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ABSTRACT 
This  paper  introduces a genet ic  local search algori thm for bi- 
nary constraint  satisfaction problems.  The core of the algo- 
r i t hm consists of an ad-hoc opt imizat ion  procedure followed 
by the  application of b l ind genetic  operators. A s tandard  
set of benchmark instances is used in order to assess the  
performance of the a lgor i thm.  T h e  results indicate tha t  this 
apparent ly  naive hybr idat ion of a genetic algorithm with  lo- 
cal search yields a ra ther  powerful  heuristic a lgori thm for 
r andom binary constraint  sat isfact ion problems. 

Categories and Subject Descriptors 
6.1 .6  [ M a t h e m a t i c s  o f  C o m p u t i n g ] :  Optimization--Global 
Optimization; L2.8 [ A r t i f i c i a l  I n t e l l i g e n c e ] :  Problem Solv- 
ing, Control  Methods, and Search--Heuristic methods 

General Terms 
Algori thms,  Exper imenta t ion  

1. INTRODUCTION 
In the  binary constraint sat isfact ion problem (BCSP) we are 
given a set of variables, where  each variable has a domain  of 
values, and a set of constra ints  acting between pairs of vari- 
ables. The  problem consists of  finding an assignment of val- 
ues to variables in such a way t h a t  the restrictions imposed 
by the  constraints are satisfied. In this paper we consider 
random binary constraint  satisfaction problems (RBCSP) ,  
since their  properties in t e rms  of difficulty to be solved have 
been well-understood and hence such constraints have been 
used for testing the per formance  of algorithms for solving 
BCSPs.  More specifically, a class of random binary CSPs 
can be described by means  of four parameters (n, m, d, t), 
where n is the number of variables,  m is the (uniform) do- 
main  size, d is the probabi l i ty  tha t  a constraint exists be- 
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tween two variables, and  t is the probabili ty of a conflict 
between two values across a constraint.  CSPs  exhibit  a 
phase transition when a parameter  is varied. At the  phase 
transition, problems change from being relatively easy to 
solve (i.e., almost all problems have many solutions) to be- 
ing very easy to prove unsolvable (i.e., almost  all problems 
have no solutions). The  t e rm mushy region is used to in- 
dicate that  region where t he  probabili ty tha t  a problem is 
soluble changes from a lmost  zero to almost one. Wi th in  the  
mushy region, problems are in general difficult to solve or to 
prove unsolvable. Recent  theoret ical  investigations ([22; 23]) 
allow one to predict  where  the  hardest problem instances 
should occur. These predict ions have been empirically sup- 
ported for higher dens i ty / t igh tness  of the constraint  net- 
works ([181). 

An heuristic a lgori thm considers a BCSP as a combinator ia l  
optimization problem: the  objective is to find an instanti-  
ation of values for the  variables which maximizes  the  num- 
ber of constraints tha t  are satisfied. However, the  search 
for such an assignment does not guarantee to converge to 
a globM optimum. As a consequence, heuristic algori thms 
cannot in general detect  unsatisfiability. 

A rather popular class of heuristic algori thms consists of 
so-called genetic algori thms.  A genetic a lgori thm (GA) is 
a population based i tera t ive  stochastic technique for solv- 
ing combinatorial op t imiza t ion  problems ([9; 14]). In recent 
years, a number of techniques  for solving CSPs based on 
genetic algorithms have been proposed (e.g., [2; 5; 6; 7; 19; 
20]). The mQor i ty  of these algorithms incorporate  heurist ic 
information into the fitness function and /o r  into the  GA op- 
erators (selection, crossover, and mutat ion).  For instance, 
in [19; 20] a fitness funct ion tha t  uses information about  the  
connectivity of the const ra int  network is employed. 

The aim of this paper is to show how one can obtain  a sim- 
pler yet more effective GA based heuristic a lgori thm for BC- 
SPs by using a technique where heuristic information is not  
incorporated into the  G A  operators,  but  is included into the 
GA as a separate module.  The  idea of incorporat ing heuris- 
tics into genetic a lgor i thms for solving combinator ia l  opti- 
mization problems is not  new [11; 17], and it has been suc- 
cessfully applied to various different combinatorial  opt imiza-  
tion problems. The  approach we employ is known as genetic 
local search (GLS) (or more  in general, memet ic  search) [13; 
16]. We design a novel GLS algori thm which consists of the  
repeated application of the  following two steps to a popula- 
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t ion of candidate  solutions. First ,  a local opt imizat ion pro- 
cedure is applied to each candidate  solution. Next  blind GA 
operators  (selection, crossover, muta t ion  and replacement) 
are applied to the  resulting populat ion.  
Extensive experiments  conducted  on randomly  generated 
BCSPs  suppor t  the effectiveness of this approach for solving 
random binary constraint satisfaction problems.  
The rest of the paper is organized as follows. The  next sec- 
t ion introduces the  genetic local search a lgor i thm for BCSPs. 
Section 3 contains an experimental  compara t ive  analysis of 
the algori thm. Finally, Section 4 summarizes  the  results of 
the paper.  

2.  GENETIC LOCAL SEARCH FOR BCSPS 
Genetic local search (GLS) is a popula t ion  based iterative 
search scheme for combinatorial  op t imiza t ion  problems. 
Roughly, it consists of the application of genetic operators 
to a populat ion of local op t ima produced  by a local search 
procedure.  The  process is i tera ted until  e i ther  a solution is 
generated or a maximal  number  of generat ions is reached. 
Genetic  local search has been applied with  success to vari- 
ous paradigmat ic  combinatorial  op t imiza t ion  problems (e.g., 
[12; 13]). 

BEGIN 
t := 0 ;  

initialize P(t) ; 
(*)apply local search t o  P(t); 
evaluate P(t); 
WHILE (NOT termination-condition) DO 
BEGIN 

t := t + l ;  
WHILE (lP(t) l < IP(t-l) l) DO 
BEGIN 
select parents from P(t-l); 
recombine parents 
mutate children 
(*)apply local search to children 
insert children into P(t) 

END 
END 

END 

The GLS scheme tha t  is used in our a lgor i thm is illustrated 
above, where {P(t)l denotes the  number  of elements of the 
set P(t ) .  
In order to design our GLS algori thm for binary CSPs we can 
specify the local search algori thm and the genetic algorithm 
features separately. The resulting a lgor i thm is called RIGA 
(Repair-Improve Genetic Algori thm).  

2 . 1  Notation and Terminology 
A binary CSP is a triple (V,79, C) where V = {x l , . . .  ,x ,}  
is a set of variables, 79 = ( D 1 , . . . ,  D,~) is a sequence of finite 
domains, such that  xl takes value from D~, and C is a set 
of binary constraints.  A binary constraint cij is a subset of 
the Cartesian product  Di × Dj consisting of the  compatible 
pairs of values for (xl, xj). 
For simplicity here and in the sequel we shall assume that  
all the domains D~ are equal (D~ = D for i 6 [1, n]). 
An instantiation c~ of a set of variables S ---- { x l , . . . ,  xk} is a 
mapping o~ : S ~ D, where a(xi)  is the  value associated to 
xl. (the nota t ion  o~ = {Ix~v1 . . . .  , x , / v , }  will also be used, 
meaning oc(z,) = vl for i 6 [1, n]). 
We call o~ partial instantiation if o~(zi) is not  defined for 
some z; in S. In such a case x~ is said to be uninstantiated. 

A partial solution o of  a CSP with respect to a set S C V 
is an instantiation of  S such tha t  (a(xl) ,a(xj))  is in cq, for 
every xi, x i in S with i # j .  A solution of a CSP is a par t ia l  
solution with respect  to V. 
A part ial  solution a with respect to S is called maximal if 
for every z ~ S we have that  cr U { x / v }  is not a part ial  
solution, for every v 6 D. 
Given a partial solution a of a CSP with respect to S, we 
say tha t  a variable x~ in S has conflict v with a variable zj 
if v is in the domain of xj and (c~(xl), v) is not in eii. The  
set of conflicts of xi wi th  x i with respect to a is defined by 
conf~(xi,zj)  = {v 6 D [ xl has conflict v with xj wrt  or}. 
Moreover, we define the  conflict number of x with S with 
respect to a by nconf~(x, S)  = ~ y e s  ]conf~(x, Y)I. 

2 . 2  The Repair-Improve H e u r i s t i c  
In order to solve a CSP, we use a problem representation as 
in [1; 21], which associates a subset Xi of the domain D to 
each variable xl, called actual domain of zl. Observe tha t  Xi 
can be empty, meaning tha t  the corresponding variable xi is 
uninstantiated.  Using this representation, a candidate solu- 
t ion X is a sequence ( X 1 , . . . ,  X, ) ,  with X~ C D, describing 
the  set of partial instantiat ions a such that  for i 6 [1, n] if 
cr(xl) is defined then  a(xl)  6 Xi. 
The  local search algori thm used in RIGA takes as input  a 
candidate  solution X and transforms it into a maximal  par- 
t ial  solution using the  following algorithm. The algori thm 
uses as variables the  candidate  solution X,  a partial instan- 
t ia t ion  a, and sets of variables S, S ~. The symbol ~ is used 
below to denote the assignment statement.  

I n p u t .  A candidate solution X = (X1 , . . . ,  X,) .  

O u t p u t .  A maximal  part ial  solution with respect to S' rep- 
resented by (the transformed) X. 

M e t h o d .  Consists of the following three phases: 

1. I n i t i a l i z a t i o n .  a +- O; S ~ {x~ C Y [ Xi ~ 0}; 
S '  ~- O; 

2. R e p a i r .  Consists of the following two steps: 

(a) e x t r a c t .  For each x~ 6 S: 

stop e-- false; 
repeat the following three steps until stop = true 
or Xi = O: 
- select randomly v 6 X~; 
- x~ ~- x~ \ {~}; 
- if a U {x i / v }  is a partial sohttion wrt S '  U {xi} 
then: 

a(x~) e-- v, S' +-- S 'U{xi} ,  X~ +-- {v}, and stop 
true. 

(b) e x t e n d .  For each xi 6 V \ S':  
T e - D ;  
stop ~-- false; 
repeat the following three steps until stop = true 
or T = @: 

- select randomly v 6 T; 

- T + . -  T \ { v } ;  

- if a U {x i / v }  is a partial  solution wrt S '  U {xi} 
then: 
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a(x~) +- v, S' +- S'U{x~}, Xi ~-- {v}, and stop K-- 
true. 

3. Improve .  Consists of the following three steps: 

(a) a r c -cons i s t ency .  For each x in S': 

if conf , (x ,  y) = D for at least one variable y # x 
then 

a ~ a \ { x / a ( x ) } ,  Xi 4- @, and S' ~ S' \ {x}. 

(b) de le te .  1 Let 

~=c~(S ' )  = m~=~es, n~onA(=, v \ S'), 
T = {x  6 V I nconf~(m, V \ S') = maxco-(S')}. 
Select randomly one variable x in T: 

a ~-- a \ { x / a ( x ) } ,  X~ ~ 0, and S' ~ S' \ {x}. 

(c) e x t e n d .  (As extend step above defined). 

One can check that  the computational complexity of the 
Repair-Improve Heuristic is O ( n .  ID[. n_constraints) where 
n_constraints denotes the number of binary constraints in 
the CSP problem. 
It is not difficult to show that  after application of Repair  X 
represents a maximal partial solution with respect to S'. 
Then Improve tries to find a better X by searching in the 0: 
first, it removes those assignments of a that cannot be part 
of any solution (arc-consistency step): next, it removes the 
value of one variable having the most conflicts (delete step). 
Finally, it applies the extend step to the resulting partial 
solution. 
After application of Improve X represents a maximal partial 
solution with respect to S'. 
Observe that arc-consistency and delete are the only 
steps of RIGA that use information on the conflicts among 
variables in the CSP. 

2.3 The Genetic Algorithm 
The main features of the gcnetic algorithm component of 
RIGA can be summarized as follows: 

R e p r e s e n t a t i o n .  A chromosome is a candidate solution. 

Fi tness .  The fitness of a chromosome is equal to the num- 
ber of instantiated variables in the chromosome. 

G A  type.  Generational genetic algorithm (see the pseudo- 
code at the beginning of the section) with elitist se- 
lection mechanism which copies the best individual of 
a population to the population of the next generation 
[10]. 

Gene t ic  o p e r a t o r s .  We use tile following two GA repro- 
duction operators: 

crossover.  (always applied): two offsprings O and 
O' are incrementally constructed from two parents P 
and P ' ,  where the i-th components O~, e l  of O, O' are 
incrementally constructed from Pi, P~ starting from 
O~ = O~ = 0 by adding each element v 6 P i O P ~  
either to O~ or to O~ with equal probability. 

mutat ion:  two mutation operators are applied to a 
chromosome X. Mutation 1 (applied to each X~ with 

1This step is applied with high probability (typical value 
O.9). 

probability 1/n, where n denotes the number of vari- 
ables): add a randomly chosen value of D to Xi. Muta- 
t ion 2 (applied to each X~ with low probability (typical 
value 0.05)): remove a randomly chosen element from 
X .  

It is worth to note that the genetic operators are blind, that 
is they do not use information about the CSP, and they per- 
form all choices in a random way. This is counterbalanced 
by the Repair-Improve heuristic, which transforms chromo- 
somes into maximal partial solutions. 
We use a rather small population, consisting of 10 individ- 
uals. This choice is justified by the results obtained in our 
experiments with different population sizes. 

3. EXPERIMENTAL RESULTS 
In order to assess the effectiveness of RIGA, we compare ex- 
perimentally RIGA and the heuristic based GA algorithm 
introduced in [4], here called MIDA, which to the best of our 
knowledge is the best genetic based heuristic algorithm for 
BCSPs. 
MIDA incorporates heuristics in the reproduction mechanism 
and in the fitness function in order to direct the search to- 
wards better individuals. More precisely, MIDA works on a 
pool of 8 individuals. As RIGA, it uses a roulette-wheel based 
selection mechanism; however, it is not generational, but has 
a steady state reproduction mechanism where at each gen- 
eration an offspring is created by mutating a specific gene 
of the selected chromosome, called pivot gene, and that off- 
spring replaces the worse individual of the actual population. 
Roughly, the fitness function of a chromosome is determined 
by adding a suitable penalty term to the number of con- 
straint violations the chromosome is involved in. The penalty 
term depends on the set of breakouts whose values occur in 
the chromosome. A breakout consists of two parts: 1) a 
pair of values that violates a constraint; 2) a weight asso- 
ciated to that pair. The set of breakouts is initially empty 
and it is modified during the execution by increasing the 
weights of breakouts and by adding new breakouts accord- 
ing to the technique used in the Iterative Descent Method 
([15]). Therefore we have named this algorithm MIDA, stand- 
ing for Microgenetic Iterative Descent Algorithm. 
In [4] it is shown that MIDA outperforms the Iterative Descent 
Method algorithm [15]. Moreover, according to the recent 
works [3; 8] on the experimental comparison of GA based 
algorithms for CSPs, MIDA results to be the best GA based 
algorithm for RBCSPs. 
We perform extensive experiments on random binary CSPs 
with 15 variables and uniform domains of 15 elements. These 
values are common in the empirical study of GA based algo- 
rithms for (random) BCSPs ([5]). Later on we will discuss 
the effect of varying the number of variables. 
We use the generator by van Hemert (cf. [8]) for construct- 
ing random BCSP instances. The generator of these in- 
stances first calculates the number of constraints that will 
be produced using the equation y__(e%=!)~, d It then starts pro- 

2 - - "  

ducing constraints by randomly choosing two variables and 
assigning a constraint between them. When a constraint is 
assigned between variable x~ and xj, a table of conflicting 
values is generated. To produce a conflict two values are 
chosen randomly, one for the first and one for the second 
variable. When no conflict is present between the two val- 
ues for the variables, a conflict is produced. The number 
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of conflicts in this table is determined in advance by the  
equation m .  m • t. 
RIGA and MID are tes ted on the same 925 problem instances:  
625 instances used in [81 (see Table 1), obtained by consid- 
ering 25 instances for each combination of density d and  
tightness t with d , t  E {0.1,0.3,0,5,0.7,0.9}; and 300 in- 
stances close to the  mushy region, obtained by considering 
25 instances for each of the  12 combinations repor ted  in Ta- 
ble 2. We executed 10 independent  runs on each instance.  
The  algorithms performance is evaluated by means of two 
measures. The Success Rate (SR) is the fraction of instances  
where a solution has been found. The Average number of  
Evaluations to Solution (AES) is the number of fitness eval- 
uations, ke. the number  of newly generated candida te  so- 
lutions in successful runs. The  algorithms t e rmina te  if a 
solution is found or the  limit of 100000 generated cand ida te  
solutions is reached. 

d t II MIDA I RIGA 

0.2 0.8 0.52 (15304) 0.54 (6833) 
0.2 0.9 0.0 (-) 0.0 (-) 
0.3 0.6 
0.4 0.5 

1 (2625) 
1 (2573) 

1 (413) 

0.0(-) 

1 (272) 
0.4 0.6 0.29 (43656) 0.46 (21532) 
0.5 0.4 t (95s) 1 (74) 
0.6 0.4 1 (6029) 1 (651) 
0.6 0.5 o.o (-) o.o (-) 
0.7 0.4 0.80 (30775) 1 (5642) 
0.8 0.3 1 (1999) 1 (151) 
0.8 0.4 O.1I (51149) = 0.16 (14427) 
0.9 0.4 0.0 (-) 

Table 2: Results  for MIDI and RIGA 

Tables 1 and 2 summarize  the  results of the exper iments ,  
where the value of AES is given between brackets. Con- 
sidering the results from the  point of view of the  p rob lem 
instances, we can observe a distribution of the success rates 
which is in accordance with the theoretical predict ions of 
the phase transition for binary CSP problems repor ted  in 
[22; 231. 
Considering the success rate,  RIGA performs equally or bet-  
ter  than MIDA in all classes of instances. Concerning the  
computational effort (AES),  RIGA usually requires much less 
evaluations to find a solution than MIDA. However, the  AES 
measure does not take into account the effort required by 
the heuristics. The effort required by the Repai r - Improve  
heuristic affects the running t ime needed to find a solution,  
which can become about  ten t imes slower than MIDA on some 
hard problem instances. 

3.1 D i s c u s s i o n  
Let us briefly analyze the rote of the local search module  
for the performance of RIGA. As shown by the  results  of  
our experiments, the  Repair-Improve heuristic is able alone 
to solve constraints belonging to 'easy' classes, like those 
obtained by sett ing d = 0.3, t = 0.3. However, the  heuris t ic  
alone is not as effective as RIGA on 'harder '  classes. For 
instance, the 1 version of the Repair-Improve heurist ic which 
considers as final solution the  best solution found on 2000 
independent runs, yields SR equal to 0.74 on the instances 
of class d = 0.1, t = 0.9. 

As one would expec t ,  the  performance of  t he  pure GA, that  
is RIGA wi thout  t h e  Repair-Improve heuris t ic  module, is 
rather poor. For instance,  on the problems of class d = 
0.1, t = 0.1 the  pure  G A  has a SR equal  to 0. 
It is interesting to invest igate how the results  scale up when 
we vary the n u m b e r  n of  variables. Figure  1 illustrates how 
the performance of  MIDA and RIGA is affected by increasing 
the number of  variables n, when the o ther  parameters are 
set to m = 15, d = 0.3, and t = 0.3. The  x-axis represents 
the number of variables,  and the y-axis the  AES,  that  is the 
average number  of  evaluations to a solutions. 
We consider values of  n ranging from 10 till 40 with step 
5 and observe t h a t  increasing the number  of  variables does 
not affect the  success rates in this range of n values. The 
number of i te ra t ions  t h a t  are needed in order to find a solu- 
tion, however, is heavily affected and for bo th  algorithms it 
exhibits a super- l inear  growth. The two curves have a simi- 
lar growth rates,  a l though up to n = 35 RIGA is growing at a 
visibly slower rate.  Th is  seems to suggest a be t ter  scale-up 
behavior for RIGA. 

18000 

16O0O 

14000 

12000 

10C00 

800O 

6C00 

40O0 

2000 

0 
10 20 25 ~ 35 40 

Figure 1: Scale-up values for RIGA and MIDA 

4. C O N C L U S I O N  
In this paper we have introduced an effective GA based al- 
gorithm for solving BCSPs.  The main novel ty  with respect 
to previous work on this subject is the  use of a separate lo- 
cal search a lgor i thm for improving chromosomes.  Previous 
GA approaches for solving BCSPs have used ra ther  sophisti- 
cated fitness functions,  which bias the search towards a com- 
bination of different properties of the constra int  network. In 
contrast, the  fitness funct ion used in RIGA describes just one 
property, tha t  is the  number  of ins tant ia ted  variables. We 
can use such a s imple fitness function because in RIGA at 
each i teration the  populat ion consists of (maximal)  partial 
solutions, thanks  to  the  application of the  Repair-Improve 
heuristic to the  chromosomes.  In this way, the  search pres- 
sure determined by the  fitness function is exclusively di- 
rected towards large part ial  solutions, while the  application 
of the heuristic toge ther  wi th  the genetic operators,  are re- 
sponsible for improv ing  the  quality of the  chromosomes. 
Interesting topics t h a t  remain to be invest igated include the 
enhancement  of RIGA in order to detect  inconsistent BCSPs. 
We are aware of  only one GA based a lgor i thm tha t  can tackle 
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I dl II 01, 03 t 
0.5 I 0.7 I 0.9 

0.1 M I D A  , 1 (1) 1 (4) 
R I G A '  1(10) 1(10) 

0.3 MIDA , 1 (3) 1 (50) 
RIGA 1 (10) 1 (10) 

'0.5 MIDA,  1 (10) 1 (177) 
RIGA ' 1 (10) 1 (10) 

0 .7  ' M I D A  ~ 1 (20) 1 (604) 
R I G A  1 (10) 1 (42) 

0.9 M I D A  i 1 (33) 1 (8i36) 
R I G A  i 1 (10) 1 (588) 

1 (21) 
1 (10) 

1 (323) 
1 (24) 

0.90 (26792) 
1 (6809) 
o.o (-) 
o.o (-) 
0.0 (-) 
0.0 (-) 

1 (87) 
1 (17) 

0.52 (32412) 
0.72 (15604) 

0.0 (-) 
0.0 (-) 
o.o (-) 
o.o (-) 

96.0 (2923) 
96.0 (197) 

o.0 (-) 
0.0 (-) 
o.o (-) 
o.o (-) 
0.0 (-) 
0.0 (-) 

0.0 (-) 0.0 (-) 
0 .0 ( - ) .  i 0 .0( - )  

Table 1: Resul ts  for NIDA a n d  RIGA 

also unsatisf iable B C S P  [5]. T h e  a lgor i thm is an extens ion 
of MIDh t h a t  main ta ins  i n fo rma t ion  on inconsistent  values 
found  dur ing  the execut ion  of  t h e  GA,  information t h a t  is 
used  to  detec t  unsatisfiabil i ty.  I t  seems t ha t  a similar exten-  
sion can  be  used in RIGh, which  could  perform Oppor tun i s t i c  
Arc  Revis ion  by memor iz ing  incons is ten t  values in the  arc- 
cons i s tency  step. Moreover,  i t  seems t h a t  the  e l iminat ion  
of such  inconsistent  values would improve the  r u n n i n g  t ime  
b e h a v i o u r  of RIGh on h a r d  ins tances ,  which contain  a h igh 
n u m b e r  of inconsistent  values. 
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