
Measuring Security Practices
and How They Impact Security

Louis F. DeKoven
University of California, San Diego

ldekoven@cs.ucsd.edu

Audrey Randall
University of California, San Diego

aurandal@eng.ucsd.edu

Ariana Mirian
University of California, San Diego

amirian@cs.ucsd.edu

Gautam Akiwate
University of California, San Diego

gakiwate@cs.ucsd.edu

Ansel Blume
University of California, San Diego

ablume@ucsd.edu

Lawrence K. Saul
University of California, San Diego

saul@cs.ucsd.edu

Aaron Schulman
University of California, San Diego

schulman@cs.ucsd.edu

Geoffrey M. Voelker
University of California, San Diego

voelker@cs.ucsd.edu

Stefan Savage
University of California, San Diego

savage@cs.ucsd.edu

ABSTRACT
Security is a discipline that places significant expectations on lay
users. Thus, there are a wide array of technologies and behaviors that
we exhort end users to adopt and thereby reduce their security risk.
However, the adoption of these “best practices” — ranging from the
use of antivirus products to actively keeping software updated — is
not well understood, nor is their practical impact on security risk
well-established. This paper explores both of these issues via a large-
scale empirical measurement study covering approximately 15,000
computers over six months. We use passive monitoring to infer and
characterize the prevalence of various security practices in situ as
well as a range of other potentially security-relevant behaviors. We
then explore the extent to which differences in key security behaviors
impact real-world outcomes (i.e., that a device shows clear evidence
of having been compromised).

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; • Networks;

ACM Reference Format:
Louis F. DeKoven, Audrey Randall, Ariana Mirian, Gautam Akiwate, Ansel
Blume, Lawrence K. Saul, Aaron Schulman, Geoffrey M. Voelker, and Ste-
fan Savage. 2019. Measuring Security Practices and How They Impact Se-
curity. In Internet Measurement Conference (IMC ’19), October 21–23,
2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3355369.3355571

1 INTRODUCTION
Ensuring effective computer security is widely understood to require
a combination of both appropriate technological measures and pru-
dent human behaviors; e.g., rapid installation of security updates
to patch vulnerabilities or the use of password managers to ensure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’19, October 21–23, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6948-0/19/10. . . $15.00
https://doi.org/10.1145/3355369.3355571

login credentials are distinct and random. Implicit in this status
quo is the recognition that security is not an intrinsic property of
today’s systems, but is a byproduct of making appropriate choices —
choices about what security products to employ, choices about how
to manage system software, and choices about how to engage (or
not) with third-party services on the Internet. Indeed, the codifying
of good security choices, commonly referred to as security policy or
“best practice”, has been a part of our lives as long as security has
been a concern.

However, establishing the value provided by these security prac-
tices is underexamined at best. First, we have limited empirical data
about which security advice is adopted in practice. Users have a
plethora of advice to choose from, highlighted by Reeder et al.’s
recent study of expert security advice, whose title — “152 Simple
Steps to Stay Safe Online” — underscores both the irony and the
variability in such security lore [35]. Clearly few users are likely to
follow all such dicta, but if user behavior is indeed key to security, it
is important to know which practices are widely followed and which
have only limited uptake.

A second, more subtle issue concerns the efficacy of security prac-
tices when followed: Do they work? Here the evidence is scant. Even
practices widely agreed upon by Reeder’s experts, such as keeping
software patched, are not justified beyond a rhetorical argument. In
fact, virtually all of the most established security best practices —
including “use antivirus software”, “use HTTPS/TLS”, “update your
software regularly”, “use a password manager”, and so on — have
attained this status without empirical evidence quantifying their im-
pact on security outcomes. Summarizing this state of affairs, Herley
writes, “[Security] advice is complex and growing, but the benefit is
largely speculative or moot”, which he argues leads rational users to
reject security advice [17].

To summarize, our existing models of security all rely on end
users to follow a range of best practices. However, we neither un-
derstand the extent to which they are following this advice, nor do
we have good information about how much this behavior ultimately
impacts their future security.

This paper seeks to make progress on both issues — the preva-
lence of popular security practices and their relationship to security
outcomes — via longitudinal empirical measurement of a large pop-
ulation of computer devices. In particular, we monitor the online

36

https://doi.org/10.1145/3355369.3355571
https://doi.org/10.1145/3355369.3355571
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3355369.3355571&domain=pdf&date_stamp=2019-10-21

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Louis F. DeKoven et al.

behavior of 15,291 independently administered desktop/laptop com-
puters and identify per-device security behaviors: what software they
are running (e.g., antivirus products, password managers, etc.), is
the software patched, and what is their network usage (e.g., does the
machine contact file sharing sites), etc., as well as concrete security
outcomes (i.e., whether a particular machine becomes compromised).
In the course of this work, we describe three primary contributions:

• Large-scale passive feature collection. Our results are based on
large-scale measurement using passive monitoring. In doing so,
we develop and test a large dictionary of classification rules to
indirectly infer software state on monitored machines (e.g., that
a machine is running antivirus of a particular brand, or if its
operating system has been updated). In addition, to ensure that
features are consistently associated with particular devices, we
describe techniques for addressing a range of aliasing challenges
due to DHCP and to DNS caching.

• Outcome-based analysis. We use a combination of operational
security logs and network intrusion detection alerts to identify
the subset of machines in our data set that are truly compromised.
This outcome data allows us to examine the impact of adopted
security practices in terms of individual security outcomes and
with respect to concrete time periods surrounding the likely time
of compromise.

• Prevalence and impact of security practices. For our user popu-
lation, we establish the prevalence of a range of popular security
practices as well as how these behaviors relate to security out-
comes. We specifically explore the hypotheses that a range of
existing “best practices” are negatively correlated with host com-
promise or that “bad practices” are positively correlated. We
consider both behaviors that could directly lead to compromise
and those which may indirectly reflect a user’s attentiveness to
security hygiene.

Finally, while we find a number of behaviors that are positively
correlated with host compromise, few “best practices” exhibit the
negative correlations that would support their value in improving
end user security.

2 BACKGROUND
This study follows a large body of prior work that empirically re-
lates user activity to various risk factors, which we highlight in five
categories below.

Small scale studies of individuals. In 2008, Carlinet et al. [6]
analyzed three-hour long packet traces of ADSL customers (from
200–900 customers) and correlated hosts that experienced at least
one Snort IDS alert with other factors. Their study revealed a rela-
tionship between those machines raising alerts, and their use of the
Windows operating system as well as heavy web browsing habits.
Our study is similarly based on passive network data collection, but
we operate at a significantly larger scale (in number and diversity of
hosts as well as duration) and we also explicitly try to control for a
range of confounding factors.

Aggregate studies of user behavior. Others have studied risk
factors in aggregate across large organizations. Notably, Yang et
al. [23] correlated publicly-declared data breaches and web site hacks
with external measurements (e.g., misconfigured DNS or HTTPS
certificates). They found that evidence of organizational failures

to police security is predictive of attacks. Similarly, recent papers
have focused on exploring how differences in deployed defenses
(e.g., across ISPs or web sites) relate to the occurrence of particular
attacks [40, 42], and Xiao et al. [49] showed that user patterns of
security activity can be a predictor of future malware outbreaks in
an ISP.

Web access behavior. Other researchers have investigated how a
user’s web browsing habits reveal risk factors. Levesque et al. [22]
monitored web browser activity for 50 users over four months and
found that the likelihood of visiting a malware hosting site was
correlated with the other kinds of sites a machine visited (e.g., with
peer-to-peer (P2P) and gambling sites). Canali et al. [5] replicated
this study using antivirus telemetry (100,000 users), and Sharif et
al. [38] describe a similar analysis for 20,000 mobile users. Both
found that frequent, nighttime, and weekend browsing activity are
correlated with security risk.

Software Updates. Another vein of research has correlated poor
software update habits with indicators of host compromise. Kahn
et al. [21] used passive monitoring of roughly 5,000 hosts to infer
software updates and used the Bothunter traffic analysis tool [15] to
infer likely infected hosts based on suspicious traffic patterns (e.g.,
based on outbound scanning). They found a positive correlation
between infection indicators and a lack of regular updating practice.

At a larger scale, Bilge et al. [4] used antivirus logs and telemetry
from over 600,000 enterprise hosts to retrospectively relate soft-
ware updates to subsequent infections. They found that devices that
do not patch correlate with those that were at some point infected.
Finally, Sarabi et al. [36] used a similar data set of 400,000 Win-
dows hosts and found that patching faster provides limited benefit if
vulnerabilities are frequently introduced into product code.

Human factors. Finally, there is an extensive literature on the
human factors issues involved in relating security advice to users,
the extent to which the advice leads to changes in behaviors, and
how such effects are driven by both individual self-confidence and
cultural norms [13, 32–34, 37, 43–45].

3 METHODOLOGY
Our measurement methodology uses passive network traffic moni-
toring to infer the security and behavioral practices of devices within
a university residential network. This approach has numerous advan-
tages, including scalability (we are able to collect data from tens of
thousands of devices) and granular analysis (we can frequently infer
when a device updates a particular application and to what version).
However, it also introduces liabilities (a focus on a particular pop-
ulation) and risks (in particular to privacy). In this section we first
focus on the technical aspects of our data collection methodology
and then discuss some of its attendant challenges and limitations.

3.1 Network Traffic Processing
The first stage of our system takes as input 4–6 Gbps of raw bi-
directional network traffic from the campus residential network, and
outputs logs of processed network events at the rate of millions
of records per second. As part of this stage, campus IP addresses
are anonymized and, to track the contemporaneous mapping of IP

37

Security Practices IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Network Traffic Processing

Bro

DHCP
Syslog

Log
AnonLo

ad
 B

al
an

ce
rs

BroBroBro IDS

Residential
Traffic

DHCP Traffic

D
M

Z
D

M
Z

Logs

Log Decoration

SSL
Labeling

Connection
Labeling

HTTP
Labeling

Feature Extraction (Hadoop)

Device
Models

HDFS
&

Hive

Fe
at

ur
es

Supplemental Data

Figure 1: System architecture overview. Network traffic is first processed into logs and its addresses anonymized. The next stage
replays the network traffic logs to extract further information and label each connection with (also anonymized) MAC address
information. The decorated logs are then stored in Hive where they are labeled with security incidents, security practice features, and
behavioral features. Lastly, device models are created for analysis.

addresses to device MAC addresses, this stage also collects and com-
patibly anonymizes contemporaneous Dynamic Host Configuration
Protocol (DHCP) syslog traffic.

3.1.1 Residential Network Traffic. As shown in the Network
Traffic Processing stage of Figure 1, our server receives network
traffic mirrored from a campus Arista switch using two 10G fiber
optic links. In addition to load balancing, the switch filters out high-
volume traffic from popular content distribution networks (CDNs)
(e.g., Netflix, YouTube, Akamai, etc.), resulting in a load of 4–6
Gbps of traffic on our server.

To minimize loss while processing traffic, we experimented with
a number of network processing configurations before settling on the
following. We use the PF_RING ZC (Zero Copy) framework [27]
to move traffic from the network card directly into user-level ring
buffers, bypassing the kernel. We then use the zbalance_ipc appli-
cation from PF_RING ZC to locally perform 4-tuple load balancing
across many virtual network interfaces. Instances of the Bro (now
Zeek) Intrusion Detection System (IDS) [28] then read from each
virtual network interface, consuming and processing the network
traffic into a custom log format. This configuration results in an aver-
age daily loss of 0.5% of received packets throughout our six-month
measurement period.

While IDSes are typically used for detecting threats and anoma-
lous network behavior, we use Bro to convert network traffic into
logs since it is extensible, discards raw network traffic as soon as a
connection is closed (or after a timeout), and is able to parse numer-
ous network protocols [50]. We also customize the Bro output logs
to record only information needed to identify security practice and
behavioral features.

In particular, we use the HTTP, SSL, DNS, and Connection pro-
tocol analyzers. The HTTP analyzer provides a summary of HTTP
traffic on the network, including components such as the HOST
and URI fields. The SSL analyzer extracts the Server Name Indica-
tion (SNI) field from TLS connections. SNI is an extension of the
TLS protocol enabled by most modern browsers, and allows a client
to indicate the hostname it is contacting at the start of an encrypted
connection. The SNI field is particularly useful for inferring the

destination of connections that otherwise are encrypted. The DNS
analyzer provides a summary of Domain Name System (DNS) re-
quests and responses. Lastly, the Connection analyzer summarizes
information about TCP, UDP, and ICMP connections.

Every thirty minutes Bro rotates the previous logs through an
address anonymization filter that encrypts campus IP addresses.
At this stage of processing, the logs contain IP addresses and not
MAC addresses since DHCP traffic is not propagated to our network
vantage point. After being so anonymized, the logs are rotated across
the DMZ to another server for further processing (Section 3.2).

3.1.2 DHCP Traffic. The server also runs a syslog collector that
receives forwarded DHCP traffic from the residential network’s
DHCP servers. DHCP dynamically provides an IP address to a de-
vice joining the network. The IP address is leased to the device (by
MAC address) for a specified duration, typically 15 minutes. Since
we need to track a device’s security and behavioral practices for long
time periods, we utilize this IP-to-MAC mapping in later processing.

Similar to the Bro IDS logs, every thirty minutes we process the
previous DHCP traffic into a (MAC address, IP address, starting time,
lease duration) tuple. Then, the entire IP address and identifying
lower 24-bits of the MAC address are encrypted using a similar
address anonymization filter. The anonymized DHCP logs are then
rotated across the DMZ to the Log Decoration server.

3.2 Log Decoration
The second stage takes as input these intermediate network event
and DHCP logs, and processes them further to produce a single
stream of network events associated with (anonymized) device MAC
addresses and domain names.

Associating Flows to Devices. Our goal is to model device be-
havior based upon network activity over long time spans. While we
identify unique devices based upon their MAC address, the network
events that we collect have dynamically assigned IP addresses. As a
result, we must also track dynamic IP address assignments to map
IP-based network events to specific device MAC addresses.

We use a Redis key-value store [31] to build a DHCP cache by
replaying campus DHCP logs. We use the DHCP cache to assign a

38

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Louis F. DeKoven et al.

MAC address to the inbound and outbound IP of each connection.
We consider an IP-to-MAC mapping valid if a connection takes place
during the time when the IP address was allocated and the lease is
still valid. In the event that there is not a valid mapping (e.g., the IP
address is a non-university IP, or a the device uses a static IP), we
do not assign a MAC address to the IP.

Associating Flows to Domains. When using network activity to
model device behavior, it useful to know the domain name asso-
ciated with the end points devices are communicating with (e.g.,
categorizing the type of web site being visited). We also extract the
registered domain and top-level domain (TLD) from each fully qual-
ified domain name using the Public Suffix List [25]. Again, since
the network events we observe use IP addresses, we must map IP
addresses to domain names. And since the mapping of DNS names
to IP addresses also changes over time, we also dynamically track
DNS resolutions as observed in the network so that we can map
network events to the domain names involved.

Due to our network vantage point (at the campus edge), the DNS
traffic our collection server observes generally has the source IP
address of our local DNS resolver, and not the IP address of the host
which will subsequently make a connection to the resolved IP.1 This
constraint limits our ability to use the DNS mapping alone to infer a
connection’s domain name. Therefore, one of the steps in this stage
is to build a local DNS cache by replaying the logs in chronological
order and labeling the domain name of observed connections where
it is not already provided (i.e., excluding HTTP and SNI-labeled
connections).

We use another Redis key-value store to build a DNS cache by
replaying DNS traffic. The cache tracks the mappings of each IP
address to domain name at the time the IP address was observed.
We consider a mapping to be valid as long as it has not expired —
the log time falls between the time at which the DNS request was
observed plus the response time to live (TTL) — and there is one
registered domain name mapped to the IP address.

When sites use virtual hosting, it is possible that an IP address
has multiple domain names associated with it. In this case, we first
check if the registered domain names match (e.g., bar.bar.com and
car.bar.com share a registered domain of bar.com). If the registered
domains match, we label the connection using the longest suffix
substring match (e.g., ar.bar.com) and set a flag indicating that the
fully qualified domain name has been truncated. In the case where
there is more than one registered domain with a valid mapping to
the IP address, we do not use the mapping to label connections until
enough of the conflicting mappings expire such that they share a
registered domain, or there is only one mapping.

User Agent. We parse HTTP user agent strings using the open-
source ua-parser library. From the user agent string we extract
browser, operating system (OS), and device information when present.

3.3 Feature Extraction
In the final stage of our system we store the log events in a Hive
database [1] and process them to extract a wide variety of software
and network activity features associated with the devices and their
activity as seen on our network. The last critical feature is device
outcomes: knowing when a device has become compromised. We

1The primary exceptions are devices configured to use remote DNS resolvers.

derive device outcomes from a log of alerts from a campus IDS
appliance, and also store that information in our database.

3.3.1 Software Features. To identify features describing applica-
tion use on devices, we crafted custom network traffic signatures to
identify application use (e.g., a particular peer-to-peer client) as well
as various kinds of application behavior (e.g., a software update).
To create our network signatures we use virtual machines instru-
mented with Wireshark [48]. We then manually exercise various
applications and monitor the machine’s network behavior to derive a
unique signature for each application. Fortunately most applications
associated with security risk frequently reveal their presence when
checking for updates. In total, we develop network signatures for 68
different applications, including OSes. For a subset of applications,
we are also able to detect the application’s version. Knowing applica-
tion versions allows us to compare how fine-grained recommended
security practices (i.e., updating regularly) correlates with device
compromise.

Antivirus Software. Using antivirus software is virtually always
recommended. We created network signatures for 12 popular an-
tivirus products, seven of which were recognized as offering the
“Best Protection” for 2019 [26].

Operating System. We created six signatures to identify the
OSes running on devices. Since regular OS updating is a popular
recommended security practice, we also created signatures to detect
OS updates. While Windows and Mac OS operating system updates
are downloaded over a Content Delivery Network (CDN) that is
removed from the network traffic before reaching our system (Sec-
tion 3.1), we can use OS version information from the host header
and User-Agent string provided in HTTP traffic to infer that updates
have taken place.

Applications. Through a combination of network and User-Agent
string signatures we detect 41 applications, including those com-
monly perceived as risky such as Adobe Flash Player, Adobe Reader,
Java, Tor, P2P applications, and more. We also detect other popular
applications, including browsers, Spotify, iTunes, Outlook, Adobe
AIR, etc.

Password Managers. As password managers are frequently rec-
ommended to avoid collateral damage of leaked passwords, we also
crafted network signatures for nine popular password managers [7].

3.3.2 Network Activity. We track a wide variety of network activ-
ity features to quantitatively measure the protocols used (e.g., HTTP,
and HTTPS), the categories of sites visited (e.g., file sharing ser-
vices), when devices are most active, etc.. In doing so, we implement
a set of features similar to those used by Canali et al. [5] and Sharif
et al. [38] that focused on web browsing activity. As our data set also
includes traffic beyond HTTP, we can measure additional behaviors
(e.g., remote DNS resolver usage, HTTPS traffic usage, etc.).

Content Categorization. We use the IAB Tech Lab Content Tax-
onomy to categorize every registered domain in our data set [19]. The
domain categorization was generously provided by Webshrinker [9,
47]. The IAB taxonomy includes 404 distinct domain categories [46].
We use the domain categorization to measure the fraction of unique
domains each device accesses in a specific category. We also built a
list of file hosting sites, and URL shortening services that we use to
identify when a device accesses these types of services.

39

bar.bar.com
car.bar.com
bar.com
ar.bar.com

Security Practices IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Usage Patterns. We also develop a number of behavioral features
that describe the quantities of HTTP and HTTPS traffic in each
TLDs, and the number of network requests made. Additionally, we
develop features that quantify customized or non-standard behaviors
such the use of remote DNS resolvers, and the proportions of HTTP
requests made directly to IP addresses (instead of a domain name).

3.3.3 Detecting Security Incidents. While previous work has
relied on the use of blacklists or Google Safe Browsing to identify de-
vices that expose users to potential risk, we are able to identify com-
promised devices with high confidence as a result of post-infection
behavior, typically in the form of command and control (CNC) com-
munication [5, 38]. To identify compromised devices (i.e., ones with
a security incident) we use alerts generated by a campus network ap-
pliance running the Suricata IDS [39]. The campus security system
uses deep packet inspection with an industry-standard malware rule
set to flag devices exhibiting post-compromise behavior [30].

The IDS rules also detect network activity that might occur before
a device becomes compromised (e.g., possible phishing attempts,
exploit kit landing pages, etc.). Since we focus on compromised
devices, we reduce the rules we consider to ones that explicitly
detect post-infection behavior. False positives are likely with any
real-world signature-based intrusion detection system. To minimize
the frequency of false positives, we manually remove rules that
are frequently triggered, but do not indicate that a device has been
compromised.

3.4 Ethical Considerations and Limitations
Having described our measurement methodology in considerable
detail, we now consider the risks it presents — both to the privacy of
network users and to the validity of conclusions drawn from these
measurements.

Protecting user privacy. Foremost among the risks associated
with the passive measurement approach is privacy. Even with the
prevalence of encrypted connections (e.g., via TLS), processing raw
network data is highly sensitive. From an ethical standpoint, the
potential benefits of our research must be weighed against potential
harms from any privacy violations. In engaging with this question —
and developing controls for privacy risk — we involved a broad range
of independent campus entities including our institutional review
board (IRB), the campus-wide cybersecurity governance committee
and our network operations and cybersecurity staff. Together, these
organizations provided necessary approvals, direction and guidance
in how to best structure our experiment, and strong support for
the goals of our research. The campus security group has been
particularly interested in using our measurements to gain insight into
the security risks of devices operating on their network.2

Operationally, we address privacy issues through minimization,
anonymization and careful control over data. First, as soon as each
connection has been processed, we discard the raw content and log
only metadata from the connection (e.g., a feature indicating that
device X is updating antivirus product Y). Thus, the vast majority
of data is never stored. Next, for those features we do collect, we
anonymize the campus IP and the last 24-bits of each MAC address,

2Indeed, during the course of our work we have been able to report a variety of unex-
pected and suspicious activity to campus for further action.

using a keyed format-preserving encryption scheme [3].3 Thus, we
cannot easily determine the identity of which machine generated a
given feature and, as a matter of policy, we do not engage in any
queries to attempt to make such determinations via re-identification.
Finally, we use a combination of physical and network security con-
trols to restrict access to both monitoring capabilities and feature
data to help ensure that outside parties, not bound by our policies, are
unable to access the data or our collection infrastructure. Thus, the
server processing raw network streams is located in a secure campus
machine room with restricted physical access, only accepts com-
munications from a small static set of dedicated campus machines
and requires multi-factor authentication for any logins. Moreover, its
activity is itself logged and monitored for any anomalous accesses.
We use similar mechanisms to protect the processed and anonymized
feature data, although these servers are located in our local machine
room. The feature data set is only accessible to members of our
group, subject to IRB and our agreements with campus, and will not
(and cannot) be shared further.

Limitations of our approach. In addition to privacy risk, it is
important to document the implicit limitations of our study arising
from its focus on a residential campus population — primarily un-
dergraduates — as well as the use of a particular IDS and rule set to
detect security incidents [30, 39].

It is entirely possible that the behavioral modes of this population,
particularly with respect to security, are distinct from older, less
affluent or more professional cohorts. This population bias is also
likely to impact time-of-day effects, as well as the kinds of hardware
and software used. Additionally, the security incidents we consider
rely on the Suricata IDS, commercial network traffic signatures, and
security-related network usage requirements of our university envi-
ronment (e.g., residential students are nominally required to have
antivirus software installed on their devices before connecting). It is
entirely possible that these incident detection biases also influence
the behaviors and software applications that correlate with device
compromise. Thus, were our same methodology employed in other
kinds of networks, serving other populations, or using different secu-
rity incident detection techniques, it is possible that the results may
differ. For this reason, we hope to see our measurements replicated
in other environments.

4 DATA SET
We analyze six months of data from our passive network traffic
processing system from June 2018 to December 2018. In this section
we describe our approach for identifying the laptop and desktop
devices for use in analyzing security risk factors, and determining
the dominant OS of devices used in our analysis. In the end, our data
set consists of 15,291 devices. Table 1, characterizes our data set in
terms of connections processed, and inbound and outbound bytes.

4.1 Device Filtering
The university allows heterogeneous devices on its network, in-
cluding personal computers, mobile phones, printers, Internet of
Things (IoT) devices, and more. Recommended security practices,
3Thus, the IP address 192.168.0.1 may be replaced with 205.4.32.501 and the
MAC address 00:26:18:a5:38:24 may become 00:26:18:b5:fe:ba. We do not
anonymize the organizationally unique identifier (OUI) to allow us to derive the network
device manufacturer.

40

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Louis F. DeKoven et al.

Name Value

Date Range June 2018 – December 2018
Total Filtered Devices 15,291

DNS Connections 17.1 B
Non-DNS Connections 1.92 B
Total Connections 19 B

Outbound Bytes 38.4 TB
Inbound Bytes 720 TB
Total Bytes 758 TB

Table 1: Data set characterization. Note that our network van-
tage point provides DNS requests from the local resolver, which
includes DNS traffic from devices in this paper as well as other
devices using the university’s networks.

however, are commonly offered for laptop and desktop computers,
and therefore we focus our analysis solely on such devices. As a
result, we develop techniques to identify laptop and desktop com-
puters among the many other devices on the network. We remove
devices that are easily identifiable, and then develop heuristics to
filter remaining devices.

We first remove devices that are not active for a minimum of
14 days, and ones that never provide a major web browser’s User-
Agent string (removing 13.1% of all devices). For studying security
practices, devices need to have a modicum degree of network activity
to be able to model behavior, and devices without any web browser
activity are a strong indication that they are not laptops or desktops.

Next, we use User-Agent strings to identify a device’s OS [14].
Since applications are not required to provide accurate User-Agent
string information, to identify a device’s OS we consider User-Agent
strings from major browsers, and require that a device’s OS is con-
sistent on 95% of all requests. We identify 40.8% of the total devices
as having a mobile or IoT OS and remove them from our data set.
For the fraction of devices that fall below the 95% requirement, we
remove ones that frequently contact domains which are not regularly
accessed by laptop or desktop devices4 (4.1% of all devices).

We also compile a list of network hardware vendors used within
devices other than laptops and desktops (e.g., Vizio, etc.), and re-
move devices with a matching organizationally unique identifier
(OUI) vendor (2.2% of devices).

Lastly, we filter some of the remaining IoT devices using network
traffic-based heuristics. Our intuition is that most of these devices5

will either make close to the same number of connections each day,
a small number of daily connections, or connections within a limited
number of /24 network subnets. We pick each threshold by manually
inspecting the three network traffic distributions, and select the value
corresponding to the first peak of the distribution. We remove devices
that make the same number of connections each day ±7, on-average
40 daily connections, or contact on-median 31 distinct /24 networks
each week (4.2% of all devices).

4We manually label eight domains that are contacted by TVs, printers, game consoles,
and iPhones, such as “hpeprint.com,” “vizio.com,” “nintendowifi.net,” or “iphone-
ld.apple.com.” If any of these domains are in the device’s ten most-frequently-accessed
domains, we exclude it. We also exclude devices that never make a single connection to
any university web site.
5With the exception of user-directed IoT devices (e.g., Chromecasts, etc.).

To validate our device filtering heuristics in practice, we manually
label a sample of 100 devices (50 laptop and desktop, and 50 that
are removed). We find our filtering methodology to be sufficiently
accurate: one laptop is incorrectly removed, and four mobile phones
are incorrectly included. The excluded laptop was removed because
it did not have a consistent OS in 95% or more of its User-Agent
strings. The four mobile phones reported desktop operating systems
as well as “Android” in 95% of their User-Agent strings (for exam-
ple, a User-Agent containing the string “Linux; U; Android;” was
common for several devices). To allow for the legitimate cases where
a desktop or laptop could be running multiple operating systems, we
do not exclude devices like these from our data set.

4.2 Identifying Dominant OSes
Since different OSes have different risk profiles, identifying the
OS used by a device is an important step. Being able to observe
device network traffic makes OS identification an interesting task.
The majority of devices are straightforward: using signatures of OS
update events, we can immediately identify a single unambiguous
OS for 79.1% of devices.

The remaining devices either have no OS update signatures, or
have more than one.6 For these devices, we use a combination of
OS update signatures, OS User-Agent strings, and Organizational
Unique Identifier (OUI) vendor name information to identify the
dominant OS of a device (e.g., the host OS with virtual machines,
Windows if tethering an iPhone, etc.). We assume that devices with
an Apple OUI vendor name will be using Mac OS (7.2%). We then
use the dominant OS extracted from User-Agent strings to assign an
OS (11.5%). The remaining 340 devices (2.1%) have both Windows
and Mac OS updates. We choose to assign Windows as the dominant
OS in these cases because of strong evidence of tethering, in which
iTunes allows users to update their Apple devices (e.g., iPhone, iPad,
etc.) using the network connection of their computer [2].7 For each
of these heuristics, we confirmed the labeling by manually checking
the traffic profile of a random sample of devices.

5 RECOMMENDED PRACTICES
There are a variety of security practices widely recommended by
experts to help users become safer online. Prior work has explored
some of these practices in terms of users being exposed to risky web
sites [5, 38]. Since our data includes actual security outcomes, we
start our evaluation by exploring the correlation of various security
practices to actual device compromises in our user population: oper-
ating system choice, keeping software up to date, web sites visited,
using HTTPS, using antivirus software, and software used.

5.1 Operating System
Different operating systems have different security reputations, so
it is not surprising that experts have recommendations of the form
“Use an uncommon OS” [35]. Part of the underlying reasoning is
that attackers will spend their efforts targeting devices with most

6There are a number of legitimate reasons why a device can have more than one OS
detected, including dual-booting between different OSes, using virtual machines, device
tethering, etc.
7We measure the baseline of iTunes installs across devices with only Windows to be
11.9%, whereas the install rate for these 340 devices is 67%.

41

Security Practices IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Total

Incidents

Operating System Incidents Total Devices

Windows 538 (7.0%) 7,668
Mac OS 140 (1.9%) 7,339
ChromeOS 1 (0.5%) 205
Linux Variant 3 (3.8%) 79

Figure 2: Device OS classification after removing IoT and mo-
bile devices: the total number of devices with each OS and the
number with a security incident.

common systems, so using an uncommon operating system makes
that device less of a target.

In terms of device compromise, as with previous work and experi-
ence, such advice holds for our user population as well. Using the OS
classification method described in Section 4.2, Figure 2 shows the
number of devices using major operating systems and the number of
each that were compromised during our measurement period. Most
devices use Windows and Mac OS, split nearly equally between
the two. The baseline compromise rate among devices is 4.5%, but
Windows devices are 3.9× more likely to be compromised than Mac
OS devices. The Chrome OS population is small, but only one such
device was compromised.

Of course, modulo dual-booting or using virtual machines, this
kind of advice is only actionable to users when choosing a device to
use, and is no help once a user is already using a system.

5.2 Update Software
Among hundreds of security experts surveyed, by far the most pop-
ular advice is to “Keep systems and software up to date” [35]. In
this part we explore the operating system, browser, and Flash up-
date characteristics of the devices in our population, and how they
correlate with device compromise.

5.2.1 Operating System. Mac OS. We start by analyzing the
update behavior of devices running Mac OS. Our system labels each
HTTP connection of a device with the type of operating system
and its current version number, both extracted from the User-Agent
string. However, if a device leaves the network and returns with an
updated version number in the UA string, then we cannot accurately
tell when the device was updated. Thus, to bound the error on update
times we only include devices that are never absent from the network
for more than three days (in practice few devices are absent for long).

We see 7,268 (47.5%) devices that identify as Mac according to
the User-Agent string and are not absent from the network for a
long period. Of these devices, we see at least one update for 2,113
of them (29.1% of all Mac OS devices). Figure 3 shows the update
pattern of these Mac OS devices over time, anchored around the
three OS updates released by Apple during our measurement period.
In general, Mac OS users are relatively slow to update, anecdotally
because of the interruptions and risks Mac OS updates entail.

Of these devices, 57 (2.7%) of them were compromised. Compro-
mised devices have a mean and median update rate of 16.2 and 14.0
days, respectively, while their clean counterparts have a mean and

10
.1

4 4 8 12 16 20 24 28 32
10

.1
4.

1 4 8 12 16 20 24 28 32
10

.1
4.

2 4 8

Days taken to update

0

50

100

150

N
um

be
ro

fd
ev

ic
es

Figure 3: Number of days a Mac OS device takes to update to a
specific version. The version number on the x-axis denotes the
day that the specified version update was published.

Incident? # Devices µ Median P90 P95 P99 σ 2

No 5,976 2.5 0 6 15 42 59
Yes 483 2.6 0 6 14 49 62

Table 2: Windows device updates deltas. We compute the aver-
age, median, P90, P95, P99, and variance of the number of days
between when the update was released, and when we observe
each device download the update. The devices are partitioned
by those with and without a security incident.

median update rate of 18.0 and 16.0 days. However, this difference
is not statistically significant according to the Mann-Whitney U test
(p = 0.13).8

Windows. For Windows we developed a signature to extract the
knowledge base (KB) number of “Other Software” updates (e.g.,
Adobe Flash Player, etc.).9 Our signature detects when a device
downloads the update. While we cannot verify that the update was
applied, it does indicate whether the device is using the default Win-
dows Update settings. Since it is possible to miss an update (e.g.,
a device may download the update while connected to a different
network), we only compare devices that we see updating. We also
restrict the updates considered to ones released during our measure-
ment period since there is nothing preventing an unpatched device
from joining the network.10 We identify the update’s release day
using Microsoft’s Update Catalog service [24].

Across devices running Windows, we see at least one update for
6,459 of them (84% of all Windows devices). Table 2 shows the
average, median, P90, P95, P99, and variance of the number of days
between when an update is downloaded and when it is released.
Based upon the averages and medians, devices update with similar
deltas (2.5 days and 0 days, respectively) regardless of whether
they have a security incident. We confirm our hypothesis using the

8The Mann-Whitney U test is a non-parametric statistical test that can be used to
determine if two independent samples are selected from populations with the same
distribution. The null hypothesis for a Mann-Whitney U test is that the populations are
selected from the same distribution.
9An example update is https://support.microsoft.com/en-us/help/4462930
10We exclude updates released multiple times with the same KB number.

42

https://support.microsoft.com/en-us/help/4462930

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Louis F. DeKoven et al.

Browser Mean, Median, # (Cmp) Mean, Median, # (Cln)

Chrome 14.4, 15.0 (421) 15.4, 15.0 (7883)
Firefox 5.64, 3.00 (24) 9.65, 5.00 (424)

Table 3: Number of days between when an update is published
and when devices update. Compromised devices update faster
than their clean counterparts across their lifetimes.

Mann-Whitney U test (p = 0.052). We also find the fraction of
compromised devices that update (7.5%) to be similar in magnitude
to the baseline fraction of incidents across all Windows devices
(7.0%). In short, the update behavior of compromised Windows
devices is little different than that of clean devices.

5.2.2 Web Browser. Updating the browser may be as important
as updating the operating system. Browsers are also large, complex
pieces of software used on a daily basis and, as with most software,
these large programs have vulnerabilities. Updating the browser is
viewed as such an important process that Chrome and Firefox employ
auto-updating by default [12, 41], with UI features to encourage
timely updating.

As such, we explore the relationship between compromised and
clean devices and browser updating behaviors. Similar to the Mac OS
devices, we are able to detect the current browser version number
from the User-Agent string of a device. Since browser vendors
publish the dates when they make updates available,11 we can check
whether the browser on a device is out of date each time we see
the device on the network. Across the measurement period, we then
calculate how quickly devices update. Also, similar to the Mac OS
analysis, we exclude devices that are absent from the network for
more than consecutive three days.

Moreover, we only analyze the dominant browser for each device.
Many devices have User-Agent strings naming different browsers.
While users may use different browsers for different use cases, we
identify a dominant browser to remove the noise from user appli-
cations that spoof a browser in their User-Agent string. Thus, we
determine which browser connects to the largest number of distinct
registered domains from a device and label the device with that dom-
inant browser. We choose unique registered domains as our metric
over number of HTTP connections because there are web sites and
applications that “spam” the network, making the device appear
to use one browser dominantly when the natural user behavior is
actually coming from a different browser.

We analyzed updates for devices that dominantly use Chrome,
Edge, Firefox, and Safari. Of the total devices, 10,831 (70.8%)
devices use Chrome, 719 (4.7%) devices use Edge, 561 (3.7%)
devices use Firefox, and 2993 (19.6%) devices use Safari. However,
only 8,304 (76.7%) of the Chrome devices, 132 (18.4%) of the Edge
devices, 448 (80.0%) of the Firefox devices, and 1592 (53.2%) of the
Safari devices are on the network continuously (absent for less than
three days). Table 3 shows the browsers with statistically significant
differences in update time between clean and compromised devices
(Mann Whitney U: Chrome p = 4.2 × 10−4 and Firefox p = 0.03).

11During our measurement period each popular browser had at least three major updates.

0 10 20 30 40
Days taken to update

0

5

10

15

20

25

30

N
um

be
ro

fd
ev

ic
es

Before Compromise
After Compromise

Figure 4: Distribution of days a device takes to update Chrome
before compromise and after compromise.

Incident? # Devices µ Median P90 P95 P99 σ 2

No 1,702 4.2 1 16 20 30 53
Yes 149 3.7 1 16 21 26 47

Table 4: Flash Player updates on Windows devices.

Clean devices appear to spend more time out of date than their
compromised counterparts. Examining this phenomenon in more
detail, we compare the update behavior of compromised devices
before and after their compromise date. We focus on devices using
Chrome that have two updates spanning the compromise event (other
browsers do not have a sufficiently large sample size). Figure 4 shows
the distribution of times devices were out of date with respect to
when a browser update was released for updates before and after the
device was compromised. The shift in distributions illustrates that
devices update faster after compromise. In more detail, devices that
use Chrome have a before-compromise mean update rate of 18.9
days (18.0 median days) and an after-compromise mean update rate
of 14.2 days (15.0 days median). This difference is significant, with
p = 4.8 × 10−12 using the Wilcoxon signed-rank test.12

5.2.3 Flash Player. The Adobe Flash player has long been as-
sociated with security risk and device compromise. The typical
recommendation is to not use Flash at all, but if you do, to keep it
up to date. We created a signature to detect Adobe Flash Player on
Windows devices.13 We focus on the desktop version of Flash as
major browser vendors issue Flash plugin updates directly. Adobe
released six updates within our measurement period, and we use
Adobe’s web site to identify the version and release date for each.

Somewhat surprisingly, desktop Flash is still quite prevalent on
devices. Fortunately, though, update patterns and compromise rates
do not indicate that the use of Flash puts devices at greater risk of
compromise. A total of 2,167 devices (28% of Windows devices)
check for a Flash Player update, of which 1,851 are seen download-
ing an update. Table 4 shows the average, median, P90, P95, P99, and

12The Wilcoxon signed-rank test is a non-parametric paired difference test which
indicates if the means of two dependent samples differ. The null hypothesis of the
Wilxocon signed-rank test is that the means do not differ.
13Flash Player updates on Mac OS are downloaded over HTTPS, preventing us from
crafting an effective signature.

43

Security Practices IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

variance of the number of days between when an update is down-
loaded and when it is released. Curiously, compromised devices
updated Flash slightly faster than clean devices (Mann-Whitney U
test p = 0.025). However, the rate of compromise across devices
that update Flash is 8.1%, only slightly higher than the rate across
of Windows devices (7.9%) (Chi-Square p = 0.057).14 Among the
316 devices that we detect Flash Player on, but do not see updates,
only 15 are compromised (4.8%). We interpret these results as a
community success story. A combination of widespread awareness,
aggressive updates, and focused attention have mitigated desktop
Flash as a significant risk factor.

We next explore why compromised devices update Flash Player
more quickly. We hypothesize that a compromised device’s update
behavior will change after being compromised. To evaluate this
claim, we compare the update patterns for compromised devices
before and after becoming compromised. Out of the 149 compro-
mised devices that update Flash, there are 60 devices (40.3%) with
updates before and after their first incident. The median and average
days compromised devices take to update before an incident are
6.5 and 9.9 respectively, and 0 and 1 days after becoming compro-
mised (Wilcoxon signed-rank test p = 1.73× 10−7). As with Chrome
browser update behavior, these results suggest that shortly after a
security incident devices exhibit better Flash update hygiene.

5.3 Visit Reputable Web Sites
Experts recommend users to be careful in the web sites that they visit
(“Visit reputable web sites” [35]), and indeed prior work has found
that the category of web site users visit can be indicative of exposure
to risky sites [5, 38]. We perform a similar analysis for devices that
are actually compromised, and for the most part confirm that the
types of sites that lead to exposure to risky sites also correlate with
actual compromise.

To categorize the content devices access we use the IAB domain
taxonomy (Section 3.3.2). We use the Kolmogorov-Smirnov (KS)
test with Bonferroni correction to compare the ECDFs of the frac-
tion of distinct registered domains in each category that clean and
compromised devices access, and confirm that they are statistically
significant (i.e., p < 0.001).15

Table 5 shows the most substantial differences between the types
of content accessed, e.g., with clean devices accessing more business,
advertising, and marketing content, while compromised devices
accessed more gaming, hobby, uncategorized, and illegal. We note
that, while previous work found that exposed devices visit more
advertising domains [38], our finding of the opposite behavior can
be explained by differences in methodology. The previous finding
used solely HTTP requests generated by static content, while our
network traces include all HTTP requests (including those generated
by JavaScript) as well as HTTPS traffic.

14The Chi-Square statistical test is a non-parametric test that indicates whether the
observed differences between categorical datasets are statistically significant. The null
hypothesis of the Chi-Square test is that the differences between the datasets are not
significant.
15The Kolmogorov-Smirnov statistical test is a non-parametric test that indicates
whether the difference between the empirical distribution functions (ECDF) of two sam-
ples are statistically significant. The null hypothesis of the KS test is that the differences
are not significant.

Clean Devices Access More

Feature Cln. Median Cmp. Median Delta

Business 22.36 20.14 2.22
Advertising 22.65 20.88 1.77
Marketing 12.96 11.66 1.3
Education 3.98 3.53 0.45
Content Server 6.96 6.58 0.38
Television & Video 2.18 1.89 0.29
Arts & Entertainment 2.54 2.27 0.27
Business Software 2.69 2.49 0.2
Web Design/HTML 1.39 1.24 0.15

Compromised Devices Access More

Feature Cln. Median Cmp. Median Delta

Computer Games 1.3 2.84 -1.54
Hobbies & Interests 2.61 3.78 -1.17
Uncategorized 26.25 26.97 -0.72
Technology 17.65 18.08 -0.43
Under Construction 5.33 5.65 -0.32
Network Security 1.43 1.65 -0.22
File Sharing 2.28 2.51 -0.23
News/Weather 2.44 2.64 -0.2
Illegal Content 0.15 0.33 -0.18

Table 5: Types of content accessed more by clean or compro-
mised devices. We show the median fraction of registered do-
mains accessed in the category for clean (Cln.) and compro-
mised (Cmp.) devices, and delta in median.

5.4 Use HTTPS
Another recommended browsing behavior is to use HTTPS when
available. Of course, it is the web site itself that ultimately determines
whether HTTPS can be used: if a site does not support it, users
have to use HTTP. However, since prior studies on device security
behavior were not able to trace HTTPS traffic, we next examine
HTTPS use and network activity more generally, and then examine
how it correlates with device compromise.

For each device, we count the total number of distinct fully qual-
ified domains it contacted using HTTPS and HTTP (approximat-
ing distinct sites visited). We then consider the number of distinct
FQDNs contacted just using HTTPS divided by the total (HTTPS
+ HTTP) as the ratio of its HTTPS use. Since a recent study of
HTTPS adoption on Chrome and Firefox showed that it depends
on both browser and operating system [11], we similarly categorize
first by dominant browser on the device (Section 5.2.2) and then OS.
Table 6 shows the mean and median HTTPS use across all devices,
browsers, and operating systems. As a point of comparison, HTTPS
use among the devices in our population is roughly consistent with
the results from [11]: devices contact sites via HTTPS 78% of the
time on average, and HTTPS use is lower on Windows (74–76%)
compared to Mac OS (79–80%). In terms of browsers, though, in
our device population Chrome does not have a distinctly higher use
of HTTPS for our metric.

44

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Louis F. DeKoven et al.

Browser OS Mean (Median)

Chrome Mac OS 78.6% (79.2%)
Linux 78.5% (79.0%)

ChromeOS 78.1% (78.3%)
Windows 76.2% (76.2%)

Firefox Linux 80.8% (80.3%)
Mac OS 80.5% (80.7%)
Windows 78.2% (79.0%)

Safari Mac OS 80.5% (80.7%)

Edge Windows 73.6% (74.0%)

All Devices 77.6% (78.5%)

Table 6: HTTPS use among devices.

Feature P-value Cln. Median Cmp. Median

Unique HTTP FQDNs < 0.001 705 1137
Unique HTTP RDs < 0.001 375 522
Unique HTTP TLDs < 0.001 27 36
Unique HTTP IP URLs < 0.001 4 57
Unique HTTPS FQDNs < 0.001 2.5k 3.1k
Unique HTTPS RDs < 0.001 1k 1.2k
Unique HTTPS TLDs 0.001 49.0 57.0

Table 7: Differences in network usage for clean (Cln.) and com-
promised (Cmp.) devices. We use the KS test with Bonferroni
correction to compare the ECDF of usage for each device type,
and show the p-value and median values for each population.

Turning to security outcomes, we separate the activity of devices
between HTTP and HTTPS traffic and calculate their distributions
for compromised and clean devices at various aggregations: number
of connections to all and unique URLs (for HTTP), unique fully-
qualified domain names (FQDNs), unique registered domains (RDs),
and unique top-level domains (TLDs). To identify significant differ-
ences in device behavior we use the KS test of statistical significance
with Bonferroni correction. For each aggregation, Table 7 shows
the p-value and the median values of the distributions for clean and
compromised devices.

Overall, the ratio of HTTPS use is not strongly correlated with
security outcomes.The connections made by compromised have
similar usage of HTTPS and HTTP compared to clean devices that
make similar number of connections. However, these results do
show that devices that make more connections use HTTPS more
than HTTP.

Across the board both kinds of devices generate more HTTPS traf-
fic than HTTP, but the prominent trend is simply that compromised
devices generate more web traffic than clean devices. To illustrate
this point in more detail, Figure 5 shows the distributions of average
weekly device web activity for clean and compromised devices. For
every device, we count the number of fully qualified domains the
device visits via HTTP and HTTPS combined per week, and normal-
ize by averaging across all weeks that the device was active. Each
bar in the histogram counts the number of devices that visit a given

0 500 1000 1500 2000 2500 3000 3500 4000
HTTP+HTTPS Distinct Avg Weekly FQDNs

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

×10−3

Clean
Compromised

Figure 5: Distributions of average weekly device web activity
for clean and compromised devices.

AV Name # Devices %

Avast 6,704 33.2%
Windows 5,752 28.5%
McAfee 3,659 18.1%
Avira 1,837 9.1%
Norton 866 4.3%
Other 1,383 6.8%

Figure 6: Five most prevalent antivirus products observed, with
all others aggregated as “Other”.

number of FQDNs per week, with 100-domain bins. The distribution
for compromised devices is clearly shifted towards visiting more
sites per week (and other traffic granularities show similar behavior).
We interpret this result as just reflecting that more activity correlates
to greater exposure and risk (much like automobile accidents).

5.5 Use Antivirus
Using antivirus software is a nearly universal recommendation. In
fact, residential students on our campus are nominally required to
have antivirus software installed on their devices to use the network.
We crafted signatures to detect network activity (e.g., updates to
software or the signature database, callbacks when scanning, etc.)
for over a dozen antivirus products, and Figure 6 shows the distribu-
tion of popular products among our device population. If a device
matched multiple signatures (e.g., Windows Defender and a third-
party product), we counted the device in each category (hence the
devices in the table sum to more than the unique device count). Avast,
Windows Defender, and Avira are free, explaining their popularity
among student devices.

Notably, while student devices technically need to have AV in-
stalled, regulations are not always followed. We verified that students
can still access the residential network without antivirus installed
by repeatedly using a mechanism for visitors, or lying about their
device type (e.g., claiming a MacBook is an iPad), and 7.5% of our
devices fall into this category.

45

Security Practices IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Group Feature # Dev P-value w/ Feat. w/o Feat.

All Adobe AIR 826 < 0.001 10% 4%
All P2P 2,237 < 0.001 13% 3%
All Thunderbird 69 < 0.001 33% 4%
All Uses Tor 321 < 0.001 12% 4%
All Password Mgr. 434 < 0.001 8% 4%
All Remote DNS 8,631 < 0.001 6% 2%

Win Adobe AIR 490 < 0.001 13% 7%
Win P2P 1,676 < 0.001 15% 5%
Win Thunderbird 28 < 0.001 43% 7%
Win Uses Tor 188 < 0.001 15% 7%
Win Password Mgr. 262 0.001 12% 7%
Win Remote DNS 5,249 < 0.001 8% 5%

Mac Adobe AIR 336 < 0.001 6% 2%
Mac P2P 541 < 0.001 7% 2%
Mac Thunderbird 29 < 0.001 34% 2%
Mac Uses Tor 123 < 0.001 7% 2%
Mac Password Mgr 159 0.755 1% 2%
Mac Remote DNS 3,212 < 0.001 3% 1%

Table 8: Software features across device populations correlated
with compromise. For each feature we show the number of de-
vices with the feature, p-value from the Chi-Square test, frac-
tion of compromised devices with and without the feature. Com-
promise rates: All devices 4.5%, Windows devices 7.0%, and
Mac OS devices 1.9%.

Using AV is strongly recommended to reduce risk. When focus-
ing on Windows devices, interestingly a larger percentage (7%) of
devices with antivirus are compromised compared to devices that do
not have it (4%). By definition, though, most compromised devices
in our population are those that were compromised by malware that
antivirus did not catch.

5.6 Software Use
As discussed in Section 3.3, we extract a wide variety of features
about the software used on devices observed on the network. We
now explore how these software features correlate with a device
being compromised. Since compromise depends on the operating
system used (Windows devices are compromised more often than
Mac OS devices), we also explore software features not only in the
context of all devices but also individual operating systems.

For each correlated software feature, Table 8 shows the device
population, fraction of compromised devices with the feature, and
fraction of compromised devices without the feature. These results
provide direct comparisons on compromise rates between devices
with a particular software feature and without: e.g., devices using
Tor are compromised 2–3.5× more often than devices that do not. To
ensure that the comparisons are statistically significant, we use the
Chi-Square test with Bonferroni correction since these are binary
categorical features, and the very low p-values shown in Table 8
confirm significance.

Devices using some specific applications correlate very strongly
with compromise, independent of operating system and network

activity. Devices using Adobe AIR, P2P file sharing networks, Thun-
derbird, and Tor on average are much more likely to be compro-
mised than devices that do not use such applications. Using these
applications does indeed put devices at significantly more risk. The
Thunderbird email client is particularly ironic since one reason why
people use Thunderbird is because of its PGP integration [10]; yet,
Thunderbird is rife with reported vulnerabilities (420 code execution
vulnerabilities reported in CVE Details [8]).

Some of these software features do not directly lead to com-
promise, but instead indirectly reflect how attentive users are with
respect to security. For instance, devices are not compromised due
to using password managers or not, or whether they are kept up-
dated, but the use of password managers does suggest that users are
more security aware. We find the use of password managers to be
correlated with compromise among the All and Windows device
groupings. Similarly, users who explicitly configure their device to
use a remote DNS server, instead of the DHCP default, reflect a cer-
tain degree of sophistication and confidence — for better or worse,
considering that devices using remote DNS servers for resolution
have a 1.6–3× higher rate of compromise.

6 RANKING FEATURE IMPORTANCE
Our analyses so far have focused on individual security practices. As
a final step, we explore the relative importance of all the features we
extract using statistical modeling, as well as the relative importance
of features exhibited during the hour before a device is compromised.
Our goal is not to train a general security incident classifier. Rather,
it is to generate a logistic model that produces interpretable results
for ranking the relative importance of our features.

6.1 Experimental Setup
Logistic regression is a statistical technique for predicting a binary
response variable using explanatory variables [18]. We set the re-
sponse variable to be whether or not a device is compromised, and
use all of the device features we extract from the network as the
explanatory variables. We first split the data into training (50%) and
test (50%), and normalize the explanatory variables to have zero
mean and unit variance.

To find the important explanatory variables we use a specialized
type of logistic regression called least absolute shrinkage and selec-
tion operataor (LASSO), or L1 logistic regression, since we have
a high number of explanatory variables. L1 logistic regression can
be regularized to correct for overfitting, thereby preventing a model
from becoming too closely tied to the data that it is built from. Reg-
ularization restricts the number of explanatory variables the model
will use proportionally to how regularized the model is. The regular-
ization parameter itself is configurable in the Scikit-learn machine
learning framework we use [29].

To find the optimal regularization parameter we implement hy-
perparameter tuning: we build 200 models, each with a different
regularization parameter, and identify the model that performs best.
To identify the best model while avoiding selection bias, for each
model, we perform 10-fold cross validation. We track the average
area under curve (AUC) from the receiver operating characteris-
tic (ROC) curves produced when predicting on the ten different
validation data sets. We then select the regularization parameter

46

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Louis F. DeKoven et al.

Group Feature Val AUC Test AUC Ratio

All IAB Computer Games +68.3% +69.7% 2.2x
All HTTP Reg Domains +7.0% +5.2% 1.6x
All HTTP in TLD .cn +2.3% +3.7% 3.5x
All Windows Antivirus +1.9% +1.1% 1.7x

Win HTTP FQ Domains +71.9% +71.1% 1.6x
Win IAB Computer Games +4.2% +2.9% 1.7x
Win UA Str Safari +2.2% +2.5% 3x
Win UA Str IE +1.4% +1.3% 1.1x

Mac HTTP in TLD .cn +76% +76% ∞

Mac UA Str IE +5.3% +4.3% 6.2x
Mac HTTP Traffic at 2AM +3.8% -1.3% 0.9x
Mac HTTP in TLD co.kr +1.5% +3.7% 1x

HTTP IAB Shareware +66.3% +60% ∞

HTTP UA Str IE +7.2% +7.9% 1.9x
HTTP UA Str Android +3.4% +1.3% 2.2x
HTTP Uses P2P +1.0% +2.7% 1.3x

Table 9: AUC gains from the top four features used to detect
devices with security incidents. For each feature we also provide
the ratio of median (continuous) or mean (categorical) values.
Ratios > 1 (green) indicate that compromised devices exhibit
more of the feature.

from the model that provides the maximum average validation AUC.
After identifying the optimal regularization parameter we search for
multicollinearity by computing the variance inflation factor (VIF)
across features used in the model, and do not find features with a
VIF greater than ten [20].

To compare the importance of each feature we implement a greedy
deletion algorithm [16]. Our algorithm works in the following way:
We start with the N important features used to predict security inci-
dents identified by the best model (previous paragraph). For N − 1
feature combinations we train regularized models with hyperparam-
eter tuning. From the resulting models, we identify the model that
has the maximum AUC (when predicting on validation data), and
exclude the unused feature in the next iteration of the algorithm. We
exclude the unused feature since it contributes least to the overall
AUC compared to the other feature combinations. We repeat this
process until we have a model that uses a single feature (N = 1);
the remaining feature contributes the most to the AUC by itself and
in the presence of other features. Finally, we interpret the results in
terms of the changes to the test AUC when features are added to the
final model.

6.2 All Features
We run the greedy deletion algorithm multiple times with different
device groupings: all devices, Windows devices, Mac OS devices,
and devices with on-median more HTTP traffic. We consider devices
that produce on-median more HTTP traffic based on our observations
in Section 5.4. Table 9 shows the top four features for each grouping,
the feature’s AUC contribution when predicting on validation and
test data, and the ratio of the feature’s median (continuous) or mean
(categorical) value for compromised and clean devices. Since we

Feature Val AUC Test AUC

IAB Computer Games +71.9% +74.2%
IAB Web Search +4.0% +3.6%

IAB Illegal Content +2.2% +3.6%
IAB JavaScript +1.0% +0.1%

IAB Computer Networking +0.7% +0.1%
IAB Adult Content +0.7% +0.7%

IAB Shareware/Freeware +0.7% +0.4%
IAB Internet Technology +0.5% +1.5%

Table 10: AUC gains for the top eight features used to detect
devices with security incidents one hour before compromise.

select the feature combination with the highest validation AUC it
is possible that adding in an extra feature will result in a small
negative contribution to the test AUC (e.g., the “HTTP Traffic at
2AM” feature for Mac OS devices).

Our results indicate that behavioral features, regardless of device
grouping, are most correlated with device compromise. In all cases,
the first feature in each grouping relates to how much a device ac-
cesses web content or the type of content being accessed. Having
Windows antivirus products (a proxy for using Windows, which has
a significantly higher compromise rate), or using P2P applications
are the only two software features in the top four of any grouping.
Having the IE User Agent feature highly ranked highlights the chal-
lenge of cursory feature extraction. Applications can make use of
embedded browsers, and examining traffic with an IE User Agent
string shows many of the detections are actually from the QQ chat
application and Qihoo 360 security product, not the IE browser. We
also find that compromised devices, in the majority of cases (except
for two features within the Mac OS grouping), exhibit more of each
feature compared to clean devices.

6.3 One Hour Before Compromise
Lastly, we use our statistical model to examine the relative impor-
tance of security features focusing on the hour leading up to device
compromise: Compared to devices that are not compromised, how
are compromised devices behaving differently leading up to becom-
ing compromised? For each compromised device, we extract their
features from the hour before their first incident. To compare dif-
ferences in behavior, we construct a synthetic control by taking a
pseudorandom sample of clean devices. Specifically, for each com-
promised device we randomly select up to 300 clean devices that are
(1) active in the same hour window, and (2) visit at least 50 distinct
registered domains.16

Table 10 shows the most important features (relative to one an-
other) for identifying compromised devices an hour before they
are compromised. For our devices, the type of web sites visited
(Section 5.3) are the most distinguishing features. On-average, com-
promised devices visit more web sites in each of the eight categories
in Table 10 than clean devices. The most popular domains our de-
vices visit in these categories do correspond well to the category
domains. For some of the very generic labels, “Computer Games”

16On average compromised devices visit 50 distinct registered domains the hour before
being compromised.

47

Security Practices IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

are gaming sites; “Computer Networking” include ISPs and IP ge-
olocation services; “Internet Technology” include SSL certificate
sites and registrars, etc.

7 CONCLUSION
The practice of cybersecurity implicitly relies on the assumptions
that users act “securely” and that our security advice to them is well-
founded. In this paper, we have sought to ground both assumptions
empirically: measuring both the prevalence of key security “best
practices” as well as the extent to which these behaviors (and others)
relate to eventual security outcomes. We believe that such analysis
is critical to making the practice of security a rigorous discipline and
not simply an art.

However, achieving the goal of evidence-based security is every
bit as formidable as delivering evidence-based healthcare has proven
to be. In any complex system, the relationship between behaviors
and outcomes can be subtle and ambiguous. For example, our results
show that devices using the Tor anonymizing service are signifi-
cantly more likely to be compromised. This is a factual result in
our data. However, there are a number of potential explanations for
why this relationship appears: Tor users could be more risk-seeking
and expose themselves to attack, alternatively they might be more
targeted, or there might be vulnerabilities in Tor itself. Indeed, it is
even possible that Tor use simply happens to correlate with the use
of some other software package that is the true causal agent.

Thus, while some of our results seem likely to not only have
explanatory power but also to generalize (e.g., the use of Thunder-
bird and Adobe AIR, both historically rife with vulnerabilities, have
significant correlations with host compromise), others demand more
study and in a broader range of populations (e.g., why are gamers
more prone to compromise?). Those results that lack simple expla-
nations are a reflection of the complexity of the task at hand. Having
started down this path of inquiry, though, we are optimistic about
answering these questions because we have shown that the method-
ological tools for investigating such phenomena are readily available.
We look forward to a broader range of such research going forward
as our community helps advance security decision making from the
“gut instinct” practice it is today, to one informed and improved by
the collection of concrete evidence.

ACKNOWLEDGEMENTS
We thank our shepherd Walter Willinger and the anonymous review-
ers for their insightful suggestions and feedback. We also thank
Cindy Moore, Brian Kantor, Cooper Nelson, Nick Colias, Jim Mad-
den, Michael Corn, Vern Paxson, Seth Hall, and Robin Sommer
for their infrastructure support, collaboration, and guidance. This
work was supported in part by NSF grants CNS-1629973 and CNS-
1705050, DHS grant AFRL-FA8750-18-2-0087, and the Irwin Mark
and Joan Klein Jacobs Chair in Information and Computer Science.

REFERENCES
[1] Apache Software Foundation. 2019. Apache Hive Website. https://hive.apache.

org/. (2019).
[2] Apple. 2018. Update your iPhone, iPad, or iPod touch. https://support.apple.com/

en-us/HT204204. (2018).

[3] Mihir Bellare and Phillip Rogaway. 2010. The FFX Mode of Operation for
Format-Preserving Encryption. Manuscript (standards proposal) submitted to
NIST (January 2010).

[4] Leyla Bilge, Yufei Han, and Matteo Dell’Amico. 2017. RiskTeller: Predicting the
Risk of Cyber Incidents. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS). Dallas, Texas, USA.

[5] Davide Canali, Leyla Bilge, and Davide Balzarotti. 2014. On the Effectiveness
of Risk Prediction Based on Users Browsing Behavior. In Proceedings of the 9th
ACM Symposium on Information, Computer and Communications Security (CCS).
Kyoto, Japan.

[6] Yannick Carlinet, Ludovic Mé, Hervé Debar, and Yvon Gourhant. 2008. Analysis
of Computer Infection Risk Factors Based on Customer Network Usage. In 2008
Second International Conference on Emerging Security Information, Systems and
Technologies. Cap Esterel, France.

[7] Carrie Marshall and Cat Ellis. 2018. The best free password man-
ager 2019. https://www.techradar.com/news/software/applications/
the-best-password-manager-1325845. (2018).

[8] CVE Details. 2019. Mozilla Thunderbird Vulnerability Statistics. https://www.
cvedetails.com/product/3678/?q=Thunderbird. (2019).

[9] DNSFilter. 2019. DNSFilter Website. https://www.dnsfilter.com/. (2019).
[10] The Enigmail Project. 2019. Enigmail — OpenPGP encryption for Thunderbird.

https://www.enigmail.net/index.php/en/home. (2019).
[11] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel1,

and Parisa Tabriz. 2017. Measuring HTTPS Adoption on the Web. In Proceedings
of the 26th USENIX Security Symposium. Vancouver, BC, Canada.

[12] Firefox. 2019. How to stop Firefox from making automatic connections. https://
support.mozilla.org/en-US/kb/how-stop-firefox-making-automatic-connections.
(2019).

[13] Alain Forget, Sarah Pearman, Jeremy Thomas, Alessandro Acquisti, Nicolas
Christin, Lorrie Faith Cranor, Serge Egelman, Marian Harbach, and Rahul Telang.
2016. Do or Do Not, There Is No Try: User Engagement May Not Improve
Security Outcomes. In Procedings of the 12th Symposium on Usable Privacy and
Security (SOUPS). Denver, CO, USA.

[14] Aaron Gember, Ashok Anand, and Aditya Akella. 2011. A Comparative Study of
Handheld and Non-handheld Traffic in Campus Wi-Fi Networks. In Proceedings
of the 12th International Conference on Passive and Active Measurement. Berlin,
Heidelberg.

[15] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee.
2007. BotHunter: Detecting Malware Infection Through IDS-driven Dialog
Correlation. In Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium. Boston, MA, USA.

[16] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of
Statistical Learning. Springer New York Inc.

[17] Cormac Herley. 2009. So Long, and No Thanks for the Externalities: The Rational
Rejection of Security Advice by Users. In Proceedings of the 2009 Workshop on
New Security Paradigms Workshop. Oxford, United Kingdom.

[18] David W Hosmer Jr and Stanley Lemeshow. 2000. Applied Logistic Regression
(2nd ed.). John Wiley & Sons.

[19] IAB. 2019. IAB Tech Lab Content Taxonomy. https://www.iab.com/guidelines/
iab-tech-lab-content-taxonomy/. (2019).

[20] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2014. An
Introduction to Statistical Learning: With Applications in R. Springer Publishing
Company, Incorporated.

[21] Moazzam Khan, Zehui Bi, and John A. Copeland. 2012. Software updates as a
security metric: Passive identification of update trends and effect on machine in-
fection. In Proceedings of IEEE Military Communications Conference (MILCOM).
Orlando, Florida, USA.

[22] Fanny Lalonde Lévesque, Jude Nsiempba, José M. Fernandez, Sonia Chiasson,
and Anil Somayaji. 2013. A Clinical Study of Risk Factors Related to Malware
Infections. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS). Berlin, Germany.

[23] Yang Liu, Armin Sarabi, Jing Zhang, Parinaz Naghizadeh, Manish Karir, Michael
Bailey, and Mingyan Liu. 2015. Cloudy with a Chance of Breach: Forecasting
Cyber Security Incidents. In Proceedings of the 24th USENIX Conference on
Security Symposium. Washington, DC, USA.

[24] Microsoft. 2019. Microsoft Update Catalog. https://www.catalog.update.microsoft.
com/Home.aspx. (2019).

[25] Mozilla Foundation. 2019. Public Suffix List Website. https://publicsuffix.org/.
(2019).

[26] Neil J. Rubenking. 2019. The Best Antivirus Protection for 2019. https://www.
pcmag.com/article2/0,2817,2372364,00.asp. (2019).

[27] ntop. 2018. PF_RING ZC (Zero Copy) Website. https://www.ntop.org/products/
packet-capture/pf_ring/pf_ring-zc-zero-copy/. (2018).

[28] Vern Paxson. 1999. Bro: a System for Detecting Network Intruders in Real-Time.
Computer Networks 31, 23-24 (1999), 2435–2463.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

48

https://hive.apache.org/
https://hive.apache.org/
 https://support.apple.com/en-us/HT204204
 https://support.apple.com/en-us/HT204204
https://www.techradar.com/news/software/applications/the-best-password-manager-1325845
https://www.techradar.com/news/software/applications/the-best-password-manager-1325845
https://www.cvedetails.com/product/3678/?q=Thunderbird
https://www.cvedetails.com/product/3678/?q=Thunderbird
https://www.dnsfilter.com/
https://www.enigmail.net/index.php/en/home
https://support.mozilla.org/en-US/kb/how-stop-firefox-making-automatic-connections
https://support.mozilla.org/en-US/kb/how-stop-firefox-making-automatic-connections
https://www.iab.com/guidelines/iab-tech-lab-content-taxonomy/
https://www.iab.com/guidelines/iab-tech-lab-content-taxonomy/
https://www.catalog.update.microsoft.com/Home.aspx
https://www.catalog.update.microsoft.com/Home.aspx
https://publicsuffix.org/
https://www.pcmag.com/article2/0,2817,2372364,00.asp
https://www.pcmag.com/article2/0,2817,2372364,00.asp
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Louis F. DeKoven et al.

Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[30] ProofPoint. 2019. ET Pro Ruleset. https://www.proofpoint.com/us/threat-insight/
et-pro-ruleset. (2019).

[31] Redislabs. 2019. Redis Website. https://redis.io/. (2019).
[32] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. 2016. How I Learned

to Be Secure: A Census-Representative Survey of Security Advice Sources and
Behavior. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. Vienna, Austria.

[33] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. 2017. Where is
the Digital Divide?: A Survey of Security, Privacy, and Socioeconomics. In Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
Denver, Colorado, USA.

[34] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. 2019. How Well
Do My Results Generalize? Comparing Security and Privacy Survey Results
from MTurk, Web, and Telephone Samples. In Proceedings of the 2019 IEEE
Symposium on Security and Privacy. San Fransisco, CA, USA.

[35] Robert Reeder, Iulia Ion, and Sunny Consolvo. 2017. 152 Simple Steps to Stay
Safe Online: Security Advice for Non-tech-savvy Users. IEEE Security and
Privacy 15, 5 (June 2017), 55–64.

[36] Armin Sarabi, Ziyun Zhu, Chaowei Xiao, Mingyan Liu, and Tudor Dumitras.
2017. Patch Me If You Can: A Study on the Effects of Individual User Behavior
on the End-Host Vulnerability State. In Proceedings of the 18th Passive and Active
Measurement PAM. Sydney, Australia.

[37] Yukiko Sawaya, Mahmood Sharif, Nicolas Christin, Ayumu Kubota, Akihiro
Nakarai, and Akira Yamada. 2017. Self-Confidence Trumps Knowledge: A Cross-
Cultural Study of Security Behavior. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems. Denver, Colorado, USA.

[38] Mahmood Sharif, Jumpei Urakawa, Nicolas Christin, Ayumu Kubota, and Akira
Yamada. 2018. Predicting Impending Exposure to Malicious Content from User
Behavior. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS). Toronto, Canada.

[39] Suricata. 2019. Suricata IDS Website. https://suricata-ids.org/. (2019).

[40] Samaneh Tajalizadehkhoob, Tom Van Goethem, Maciej Korczyński, Arman
Noroozian, Rainer Böhme, Tyler Moore, Wouter Joosen, and Michel van Eeten.
2017. Herding Vulnerable Cats: A Statistical Approach to Disentangle Joint
Responsibility for Web Security in Shared Hosting. In Proceedings of the ACM
Symposium on Information, Computer and Communications Security (CCS). Dal-
las, TX, USA.

[41] Update Google Chrome. 2019. Update Google Chrome. https://support.google.
com/chrome/answer/95414?co=GENIE.Platform%3DDesktop&hl=en. (2019).

[42] Tom van Goethem, Ping Chen, Nick Nikiforakis, Lieven Desmet, and Wouter
Joosen. 2014. Large-Scale Security Analysis of the Web: Challenges and Find-
ings. In Proceedings of the International Conference on Trust and Trustworth
Computing. Heraklion, Crete, Greece.

[43] Francesco Vitale, Joanna McGrenere, Aurélien Tabard, Michel Beaudouin-Lafon,
and Wendy E. Mackay. 2017. High Costs and Small Benefits: A Field Study of
How Users Experience Operating System Upgrades. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. Denver, Colorado,
USA.

[44] Rick Wash. 2010. Folk Models of Home Computer Security. In Proceedings of the
Sixth Symposium on Usable Privacy and Security. Redmond, Washington, USA.

[45] Rick Wash and Emilee Rader. 2015. Too Much Knowledge? Security Beliefs and
Protective Behaviors Among United States Internet Users. In Proceedings of the
Eleventh USENIX Conference on Usable Privacy and Security. Ottawa, Canada.

[46] Webshrinker. 2018. IAB Categories. https://docs.webshrinker.com/v3/
iab-website-categories.html#iab-categories. (2018).

[47] Webshrinker. 2019. Webshrinker Website. https://www.webshrinker.com/. (2019).
[48] The Wireshark Team. 2019. Wireshark Website. https://www.wireshark.org/.

(2019).
[49] Chaowei Xiao, Armin Sarabi, Yang Liu, Bo Li, Mingyan Liu, and Tudor Dumitras.

2018. From Patching Delays to Infection Symptoms: Using Risk Profiles for an
Early Discovery of Vulnerabilities Exploited in the Wild. In Procedings of the
27th USENIX Security Symposium (USENIX Security). Baltimore, MD, USA.

[50] Zeek. 2019. Zeek Protocol Analyzers Website. https://docs.zeek.org/en/stable/
script-reference/proto-analyzers.html. (2019).

49

https://www.proofpoint.com/us/threat-insight/et-pro-ruleset
https://www.proofpoint.com/us/threat-insight/et-pro-ruleset
https://redis.io/
https://suricata-ids.org/
https://support.google.com/chrome/answer/95414?co=GENIE.Platform%3DDesktop&hl=en
https://support.google.com/chrome/answer/95414?co=GENIE.Platform%3DDesktop&hl=en
https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories
https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories
https://www.webshrinker.com/
https://www.wireshark.org/
https://docs.zeek.org/en/stable/script-reference/proto-analyzers.html
https://docs.zeek.org/en/stable/script-reference/proto-analyzers.html

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Network Traffic Processing
	3.2 Log Decoration
	3.3 Feature Extraction
	3.4 Ethical Considerations and Limitations

	4 Data Set
	4.1 Device Filtering
	4.2 Identifying Dominant OSes

	5 Recommended Practices
	5.1 Operating System
	5.2 Update Software
	5.3 Visit Reputable Web Sites
	5.4 Use HTTPS
	5.5 Use Antivirus
	5.6 Software Use

	6 Ranking Feature Importance
	6.1 Experimental Setup
	6.2 All Features
	6.3 One Hour Before Compromise

	7 Conclusion
	References

