
An Adaptive Evolutionary Algorithm for the Satisfiability
Problem

Claudio Rossi
Dept. of Computer Science
Ca' Foscari Univ. of Venice

Via Torino 155
31073 Mestre-Venezia

Italy
rossi@dsi.unive.it

Elena Marchiori
Faculty of Sciences

Free University Amsterdam
De Boelelaan 1081a
1081 HV Amsterdam

The Netherlands
elena@cs.vu.nl

Joost N. Kok
LIACS

Leiden University
P.O. Box 9512

2300 RA Leiden
The Netherlands
joost@liacs.nl

ABSTRACT
This paper introduces an adaptive heuristic-based evolution-
ary algorithm for the Satisfiability problem (SAT). The al-
gorithm uses information about the best solutions found in
the recent past in order to dynamically adapt the search
strategy. Extensive experiments on standard benchmark
problems are performed in order to asses the effectiveness
of the algorithm. The results of the experiments indicate
that this technique is rather successful: it improves on pre-
vious approaches based on evolutionary computation and it
is competitive with the best heuristic algorithms for SAT.

Categories and Subject Descriptors
G.1.6 [M a t h e m a t i c s of Comput ing] : Optimization--Global
optimization; 1.2.8 [Artificial Intel l igence]: Problem Solv-
ing, Control Methods, and Search--Heuristic methods

General Terms
Algorithms, Experimentation

1. INTRODUCTION
The satisfiability problem is a well-known NP-hard problem
with relevant practical applications (cf., e.g. [3]).
Given a boolean formula, one has to find an instantiation
of its variables that makes the formula true. Recall that a
boolean formula is a conjunction of clauses, where a clause
is a disjunction of literals; a literal is a boolean variable or
its negations and a boolean variable is a variable which can
assume only the values true, false. When all the clauses have
the same number K of literals the problem is also called K-
SAT. The SAT problem has been extensively studied and

*This work has been done while the author was visiting
LIACS.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the fidl cilation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and or
fee.
SAC00 March 19-21 Como, Italy
(c) 2000 ACM 1-58113-239-5/00/003>...>$5.00

many exact and heuristic algorithms for SAT have been in-
troduced [2; 3]. Efficient heuristic algorithms for SAT in-
clude algorithms based on local search (cf. [2; 3]) as well as
approaches based on evolutionary computation (e.g., [1; 4;
5; 9]).
The aim of this paper is to show how the integration of a
local search meta-heuristic into a simple evolutionary algo-
rithm yields a rather powerful hybrid evolutionary algorithm
for solving hard SAT problems.
In our method a simple (1+1) steady-state evolutionary al-
gorithm with preservative selection strategy is used to ex-
plore the search space, while a local search procedure is used
for the exploitation of the search space. Moreover, a meta-
heuristic similar to the one employed in TABU search [6]
is used for adapting the value of the mutation rate during
the execution, for prohibiting the exploration/exploitation
of specific regions of the search space, and for re-starting the
execution from a new search point when the search strategy
does not show any progress in the recent past.
Extensive experiments conducted on benchmark instances
from the literature support the effectiveness of this approach.

2. EVOLUTIONARY LOCAL SEARCH
Tile idea of integrating evolutionary algorithms with local
search techniques has been beneficial for the development of
successful evolutionary algorithms for solving hard combina-
torial optimization problems (e.g., [8; 9; 10 D. In a previous
work [9] we have introduced a simple local search based ge-
netic algorithm for 3-SAT. Here we consider the restriction
of that algorithm to a population consisting of just one chro-
mosome (thus crossover is not used). We call the resulting
evolutionary algorithm EvoSAP. In the next section we show
how EvoSAP can be improved by incorporating an adaptive
diversification mechmfism based on TABU search.

PROCEDURE EvoSAP
randomly generate chromosome C;
~pply Flip Heuristic to C;
WHILE (NOT termination condition) DO
BEGIN

CO=C;
apply mutation to C;
apply Flip Heuristic to C;
IF (CO better C) C=CO;

END
END

463

http://crossmark.crossref.org/dialog/?doi=10.1145%2F335603.335912&domain=pdf&date_stamp=2000-03-19

In EvoSAP a single chromosome is used, which produces an
offspring by first applying mutation and next local search.
The best chromosome between the parent and the offspring
is selected for the next generation. The process is repeated
until the termination condition is satisfied, that is, when
either a solution is found or a specified maximum number
of chromosomes have been generated.
Let us describe the main features of EvoSAP.
Representation. A chromosome is a bit string of length equal
to the number of variables describing an instantiation of the
variables of the considered SAT problem, where the value of
the i-th gene of the chromosome describes the assignment
for the i-th variable (with respect to a fixed ordering of the
variables).
Fitness function. The fitness function counts the number
of clauses that are satisfied by the instantiation described
by the chromosome. Clearly, a chromosome is better than
another one if it has higher fitness.
Mutation. The mutat ion operator considers each gene and
it flips it if a randomly generated real number in [0, 1] is
smaller than the considered mutation rate rout_prob.

PROCEDURE FLIP HEURISTIC
BEGIN

generate a random permutation S of [I..n_vars]
REPEAT

improvement : =0 ;
FOR i:=1..n_vars DO
BEGIN
flip S(i)-th gene of C;
compute gain of flip;
IF (gain >= O)
BEGIN
accept flip;
improvement : =improvement+gain;

END

ELSE /* restore previous value */
flip S(i)-th gene of C;

END
UNTIL (improvement=O)

END

Flip Heuristic. In the local search algorithm we consider,
called Flip Heuristic, each gene is flipped and the flip is ac-
cepted if the number of satisfied clauses increases or remains
equal (gain > 0). This process is repeated until no further
improvement is obtained by flipping any of the genes. In the
figure describing the Flip Heuristic in pseudo-code, n_vars
denotes the number of the variables. The gain of the flip
is computed as the number of clauses that become satisfied
after the flip minus the number of clauses that become un-
satisfied. If the gain is not negative then the flip is accepted,
otherwise it is rejected. Note that we accept also flips that
yield no improvement gain = 0, that is we allow side steps.
The inner loop is repeated until the last scan produces no
improvement.

3. ADDING ADAPTIVITY
In this section we describe how EvoSAP can be improved by
incorporating an adaptive diversification mechanism based
on TABU search. Observe that at each generation EvoSAP
produces a local optimum. Suppose the Flip Heuristic di-
rects the search towards similar (that is having small Ham-
ming distance) local optima having equal fitness function

values. Then we can try to escape from these local optima
by prohibiting the flipping of some genes and by adapting
the probability of mutation of the genes that are allowed to
be modified.
To this aim, we use the following technique based on TABU
search. A table is considered which is dynamically filled
with chromosomes having best fitness. If the best fitness in-
creases then the table is emptied. When the table is full, the
chromosomes are compared gene-wise. Those genes which
do not have the same value in all the chromosomes are la-
beled as 'frozen'.
Formally, the table can be represented by a (k, n) matrix
T, where k is the number of chromosomes the table can
contain, and n is the number of variables of the considered
SAT problem, The entry T(i , j) contains the value of the j -
th gene in the i-th chromosome of T. Let frozen be an array
of length n whose entry j is 0 if the j - t h gene is not frozen,
and it is 1 otherwise. Initially all genes are not frozen.
When the table is filled, we consider the quantities val(j) =

k ~ = 1 T(i , j) , for every j 6 [1, n]. If val(j) is 0 or k then
we set frozen(j) to 1 (the j - th gene becomes frozen). We
denote by n_frozen the number of frozen genes. The size k
of the table T is a parameter. After computational testing,
we decided to set k to 10. When the fitness of the best
chromosome increases, the table is emptied and all genes
are unfrozen, that is, frozen(j) is set to 0 for every j , and
n_frozen is set to 0.
We use the information contained in T for adapting the
search strategy during the execution as follows. Each time T
is full, the mutation rate is recomputed, the flipping of frozen
genes is prohibited, and possibly the execution is restarted
from a new random search point. Let us describe how these
three actions are performed. The mutation rate is set to
1 . n_frozen/n, thus 0 < mut_prob < 0.5. Frozen genes are
not allowed to be flipped neither by the mutat ion operator
nor by the Flip Heuristic.
The rationale behind these two actions is the following. If
table T becomes full it means that the search strategy has
found for k times best chromosomes with equal fitness. A
gene which is not frozen has the same value in all these
chromosomes. This indicates that the search directs often to
local optima containing the values of the not frozen genes.
Therefore in the next iteration we allow to flip only not
frozen genes in order to reach search points fax enough from
the attraction basin of those local optima. The mutation
rate is chosen in such a way that the lower the number of
not frozen genes is, the higher the probability will be to flip

1 them. Tile term ~ is used to keep the mutation rate smaller
or equal than 0.5.
Finally the information in the table T is used for possibly
restarting the search. The chromosomes in T are grouped
into equivalence classes, each class containing equal chro-
mosomes. If the nnlnber of equivalent classes is very small,
that is less or equal than two, it means that the last k best
chromosomes found so far are of just one or two forms, in-
dicating that the search is strongly biased towards those
chromosomes. Then it seems worth to re-start the search
from a new randomly generated chromosome.
The overall Adaptive evolutionary algorithm for the SAtisfl-
ability Problem, called ASAP, is summarized in pseudo-code
below. Adaptive mutation is the mutation operator which
allows to mutate only not frozen genes. Analogously, the
adaptive Flip Heuristic allows only the flipping of non-frozen

464

genes.
The mutation rate is initially equal to 0.5. The termination
condition in ASAP is equal to the one of EvoSAP, that is,
either the optimum is found or the maximum number of
chromosomes have been generated.

PROCEDURE ASAP
randomly generate chromosome C;
apply Flip Heuristic to C;
WHILE (not termination condition) DO
BEGIN

CO=C;
apply adaptive mutation to C;
apply adaptive Flip Heuristic to C;
UPDATE_TABLE;

END
END

PROCEDURE UPDATE_TABLE
BEGIN

unfreeze all g e n e s ;

IF (fitness CO > fitness C) /* discard C */

C=CO;
ELSE
IF (fitness C > fitness CO)

BEGIN
empty table T;
add C to table T;

END
ELSE /* fitness CO = fitness C */
BEGIN
add C to table T;
IF (table T full)
BEGIN
compute frozen genes;
adapt mutation rate;
count classes;
IF (number of classes <= 2)

RESTART;
empty table T;

END
END

END

4. RESULTS OF EXPERIMENTS
In order to evaluate the performance of our algorithm we
conduct extensive simulations on benchmark instances from
the literature, and compare the results to those reported in
previous work based on evolutionary computation as well as
to the most etfective local search algorithms for SAT.

4.1 Comparison with Evolutionary AIgorithms
We will consider three evolutionary algorithms for SAT, here
called FlipGA [9], RFGA [7] and SAW [1]. FlipGA is a
heuristic based genetic algorithm combining a simple GA
with the Flip Heuristic. RFGA uses an adaptive refining
function to discriminate between chromosomes that satisfy
the same number of clauses and a heuristic mutation opera-
tor. The SAW algorithm is a (1,A*) (A* is the best A found in
a suitable number of test experiments) evolutionary strategy
using the SAW-ing (stepwise adaptation of weights) mecha-
nism for adapting the fitness function according to the be-
havior of the algorithm in the previous steps. We test ASAP

on the same instances (test suites 1, 2) used in [1; 7; 9], which
are 3-SAT instances generated using the generator devel-
oped by Allen van Gelder. These instances are available at
http : / / www.in.tu-clausthal.de / ~gottlieb /benchmarks / 3sat.
All instances lay in the phase transition, where the number
of clauses is approximately 4.3 times the number of the vari-
ables.
- Test suite 1 contains four groups of three instances each.
The groups have a number of variables of 30,40,50 and 100.
- Test suite 2 contains fifty instances with 50 variables.
The performance of genetic algorithms is generally evaluated
by means of two measures: the Success Rate (SR), that is,
the percentage of runs in which the algorithm found a solu-
tion for that instance or group of instances; and the Aver-
age number of evaluations to Solution (AES) index, which
counts the average number of fitness evaluations performed
to find the solution. Note that the AES takes into account
only successful runs.
Since our algorithm uses also local search, we use an approx-
imated estimation of the AES called Average Flip cost in
terms of fitness Evaluation to Solution(AFES). The AFES
index is based on the number of flips performed during the
execution of the local search (both accepted and not ac-
cepted flips are counted) and is an estimation of the cost
of the local search step in terms of fitness evaluations. If
the local search performs n_:flips flips (including accepted
and not accepted flips), one can estimate a cost of K •
n_flips/n_vars fitness evaluations (cf. [9]), where n_vars is
the number of variables in the instance and K is the clause
length. This applies only to K-SAT instances which are ran-
domly generated.
The results of the experiments axe given in Tables 1, 2, where
n and m denote the number of variables and of clauses,
respectively. All the algorithms are run 50 times on each
problem instance, and the average of the results is reported.
Moreover, the termination conditions for all algorithms is
satisfied either if a solution is found or if a maximum of
300000 chromosomes have been generated.
The results show that ASAP has a very good performance,
with SR equal to 1 in all instances, and smaller AFES than
FlipGA in all but one instance (instance 2) where it has
AFES slightly bigger than FlipGA.

Alg. SR A FES
ASAP 1 5843
FlipGA 1 6551
RFGA 0.94 35323

Table 2: Results of ASAP, FlipGA, RFGA on Test Suite 2

4.2 Comparison with Local Search Algorithms
We consider two local search techniques, GRASP [11] and
GSAT [12], which are amongst the best local search algo-
rithms for SAT. GRASP (Greedy Randomized Search Pro-
cedure) is a general search technique: a potential solution
is constructed according to a suitable greedy heuristic, and
improved by a local search procedure. These two steps are
repeated until either an optimal solution is found or a max-
imum number of iterations has been reached. In (the ex-
tended version of) [11] four GRASP algorithms for SAT are
introduced. GSAT is a greedy heuristic: one starts from a
randomly generated candidate solution and iteratively tries

465

I I I [[ASAP II F l ipGA II RFGA II SAW I
I n s t . n m SR APES SR ALOES SR AES SR AES

Table 1: Comparison of ASAP, FlipGA, R F G A and SAW on Test Suite 1

to increase the number of satisfied clauses by flipping the
value of a sui table variable. The variable chosen for flipping
is the one tha t gives the highest increase in the number of
satisfied clauses.
We compare these two algori thms with A S A P on a subset of
the DIMACS instances repor ted in the ex tended version of
[11]. All the considered instances are satisfiable. These in-
stances for SAT s t e m from different sources and are grouped
into families.
- The aim family contains artificially genera ted 3-SAT in-
stances and are cons t ruc ted to have exact ly one solution.
The number of variables is 50, 100 and 200 and the ratio
n_clanses/n_vars is 2.0, 3.4 and 6.0. In to ta l there axe 36
instances.
- Family pa r instances arise from a problem in learning the
parity function. These are 5 instances wi th a varying num-
ber of variables and clauses.
- The 16 Jnh ins tances are randomly genera ted and have a
varying clause length.
- Instances i± arise from the "boolean funct ion synthesis"
problem; they have a number of variables ranging from 66
to 1728 and n u m b e r of clauses ranging from few hundreds
up to over 20 thousands. This family counts 41 instances.
Execution t ime is the performance measure used in the DI-
MACS Challenge to evaluate local search algorithms. Our
code was wr i t ten in C and ran on Intel Pen t i um II (Mem-
ory: 64 Mb ram, Clock: 350 MHz, Linux version: Red Hat
5.2). In order to compare ASAP with G R A S P and GSAT,
we report in Table 11 the results of the D I M A C S Challenge
machine benchmark on the Pent ium II and on the SGI Chal-
lenge, the machine used in the experiments with GRASP
and GSAT repor ted in (the extended version of) [11]. The
results indicate t ha t the Pcnt ium II is approximately 1.5
times faster than the SGI Challenge.
The results of the exper iments are given in Tables 4-10.
Again, n and m denote the number of variables and of
clauses, respectively. All the algorithms are run 10 times
on each instance. In the tables containing the results of
ASAP we give the average number of i terat ions, of restarts,
of accepted flips, and the average t ime (in seconds) together
with the s tandard deviat ion. In the Tables compar ing ASAP
with G R A S P and G S A T we give the average t ime of ASAP
(run on Pen t ium II) , and report the results contained in (the
extended version of) [11] (run on SGI Challenge), where an
entry labeled ' - ' means tha t the result for tha t instance has

not been given in [11].
All a lgori thms were always able to find the solution on ev-
ery instance, except on the instances relat ive to the entries
labeled ' N F ' (not found) where A S A P was not able to find
a solution.
The results of the tables comparing A S A P with G R A S P
and G S A T show that ASAP is compet i t ive with these two
algori thms, except on the instance aim-100-2_0-yesl and on
those of the class p a r l 6 - c , where A S A P is not able to find
any solution within 300000 chromosome evaluations.
On the other instances, we can summar ize the results as
follows. The performance of A S A P on the class aim is
ra ther satisfactory, finding the solution in much shorter t ime
than G R A S P on some instances, like aim-200-6_0-yesl. On
the class par8 ASAP outperforms G S A T and has perfor-
mance comparable to the one of GRASP. However, on the
class p a r l 6 ASAP is not able to find any solution. On the
class Jn.h G S A T outperforms G R A S P as well as ASAP, with
A S A P and GRASP giving comparable results. Finally, on
class i i A S A P outperforms G R A S P and G S A T on instances
i i 8 and £i16 (except i i l6el where G S A T is faster), while
G S A T outperforms GRASP and A S A P on instances i i 3 2 ,
being A S A P on the average faster than GRASP.

5. DISCUSSION
I t is interesting to analyze the role of the adapta t ion mech-
anism in ASAP. For lack of space, we do not report the
results obtained by EvoSAT on the considered benchmark
instances, but we briefly compare them with those obtained
by ASAP. On instances of the Test Suites 1,2 the perfor-
mance of EvoSAP is similar to the one of ASAP. However,
on the DIMACS instances EvoSAP has a worse performance
than ASAP. For example, on the instance jnh212 EvoSAP
has a success rate of 0.9, it takes 10855 iterations (on the
average) to find a solution, and over 1.2 millions (on the
average) of accepted flips.
As i l lustrated in the tables on the D I M A C S experiments, the
res tar t mechanism of ASAP is not used in some experiments
(e.g., on the classes aim-100-6_0 and i i 8) . However, in
o ther experiments, the mechanism is more effective. For
example, on the instance jnh212 the performance of ASAP
wi thout the restart mechanism becomes poor: A S A P is able
to find a solution only in five of the ten runs. Thus the
results indicate that the adapta t ion mechanism of A S A P
improves the performance of the evolut ionary algorithm.

466

Inst.
aim-50-2_O-yesl
aim-50-3_4-yesl
aim-50-f_O-yesl
aim-lOO-3_4-yesl
aim-lOO-6_O-yesl
aim-2OO-3_4-yesl
aim-2OO-6_O-yesl

Inst.
aim-50-2_0-yesl
aim-50-3_4-yesl
aim-50-6_O-yesl

n m

50 I00
50 170
50 300
100 340
100 600
200 680
200 1200

H Iterat ions Restarts
28112 349 1693310

42 1 1979
3 0 143

115 6 11672
4 0 386

2774 208 614675
6 0 1376

Accepted
Flips I

Time
avg.. I SDev

18.758 22.744
0.050 0.073
0.006 0.008
0.329 0.420
0.022 0.017
20.70 28'.348
0.110 0.089

Table 3: Results of ASAP on class aim

aim-100-2_0-yesl
aim-100-3_4-yesl
aim-100-6_0-yesl
aim-200-3_4-yesl
aim-200-6_0-yesl

II ASAP I GRASP-A
18.76 2.23
0.05 0.60
0.01 0.08
NF

0.33
0.02

20.70
0.11 126.99

4.86
1.01
0.07

2.27
0.59
0.08

2048152

2.14
0.36
0.05

543.51 1386.51 836.12
30.94 54.71 46.71 34.00

0.66 0.71 0.72 0.63

121.90 176.91 120.04

I GSAT I
3.33
0.10
0.03

5883.12
O.85
0.35

Table 4: Comparison of ASAP, GRASP and GSAT on class aim

In conclusion, on the tested benchmarks ASAP has a rather
satisfactory performance, indicating that hybridization of
evolutionary algorithms with meta-heuristics based on local
search provides a powerful tool for solving hard satisfiability
problems.

6. REFERENCES

[1] T. B~ick, A. Eiben, and M. Vink. A superior evolution-
ary algorithm for 3-SAT. In D. W. N. Saravanan and
A. Eiben, editors, Proceedings of the 7th Annual Con-
ferenee on Evolutionary Programming, Lecture Notes
in Computer Science, pages 125-136. Springer, 1998.

[2] R. Battiti and M. Protasi. Approximate algorithms and
heuristics for MAX-SAT. In D.-Z. Du and P. Parda-
los, editors, Handbook of Combinatorial Optimization,
pagcs 77-148. Kluver Academic Publisher, 1998.

[31 D. Du, J. Gu, and P. P. (Eds.). Satisfiability Problem:
Theory and Applications. AMS, DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science,
vol 35, 1997.

[4] A. Eiben and 3. van der Hauw. Solving 3-SAT with
adaptive Genetic Algorithms. Ill Proceedings of the 4th
IEEE Conference on Evolutionary Computation, pages
81-86. IEEE Press, 1997.

[5] G.Folino, C.Pizzuti, and G.Spezzano. Combining cellu-
lar genetic algorithms and local search for solving sat-
isfiability problems. In Proe. off ICTAI'98 lOth IEEE
International Conference Tools with Artificial Intelli-
gence, pages 192-198. IEEE Computer Society, 1998.

[6] F. Glover and D. D. Werra. Tabu Search. Vol.41, Baltzer
Science, 1993.

[7] J. Gottlieb and N. Voss. Improving the performance of
evolutionary algorithms for the satisfiability problem by

refining functions. In A. Eiben, T. Bck, M. Schoenauer,
and H.-P. Schwefel, editors, Proceedings of the Fifth
International Conference on Parallel Problem Solving
from Nature (PPSN V), LNCS 1498, pages 755 - 764.
Springer, 1998.

[8] E. Marchiori. A simple heuristic based genetic algo-
r i thm for the maximum clique problem. In J. C. et al.,
editor, ACM Symposium on Applied Computing, pages
366-373. ACM Press, 1998.

[9] E. Marchiori and C. Rossi. A flipping genetic algorithm
for hard 3-SAT problems. In Genetic and Evolutionary
Computation Conference, 1999.

[10] P. Merz and B. Freisleben. Genetic local search for the
TSP: New results. In IEEE International Conference on
Evolutionary Computation, pages 159-164. IEEE Press,
1997.

[11] M. Resende and T. Feo. A GRASP for satisfiability. In
D. Johnson and M. Trick, editors, Cliques, Coloring and
Satisfiability, pages 499-520. AMS, DIMACS Series in
Discrete Mathematics and Theoretical Computer Sci-
ence, vol 26, 1996.

[12] B. Selman, H. Levesque, and D. Mitchell. A new
method for solving hard satisfiability problems. In
Proceedings of the 10th National Conference on Ar-
tificial Intelligence, AAAI-92, pages 440-446. AAAI
Press /The MIT Press, 1992.

467

Inst.
parS-l-c
par8-2-c
par8-3-c
par8-4-c
par8-5-c

n
m i ~ t e r s R~t . Accepted [Time [

Flips .[..~y~...J,..S._De~j
' 64 8 4 1 8 ~

6j~77~ ~ 7374
75 18487
67 23015

45501

Table 5: Results of ASAP on class par

I Inst. II ASAP [GRASP-A I GRASP-B I GRASP-C GRASP-D GSAT

parl6-e NF 1 9 8 1 . 1 3 3541.71 5 2 0 5 . 2 3 3408.44 25273.14

Table 6: Comparison of ASAP, GRASP and GSAT on class par

II Iterations
I

Inst . n I m
jnhl 100 850
jnh7 100 850
jnhl2 100 J850
jnhl7 100 850
jnh201 100 1800
1nh204 100 800
jnh205 100 800
jnh207 100 '800
jnh209 100 800
jnh210 100 1800
jnh212 100 800
jnh213 100 i 800
jnh217 100 800
jnh218 100 800
jnh220 100 800
jnh301 100 900

Restarts
852 34 83459

21 1 2351
129 71 12669
837 3 8477

21
368
203

1529
359

21
4430

49
30
35

1644
1232

0
18
6

97
22

1
273

2
1
1

105
81

Accepted
Flips

2458
36046
20037

151247
35115
2288

429970
4890
3219
3820

162005
115059

Table 7: Results of ASAP on class Jnh

t Time
avg SDev

16.32 13.28
0.43 0.16
2.57 2.45
1.67 1.40
0.42 0.34
6.49 4.01
3.59 2.20

26.63 24.36
6.22 5.15
0.39 0.28

78.00 85.15
0.85 0.97
O.56 O.35
0.66 0.65

28.85 24.93
25.58 16.65

Inst. I ASAP GRASP-A
jnhl 16.32 11.87
jnh7 0.43 3.61
jnhl2 2.51 0.84
jnhl7 1.67 1.66
jnh20l 0.42 1.48
jnh204 6.49 14.64
jnh205 3.59 6.17
jnh207 26.63 3.61
jnh209 6.22 7.45
jnh210 0.39 2.35
jnh212 78.00 70.92
jnh213 0.85 9.43
jnh217 0.56 5.76
jnh218 0.66 1.45
jnh220 28.85 10.17
nh301 25.58 46.23

GRASP-B GRASP-C GRASP-D
5.19 10.14 8.11
1.76 2.07 1.09
1.36 1.24 1.95
2.00 3.52 2.89
0.50

17.67
6.28
4.39
6-07
0.89

0.73
17.67
7.90
5.93
6.73
1.89

29.77
5.92
2.23
1.06

18.08

27.28
2.46
3.50
2.19
8.95

0.74
22.75
10.08
3.30
6.44
2.59

112.84
4.30
2.00
1.60

20.18
22.13 36.79 43.41

Table 8: Comparison of ASAP, GRASP and GSAT on class Jhn

GSAT
0.71
0.07
0.74
0.19
0.05
0.77
0.50
1.74
0.46
0.12
6.31
0.41
0.16
0.09
2.98
1.10

468

INst.

ii8al
ii8a2
ii8a3
ii8a4
ii8bl
ii8b2
ii8b3
ii8b4
ii8cl
ii8c2
ii8dl
ii8d2
ii8el
ii8e2
i i l6al
iil6a2
i i l6bl
iil6b2
iil6cl
ii16c2
ii l6dl
iil6d2
ii l6el
iil6e2
ii32al
ii32b4
ii32c4
ii32d3
ii32e5

n

66
180
264
396
336
576
816
1068
510
950
530
930
520
870
1650
1602
1728
1076
1580
924
1230
836
1245
532
459
381
759
824
522

I m

186
800

1552
2798
2068
4088
6108
8214
3065
6689
3207
6547
3136
6121
19368
21281
24792
16121
16467
13803
15901
12461
14766
7825
9212
9618

20862
19478
11636

I[Iterations

8
2
3
7
1

17
24
31

1 0
4 0
7 0
4 0
2 0
4 0
6

Accepted
Restarts Flips

0 767
0 494
0 1407
0 4807
0 759
0 2O590
0 44949
0 78649

881
7806
6192
7707
1886
7842

0 20726
182

7
40
20
46

9
49

2
30
47

675
83

254
173

14
0
2
0
2
0
3
0
1
2

56
6

20
8

573916
22959
66398
46468
67029
21051
63324

4778
24379
28236

312122
91839

292584
122631

I Time
avg I SDev

0.009 0.010
0.010 0.009
0.043 0.032
0.187 0.248
0.014 0.005
0.460 0.336
0.996 0.538
1.775 1.519
0.019 0.005
0.186 0.111
0.153 0.249
0.198 0.145
0.050 0.021
0.214 0.117

1.32 "1.57
32.60 28.66
3.33 1.48
7.39 2.73
5.09 3.25
8.18 4.71
3.15 2.51 I

8.85 6.40
1.22 0.42
6.11 3.73

13.07 11.28
207.93 251.55
100.46 63.66
188.41 i 144.29
84.62 68.92

Table 9: Results of ASAP on class i i

Inst. ASAP GRASP-A

ii8a4 0~187 0.23
ii8b4 1.775 369.37
ii8cl 0.019 37.26
ii8d2 0.198 3.23
ii8e2 0.214 21.97
iil6a2 32.70 1970.58
ii16bl 3.33 449.99
ii16c2 8.18 43.30
ii16d2 8.85 56.32
iil6el 1.22 74.62
ii32al 13.07 68.36
ii32b4 207.93 28.21
ii32c4 100.46 200.97
ii32d3 188.41 666.73
ii32e5 84.72 16.47

GRASP-B

0.30
681.60

82.19
3.12

10.00

11.20
20.97
17.80

GRASP-C

0.32
163.25

32.02
3.45

19.57

16.89
7.47

10.82
8.93
3.64

43.21
119.68

2.31

1-66
3.38

47.25
20.03

3.21

GRASP-D I GSAT

0.24 0.09
129.07 15.62

12.33 0.03
4.31 0.64

15.30 0.62
- 1373.2
- 9.03

78.71 39.08
47.71 19.54
52.93 0.61
53.66 1.85
40.24 1.50

139.21 7.78
1136.34 22.91

24.17 1.75

Table 10: Comparison of ASAP, GRASP and GSAT on class i i

problem
rl00.5.b
r200.5.b
r300.5.b
r400.5.b
r500.5.b

machine
P2/350 SGI

0.01 0.02
0.41 0.58
3.56 4.87

22.21 30.35
86.15 116.72

SGI /P2 CPU
Time Ratio

2
1.49
1.41
1.45
1.45

Table 11: Machine Benchmark statistics: Runnuning time (seconds) of DIMACS test program dfmax on Pentium II and SGI
Challenge

469

. . ~.~ :!~.::..~<.~:~ ~ ~:

