Check for
Updates

An Adaptive Evolutionary Algorithm for the Satisfiability
Problem

*
Claudio Rossi
Dept. of Computer Science
Ca’ Foscari Univ. of Venice
Via Torino 155
31073 Mestre-Venezia

rossi@dsi.unive.it

ABSTRACT

This paper introduces an adaptive heuristic-based evolution-
ary algorithm for the Satisfiability problem (SAT). The al-
gorithm uses information about the best solutions found in
the recent past i order to dynamically adapt the search
strategy. Extensive experiments on standard benchmark
problems are performed in order to asses the effectiveness
of the algorithm. The results of the experiments indicate
that this technique is rather successful: it improves on pre-
vious approaches based on evolutionary computation and it
is competitive with the best heuristic algorithms for SAT.

Categories and Subject Descriptors

G.1.6 [Mathematics of Computing]: Optimization— Global

optimization; 1.2.8 [Artificial Intelligence]: Probiem Solv-
ing, Control Methods, and Search— Heurisiic methods

General Terms

Algorithms, Experimentation

1. INTRODUCTION

The satistiability problem is a well-known NP-hard problem
with relevant practical applications (cf., e.g. [3]).

Given a boolean formula, one has to find an instantiation
of its variables that makes the formula true. Recall that a
boolean formula is a conjunction of clauses, where a clause
is a disjunction of literals; a literal is a boolean variable or
its negation, and a boolean variable is a variable which can
assume only the values {rue, false. When all the clauses have
the same number K of literals the problem is also called K-
SAT. The SAT problem: has been extensively studied and

* . . L.
This work has been done while the author was visiting

LIACS.

Permission to make digital or hard copies of all or pat of this
work for personal or classroom usc is granled without fee provided
that copies are not made or distribited for profit or commercial
advaniage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or 1o redisteibute to lists, requires prior specific permission and or
fee.

SAC'D0 March 19-21 Como, ltaly

{c) 2000 ACM 1-53113-239-3/00/003>...>85.00

463

Elena Marchiori
Faculty of Sciences
Free University Amsterdam
De Boelelaan 1081a
1081 HY Amsterdam

ltaly The Netherlands

elena@cs.vu.nl

Joost N. Kok
LIACS
Leiden University
P.O. Box 9512
2300 RA Leiden
The Netherlands

joost@liacs.nl

many exact and heuristic algorithms for SAT have been in-
troduced [2; 3]. Efficient heuristic algorithms for SAT in-
clude algorithms based on local search (cf. [2; 3}) as well as
approaches based on evolutionary computation (e.g., [1; 4;
5; 9)).

The] aim of this paper is to show how the integration of a
local search meta-heuristic into a simple evolutionary algo-
rithm yields a rather powerful hybrid evolutionary algorithm
for solving hard SAT problems.

fn our method a siinple (1-+1) steady-state evolutionary al-
gorithm with preservative selection strategy is used to ex-
plore the search space, while a local search procedure is used
for the exploitation of the search space. Moreover, a meta-
heuristic similar to the one employed in TABU search [6]
is used for adapting the value of the mutation rate during
the execution, for prohibiting the exploration/exploitation
of specific regions of the search space, and for re-starting the
execution from a new search point when the search strategy
does not show any progress in the recent past.

Extensive experiments conducted on beuchmark instances
from the literature support the effectiveness of this approach.

2. EVOLUTIONARY LOCAL SEARCH

The idea of integrating evolutionary algorithms with local
search techniques has been beneficial for the development of
successful evolutionary algorithms for solving hard combina-
torial optimization problems {e.g., [8; 9; 10)). In a previous
work [9] we have introduced a simple local search based ge-
netic algorithm for 3-SAT. Here we consider the restriction
of that alporithm to a population consisting of just one chro-
mosome (thus crossover is not used). We call the resulting
evolutionary algorithm EvoSAP. In the next section we show
how EvoSAP can be improved by incorporating an adaptive
diversification mechanism based on TABU search.

PROCEDURE EvoSAP
randomiy generate chromosome C;
apply Flip Heuristic %o C;
WHILE {(NOT terminationr coadition) DO
BEGIN
Co=C;
apply mutation to C;
apply Flip Heuristic to C;
IF (CO better C) C=C0;
END
END

http://crossmark.crossref.org/dialog/?doi=10.1145%2F335603.335912&domain=pdf&date_stamp=2000-03-19

In EvoSAP a single chromosome is used, which produces an
offspring by first applying mutation and next local search.
The best chromosome between the parent and the offspring
is selected for the next generation. The process is repeated
until the termination condition is satisfied, that is, when
either a solution is found or a specified maximum number
of chromosomes have been generated.

Let us describe the main features of EveSAP.
Representation. A chromosome ig a bit string of length equal
to the number of variables describing an instantiation of the
variables of the considered SAT problem, where the value of
the ¢-th gene of the chromosome describes the assignment
for the i-th variable (with respect to a fixed ordering of the
variables).

Fiiness funciion. The fitness function counts the number
of clauses that are satisfied by the instantiation described
by the chromosome. Clearly, a chromosome is better than
another one if it has higher fitness.

Mutation. The mutation operator considers each gene and
it flips it if a randomly generated real number in [0,1] is
smaller than the considered mutation rate mut_prob.

PROCEDURE FLIP HEURISTIC
BEGIN
generate a random permutation § of [1..n_vars]
REPEAT
improvement:=0;
FOR i:=1..n_vars DO
BEGIN
flip S5{i)-th gene of C;
compute gain of flip;
IF (gain >= @)
BEGIN
accept flip;
improvement: =improvement+gain;
END
ELSE /* restore previous value #/
flip S{(i)-th gene of C;
END
UNTIL (improvement=0)
END

Flip Heurtstic. In the local search algorithm we consider,
called Flip Heuristic, cach gene is flipped and the flip is ac-
cepted if the number of satisfied clauses increases or remains
equal (gain > 0). This process is repeated until no further
improvement is obtained by flipping any of the genes. In the
figure describing the Mip Heuristic in pseudo-code, n_wars
denotes the number of the variables. The gatn of the fAlip
is computed as the nuinber of clauses that become satisfied
after the flip minus the number of clauses that become un-
satisfied. 1f the gain is nol negative then the flip is accepted,
otherwise it is rejected. Note that we accept also flips that
yield no improvement gain = 0, that is we allow side steps.
The inner loop is repeated until the last scan produces no
improvement.

3. ADDING ADAPTIVITY

In this section we describe how EvoSAP can be improved by
incorporating an adaptive diversification mechanism based
on TABU search. Observe that at sach generation EvoSAP
produces a local optimum. Suppose the Flip Heuristic di-
rects the search towards similar (that is having small Ham-
ming distance} local optima having equal fitness function

464

values. Then we can try to escape from these local optima
by prohibiting the flipping of some genes and by adapting
the probability of mutation of the genes that are allowed to
be modified.

To this aim, we use the following technique based on TABU
search. A table is considered which is dynamically filled
with chromosomes having best fitness. If the best fitness in-
creases then the table is emptied. When the table is full, the
chromosomes are compared gene-wise. Those genes which
do not have the same value in all the chromosomes are la-
beled as ‘frozen’.

Formally, the table can be represented by a (k, r} matrix
T, where k is the number of chromosomes the table can
contain, and n is the number of variables of the considered
SAT problem. The entry T(i,j) contains the value of the j-
th gene in the i-th chromosome of 7'. Let frozen be an array
of length n whose entry j is 0 if the j-th gene is not frozen,
and it is 1 otherwise. Initially all genes are not frozen.
When the table is filled, we consider the gquantities »al(j) =
S, T(i,7), for every 7 € {L,n]. If wal(s} is 0 or k then
we set frozen(j} to 1 (the j-th gene becomes frozen). We
denote by n.frozen the number of frozen genes. The size &
of the table T is a parameter. After computational testing,
we decided to set £ to 10. When the fitness of the best
chromosome increases, the table is emptied and all genes
are unfrozen, that is, frozen(s) is set to 0 for every 7, and
n_frazen is set to 0.

We use the information contained in T" for adapting the
search strategy during the execution as follows. Each time T
is full, the mutation rate is recomputed, the flipping of frozen
genes is prohibited, and possibly the execution is restarted
from a new random search point. Let us describe how these
three actions are performed. The mutation rate is set to
% - n_frozen/n, thus 0 < mui_prob < 0.5. Frozen genes are
not allowed to be flipped neither by the mutation operator
nor by the Flip Henristic.

The rationale behind these two actioas is the following. If
table T hecomes full it means that the search strategy has
found for k times best chromosomes with equal fitness. A
gene which is not {rozen has the same value in all these
chromosomes. This indicates that the search directs often to
local optima containing the values of the not frozen genes.
Therefore in the next iteration we allow to flip only not
frozen genes in order to reach search points far enough from
the attraction basin of those local optima. The mutation
rate is chosen in such a way that the lower the number of
not frozen genes is, the higher the probability will be to flip
them. The term % is used to keep the mutation rate smaller
ar equal than 0.5,

Finally the information in the table T is used for possibly
restarting the search. The chromosomes in 1" are grouped
into equivalence classes, each class contaluing equal chro-
mosomes. If the number of equivalent classes is very small,
that is less or equal than two, it means that the last & best
chromosomes found so far are of just cne or two forms, in-
dicating that the search is strongly biased towards those
chromosomes. Then it seems worth to re-start the search
from a new randomly generated chromosome.

The overall Adaptive evolutionary algorithm for the SAtisfi-
ability Problem, called ASAP, is summarized in pseudo-code
below. Adaptive mutation is the mutation operator which
allows to mutate only not frozen gemes. Analogously, the
adaptive Flip Heuristic allows only the flipping of non-frozen

genes.

The mutation rate is initially equal to 0.5. The termination
condition in ASAP is equal to the one of EvoSAP, that is,
either the optimum is found or the maximum number of
chromosomes have been generated.

PROCEDURE ASAP
randomly generate chromosome C;
apply Flip Heuristic to C;
WHILE (not termination condition) DO
BEGIN
€0=C;
apply adaptive mutation to C;
apply -adaptive Flip Heuristic to C;
UPDATE_TABLE;
END
END

PROCEDURE UPDATE_TABLE
BEGIN
unfreeze all genes;
IF (fitness CO > fitpess C) /+* discard C #/
=C0;
ELSE
IF (fitness C > fitness C0)
BEGIN
empty table T;
add C to table T;
END
ELSE /% fitness CO = fitness C =/
BEGIN
add C to table T;
IF (table T fnll)
BEGIN
compute frozen genes;
adapt mutation rate;
count classes;
IF (number of classes <= 2)
RESTART;
empty table T;
END
END
END

4. RESULTS OF EXPERIMENTS

In order to evaluate the performance of our algorithim we
conduct extensive simulations on benchmark instances from
the literature, and compare the results to those reported in
previous work based on evolutionary computation as well as
to the most elfective local search algorithms for SAT.

4.1 Comparison with Evolutionary Algorithms
We will consider three evolutionary algorithms for SAT, here
called FlipGA [9], RFGA [7] and SAW [1]. FlipGA is a
heuristic based genetic algorithm combining a simple GA
with the Flip Heuristic. RFGA uses an adaptive refining
function to discriminate between chromosomes that satisfy
the same number of clauses and a heuristic mutation opera-
tor. The SAW algorithm is a (1,A*) (A” is the best A found in
a suitable number of test experiments) evolutionary strategy
using the SAW-ing (stepwise adaptation of weights) mecha-
nism for adapting the fitness function according to the be-
havior of the algorithm in the previous steps. We test ASAP

485

on the same instances (test suites 1, 2) used in [1; 7, 9], which
are 3-SAT instances generated using the generator devel-
oped by Allen van Gelder. These instances are available at
http:/ /www.in.tu-clausthal.de/~gottlieb/benchmarks/3sat.
All instances lay in the phase transition, where the number
of clauses is approximaiely 4.3 times the number of the vari-
ables.

- Test suite 1 contains four groups of three instances each.
The groups have a number of variables of 30,40,50 and 100.
- Test suite 2 contains fifty instances with 50 variables.
The performance of genetic algorithms is generally evaluated
by means of two measures: the Success Rate (SR), that is,
the percentage of runs in which the algorithm found a solu-
tion for that instance or group of instances; and the Aver-
age number of evalyations to Solution (AES) index, which
counts the average number of fitness evaluations performed
to find the solution. Note that the AES takes into account
only successtul runs.

Since our algorithm uses also local search, we use an approx-
imated estimation of the AES called Average Flip cost in
terms of fitness Evaluation to Solution(AFES). The AFES
index is based on the number of flips performed during the
execution of the local search (both accepted and not ac-
cepted flips are counted) and is an estimation of the cost
of the local search step in terms of fitness evaluations. If
the Jocal search performs n_flips flips {including accepted
and not accepted flips), one can estimate a cost of K #
n_flips /n_vars fitness evaluations (cf. [9]), where n_vars is
the number of variables in the instance and K is the clause
length. This applies only to K-SAT instances which are ran-
domly generated.

The results of the experiments are given in Tables 1, 2, where
n and m denote the number of variables and of clauses,
respectively. All the algorithms are run 50 times on each
problem instance, and the average of the results is reported.
Moreover, the termination conditions for all algorithms is
satisfied either if a solation is found or if a maximum of
300000 chromosomes have been generated.

The resultis show that ASAP has a very good performance,
with SR equal to 1 in all instances, and smaller AFES than
FlipGA in all but one instance (instance 2) where it has
AFES slighily bigger than FlipGA.

Alg. | Sk | AFES
ASAD 1| 5513
FlipGA 1] 6551
RPGA || 0.94 | 35323

Table 2: Results of ASAP, FlipGA, RFGA on Test Suite 2

4,2 Comparison with Local Search Algorithms
We consider two local search techniques, GRASP [11] and
GSAT [12], which are amongst the best local search algo-
rithms for SAT. GRASP {Greedy Randomized Search Pro-
cedure) is a general search technique: a potential solution
is constructed according to a suitable greedy heuristic, and
improved by a local search procedure. These two steps are
repeated until either an optimal solution is found or a max-
imum number of iterations has been reached. In (the ex-
tended version of) [11} four GRASP algorithms for SAT are
introduced. GSAT is a greedy heuristic: one starts from a
randomly generated candidate solution and iteratively tries

ASAT FlipGA RFGA SAW
Inst.| n | m | SRTAFES] SR | AFES | SR | ABS || oR | AES
1 30 | 129] 1.00 27 || 1.00 120 || 1.00 | 253] 1.00 754
2 30 {120 | 1.00 | 2024 [Loo| 1961 | 1.00 | 14370 || 1.00 | 88776
3 30 {120 [1.00 [408 | 100 784 || 100 | 6404 || 1.00 | 12516
4 40 | 172 {| 1.00 59 |l 1.00 189 |{ 1.00 | 549 (| 100 | 3668
5 40 | 172 | 1.00 54 || 1.00 165 || 100} 316 || 1.00 | 1609
6 40 | 172 || .00 1214 (] 1.00 1618 || 1.00 24684 || 0.78 | 154590
7 50 | 215 || 1.00 85 (| 1.00 219 [{ 100 | 480 { 1.00 { 2837
8 50 215) 1.00 103 § 1.00 435 || 1.00 8991 | 1.00 8728
9 50 | 215 || 1.00 | 7486 || 1.00 | 11673 || 0.92 | 85005 || 0.54 | 170664
10 | 100 | 430 { 1.00 | 62039 || 1.00 | 132371 |} 0.54 | 127885 || 0.16 | 178520
11 {100 {430 | 100 | 281l 100! 1603 [| 1.00 | 18324 {f 1.00 | 43767
12 100 | 430 § 1.00 208 |} 1.00 1596 i 1.00 15816 § 1.00 37605

Table 1: Comparison of ASAP, FlipGA, RFGA and SAW on Test Suite 1

to increase the number of satisfied clauses by flipping the
value of a suitable variable. The variable chosen for flipping
is the one that gives the highest increase in the number of
satisfied clauses.

We compare these two algorithms with ASAP on a subset of
the DIMACS instances reported in the extended version of
{11}. All the considered instances are satisfiable. These in-
stances for SAT stem from different sources and are grouped
into families.

- The aim family contains artificially generated 3-SAT in-
stances and are constructed to have exactly one sclution.
The number of variables is 50, 100 and 200 and the ratic
n_clauses/n.vars is 2.0, 3.4 and 6.0. In total there are 36
instances.

- Family par instances arise from a problem in learning the
parity function. These are § instances with a varying num-
ber of variables and clauses.

- The 16 Jnh instances are randomly generated and have a
varying clause length.

- Instances 11 arise from the “boolean function synthesis”
problem; they have a number of variables ranging from 66
to 1728 and number of clauses ranging from few hundreds
up to over 20 thousands. This family counts 41 instances.
Execution time is the performance measure used in the DI-
MACS Challenge to evaluate local secarch algorithms. Our
code was written in C and ran on Intel Pentium II (Mem-
ory. 64 Mb ram, Clock: 350 MHz, Linux version: Red Hat
5.2). In order to compare ASAP with GRASP and GSAT,
we report in Table 11 the resuits of the DIMACS Challenge
machine benchmark on the Pentium IT and on the SGI Chal-
lenge, the machine used in the experiments with GRASP
and GSAT reported in {the extended version of) [11]. The
results indicate that the Pentium II is approximately 1.5
times faster than the SGI Challenge.

The results of the experiments are given in Tables 4-10.
Again, n and m denote the number of varialbles and of
clauses, respectively. All the algorithms are run 10 times
on each instance. In the tables containing the results of
ASAP we give the average number of iterations, of restarts,
of accepted flips, and the average time (in seconds) together
with the standard deviation. In the Tables comparing ASAP
with GRASP and GSAT we give the average time of ASAP
(run on Pentium IT}, and report the results contained in (the
extended version of) [11] (run on SGI Challenge), where an
entry labeled -’ means that the result for that instance has

466

not been given in [11}.

All algorithms were always able to find the solution on ev-
ery instance, except on the instances relative to the entries
labeled ‘NF’ (not found) where ASAP was not able to find
a solution.

The tesults of the tables comparing ASAP with GRASP
and GSAT show that ASAFP is competitive with these two
algorithms, except on the instance aim-100-2_0-yesl and on
those of the class par16-c, where ASAP is not able to find
any solution within 300000 chremosome evaluations.

On the other instances, we can summarize the results as
follows. The performance of ASAP on the class aim is
rather satisfactory, finding the solution in much shorter time
than GRASP on some instances, like aim-200-6.0-vesl. On
the class par8 ASAP outperforms GSAT and has perfor-
mance comparable to the one of GRASP. However, on the
class pari6 ASAP is not able to find any solution. On the
class IJnh GSAT outperforms GRASP as well as ASAP, with
ASAP and GRASP giving camparable results. Finally, on
class ii ASAP outperforms GRASP and GSAT on instances
118 and 1116 (except iil6el where GSAT is faster), while
GSAT outperforms GRASP and ASAP on instances ii32,
being ASAP on the average faster than GRASP.

5. DISCUSSION

It is interesting to analyze the role of the adaptation mech-
anism in ASAP. For lack of space, we do not report the
results obtained by EvoSAT on the considered benchmark
instances, but we briefly compare them with those obtained
by ASAP. On instances of the Test Suites 1,2 the perfor-
mance of EvoSAP is similar to the one of ASAP. However,
on the DIMACS instances EvoSAP has a worse performance
than ASAP. For example, on the instance jnh212 EvoSAP
has a success rate of 0.9, it takes 10835 iterations (on the
average) to find a solution, and over 1.2 millions {(on the
average) of accepted Rips.

As illustrated in the tables on the DIMACS experiments, the
restart mechanism of ASAP is not used in some experiments
{e.g., on the classes aim-100-6_0 and ii8). However, in
other experiments, the mechanism is more effective. For
example, on the instance jnh212 the performance of ASAP
without the restart mechanism becomes poor: ASAP is able
to find a solution only in five of the ten runs. Thus the
results indicate that the adaptation mechanism of ASAP
improves the performance of the evolutionary algorithm.

Accepted Time
Inst. n m || Iterations | Restarts Flips avg SDev
aim-50-2_0-yesl 50 | 100 28112 34% 1693310 | 18.758 | 22.744
aim-50-3_4-vesl 50 | 170 42 1 1979 | 0.050 | 0.073
aim-50-6_0-vesl | 50 | 300 3 0 143 | 0.006 | 0.008
aim-100-3_4-yesl | 100 | 340 115 6 11672 | 0.329 | 0420
aim-100-6_0-yesl | 100 | 600 4 0 386 | 0.022 1 0.017
aim-200-3_4-vesi | 200 | 680 2774 208 614675 | 20.70 | 28.348
aim-200-6_0-yes1 | 200 | 1200 6 0 1376 | 0.110 | 0.089
Table 3: Results of ASAP on class aim
! Inst. | ASAP | GRASP-A | GRASP-B | GRASP-C | GRASP-D | GSAT |
aim-50-2_0-yesl 18.76 2.23 4.86 2.27 2.14 3.33
aim-50-3_4-yes] 0.05 0.60 1.01 0.59 0.36 0.10
aim-50-6_0-yesl 0.01 0.08 0.07 0.08 0.05 0.03
aim-100-2_0-yesl NF 543,51 1386.51 2048.52 836.12 | 5883.12
aim-100-3_4-yes? 0.33 30.94 54.71 46.71 34.00 0.85
aim-100-6_0-yes! 0.02 0.66 0.71 0.72 0.63 0.35
aim-200-3 4-yesl 20.70 - - - - -
aim-200-6_0-yes} 0.11 126.99 121.90 176.91 120.04 -

Table 4: Comparison of ASAP, GRASP and GSAT on class aim

In conclusion, on the tested benchmarks ASAP has a rather
satisfactory performance, indicating that hybridization of
evolutionary algorithms with meta-heuristics based on local
search provides a powerful tool for solving hard satisfiability
problems.

6.

i

3

4

[6

{7

]

—

]

REFERENCES

T. Bick, A. Eiben, and M. Vink. A superior evolution-
ary algorithm for 3-SAT. In D, W. N. Saravanan and
A. Eiben, editors, Proceedings of the Tth Annual Con-
ference on Evolutionary Programming, Lecture Notes
in Computer Science, pages 125-136. Springer, 1998.

R. Battiti and M. Protasi. Approximate algorithms and
heuristics for MAX-SAT. In D-Z. Du and P. Parda-
los, editors, Handbook of Combinatorial Optimization,
pages 77-148. Kluver Academic Publisher, 1998,

D. Du, J. Gu, and P. P. (Eds.). Satisfiebility Problem:
Theory and Applications. AMS, DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science,
vol 35, 1997.

A. Eiben and J. van der Hauw. Solving 3-SAT with
adaptive Genetic Algorithins. In Proceedings of the 4th
IEEE Conference on Evolutionary Computation, pages
81-86. IEEE Press, 1997.

G.Folino, C.Pizzuti, and G Spezzano. Combining cellu-
lar genetic algorithms and local search for solving sat-
isflability problems. In Proc. of ICTAI'98 10th IEEE
International Conference Tools with Artificial Intelli-
gence, pages 192-198. IEEE Computer Society, 1998.

F. Glover and D. D. Werra. Tabu Search. Vol.41, Baltzer
Science, 1993,

J. Gottlieb and N. Voss. Improving the performance of
evolutionary algorithms for the satisfiability problem by

467

(8]

ol

[10

{11]

[12]

refining functions. In A. Eiben, T. Bck, M. Schoenauer,
and H.-P. Schwefel, editors, Proceedings of the Fifth
International Conference on Paralliel Problem Solving
from Nature (PPSN V), LNCS 1498, pages 755 - 764.
Springer, 1998.

E. Marchiori. A simple heuristic based genetic algo-
rithm for the maximum clique problem. In J. C. et al.,
editor, ACM Symposium on Applied Computing, pages
366-373. ACM Press, 1998.

E. Marchiori and C. Rossi. A flipping genetic algorithm
for hard 3-SAT problems. In Geneétec and Bvoluttonary
Compuiation Conference, 1999.

P. Merz and B. Freisleben. Genetic local search for the
TSP: New results. In IEEFE International Conference on
Fuolutionary Compuiation, pages 159-164. IEEE Press,
1997.

M. Resende and T. Feo. A GRASP (or satisGability. In
D. Johnson and M. Trick, editors, Cligues, Coloring and
Satisfinbility, pages 499-520. AMS, DIMACS Series in
Discrete Mathematics and Theoretical Computer Sci-
ence, vol 26, 1996.

B. Selinan, H. Levesque, and D. Mitchell. A new
method for solving hard satisfiability problems. In
Proceedings of the 10th National Conference on Ar-
tifictal Intelligence, AAAI-92, pages 440-446. AAAIL
Press/The MIT Press, 1992.

Accepted Time
Inst. n | m || Tters | Rest. Flips avg | SDev
par8-1-c | 64 | 254 149 g 8418 [0.26 { 041
par8-2-c | 68 | 260 i21 [} 7374 | 0.23 0.16
par8-3-¢ | 75 | 298 281 14 18487 | 0.58 0.54
par8-4-c | 67 | 266 469 19 23015 | 0.80 | 0.49
par8-5-c | 75 | 208 674 46 45501 | 1.43 1.16
Table 5. Resuits of ASAP on class par
Inst. ASAP | GRASP-A | GRASP-B | GRASP-C | GRASP-D | GSAT |
par8-c 0.65 0.16 0.17 3.62 2.80 9937
parl6-c NI 1981.13 3541.71 5205.23 3408.44 | 2h273.14
Table 6: Comparison of ASAP, GRASP and GSAT on class par
Accepted Time
| Inst. n m || Iterations | Restarts Flips avg | SDev
nhl 100 | 856 852 34 83459 | 16.32 | 13.28
jnh? 100 | 850 21 1 2351 0.43 0.16
jnh12 100 | 850 129 71 12669 2.47 2.45
johl7 100 | 850 837 3 8477 1.67 1.40
jnh201 | 100 { 800 21 0 2458 0.42 0.34
juh204 | 100 | 800 368 18 36046 6.49 4.01
mh205 | 100 | 800 203 6 20037 3.59 2.20
Jnh207 | 100 | 800 1529 97 151247 | 26.63 | 24.36
jnh209 | 100 | 300 359 22 36115 6.22 h.15
jrh210 | 100 | 800 21 1 2288 0.39 0.28
mh212 | 100 | 800 4430 273 429970 | 78.00 | 85.15
nh213 | 100 | 800 49 2 4890 0.85 0.97
jrh217 | 100 | 800 30 1 3219 0.56 0.35
jnh218 | 100 | 800 35 1 3820 0.66 0.65
juh220 { 100 | 800 1644 105 162005 | 28.85 | 24.93
jnh301 | 100 | 800 1232 g1 115059 | 25.58 | 16.65
Table 7: Results of ASAP on class Jnh
[Insi. | ASAT [GRASP-A | GRASP-B | GRASP-C | GRASP-D | GSAT |
Tnhl 16.32 11.87 5.19 10.14 311 | 071
juh7 0.43 3.61 1.76 2.07 1.09 0.07
jnh12 2.51 0.84 1.36 1.24 1.956 0.74
jnhl7 1.67 1.66 2.00 3.52 2.89 0.19
juh201 .42 1.48 0.50 0.73 .74 0.05
juh204 6.49 14.64 17.67 17.67 22.75 0.77
jnh205 3.59 6.17 6.28 7.90 10.08 .50
inh207 26.63 3.61 4.39 5.93 3.30 1.74
jnh209 6.22 7.45 6.07 6.73 6.44 | 046
juhk210 .39 2.35 0.89 1.89 2.9 Q.12
jnh212 78.00 70.92 29.77 27.28 112.84 6.31
jnh213 0.85 9.43 5.92 2.46 4.30 041
jnh217 0.56 b.76 2.23 3.50 2.60 0.16
jrh218 0.66 1.45 1.06 2.19 1.60 0.09
jrh220 28.85 10.17 18.08 8.95 26.18 2.98
jnh301 25.58 46.23 2213 36.79 43.41 1.10

Table 8: Comparison of ASAP, GRASP and GSAT on class Jhn

468

Accepted Time
L Inst n m Tterations | Restarts Flips avg SDev
1i8al 66 186] 0 767 { 0.009 | 0.010
ii8a2 180 800 2 g 464 1 0.010 0.009
1i8a3 264 | 1552 3 0 1407 | 0.043 0.032
1i8ad 396 2768 7 0 4807 0.187 0.248
iifbl 336 | 2068 1 0 759 1 0.014 | 0.005
1i8b2 976 4088 17 0 20590 | 0.460 0.336
ii8b3 816 6108 24 0 44949 0.996 (.538
ii8bh4 1068 | 8214 3 0 78649 1.775 1.519
i8¢l 510 3065 1 0 881 (0.019 0.005
ii8c2 950 6689 4 0 7806 | 0.186 0111
ii8d1 530 3207 7 0 6192 0.153 0.249
1i8d2 230 6547 4 0 7707 | 0.198 0.145
1i8el 520 3136 2 0 1886 | 0.G50 0.021
1i8e2 870 6121 4 0 7842 0.214 0117
il6al | 1650 | 19368 [§} 0 20726 1.32 1.57
i16a2 | 1602 | 21281 182 14 573916 | 32.60 28.66
iil6bl [1728 | 24792 7 0 22959 3.33 1.48
1it6b2 | 1076 | 16121 40 2 66398 7.39 2.73
itl6cl | 15680 | 16467 20 0 46468 5.09 3.25
116¢2 924 13803 46 2 67029 8.18 4.71
iil6dl | 1230 | 15901 9 0 21051 3.15 2.51
1116d2 { 836 | 12461 49 3 63324 8.85 6.40
iil6el | 1245 | 14766 2 Q 4778 1.22 042
ii16e2 | 532 | 7825 30 1 24379 6.11 3.73
ii32al | 459 9212 47 2 28236 13.07 11.28
ii32b4 | 381 9618 675 56 312122 | 207.93 | 251.55
i132c4 | 759 | 20862 83 6 91839 | 100.46 63.66
1132d3 | 824 | 19478 2b4 20 292584 | 188.41 | 144.29
ii32e5 522 | 11836 L 173 8 122631 84.62 68.92

Table 9: Results of ASAP on class i1

Inst. | ASAP] GRASP-A | GRASP-B | GRASP-C [GRASP-D | GSAT |
1i8aq 0.187 0.23 0.30 0.32 0.24 0.09
ii8h4 1.775 369.37 681.60 163.25 129.07 15.62
ii8cl 0.019 37.26 82.19 32.02 12.33 0.03
1i8d2 0.198 3.23 3.12 3.45 4.31 0.64
ii8e2 0.214 21.97 10.00 19.57 15.30 0.62
1116a2 32.70 1970.58 - - -1 1373.2
1116b1 3.33 449.99 - - - 9.03
iil6c2 B.18 43.30 11.20 16.89 78.71 39.08
i116d2 8.85 56.32 20.97 7.47 47.71 19.54
| iilGel 1.22 74.62 17.80 10.82 52.93 0.61
ii32al 13.07 68.36 8.93 1.66 53.66 1.85
i132b4 | 207.93 28.21 3.64 3.38 40.24 1.50
ii32c4 || 100.46 200.97 43.21 47.25 139.21 7.78
1132d3 || 188.41 666.73 119.68 20.03 1136.34 | 22.91
1132ed 84.72 16.47 2.31 3.21 24.17 1.75

Table 10: Compariscn of ASAP, GRASP and GSAT on class ii

machine SGi/Pz CPU
problem | P2/350 SGI Time Ratio
ri00.5.b 0.01 0.02 2
r200.53.b 0.41 0.58 1.49
r300.5.b 3.56 487 141
£400.5.b 2221 3035 1.45
r500.5.b 86.15 116.72 1.45

Table 11: Machine Benchmark statistics: Runnuning time {seconds) of DIMACS test program dfmax on Pentium 11 and SGI
Challenge

4692

