
A Genetic Local Search Algorithm for Random Binary
Constraint Satisfaction Problems

Elena Marchiori
Faculty of Sciences

Free University Amsterdam
De Boelelaan 1081a
1081 HV Amsterdam

The Netherlands

elena@cs.vu.nl

Add Steenbeek
CWl

P.O. Box 94079
1090 GB Amsterdam

The Netherlands

adri@cwi.nl

ABSTRACT
This paper introduces a genet ic local search algori thm for bi-
nary constraint satisfaction problems. The core of the algo-
r i t hm consists of an ad-hoc opt imizat ion procedure followed
by the application of b l ind genetic operators. A s tandard
set of benchmark instances is used in order to assess the
performance of the a lgor i thm. T h e results indicate tha t this
apparent ly naive hybr idat ion of a genetic algorithm with lo-
cal search yields a ra ther powerful heuristic a lgori thm for
r andom binary constraint sat isfact ion problems.

Categories and Subject Descriptors
6.1 .6 [M a t h e m a t i c s o f C o m p u t i n g] : Optimization--Global
Optimization; L2.8 [A r t i f i c i a l I n t e l l i g e n c e] : Problem Solv-
ing, Control Methods, and Search--Heuristic methods

General Terms
Algori thms, Exper imenta t ion

1. INTRODUCTION
In the binary constraint sat isfact ion problem (BCSP) we are
given a set of variables, where each variable has a domain of
values, and a set of constra ints acting between pairs of vari-
ables. The problem consists of finding an assignment of val-
ues to variables in such a way t h a t the restrictions imposed
by the constraints are satisfied. In this paper we consider
random binary constraint satisfaction problems (RBCSP) ,
since their properties in t e rms of difficulty to be solved have
been well-understood and hence such constraints have been
used for testing the per formance of algorithms for solving
BCSPs. More specifically, a class of random binary CSPs
can be described by means of four parameters (n, m, d, t),
where n is the number of variables, m is the (uniform) do-
main size, d is the probabi l i ty tha t a constraint exists be-

Ponnission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and or
fee.
SAC'00 March 19.21 Como, Italy
(c) 2000 ACM 1-58113.239.5/00/003>...>$5.00

tween two variables, and t is the probabili ty of a conflict
between two values across a constraint. CSPs exhibit a
phase transition when a parameter is varied. At the phase
transition, problems change from being relatively easy to
solve (i.e., almost all problems have many solutions) to be-
ing very easy to prove unsolvable (i.e., almost all problems
have no solutions). The t e rm mushy region is used to in-
dicate that region where t he probabili ty tha t a problem is
soluble changes from a lmost zero to almost one. Wi th in the
mushy region, problems are in general difficult to solve or to
prove unsolvable. Recent theoret ical investigations ([22; 23])
allow one to predict where the hardest problem instances
should occur. These predict ions have been empirically sup-
ported for higher dens i ty / t igh tness of the constraint net-
works ([181).

An heuristic a lgori thm considers a BCSP as a combinator ia l
optimization problem: the objective is to find an instanti-
ation of values for the variables which maximizes the num-
ber of constraints tha t are satisfied. However, the search
for such an assignment does not guarantee to converge to
a globM optimum. As a consequence, heuristic algori thms
cannot in general detect unsatisfiability.

A rather popular class of heuristic algori thms consists of
so-called genetic algori thms. A genetic a lgori thm (GA) is
a population based i tera t ive stochastic technique for solv-
ing combinatorial op t imiza t ion problems ([9; 14]). In recent
years, a number of techniques for solving CSPs based on
genetic algorithms have been proposed (e.g., [2; 5; 6; 7; 19;
20]). The mQor i ty of these algorithms incorporate heurist ic
information into the fitness function and /o r into the GA op-
erators (selection, crossover, and mutat ion). For instance,
in [19; 20] a fitness funct ion tha t uses information about the
connectivity of the const ra int network is employed.

The aim of this paper is to show how one can obtain a sim-
pler yet more effective GA based heuristic a lgori thm for BC-
SPs by using a technique where heuristic information is not
incorporated into the G A operators, but is included into the
GA as a separate module. The idea of incorporat ing heuris-
tics into genetic a lgor i thms for solving combinator ia l opti-
mization problems is not new [11; 17], and it has been suc-
cessfully applied to various different combinatorial opt imiza-
tion problems. The approach we employ is known as genetic
local search (GLS) (or more in general, memet ic search) [13;
16]. We design a novel GLS algori thm which consists of the
repeated application of the following two steps to a popula-

458

http://crossmark.crossref.org/dialog/?doi=10.1145%2F335603.335910&domain=pdf&date_stamp=2000-03-19

t ion of candidate solutions. First , a local opt imizat ion pro-
cedure is applied to each candidate solution. Next blind GA
operators (selection, crossover, muta t ion and replacement)
are applied to the resulting populat ion.
Extensive experiments conducted on randomly generated
BCSPs suppor t the effectiveness of this approach for solving
random binary constraint satisfaction problems.
The rest of the paper is organized as follows. The next sec-
t ion introduces the genetic local search a lgor i thm for BCSPs.
Section 3 contains an experimental compara t ive analysis of
the algori thm. Finally, Section 4 summarizes the results of
the paper.

2. GENETIC LOCAL SEARCH FOR BCSPS
Genetic local search (GLS) is a popula t ion based iterative
search scheme for combinatorial op t imiza t ion problems.
Roughly, it consists of the application of genetic operators
to a populat ion of local op t ima produced by a local search
procedure. The process is i tera ted until e i ther a solution is
generated or a maximal number of generat ions is reached.
Genetic local search has been applied with success to vari-
ous paradigmat ic combinatorial op t imiza t ion problems (e.g.,
[12; 13]).

BEGIN
t := 0 ;

initialize P(t) ;
(*)apply local search t o P(t);
evaluate P(t);
WHILE (NOT termination-condition) DO
BEGIN

t := t + l ;
WHILE (lP(t) l < IP(t-l) l) DO
BEGIN
select parents from P(t-l);
recombine parents
mutate children
(*)apply local search to children
insert children into P(t)

END
END

END

The GLS scheme tha t is used in our a lgor i thm is illustrated
above, where {P(t)l denotes the number of elements of the
set P(t) .
In order to design our GLS algori thm for binary CSPs we can
specify the local search algori thm and the genetic algorithm
features separately. The resulting a lgor i thm is called RIGA
(Repair-Improve Genetic Algori thm).

2 . 1 Notation and Terminology
A binary CSP is a triple (V,79, C) where V = {x l , . . . ,x ,}
is a set of variables, 79 = (D 1 , . . . , D,~) is a sequence of finite
domains, such that xl takes value from D~, and C is a set
of binary constraints. A binary constraint cij is a subset of
the Cartesian product Di × Dj consisting of the compatible
pairs of values for (xl, xj).
For simplicity here and in the sequel we shall assume that
all the domains D~ are equal (D~ = D for i 6 [1, n]).
An instantiation c~ of a set of variables S ---- { x l , . . . , xk} is a
mapping o~ : S ~ D, where a(xi) is the value associated to
xl. (the nota t ion o~ = {Ix~v1 , x , / v , } will also be used,
meaning oc(z,) = vl for i 6 [1, n]).
We call o~ partial instantiation if o~(zi) is not defined for
some z; in S. In such a case x~ is said to be uninstantiated.

A partial solution o of a CSP with respect to a set S C V
is an instantiation of S such tha t (a(xl) ,a(xj)) is in cq, for
every xi, x i in S with i # j . A solution of a CSP is a par t ia l
solution with respect to V.
A part ial solution a with respect to S is called maximal if
for every z ~ S we have that cr U { x / v } is not a part ial
solution, for every v 6 D.
Given a partial solution a of a CSP with respect to S, we
say tha t a variable x~ in S has conflict v with a variable zj
if v is in the domain of xj and (c~(xl), v) is not in eii. The
set of conflicts of xi wi th x i with respect to a is defined by
conf~(xi,zj) = {v 6 D [xl has conflict v with xj wrt or}.
Moreover, we define the conflict number of x with S with
respect to a by nconf~(x, S) = ~ y e s]conf~(x, Y)I.

2 . 2 The Repair-Improve H e u r i s t i c
In order to solve a CSP, we use a problem representation as
in [1; 21], which associates a subset Xi of the domain D to
each variable xl, called actual domain of zl. Observe tha t Xi
can be empty, meaning tha t the corresponding variable xi is
uninstantiated. Using this representation, a candidate solu-
t ion X is a sequence (X 1 , . . . , X,) , with X~ C D, describing
the set of partial instantiat ions a such that for i 6 [1, n] if
cr(xl) is defined then a(xl) 6 Xi.
The local search algori thm used in RIGA takes as input a
candidate solution X and transforms it into a maximal par-
t ial solution using the following algorithm. The algori thm
uses as variables the candidate solution X, a partial instan-
t ia t ion a, and sets of variables S, S ~. The symbol ~ is used
below to denote the assignment statement.

I n p u t . A candidate solution X = (X1 , . . . , X,) .

O u t p u t . A maximal part ial solution with respect to S' rep-
resented by (the transformed) X.

M e t h o d . Consists of the following three phases:

1. I n i t i a l i z a t i o n . a +- O; S ~ {x~ C Y [Xi ~ 0};
S ' ~- O;

2. R e p a i r . Consists of the following two steps:

(a) e x t r a c t . For each x~ 6 S:

stop e-- false;
repeat the following three steps until stop = true
or Xi = O:
- select randomly v 6 X~;
- x~ ~- x~ \ {~};
- if a U {x i / v } is a partial sohttion wrt S ' U {xi}
then:

a(x~) e-- v, S' +-- S 'U{xi} , X~ +-- {v}, and stop
true.

(b) e x t e n d . For each xi 6 V \ S':
T e - D ;
stop ~-- false;
repeat the following three steps until stop = true
or T = @:

- select randomly v 6 T;

- T + . - T \ { v } ;

- if a U {x i / v } is a partial solution wrt S ' U {xi}
then:

459

• - -~ ~. ~ . : ~ . ~ ~ , ~ ~ A = ~ , ~ ~- ;~ 2 : o ~ : : ~,~, ~ ,

a(x~) +- v, S' +- S'U{x~}, Xi ~-- {v}, and stop K--
true.

3. Improve . Consists of the following three steps:

(a) a r c -cons i s t ency . For each x in S':

if conf , (x , y) = D for at least one variable y # x
then

a ~ a \ { x / a (x) } , Xi 4- @, and S' ~ S' \ {x}.

(b) de le te . 1 Let

~=c~(S ') = m~=~es, n~onA(=, v \ S'),
T = {x 6 V I nconf~(m, V \ S') = maxco-(S')}.
Select randomly one variable x in T:

a ~-- a \ { x / a (x) } , X~ ~ 0, and S' ~ S' \ {x}.

(c) e x t e n d . (As extend step above defined).

One can check that the computational complexity of the
Repair-Improve Heuristic is O (n . ID[. n_constraints) where
n_constraints denotes the number of binary constraints in
the CSP problem.
It is not difficult to show that after application of Repair X
represents a maximal partial solution with respect to S'.
Then Improve tries to find a better X by searching in the 0:
first, it removes those assignments of a that cannot be part
of any solution (arc-consistency step): next, it removes the
value of one variable having the most conflicts (delete step).
Finally, it applies the extend step to the resulting partial
solution.
After application of Improve X represents a maximal partial
solution with respect to S'.
Observe that arc-consistency and delete are the only
steps of RIGA that use information on the conflicts among
variables in the CSP.

2.3 The Genetic Algorithm
The main features of the gcnetic algorithm component of
RIGA can be summarized as follows:

R e p r e s e n t a t i o n . A chromosome is a candidate solution.

Fi tness . The fitness of a chromosome is equal to the num-
ber of instantiated variables in the chromosome.

G A type. Generational genetic algorithm (see the pseudo-
code at the beginning of the section) with elitist se-
lection mechanism which copies the best individual of
a population to the population of the next generation
[10].

Gene t ic o p e r a t o r s . We use tile following two GA repro-
duction operators:

crossover. (always applied): two offsprings O and
O' are incrementally constructed from two parents P
and P ' , where the i-th components O~, e l of O, O' are
incrementally constructed from Pi, P~ starting from
O~ = O~ = 0 by adding each element v 6 P i O P ~
either to O~ or to O~ with equal probability.

mutat ion: two mutation operators are applied to a
chromosome X. Mutation 1 (applied to each X~ with

1This step is applied with high probability (typical value
O.9).

probability 1/n, where n denotes the number of vari-
ables): add a randomly chosen value of D to Xi. Muta-
t ion 2 (applied to each X~ with low probability (typical
value 0.05)): remove a randomly chosen element from
X .

It is worth to note that the genetic operators are blind, that
is they do not use information about the CSP, and they per-
form all choices in a random way. This is counterbalanced
by the Repair-Improve heuristic, which transforms chromo-
somes into maximal partial solutions.
We use a rather small population, consisting of 10 individ-
uals. This choice is justified by the results obtained in our
experiments with different population sizes.

3. EXPERIMENTAL RESULTS
In order to assess the effectiveness of RIGA, we compare ex-
perimentally RIGA and the heuristic based GA algorithm
introduced in [4], here called MIDA, which to the best of our
knowledge is the best genetic based heuristic algorithm for
BCSPs.
MIDA incorporates heuristics in the reproduction mechanism
and in the fitness function in order to direct the search to-
wards better individuals. More precisely, MIDA works on a
pool of 8 individuals. As RIGA, it uses a roulette-wheel based
selection mechanism; however, it is not generational, but has
a steady state reproduction mechanism where at each gen-
eration an offspring is created by mutating a specific gene
of the selected chromosome, called pivot gene, and that off-
spring replaces the worse individual of the actual population.
Roughly, the fitness function of a chromosome is determined
by adding a suitable penalty term to the number of con-
straint violations the chromosome is involved in. The penalty
term depends on the set of breakouts whose values occur in
the chromosome. A breakout consists of two parts: 1) a
pair of values that violates a constraint; 2) a weight asso-
ciated to that pair. The set of breakouts is initially empty
and it is modified during the execution by increasing the
weights of breakouts and by adding new breakouts accord-
ing to the technique used in the Iterative Descent Method
([15]). Therefore we have named this algorithm MIDA, stand-
ing for Microgenetic Iterative Descent Algorithm.
In [4] it is shown that MIDA outperforms the Iterative Descent
Method algorithm [15]. Moreover, according to the recent
works [3; 8] on the experimental comparison of GA based
algorithms for CSPs, MIDA results to be the best GA based
algorithm for RBCSPs.
We perform extensive experiments on random binary CSPs
with 15 variables and uniform domains of 15 elements. These
values are common in the empirical study of GA based algo-
rithms for (random) BCSPs ([5]). Later on we will discuss
the effect of varying the number of variables.
We use the generator by van Hemert (cf. [8]) for construct-
ing random BCSP instances. The generator of these in-
stances first calculates the number of constraints that will
be produced using the equation y__(e%=!)~, d It then starts pro-

2 - - "

ducing constraints by randomly choosing two variables and
assigning a constraint between them. When a constraint is
assigned between variable x~ and xj, a table of conflicting
values is generated. To produce a conflict two values are
chosen randomly, one for the first and one for the second
variable. When no conflict is present between the two val-
ues for the variables, a conflict is produced. The number

460

of conflicts in this table is determined in advance by the
equation m . m • t.
RIGA and MID are tes ted on the same 925 problem instances:
625 instances used in [81 (see Table 1), obtained by consid-
ering 25 instances for each combination of density d and
tightness t with d , t E {0.1,0.3,0,5,0.7,0.9}; and 300 in-
stances close to the mushy region, obtained by considering
25 instances for each of the 12 combinations repor ted in Ta-
ble 2. We executed 10 independent runs on each instance.
The algorithms performance is evaluated by means of two
measures. The Success Rate (SR) is the fraction of instances
where a solution has been found. The Average number of
Evaluations to Solution (AES) is the number of fitness eval-
uations, ke. the number of newly generated candida te so-
lutions in successful runs. The algorithms t e rmina te if a
solution is found or the limit of 100000 generated cand ida te
solutions is reached.

d t II MIDA I RIGA

0.2 0.8 0.52 (15304) 0.54 (6833)
0.2 0.9 0.0 (-) 0.0 (-)
0.3 0.6
0.4 0.5

1 (2625)
1 (2573)

1 (413)

0.0(-)

1 (272)
0.4 0.6 0.29 (43656) 0.46 (21532)
0.5 0.4 t (95s) 1 (74)
0.6 0.4 1 (6029) 1 (651)
0.6 0.5 o.o (-) o.o (-)
0.7 0.4 0.80 (30775) 1 (5642)
0.8 0.3 1 (1999) 1 (151)
0.8 0.4 O.1I (51149) = 0.16 (14427)
0.9 0.4 0.0 (-)

Table 2: Results for MIDI and RIGA

Tables 1 and 2 summarize the results of the exper iments ,
where the value of AES is given between brackets. Con-
sidering the results from the point of view of the p rob lem
instances, we can observe a distribution of the success rates
which is in accordance with the theoretical predict ions of
the phase transition for binary CSP problems repor ted in
[22; 231.
Considering the success rate, RIGA performs equally or bet-
ter than MIDA in all classes of instances. Concerning the
computational effort (AES), RIGA usually requires much less
evaluations to find a solution than MIDA. However, the AES
measure does not take into account the effort required by
the heuristics. The effort required by the Repai r - Improve
heuristic affects the running t ime needed to find a solution,
which can become about ten t imes slower than MIDA on some
hard problem instances.

3.1 D i s c u s s i o n
Let us briefly analyze the rote of the local search module
for the performance of RIGA. As shown by the results of
our experiments, the Repair-Improve heuristic is able alone
to solve constraints belonging to 'easy' classes, like those
obtained by sett ing d = 0.3, t = 0.3. However, the heuris t ic
alone is not as effective as RIGA on 'harder ' classes. For
instance, the 1 version of the Repair-Improve heurist ic which
considers as final solution the best solution found on 2000
independent runs, yields SR equal to 0.74 on the instances
of class d = 0.1, t = 0.9.

As one would expec t , the performance of t he pure GA, that
is RIGA wi thout t h e Repair-Improve heuris t ic module, is
rather poor. For instance, on the problems of class d =
0.1, t = 0.1 the pure G A has a SR equal to 0.
It is interesting to invest igate how the results scale up when
we vary the n u m b e r n of variables. Figure 1 illustrates how
the performance of MIDA and RIGA is affected by increasing
the number of variables n, when the o ther parameters are
set to m = 15, d = 0.3, and t = 0.3. The x-axis represents
the number of variables, and the y-axis the AES, that is the
average number of evaluations to a solutions.
We consider values of n ranging from 10 till 40 with step
5 and observe t h a t increasing the number of variables does
not affect the success rates in this range of n values. The
number of i te ra t ions t h a t are needed in order to find a solu-
tion, however, is heavily affected and for bo th algorithms it
exhibits a super- l inear growth. The two curves have a simi-
lar growth rates, a l though up to n = 35 RIGA is growing at a
visibly slower rate. Th is seems to suggest a be t ter scale-up
behavior for RIGA.

18000

16O0O

14000

12000

10C00

800O

6C00

40O0

2000

0
10 20 25 ~ 35 40

Figure 1: Scale-up values for RIGA and MIDA

4. C O N C L U S I O N
In this paper we have introduced an effective GA based al-
gorithm for solving BCSPs. The main novel ty with respect
to previous work on this subject is the use of a separate lo-
cal search a lgor i thm for improving chromosomes. Previous
GA approaches for solving BCSPs have used ra ther sophisti-
cated fitness functions, which bias the search towards a com-
bination of different properties of the constra int network. In
contrast, the fitness funct ion used in RIGA describes just one
property, tha t is the number of ins tant ia ted variables. We
can use such a s imple fitness function because in RIGA at
each i teration the populat ion consists of (maximal) partial
solutions, thanks to the application of the Repair-Improve
heuristic to the chromosomes. In this way, the search pres-
sure determined by the fitness function is exclusively di-
rected towards large part ial solutions, while the application
of the heuristic toge ther wi th the genetic operators, are re-
sponsible for improv ing the quality of the chromosomes.
Interesting topics t h a t remain to be invest igated include the
enhancement of RIGA in order to detect inconsistent BCSPs.
We are aware of only one GA based a lgor i thm tha t can tackle

461

; : • ~ : ~ . ~ 2 ~ a r ~ . ~ - . ~ , . - , . ; ~ ~ , ,

I dl II 01, 03 t
0.5 I 0.7 I 0.9

0.1 M I D A , 1 (1) 1 (4)
R I G A ' 1(10) 1(10)

0.3 MIDA , 1 (3) 1 (50)
RIGA 1 (10) 1 (10)

'0.5 MIDA, 1 (10) 1 (177)
RIGA ' 1 (10) 1 (10)

0 .7 ' M I D A ~ 1 (20) 1 (604)
R I G A 1 (10) 1 (42)

0.9 M I D A i 1 (33) 1 (8i36)
R I G A i 1 (10) 1 (588)

1 (21)
1 (10)

1 (323)
1 (24)

0.90 (26792)
1 (6809)
o.o (-)
o.o (-)
0.0 (-)
0.0 (-)

1 (87)
1 (17)

0.52 (32412)
0.72 (15604)

0.0 (-)
0.0 (-)
o.o (-)
o.o (-)

96.0 (2923)
96.0 (197)

o.0 (-)
0.0 (-)
o.o (-)
o.o (-)
0.0 (-)
0.0 (-)

0.0 (-) 0.0 (-)
0 .0 (-) . i 0 .0(-)

Table 1: Resul ts for NIDA a n d RIGA

also unsatisf iable B C S P [5]. T h e a lgor i thm is an extens ion
of MIDh t h a t main ta ins i n fo rma t ion on inconsistent values
found dur ing the execut ion of t h e GA, information t h a t is
used to detec t unsatisfiabil i ty. I t seems t ha t a similar exten-
sion can be used in RIGh, which could perform Oppor tun i s t i c
Arc Revis ion by memor iz ing incons is ten t values in the arc-
cons i s tency step. Moreover, i t seems t h a t the e l iminat ion
of such inconsistent values would improve the r u n n i n g t ime
b e h a v i o u r of RIGh on h a r d ins tances , which contain a h igh
n u m b e r of inconsistent values.

5. R E F E R E N C E S

[1] N. Barnier and P. Brisset. Optimization by hybridation of
a genetic algorithm with constraint satisfaction techniques.
In International Conference on Evolutionary Computation,
pages 645-649. IEEE, 1998.

[2] J. Bowen and G. Dozier. Solving constraint satisfaction prob-
lems using a genetic/systematic search hybrid that realizes
when to quit. In Eshelman L. J., editor, Proceedings of the
6th International Conference on Genetic Algorithms (ICGA
95), pages 122-129. Morgan Kaufmann, 1995.

[3] B. Craenen, A. Eiben, and E. Marchiori. Solving constraint
satisfaction problems with heuristic-based evolutionary al-
gorithms. In Eleventh Belgium-Netherlands Conference on
Artificial Intelligence, 1999.

[4] G. Dozier, J. Bowen, and D. Bahler. Solving small and large
constraint satisfaction problems using a heuristic-based mi-
crogenetic algorithms. In Proceedings of the 1st IEEE Con-
ference on Evolutionary Computation, pages 306-311. IEEE
Press, 1994.

[5] G. Dozier, J. Bowen, and A. Homaifar. Solving constraint
satisfaction problems using hybrid evolutionary search.
IEEE Transactions on Evolutionary Computation, 2(1):23-
33, 1998.

[6] A.E. Eiben, P.-E. Rau6, and Zs. Ruttkay. Constrained prob-
lems. In L. Chambers, editor, Practical Handbook of Genetic
Algorithms, pages 307-365. CRC Press, 1995.

[7] A.E. Eiben and Zs. Ruttkay. Self-adaptivity for constraint
satisfaction: Learning penalty functions. In Proceedings of
the 3rd IEEE Conference on Evolutionary Computation,
pages 258-261. IEEE Press, 1996.

[8] A.E. Eiben, J.L van Hemert, E. Marchiori, and A. Steen-
beek. Solving binary constraint satisfaction problems using
evolutionary algorithms with an adaptive fitness function.
In A.E. Eiben, T. B~ick, M. Schoenauer, and H. Schwefel,
editors, Proceedings of the Fifth International Conference
on Parallel Problem Solving from Nature (PPSN V), LNCS
1498, pages 196-205. Springer, 1998.

[9] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wiley, New York,
1989.

[10] K.A. De Jong. An analysis of the behaviour of a class
of genetic adaptive systems. Doctoral Dissertation, Univer-
sity of Michigan, Dissertation Abstract International 36(10),
5140B, 1975.

[11] A. Kolen and E. Pesch. Genetic local search in combina-
torial optimization. Discrete Applied Mathematics, 48:273-
284, 1994.

[12] E. Marchiori. A simple heuristic based genetic algorithm for
the maximum clique problem. In A C M Symposium on Ap-
plied Computing, pages 366-373. ACM Press, 1998.

[13] P. Merz and B. Freisleben. Genetic local search for the tsp:
New results. In IEEE International Conference on Evolu-
tionary Computation, pages 159-164. IEEE Press, 1997.

[14] Z. Michalewicz. Genetic algorithms, numerical optimization
and constraints. In L.J. Eshelman, editor, Proceedings of the
6th International Conference on Genetic Algorithms (ICGA
95), pages 98-108. Morgan Kaufmann, 1995.

[15] P. Morris. The breakout method for escaping from local mira
ima. In Proceedings of the 11th National Conference on Arti-
ficial Intelligence, AAAI-93, pages 40-45. AAAI Press /The
MIT Press, 1993.

[16] P. Moscato. On evolution, search, optimization, genetic algo-
r i thms and martial arts: Towards memetie algorithms. Tech-
nical report, Caltech Concurrent Computation Program,
Californian Insti tute of Technology, U.S.A., TI:t No790 1989.

[17] H. Miihlenbein, M. Gorges-Schleuter, and O. Krgmer. Evolu-
t ion algorithms in combinatorial optimization. Parallel Com-
puting, 7:65-85, 1988.

[18] P. Prosser. An empirical study of phase transitions in bi-
nary constraint satisfaction problems. Artificial Intelligence,
81:81-109, 1996.

[19] M.C. Riff-Rojas. Evolutionary search guided by the con-
straint network to solve CSP. In Proceedings of the 4th IEEE
Conference on Evolutionary Computation, pages 337-348.
IEEE Press, 1997.

[20] M.C. Rift Rojas. Using the knowledge of the constraints net-
work to design an evolutionary algorithm that solves CSP.
In Proceedings of the 3rd IEEE Conference on Evolutionary
Computation, pages 279-284. IEEE Press, 1996.

[21] A. Ruiz-Andino and J. Ruz. Integration of constraint pro-
gramming and evolution programs: Application to channel
routing, pages 448-459. Springer, 1998. LNAI 1415.

[22] B.M. Smith. Phase transit ion and the mushy region in con-
straint satisfaction problems. In A.G. Cohn, editor, Proceed-
ings of the 11th European Conference on Artificial Intelli-
gence, pages 100-104. John Wiley & Sons Ltd., Aug. 1994.

[23] C.P. Williams and T. Hogg. Exploiting the deep structure of
constraint problems. Artificial Intelligence, 70:73-117, 1994.

462

