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ABSTRACT 
This paper introduces an adaptive heuristic-based evolution- 
ary algorithm for the Satisfiability problem (SAT). The al- 
gorithm uses information about the best solutions found in 
the  recent past in order to dynamically adapt the search 
strategy. Extensive experiments on standard benchmark 
problems are performed in order to asses the effectiveness 
of the algorithm. The results of the experiments indicate 
that this technique is rather successful: it improves on pre- 
vious approaches based on evolutionary computation and it 
is competitive with the best heuristic algorithms for SAT. 

Categories and Subject Descriptors 
G.1.6 [ M a t h e m a t i c s  of Comput ing] :  Optimization--Global 
optimization; 1.2.8 [Artificial  Intel l igence]:  Problem Solv- 
ing, Control Methods, and Search--Heuristic methods 

General Terms 
Algorithms, Experimentation 

1. INTRODUCTION 
The satisfiability problem is a well-known NP-hard problem 
with relevant practical applications (cf., e.g. [3]). 
Given a boolean formula, one has to find an instantiation 
of its variables that makes the formula true. Recall that a 
boolean formula is a conjunction of clauses, where a clause 
is a disjunction of literals; a literal is a boolean variable or 
its negations and a boolean variable is a variable which can 
assume only the values true, false. When all the clauses have 
the same number K of literals the problem is also called K- 
SAT. The SAT problem has been extensively studied and 
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many exact and heuristic algorithms for SAT have been in- 
troduced [2; 3]. Efficient heuristic algorithms for SAT in- 
clude algorithms based on local search (cf. [2; 3]) as well as 
approaches based on evolutionary computation (e.g., [1; 4; 
5; 9]). 
The aim of this paper is to show how the integration of a 
local search meta-heuristic into a simple evolutionary algo- 
rithm yields a rather powerful hybrid evolutionary algorithm 
for solving hard SAT problems. 
In our method a simple (1+1) steady-state evolutionary al- 
gorithm with preservative selection strategy is used to ex- 
plore the search space, while a local search procedure is used 
for the exploitation of the search space. Moreover, a meta- 
heuristic similar to the one employed in TABU search [6] 
is used for adapting the value of the mutation rate during 
the execution, for prohibiting the exploration/exploitation 
of specific regions of the search space, and for re-starting the 
execution from a new search point when the search strategy 
does not show any progress in the recent past. 
Extensive experiments conducted on benchmark instances 
from the literature support the effectiveness of this approach. 

2. EVOLUTIONARY LOCAL SEARCH 
Tile idea of integrating evolutionary algorithms with local 
search techniques has been beneficial for the development of 
successful evolutionary algorithms for solving hard combina- 
torial optimization problems (e.g., [8; 9; 10 D. In a previous 
work [9] we have introduced a simple local search based ge- 
netic algorithm for 3-SAT. Here we consider the restriction 
of that algorithm to a population consisting of just one chro- 
mosome (thus crossover is not used). We call the resulting 
evolutionary algorithm EvoSAP. In the next section we show 
how EvoSAP can be improved by incorporating an adaptive 
diversification mechmfism based on TABU search. 

PROCEDURE EvoSAP 
randomly generate chromosome C; 
~pply Flip Heuristic to C; 
WHILE (NOT termination condition) DO 
BEGIN 

CO=C; 
apply mutation to C; 
apply Flip Heuristic to C; 
IF (CO better C) C=CO; 

END 
END 
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In EvoSAP a single chromosome is used, which produces an 
offspring by first applying mutation and next local search. 
The best chromosome between the parent and the offspring 
is selected for the next generation. The process is repeated 
until the termination condition is satisfied, that  is, when 
either a solution is found or a specified maximum number 
of chromosomes have been generated. 
Let us describe the main features of EvoSAP. 
Representation. A chromosome is a bit string of length equal 
to the number of variables describing an instantiation of the 
variables of the considered SAT problem, where the value of 
the i-th gene of the chromosome describes the assignment 
for the i-th variable (with respect to a fixed ordering of the 
variables). 
Fitness function. The fitness function counts the number 
of clauses that are satisfied by the instantiation described 
by the chromosome. Clearly, a chromosome is better than 
another one if it has higher fitness. 
Mutation. The mutat ion operator considers each gene and 
it flips it if a randomly generated real number in [0, 1] is 
smaller than the considered mutation rate rout_prob. 

PROCEDURE FLIP HEURISTIC 
BEGIN 

generate a random permutation S of [I..n_vars] 
REPEAT 

improvement : =0 ; 
FOR i:=1..n_vars DO 
BEGIN 
flip S(i)-th gene of C; 
compute gain of flip; 
IF (gain >= O) 
BEGIN 
accept flip; 
improvement : =improvement+gain; 

END 

ELSE /* restore previous value */ 
flip S(i)-th gene of C; 

END 
UNTIL (improvement=O) 

END 

Flip Heuristic. In the local search algorithm we consider, 
called Flip Heuristic, each gene is flipped and the flip is ac- 
cepted if the number of satisfied clauses increases or remains 
equal (gain > 0). This process is repeated until no further 
improvement is obtained by flipping any of the genes. In the 
figure describing the Flip Heuristic in pseudo-code, n_vars 
denotes the number of the variables. The gain of the flip 
is computed as the number of clauses that become satisfied 
after the flip minus the number of clauses that  become un- 
satisfied. If the gain is not negative then the flip is accepted, 
otherwise it is rejected. Note that  we accept also flips that 
yield no improvement gain = 0, that is we allow side steps. 
The inner loop is repeated until the last scan produces no 
improvement. 

3. ADDING ADAPTIVITY 
In this section we describe how EvoSAP can be improved by 
incorporating an adaptive diversification mechanism based 
on TABU search. Observe that  at each generation EvoSAP 
produces a local optimum. Suppose the Flip Heuristic di- 
rects the search towards similar (that is having small Ham- 
ming distance) local optima having equal fitness function 

values. Then we can try to escape from these local optima 
by prohibiting the flipping of some genes and by adapting 
the probability of mutation of the genes that  are allowed to 
be modified. 
To this aim, we use the following technique based on TABU 
search. A table is considered which is dynamically filled 
with chromosomes having best fitness. If the best fitness in- 
creases then the table is emptied. When the table is full, the 
chromosomes are compared gene-wise. Those genes which 
do not have the same value in all the chromosomes are la- 
beled as 'frozen'. 
Formally, the table can be represented by a (k, n) matrix 
T, where k is the number of chromosomes the table can 
contain, and n is the number of variables of the considered 
SAT problem, The entry T( i , j )  contains the value of the j -  
th gene in the i-th chromosome of T. Let frozen be an array 
of length n whose entry j is 0 if the j - t h  gene is not frozen, 
and it is 1 otherwise. Initially all genes are not frozen. 
When the table is filled, we consider the quantities val(j) = 

k ~ = 1  T( i , j ) ,  for every j 6 [1, n]. If val(j) is 0 or k then 
we set frozen(j) to 1 (the j - th  gene becomes frozen). We 
denote by n_frozen the number of frozen genes. The size k 
of the table T is a parameter. After computational testing, 
we decided to set k to 10. When the fitness of the best 
chromosome increases, the table is emptied and all genes 
are unfrozen, that is, frozen(j) is set to 0 for every j ,  and 
n_frozen is set to 0. 
We use the information contained in T for adapting the 
search strategy during the execution as follows. Each time T 
is full, the mutation rate is recomputed, the flipping of frozen 
genes is prohibited, and possibly the execution is restarted 
from a new random search point. Let us describe how these 
three actions are performed. The mutation rate is set to 
1 . n_frozen/n, thus 0 < mut_prob < 0.5. Frozen genes are 
not allowed to be flipped neither by the mutat ion operator 
nor by the Flip Heuristic. 
The rationale behind these two actions is the following. If 
table T becomes full it means that the search strategy has 
found for k times best chromosomes with equal fitness. A 
gene which is not frozen has the same value in all these 
chromosomes. This indicates that the search directs often to 
local optima containing the values of the not frozen genes. 
Therefore in the next iteration we allow to flip only not 
frozen genes in order to reach search points fax enough from 
the attraction basin of those local optima. The mutation 
rate is chosen in such a way that the lower the number of 
not frozen genes is, the higher the probability will be to flip 

1 them. Tile term ~ is used to keep the mutation rate smaller 
or equal than 0.5. 
Finally the information in the table T is used for possibly 
restarting the search. The chromosomes in T are grouped 
into equivalence classes, each class containing equal chro- 
mosomes. If the nnlnber of equivalent classes is very small, 
that is less or equal than two, it means that  the last k best 
chromosomes found so far are of just one or two forms, in- 
dicating that the search is strongly biased towards those 
chromosomes. Then it seems worth to re-start the search 
from a new randomly generated chromosome. 
The overall Adaptive evolutionary algorithm for the SAtisfl- 
ability Problem, called ASAP, is summarized in pseudo-code 
below. Adaptive mutation is the mutation operator which 
allows to mutate only not frozen genes. Analogously, the 
adaptive Flip Heuristic allows only the flipping of non-frozen 

464 



genes. 
The mutation rate is initially equal to 0.5. The termination 
condition in ASAP is equal to the one of EvoSAP, that is, 
either the optimum is found or the maximum number of 
chromosomes have been generated. 

PROCEDURE ASAP 
randomly generate chromosome C; 
apply Flip Heuristic to C; 
WHILE (not termination condition) DO 
BEGIN 

CO=C; 
apply adaptive mutation to C; 
apply adaptive Flip Heuristic to C; 
UPDATE_TABLE; 

END 
END 

PROCEDURE UPDATE_TABLE 
BEGIN 

unfreeze all g e n e s ;  

IF (fitness CO > fitness C) /* discard C */ 

C=CO; 
ELSE 
IF (fitness C > fitness CO) 

BEGIN 
empty table T; 
add C to table T; 

END 
ELSE /* fitness CO = fitness C */ 
BEGIN 
add C to table T; 
IF (table T full) 
BEGIN 
compute frozen genes; 
adapt mutation rate; 
count classes; 
IF (number of classes <= 2) 

RESTART; 
empty table T; 

END 
END 

END 

4. RESULTS OF EXPERIMENTS 
In order to evaluate the performance of our algorithm we 
conduct extensive simulations on benchmark instances from 
the literature, and compare the results to those reported in 
previous work based on evolutionary computation as well as 
to the most etfective local search algorithms for SAT. 

4.1 Comparison with Evolutionary AIgorithms 
We will consider three evolutionary algorithms for SAT, here 
called FlipGA [9], RFGA [7] and SAW [1]. FlipGA is a 
heuristic based genetic algorithm combining a simple GA 
with the Flip Heuristic. RFGA uses an adaptive refining 
function to discriminate between chromosomes that satisfy 
the same number of clauses and a heuristic mutation opera- 
tor. The SAW algorithm is a (1,A*) (A* is the best A found in 
a suitable number of test experiments) evolutionary strategy 
using the SAW-ing (stepwise adaptation of weights) mecha- 
nism for adapting the fitness function according to the be- 
havior of the algorithm in the previous steps. We test ASAP 

on the same instances (test suites 1, 2) used in [1; 7; 9], which 
are 3-SAT instances generated using the generator devel- 
oped by Allen van Gelder. These instances are available at 
http : / / www.in.tu-clausthal.de / ~gottlieb /benchmarks / 3sat. 
All instances lay in the phase transition, where the number 
of clauses is approximately 4.3 times the number of the vari- 
ables. 
- Test suite 1 contains four groups of three instances each. 
The groups have a number of variables of 30,40,50 and 100. 
- Test suite 2 contains fifty instances with 50 variables. 
The performance of genetic algorithms is generally evaluated 
by means of two measures: the Success Rate (SR), that is, 
the percentage of runs in which the algorithm found a solu- 
tion for that instance or group of instances; and the Aver- 
age number of evaluations to Solution (AES) index, which 
counts the average number of fitness evaluations performed 
to find the solution. Note that  the AES takes into account 
only successful runs. 
Since our algorithm uses also local search, we use an approx- 
imated estimation of the AES called Average Flip cost in 
terms of fitness Evaluation to Solution(AFES). The AFES 
index is based on the number of flips performed during the 
execution of the local search (both accepted and not ac- 
cepted flips are counted) and is an estimation of the cost 
of the local search step in terms of fitness evaluations. If 
the local search performs n_:flips flips (including accepted 
and not accepted flips), one can estimate a cost of K • 
n_flips/n_vars fitness evaluations (cf. [9]), where n_vars is 
the number of variables in the instance and K is the clause 
length. This applies only to K-SAT instances which are ran- 
domly generated. 
The results of the experiments axe given in Tables 1, 2, where 
n and m denote the number of variables and of clauses, 
respectively. All the algorithms are run 50 times on each 
problem instance, and the average of the results is reported. 
Moreover, the termination conditions for all algorithms is 
satisfied either if a solution is found or if a maximum of 
300000 chromosomes have been generated. 
The results show that ASAP has a very good performance, 
with SR equal to 1 in all instances, and smaller AFES than 
FlipGA in all but one instance (instance 2) where it has 
AFES slightly bigger than FlipGA. 

Alg. SR A FES 
ASAP 1 5843 
FlipGA 1 6551 
RFGA 0.94 35323 

Table 2: Results of ASAP, FlipGA, RFGA on Test Suite 2 

4.2 Comparison with Local Search Algorithms 
We consider two local search techniques, GRASP [11] and 
GSAT [12], which are amongst the best local search algo- 
rithms for SAT. GRASP (Greedy Randomized Search Pro- 
cedure) is a general search technique: a potential solution 
is constructed according to a suitable greedy heuristic, and 
improved by a local search procedure. These two steps are 
repeated until either an optimal solution is found or a max- 
imum number of iterations has been reached. In (the ex- 
tended version of) [11] four GRASP algorithms for SAT are 
introduced. GSAT is a greedy heuristic: one starts from a 
randomly generated candidate solution and iteratively tries 
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I I I [[ ASAP II F l ipGA II RFGA II SAW I 
I n s t .  n m SR APES SR ALOES SR AES SR AES 

Table 1: Comparison of ASAP, FlipGA, R F G A  and SAW on Test Suite 1 

to increase the  number  of satisfied clauses by flipping the 
value of a sui table variable.  The  variable chosen for flipping 
is the one tha t  gives the  highest increase in the  number of 
satisfied clauses. 
We compare  these two algori thms with A S A P  on a subset of 
the DIMACS instances  repor ted  in the  ex tended  version of 
[11]. All the considered instances are satisfiable. These in- 
stances for SAT s t e m  from different sources and are grouped 
into families. 
- The aim family contains  artificially genera ted  3-SAT in- 
stances and are cons t ruc ted  to have exact ly  one solution. 
The number  of variables is 50, 100 and 200 and the ratio 
n_clanses/n_vars is 2.0, 3.4 and 6.0. In to ta l  there axe 36 
instances. 
- Family pa r  instances  arise from a problem in learning the 
parity function. These  are 5 instances wi th  a varying num- 
ber of variables and clauses. 
- The 16 Jnh ins tances  are randomly genera ted  and have a 
varying clause length.  
- Instances i± arise from the "boolean funct ion synthesis" 
problem; they have a number  of variables ranging from 66 
to 1728 and n u m b e r  of clauses ranging from few hundreds 
up to over 20 thousands.  This  family counts 41 instances. 
Execution t ime is the  performance measure used in the DI- 
MACS Challenge to evaluate  local search algorithms. Our 
code was wr i t ten  in C and ran on Intel Pen t i um II (Mem- 
ory: 64 Mb ram,  Clock: 350 MHz, Linux version: Red Hat 
5.2). In order to compare  ASAP with G R A S P  and GSAT, 
we report  in Table  11 the  results of the D I M A C S  Challenge 
machine benchmark  on the  Pent ium II and on the SGI Chal- 
lenge, the machine  used in the experiments  with GRASP 
and GSAT repor ted  in ( the extended version of) [11]. The 
results indicate t ha t  the  Pcnt ium II is approximately  1.5 
times faster than  the  SGI Challenge. 
The results of the  exper iments  are given in Tables 4-10. 
Again, n and m denote  the number  of variables and of 
clauses, respectively. All the algorithms are run 10 times 
on each instance. In  the  tables containing the  results of 
ASAP we give the  average number  of i terat ions,  of restarts, 
of accepted flips, and the  average t ime (in seconds) together 
with the s tandard  deviat ion.  In the Tables compar ing  ASAP 
with G R A S P  and G S A T  we give the average t ime  of ASAP 
(run on Pen t ium II) ,  and report  the results contained in (the 
extended version of) [11] (run on SGI Challenge),  where an 
entry labeled ' - '  means  tha t  the result for tha t  instance has 

not  been given in [11]. 
All a lgori thms were always able to find the  solution on ev- 
ery instance, except on the instances relat ive to the entries 
labeled ' N F '  (not found) where A S A P  was not  able to find 
a solution. 
The  results of the tables comparing A S A P  with G R A S P  
and G S A T  show that  ASAP is compet i t ive  with these two 
algori thms, except on the instance aim-100-2_0-yesl and on 
those of the  class p a r l 6 - c ,  where A S A P  is not  able to find 
any solution within 300000 chromosome evaluations. 
On  the  other  instances, we can summar ize  the results as 
follows. The  performance of A S A P  on the  class aim is 
ra ther  satisfactory, finding the solution in much shorter t ime 
than  G R A S P  on some instances, like aim-200-6_0-yesl. On 
the  class par8 ASAP outperforms G S A T  and has perfor- 
mance  comparable  to the one of GRASP.  However, on the 
class p a r l 6  ASAP is not able to find any solution. On the  
class Jn.h G S A T  outperforms G R A S P  as well as ASAP, with 
A S A P  and GRASP giving comparable  results. Finally, on 
class i i  A S A P  outperforms G R A S P  and G S A T  on instances 
i i 8  and £i16 (except i i l6el  where G S A T  is faster), while 
G S A T  outperforms GRASP and A S A P  on instances i i 3 2 ,  
being A S A P  on the average faster than  GRASP.  

5. DISCUSSION 
I t  is interesting to analyze the role of the adapta t ion  mech- 
anism in ASAP. For lack of space, we do not  report  the  
results obtained by EvoSAT on the considered benchmark 
instances, but  we briefly compare them with those obtained 
by ASAP. On instances of the Test  Suites 1,2 the perfor- 
mance  of EvoSAP is similar to the one of ASAP. However, 
on the DIMACS instances EvoSAP has a worse performance 
than  ASAP. For example, on the instance jnh212 EvoSAP 
has a success rate of 0.9, it takes 10855 iterations (on the 
average) to find a solution, and over 1.2 millions (on the 
average) of accepted flips. 
As i l lustrated in the tables on the D I M A C S  experiments,  the  
res tar t  mechanism of ASAP is not  used in some experiments  
(e.g., on the  classes aim-100-6_0 and i i 8 ) .  However, in 
o ther  experiments,  the mechanism is more effective. For 
example,  on the instance jnh212 the  performance of ASAP 
wi thout  the restart  mechanism becomes poor: A S A P  is able 
to find a solution only in five of the  ten  runs. Thus the 
results  indicate that  the adapta t ion  mechanism of A S A P  
improves the  performance of the evolut ionary  algorithm. 
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Inst. 
aim-50-2_O-yesl 
aim-50-3_4-yesl 
aim-50-f_O-yesl 
aim-lOO-3_4-yesl 
aim-lOO-6_O-yesl 
aim-2OO-3_4-yesl 
aim-2OO-6_O-yesl 

Inst. 
aim-50-2_0-yesl 
aim-50-3_4-yesl 
aim-50-6_O-yesl 

n m 

50 I00 
50 170 
50 300 
100 340 
100 600 
200 680 
200 1200 

H Iterat ions Restarts 
28112 349 1693310 

42 1 1979 
3 0 143 

115 6 11672 
4 0 386 

2774 208 614675 
6 0 1376 

Accepted 
Flips I 

Time 
avg.. I SDev 

18.758 22.744 
0.050 0.073 
0.006 0.008 
0.329 0.420 
0.022 0.017 
20.70 28'.348 
0.110 0.089 

Table 3: Results of ASAP on class aim 

aim-100-2_0-yesl 
aim-100-3_4-yesl 
aim-100-6_0-yesl 
aim-200-3_4-yesl 
aim-200-6_0-yesl 

II ASAP I GRASP-A 
18.76 2.23 
0.05 0.60 
0.01 0.08 
NF 

0.33 
0.02 

20.70 
0.11 126.99 

4.86 
1.01 
0.07 

2.27 
0.59 
0.08 

2048152 

2.14 
0.36 
0.05 

543.51 1386.51 836.12 
30.94 54.71 46.71 34.00 

0.66 0.71 0.72 0.63 

121.90 176.91 120.04 

I GSAT I 
3.33 
0.10 
0.03 

5883.12 
O.85 
0.35 

Table 4: Comparison of ASAP, GRASP and GSAT on class aim 

In conclusion, on the tested benchmarks ASAP has a rather  
satisfactory performance, indicating that hybridization of 
evolutionary algorithms with meta-heuristics based on local 
search provides a powerful tool for solving hard satisfiability 
problems. 
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Inst. 
parS-l-c 
par8-2-c 
par8-3-c 
par8-4-c 
par8-5-c 

n 
m i ~ t e r s  R~t .  Accepted [ Time [ 

Flips .[..~y~...J,..S._De~j 
' 64  8 4 1 8 ~  

6j~77~ ~ 7374 
75 18487 
67 23015 

45501 

Table 5: Results of ASAP on class par 

I Inst. II ASAP [ GRASP-A I GRASP-B I GRASP-C GRASP-D GSAT 

parl6-e NF 1 9 8 1 . 1 3  3541.71 5 2 0 5 . 2 3  3408.44 25273.14 

Table 6: Comparison of ASAP, GRASP and GSAT on class par 

II Iterations 
I 

Inst .  n I m 
jnhl 100 850 
jnh7 100 850 
jnhl2 100 J850 
jnhl7 100 850 
jnh201 100 1800 
1nh204 100 800 
jnh205 100 800  
jnh207 100 '800 
jnh209 100 800 
jnh210 100 1800 
jnh212 100 800 
jnh213 100 i 800 
jnh217 100 800 
jnh218 100 800 
jnh220 100 800 
jnh301 100 900 

Restarts 
852 34 83459 

21 1 2351 
129 71 12669 
837 3 8477 

21 
368 
203 

1529 
359 

21 
4430 

49 
30 
35 

1644 
1232 

0 
18 
6 

97 
22 

1 
273 

2 
1 
1 

105 
81 

Accepted 
Flips 

2458 
36046 
20037 

151247 
35115 
2288 

429970 
4890 
3219 
3820 

162005 
115059 

Table 7: Results of ASAP on class Jnh 

t Time 
avg SDev 

16.32 13.28 
0.43 0.16 
2.57 2.45 
1.67 1.40 
0.42 0.34 
6.49 4.01 
3.59 2.20 

26.63 24.36 
6.22 5.15 
0.39 0.28 

78.00 85.15 
0.85 0.97 
O.56 O.35 
0.66 0.65 

28.85 24.93 
25.58 16.65 

Inst. I ASAP GRASP-A 
jnhl 16.32 11.87 
jnh7 0.43 3.61 
jnhl2 2.51 0.84 
jnhl7 1.67 1.66 
jnh20l 0.42 1.48 
jnh204 6.49 14.64 
jnh205 3.59 6.17 
jnh207 26.63 3.61 
jnh209 6.22 7.45 
jnh210 0.39 2.35 
jnh212 78.00 70.92 
jnh213 0.85 9.43 
jnh217 0.56 5.76 
jnh218 0.66 1.45 
jnh220 28.85 10.17 
nh301 25.58 46.23 

GRASP-B GRASP-C GRASP-D 
5.19 10.14 8.11 
1.76 2.07 1.09 
1.36 1.24 1.95 
2.00 3.52 2.89 
0.50 

17.67 
6.28 
4.39 
6-07 
0.89 

0.73 
17.67 
7.90 
5.93 
6.73 
1.89 

29.77 
5.92 
2.23 
1.06 

18.08 

27.28 
2.46 
3.50 
2.19 
8.95 

0.74 
22.75 
10.08 
3.30 
6.44 
2.59 

112.84 
4.30 
2.00 
1.60 

20.18 
22.13 36.79 43.41 

Table 8: Comparison of ASAP, GRASP and GSAT on class Jhn 

GSAT 
0.71 
0.07 
0.74 
0.19 
0.05 
0.77 
0.50 
1.74 
0.46 
0.12 
6.31 
0.41 
0.16 
0.09 
2.98 
1.10 
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INst. 

ii8al 
ii8a2 
ii8a3 
ii8a4 
ii8bl 
ii8b2 
ii8b3 
ii8b4 
ii8cl 
ii8c2 
ii8dl 
ii8d2 
ii8el 
ii8e2 
i i l6al  
iil6a2 
i i l6bl  
iil6b2 
iil6cl 
ii16c2 
ii l6dl 
iil6d2 
ii l6el 
iil6e2 
ii32al 
ii32b4 
ii32c4 
ii32d3 
ii32e5 

n 

66 
180 
264 
396 
336 
576 
816 
1068 
510 
950 
530 
930 
520 
870 
1650 
1602 
1728 
1076 
1580 
924 
1230 
836 
1245 
532 
459 
381 
759 
824 
522 

I m 

186 
800 

1552 
2798 
2068 
4088 
6108 
8214 
3065 
6689 
3207 
6547 
3136 
6121 
19368 
21281 
24792 
16121 
16467 
13803 
15901 
12461 
14766 
7825 
9212 
9618 

20862 
19478 
11636 

I[ Iterations 

8 
2 
3 
7 
1 

17 
24 
31 

1 0 
4 0 
7 0 
4 0 
2 0 
4 0 
6 

Accepted 
Restarts Flips 

0 767 
0 494 
0 1407 
0 4807 
0 759 
0 2O590 
0 44949 
0 78649 

881 
7806 
6192 
7707 
1886 
7842 

0 20726 
182 

7 
40 
20 
46 

9 
49 

2 
30 
47 

675 
83 

254 
173 

14 
0 
2 
0 
2 
0 
3 
0 
1 
2 

56 
6 

20 
8 

573916 
22959 
66398 
46468 
67029 
21051 
63324 

4778 
24379 
28236 

312122 
91839 

292584 
122631 

I Time 
avg I SDev 

0.009 0.010 
0.010 0.009 
0.043 0.032 
0.187 0.248 
0.014 0.005 
0.460 0.336 
0.996 0.538 
1.775 1.519 
0.019 0.005 
0.186 0.111 
0.153 0.249 
0.198 0.145 
0.050 0.021 
0.214 0.117 

1.32 "1.57 
32.60 28.66 
3.33 1.48 
7.39 2.73 
5.09 3.25 
8.18 4.71 
3.15 2.51 I 

8.85 6.40 
1.22 0.42 
6.11 3.73 

13.07 11.28 
207.93 251.55 
100.46 63.66 
188.41 i 144.29 
84.62 68.92 

Table 9: Results of ASAP on class i i  

Inst. ASAP GRASP-A 

ii8a4 0~187 0.23 
ii8b4 1.775 369.37 
ii8cl 0.019 37.26 
ii8d2 0.198 3.23 
ii8e2 0.214 21.97 
iil6a2 32.70 1970.58 
ii16bl 3.33 449.99 
ii16c2 8.18 43.30 
ii16d2 8.85 56.32 
iil6el 1.22 74.62 
ii32al 13.07 68.36 
ii32b4 207.93 28.21 
ii32c4 100.46 200.97 
ii32d3 188.41 666.73 
ii32e5 84.72 16.47 

GRASP-B 

0.30 
681.60 

82.19 
3.12 

10.00 

11.20 
20.97 
17.80 

GRASP-C 

0.32 
163.25 

32.02 
3.45 

19.57 

16.89 
7.47 

10.82 
8.93 
3.64 

43.21 
119.68 

2.31 

1-66 
3.38 

47.25 
20.03 

3.21 

GRASP-D I GSAT 

0.24 0.09 
129.07 15.62 

12.33 0.03 
4.31 0.64 

15.30 0.62 
- 1373.2 
- 9.03 

78.71 39.08 
47.71 19.54 
52.93 0.61 
53.66 1.85 
40.24 1.50 

139.21 7.78 
1136.34 22.91 

24.17 1.75 

Table 10: Comparison of ASAP, GRASP and GSAT on class i i  

problem 
rl00.5.b 
r200.5.b 
r300.5.b 
r400.5.b 
r500.5.b 

machine 
P2/350 SGI 

0.01 0.02 
0.41 0.58 
3.56 4.87 

22.21 30.35 
86.15 116.72 

SGI /P2  CPU 
Time Ratio 

2 
1.49 
1.41 
1.45 
1.45 

Table 11: Machine Benchmark statistics: Runnuning time (seconds) of DIMACS test program dfmax on Pentium II and SGI 
Challenge 
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