

Ratio-tracking estimator. The ratio-tracking estimator T̂rt uses the
pmf P(k) = e−τ τk/k! from Eq. (27) to choose a summand k in
Eq. (22), and scores

T̂rt,k =
τkn
τk
. (43)

The variance of this estimator thus reads
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V
[
T̂rt

]
=

∞∑
k=0

(
T̂rt,k

)2·P(k) − E2
[
T̂rt

]
=

∞∑
k=0

(
τkn
τk

)2
·P(k) − e−2τ (44a)

=

∞∑
k=0

τ 2kn

τ �2k
· e−τ��τ

k

k! − e−2τ = e−τ
∞∑
k=0

τ 2kn
τk

1
k! − e−2τ (44b)

= e−τ
∞∑
k=0

(
τ 2n
τ

)k 1
k! − e−2τ = e−τ e

τ 2n
τ − e−2τ (44c)

= e
τ 2n−τ 2
τ − e−2τ = e

(τ−τ )2−τ 2
τ − e−2τ = e

τ 2−2τ τ
τ − e−2τ (44d)

= e−2τ+
τ 2
τ − e−2τ = e−2τ

(
e
τ 2
τ − 1

)
. (44e)

The cost of every outcome T̂rt,k in terms of number of medium
extinction lookups is k , one lookup per null-thickness estimation
sample xi in Eq. (26). The expected cost C

[
T̂rt

]
is thus the mean of

the used Poisson pmf, i.e. τ . The estimator’s efficiency is then

Eff
[
T̂rt

]
=

1
C
[
T̂rt

]
V
[
T̂rt

] = 1

τe−2τ
(
e
τ 2
τ − 1

) . (45)

Track-length estimator. The track-length estimator T̂tl uses the same
pmf (27) as ratio tracking. For a given index k , the estimator scores

T̂tl,k =

{
1 with probability Pk = τkn /τk ,
0 with probability 1 − Pk .

(46)

With the assumption µ ∝ µ, the acceptance probability applied at
each of the k integration samples xi is P = µn(xi )/µ(xi ) = τn/τ , and
their product is Pk . The variance of T̂tl reads

V
[
T̂tl

]
=

∞∑
k=0

(
T̂tl,k

)2 · P(k) · Pk − E2
[
T̂tl

]
(47a)

=

∞∑
k=0

1 · e−τ��τ
k

k! · τ
k
n

��τk
− e−2τ = e−τ

∞∑
k=0

τkn
k! − e−2τ (47b)

= e−τ eτn − e−2τ = e−τ eτ−τ − e−2τ = e−τ − e−2τ . (47c)

Interestingly, here the variance does not depend on the extinction
upper control parameter.

The cost of each outcome T̂tl,k is a random variable dependent on
the acceptance probability P = τn/τ applied at each step i = 1, . . . ,k .
When the estimator terminates at the ith step, the cost is i . This
happens when continuation is chosen at the previous i − 1 steps,
with probability P i−1. Termination then occurs with probability
(1− P) when i < k and with probability 1 when i = k . The expected
cost of T̂tl,k is the sum of cost times probability:

C
[
T̂tl,k

]
=

k−1∑
i=0

i · P i−1(1 − P) + k · Pk−1. (48)

The pmf for sampling k is as in ratio tracking, P(k) = e−τ τk/k!, and
the expected cost of the estimator has a simple expression:

C
[
T̂tl

]
=

∞∑
k=0

C
[
T̂tl,k

] · e−τ τk
k! = (1 − e−τ )τ

τ
. (49)

Its efficiency is thus

Eff
[
T̂tl

]
=

1
C
[
T̂tl

]
V
[
T̂tl

] = τ

τe−3τ (eτ − 1)2 . (50)

Residual-tracking estimator. Residual tracking estimates Eq. (22) us-
ing a Poisson pmf P(k) with mean τ − τn and thus scores

T̂rrt,k = e−τ τn
τ − τ

. (51)

Its variance is derived analogously to that of ratio tracking:

V
[
T̂rrt

]
=

∞∑
k=0

(
T̂rrt,k

)2·P(k) − E2
[
T̂rrt

]
(52a)

=

∞∑
k=0

e−2τ
τ 2kn

(τ − τ )2k · e−(τ−τ ) (τ − τ )k
k! − e−2τ (52b)

= e
τ 2−2τ τ+τ 2

τ−τ − e−2τ , (52c)

where Eq. (52c) follows from simplifications similar to those in
Eq. (44). The expected cost of the estimator is again equal its Poisson
pmf mean, τ − τ . Its efficiency thus reads

Eff
[
T̂rrt

]
=

1
C
[
T̂rrt

]
V
[
T̂rrt

] = 1

(τ − τ )
(
e
τ 2−2τ τ+τ 2

τ−τ − e−2τ
) . (53)

Note that when τ = 0, Eq. (52c) reduces to Eq. (44e) and Eq. (53)
reduces to Eq. (45).

Discussion. Equations (44) and (47) show that ratio tracking’s vari-
ance is never higher than that of track-length’s when τ ≥ τ , i.e.
when µ bounds the extinction. On the other hand, ratio tracking’s
cost of τ is never lower than track-length’s (49). Track-length can
thus have higher efficiency, which is the case when µ is relatively
tight, i.e. in the upper regions of the plots in Fig. 7. Furthermore,
for 0 ≤ τ ≤ τ ≤ τ the variance of the residual-tracking estimator is
never higher than that of ratio tracking and its efficiency is never
lower.
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