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ABSTRACT
Message passing using a network-on-chip (NoC) is an efficient way
to provide core-to-core communication on a multicore processor.
However, many NoCs use routers and network interfaces that are
optimized for the average case. Therefore, it is hard to bound the
worst-case latency of a message or the bandwidth. Furthermore,
often large buffers are used in the routers and network interfaces,
which require a considerable amount of area.

This paper presents a statically scheduled NoC that uses time-
division multiplexing at the links, the routers, and the network inter-
faces. Static scheduled traffic allows computing upper bounds for
end-to-end latencies of messages, which is a requirement for build-
ing multicore real-time systems. Furthermore, this static scheduled
NoC needs no additional buffers, except pipeline registers, and the
resulting resource requirement is low.

KEYWORDS
real-time systems, network-on-chip, time-predictable computer ar-
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1 INTRODUCTION
When multicore systems are used for real-time systems to increase
performance, we need a time-predictable way for tasks executing on
different cores to communicate. Using shared data in main memory,
backed up by several levels of caches, and cache coherence proto-
cols between core-local caches is hardly a time-predictable solution.
A better solution for real-time systems is to use message passing.
For message passing between cores a network-on-chip (NoC) can
provide the technology to move bits between cores, without leaving
the chip. However, most NoC designs are optimized for average case
performance and are hardly a fit for real-time systems, where the
worst case timing is of primary importance.

This paper presents a NoC, called S4NOC, that is optimized for
real-time systems. It provides static upper bounds for the time a
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message needs to be transferred from one core to another core. To
enable time-predictable on-chip communication, S4NOC uses time-
division multiplexing (TDM) arbitration of all resources: the links,
the routers, and the network interface (NI). TDM arbitration has two
main advantages: (1) The fixed schedule allows to compute upper
bounds for message latency and lower bounds for the bandwidth.
(2) The fixed arbitration avoids flow control and additional buffers,
resulting in low resource requirements.

The TDM schedule is precomputed and fixed to provide virtual
channels between all processor cores. A single slot in the TDM
schedule represents each channel, e.g., in a 3× 3 NoC, each core
has 8 channels to the other 8 cores. Therefore, the TDM schedule, at
each core, contains 8 time slots when the NI can inject data into the
NoC. A fixed schedule is cheap to implement, as the schedule table
can be implemented in read-only memory.

The S4NOC supports packets of single word granularity. The
routers contain the routing information. Therefore, the only addi-
tional information routed with the data is a single valid bit. The
NI contains send and receive buffers, where each buffer element
consists of the data word and the destination and sender address.
The destination address is represented by the slot number when the
NI shall inject the data word into the NoC. The sender address is
represented by the slot number when the data word arrived at the
receivers NI.

We have argued to use TDM arbitration to build a time-predictable
NoC [12]. Our S4NOC design provides a complete solution of a
NoC with TDM arbitration, including a network interface design
and an implementation in a multicore processor in an FPGA.

The contributions of this paper are: (1) a NoC router and a network
interface design that are optimized for usage in real-time systems;
(2) an implementation that has a low resource requirements; and (3)
an evaluation in a multicore processor.

This paper is organized in 5 sections: The following section
presents related work. Section 3 presents the architecture of our
S4NOC design. Section 4 evaluates the design with respect to hard-
ware resources and possible bandwidth and latency. Section 5 con-
cludes.

2 RELATED WORK
The Æthereal [4] NoC uses TDM where slots are reserved to allow
a block of data to pass through the NoC router without waiting or
blocking traffic. We conform to the TDM approach of Æthereal, but
present a simpler NoC in this paper.

The PaterNoster NoC [8] is a relatively simple NoC. PaterNoster
avoids flow control and complexity in the routers by restricting a
packet to single standalone flits. The NI of PaterNoster is as well a
simple design to support single word packets. The NI is connected
to the memory stage of a RISC-V processor [7]. Our NoC uses a
similar architecture and employs just single word packets. However,
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we use statically scheduled TDM arbitration to bound the maximum
latency for packets and avoid any buffering in the routers. Our NI
is mapped into an address and can be accessed by load and store
instructions. Furthermore, by avoiding a full lookup in the receive
buffer, the S4NOC NI is more than a factor of 10 smaller than the
PaterNoster NI.

The OpenSoC Fabric [3] is an open-source NoC generator written
in Chisel. It is intended to provide a system-on-chip for large-scale
design exploration. The NoC itself is a state-of-the-art design with
wormhole routing, credits for flow control, and virtual channels.
Currently, the interface to the NoC is a ready/valid interface receiving
either packets or flits. An extension with a NI and the use of a
standard AXI4 interface is planned. The open-source implementation
of OpenSoC allows us to compare our TDM based design against a
state-of-the-art router design to show how cheap a TDM router (and
NI) can be. A single OpenSoC router (in the default configuration)
is as large as our complete 3×3 NoC including the NIs and open
core protocol (OCP) [1] interfaces.

The Argo NoC [6] is another NoC that uses TDM based arbitra-
tion of resources. Compared to Æthereal, Argo also uses the same
TDM schedule in the NI [15] to time-multiplex the NI resources.
The Argo NI offers TDM-based DMA transfer of data from the
local memory across the NoC and into the local memory of another
core. Argo supports global asynchronous, local synchronous systems
with an asynchronous router design and mesochronous (same clock
source, but variable upwards bounded skew allowed) NIs.

The Hoplite architecture [5] uses routers without buffers, a unidi-
rectional torus, and single flit packages that include the destination
address. On an arbitration conflict, Hoplite uses deflection as a
resolution mechanism. This design results in very small hardware
usage, but it cannot provide real-time guarantees. HopliteRT [16]
is an extension to Hoplite to provide real-time guarantees. Hoplite
is modified to prioritize deflections and perform traffic shaping at
the network interface to provide guarantees on end-to-end latencies
for packets. All versions of Hoplite do not include any NI and use
generated traffic patterns to evaluate the design. In contrast, our
design contains NIs connected to real processor cores. We evaluate
our design with programs executing on the cores.

The one-way shared memory [10] project uses the S4NOC to im-
plement a special form of distributed shared memory. Each core con-
tains a local on-chip memory that is connected to the NoC. Blocks
within those local memories are constantly copied to other cores. As
this transfer is only in one direction (similar to push messages), it
is called one-way shared memory. The one-way shared memory is
also a design with low resource requirement, but the programming
interface is very different from our NI.

The time-predictable distributed shared memory [9] uses two in-
stances of the S4NOC: (1) for write traffic to remote scratchpad mem-
ories and read requests and (2) to return the read data. The S4NOC
has also been used to explore minimal network interfaces [13].

3 THE S4NOC ARCHITECTURE
The S4NOC is a statically scheduled, TDM arbitrated NoC intended
for real-time systems. The S4NOC routes single words of 32 bits.1

132-bit is the default configuration, we explore wider links in the evaluation section.
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Figure 1: A 3 x 3 multicore connected by a bi-torus NoC.

Therefore, a packet, a flit, or a word all reference to the same amount
of data. Besides the data, each packet contains a single valid bit.

As all traffic is statically scheduled, there are no conflicts on
any shared resource, such as links or crossbars. The schedule is
computed offline and stored in the routers. Without conflicts, there
is no need to provide buffering in the routers, flow control between
routers, or credit-based flow control between the NIs.

Figure 1 shows a typical configuration of our NoC, 9 cores are
organized in a 3×3 bidirectional torus network topology. The bidi-
rectional torus topology minimizes the number of hops for a packet
to travel. The figure shows a normal torus for simplicity, while the
practical layout will be a folded torus to avoid the long wraparound
wire. Furthermore, the bidirectional torus topology enables the use
of symmetric schedules, as explained later.

3.1 The Schedule
All resources (links, crossbars) of the NoC are shared according
to a static TDM scheduling computed off-line [2]. Such schedule
is based on a fixed period TDM round which is repeated over and
over. The slot number (at the injection point) defines the destination
address and the slot number at the receiving end identifies the sender
address. These two numbers define a virtual circuit. The used sched-
ule provides one virtual circuit from each core to every other core
(all-to-all), as this is the most general case. One might consider this
a waste of resource, but as shown later, the resource requirement
for a NoC with such a static schedule is very low and the hardware
simplicity allows to “waste” bandwidth at a very low cost.

An all-to-all core communication graph for N cores has N×N−1
virtual circuits, and for a 3×3 multicore, it corresponds to 72 virtual
circuits. The scheduler can satisfy these requirements with a 10 slot
TDM schedule. This schedule is only 2 slots more than the minimum
theoretical period needed by the 8 outgoing and 8 incoming virtual
circuits.

3.2 The Router
Figure 2 shows the S4NOC router. The router is characterized by
the five input ports and five output ports (local, north, east, south,
and west). A crossbar (X Bar) connects each of the input ports to
one of the output ports. A register is placed at the output port and,
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Figure 2: The S4NOC router with TDM driven static schedule.

except for this single stage pipeline register, no additional buffering
is offered at the router level since the carefully scheduled traffic will
not allow two or more inputs to compete for the same output port.

The crossbar provides all possible connections from input ports
to output ports. Therefore, data coming from different input ports
must target different output ports to be routed in the same cycle. The
crossbar in an FPGA or standard cell ASIC implementation consists
of a collection of 5 multiplexers (one for each output port) with 4
inputs. The inputs are the input ports except the one in which the
output is routed, since routing a word back to the port where it came
from is not allowed.

The connections in the crossbar are controlled by the content
of the schedule table. The schedule table contains the scheduling
information and is indexed by the TDM round slot counter, which
runs synchronously in all the routers. At the end of one TDM round,
the counter starts at the begin of the next round.

The router design is flexible and if more bandwidth is needed, the
link width can be increased. If the delay of the wire and through
the crossbar becomes a bottleneck, an additional pipeline register
for the link, in front of the crossbar can be inserted. Furthermore,
the schedule table can be shared between neighbor routers since the
schedule is the same for all the routers, which can further reduce the
hardware cost.

3.3 The Network Interface
Senders can identify a virtual circuit by the slot number in which its
data is transmitted. Similarly, receivers can identify a virtual circuit
by the slot number in which its data is received. The architecture
of the NI is based on these observations since receive and send slot
numbers are used to identify virtual circuits.

Figure 3 shows the architecture of the proposed NI. It consists of
a processor interface block, a transmit (TX) FIFO, a receive (RX)
FIFO, and a TDM counter. The TDM counter runs synchronously
in all the NIs and all the routers. Its value identifies the current slot
and is used to enable packets to be sent into the NoC according to
schedule and to identify the sender based on the receiving slot.

3.3.1 Processor Interface. The NI is interfaced to the processor
as a memory mapped peripheral device. The interface that we have
implemented in this work is OCP. However, different interfaces, such
as AXI, can be used.

The processor uses this interface to interact with the TX and RX
FIFO. The processor can write into the TX FIFO and read from the
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Figure 3: The network interface connects the processing core to
the router.

RX FIFO. Also, it can also read status flags for the FIFOs status.
The TX FIFO contains a flag showing if the buffer is empty, the RX
FIFO contains a flag if there is some data available.

Each data word written to the TX FIFO needs also a slot number
written to the FIFO to identify the receiver. As a small optimization
we use part of the address bits to communicate the send slot, reducing
the number of stores from two to one per data word.

3.3.2 TX FIFO. The TX FIFO stores data to be sent and the slot
number to identify the virtual circuit and thus, the destination. When
the TDM counter in the NI matches the slot number of an entry in
the TX queue, the data is sent into the network.

As the TX FIFO in the sender NI is shared among all the outgoing
virtual circuits, a simple FIFO implementation where only the head
of the queue is compared to the TDM counter can produce head-
of-queue blocking. A head-of-queue blockong happens when the
destination of the data injected in the TX FIFO by the processor is
not ordered according to the TDM schedule.

To prevent this, we included look-ahead logic that examines the
first N entries at the head of the queue and allows to immediately
send the content of one of these if the send slot matches the TDM
counter. The parameter N is configurable, allowing a proper trade-off
between performance degradation (due to head-of-queue blocking)
and hardware cost.

Another approach is to insert the packets in software in the order
according to the schedule. In this case, the worst-case waiting time
for starting to send the data in the TX FIFO queue is one TDM
round. If the destination of each data is ordered, when the head of
the queue is sent, the rest of the data in the RX FIFO is also sent
uninterruptedly.

In terms of implementation, we optimize the write into the NI by
using the lower bits of the address to determine the send slot number.
In this way, sending a single word would costs one load instruction
to poll of the TX FIFO empty flag, and one store instruction to write
the data and slot in the TX FIFO.

3.3.3 RX FIFO. The RX FIFO holds the packets that are received
from the network. When a packet is received, the payload data is



NoCArc ’19, October 13, 2019, Columbus, OH, USA Martin Schoeberl, Luca Pezzarossa, and Jens Sparsø

written into the RX FIFO along with the slot number when it was
received. The latter is used by the software to identify the virtual cir-
cuit and, thus, the sender. The NI provides the slot number when the
packet arrived. Further dispatching of packets from different cores
to different tasks running on the core is managed by the software.

In term of access time for our software implementation, one load
instruction is needed to read the data available flag, and two further
load instructions are then needed to read the data and the slot number.
In the case where the sender is known, the load instruction for the
slot table can be avoided, resulting in two load instructions to read
the received data.

4 EVALUATION
For the evaluation of our NoC we use the open-source T-CREST
multicore [11]. The T-CREST platform consists of a configurable
number of Patmos [14] cores, connected to a shared main memory
with a TDM based arbiter. The default configuration for T-CREST
targets the slightly dated terasIC DE2-115 FPGA board. The board
contains an Intel/Altera Cyclone IV FPGA (model EP4CE115). For
synthesize we use the Quartus Prime 16.1 Lite Edition. All perfor-
mance experiments are run in the FPGA.

4.1 Hardware Cost
Our aim was to design a lean NoC that even fits into a medium sized
low-cost FPGA. We first evaluation the size of the individual compo-
nents and then of complete NoC structures. Hardware requirement
is reported in FPGA resources: in logic cell (LC) which contains a
4-bit lookup table, register bit, and on-chip memory. Our design does
not use any embedded digital signal processing blocks. Maximum
clock frequency is reported for the slow timing model at 1.2 V and
85 C.

4.1.1 The Router. The S4NOC router consists of a collection of
multiplexers to build the crossbar, registers on the output ports, a
schedule table, and a TDM slot counter. The default configuration is
a link width of 32 bits plus a valid bit. To increase the bandwidth of
our S4NOC, the link width is configurable.

For the evaluation of the router resource requirement we generate
a 3× 3 NoC configuration and use traffic generators to drive the
local ports of the routers. For synthesize we use the default settings;
we spent no extra effort to achieve a maximum clock frequency.

For any processor core, which is not a source (sensor) or a sink
(actuator) only, we need at least one input channel and one output
channel to produce useful work. In a 3×3 NoC the TDM schedule
length is 10 clock cycles. Therefore, each 10 clock cycles one word
enters the core and one word exits the core. In the ideal case of using
just a single load and store instruction there are only 8 clock cycles
left to produce some useful work with the data. Therefore, we con-
sider this design being computation bound and not communication
bound.

However, if we really need higher bandwidth, e.g., for bursty
data, we can increase the link width. Table 1 shows the resource
requirement and maximum clock frequency of our S4NOC routers
with different link width.

The resource requirement grows less than linear with the number
of bits, as the schedule table and schedule counter remain the same.
The decrease of the maximum frequency results from the shared

Table 1: Resource requirement of S4NOC routers compared
with other designs.

Router LC Register fmax (MHz)

32-bit S4NOC 253 173 236
64-bit S4NOC 476 333 157
128-bit S4NOC 990 653 94
256-bit S4NOC 1951 1293 52

Argo 932 565 -
PaterNoster 1899 1297 -
OpenSoC 3752 1551 -

Patmos core 9437 4384 79

select signal of those many multiplexers. This can be improved by
introducing pipelining in the schedule table, if needed. However, up
to a 128-bit link width, the router is faster than the Patmos processor.
Therefore, we did not introduce this pipelining.

When we compare the S4NOC router with the Argo router, we
see the cost of three pipeline stages and the combinational logic
for the header processing in the Argo router. When considering the
LCs, a 128-bit S4NOC router is as expensive as an Argo router.
The register usage of the Argo router is between the 64-bit and the
128-bit S4NOC router, which is expected as the Argo router consists
of three 32-bit pipeline stages.

Similarly to S4NOC and Argo, the PaterNoster NoC is available
in open-source, which allows us to synthesize it for the same FPGA.
We synthesized the PaterNoster node in a 2×2 configuration to fit
into the same FPGA for the comparison. We can observe that the
S4NOC router is about 7.5 times smaller than the PaterNoster router.
The additional resource requirement in the PaterNoster router comes
from the corner buffer in each router, which holds packets that want
to switch from the x-direction ring to the y-direction ring.

The table also presents the resource requirement for a single
router of the OpenSoC NoC [3]. For this result, we generated the
Verilog code for the default configuration, which is a 2× 2 mesh
with routing based on virtual channels and one local port.

Comparing against the PaterNoster router and the OpenSoC
router, which represents a standard router design, we see how re-
source efficient our TDM based NoC router is. We can waste clock
cycles for a static TDM schedule at a very low cost. We conclude
that a TDM based NoC is an efficient solution when the bandwidth
per resource requirement is considered.

When we consider a link width of 128 bits, a 32-bit processor
needs 4 load instructions for the input channel and 4 store instruc-
tions for the output channel. At a 10 clock cycle schedule length,
this can only be sustained in a heavily unrolled loop.

To set all those router numbers in relation we report the resource
requirement of the Patmos processor pipeline, which is part of the T-
CREST platform. All routers are smaller than this processor core. A
32-bit S4NOC router requires about 2.7 % of the processor pipeline,
which we consider a reasonable cost for a communication infrastruc-
ture.

4.1.2 The Network Interface. Table 2 shows the resource require-
ment of different configurations of the S4NOC NI and two other NIs.
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Table 2: Resource requirement of different S4NOC NI configu-
rations.

Component LC Register Memory

S4NOC 1 buffer 121 80 0
S4NOC 2 buffers 195 152 0
S4NOC 4 buffers 342 296 0
S4NOC 8 buffers 638 584 0

Argo 849 361 1.3 KB
PaterNoster 6131 2249 0

Table 3: Resource requirement of a complete S4NOC configura-
tions.

NoC LC Register Memory

3×3 S4NOC with 1 buffer 3455 2438 0
3×3 S4NOC with 2 buffers 4097 3086 0
3×3 S4NOC with 4 buffers 5423 4382 0
3×3 S4NOC with 8 buffers 8084 6974 0

3×3 Argo NoC 15177 8342 12.1 KB

Single Patmos core 9437 4384 22 KB

The numbers have been collected when synthesizing a 3×3 NoC
with the traffic generator. For the S4NOC NI we vary the size of the
TX and RX FIFOs.

The memory requirement only refers to the memory used in the
NoC (e.g., for schedule tables, etc.). The size for the local memory
in the Argo NIs is configurable and therefore not shown in the table.

The S4NOC NI is considerable smaller than the NIs of the Argo
or PaterNoster NoCs. However, the Argo and PaterNoster NIs pro-
vide additional functionality. The Argo NI contains a DMA for send
and receive data movement and manages the schedule tables (Argo
uses source routing). The PaterNoster NI uses a content addressable
memory to demultiplex different receive channels, so that the proces-
sor can read a dedicated channel. A later version of the PaterNoster
NI [7] uses a single receive FIFO to avoid the large overhead of the
receive channel demultiplexing in hardware.

When comparing an S4NOC node (router plus NI) with the size
of a Patmos core, which requires 9437 LUTs and 4384 registers,
we can see that we achieved our goal of a small NoC. The resource
requirement of one NI and router, configured with 4 buffers, is
around 6 % of the Patmos core.

4.1.3 Complete Multicores. Table 3 shows the complete resource
requirement of different NoCs for 9 cores. These numbers are derived
from building a complete multicore system with 9 Patmos cores and
the 3×3 NoC and synthesizing it for the FPGA. This configuration
is also used to run the benchmarks in the FPGA hardware.

The maximum clock frequency of the 3 × 3 configuration is
72 MHz. This critical path is in the processor pipeline and not in any
part of the S4NOC router or NI.

The increase in the number of entries for the FIFO increase the
size of the NoC, which is expected. However, the base cost for

Table 4: Maximum measured throughput, in clock cycles per
word for one virtual circuit.

Configuration
Throughput

(clock cycles per word)

Unconstraint sender 10.1
Single word handshake 23–48
Double buffer (4 words) 12.0

the S4NOC still dominates the different configurations. For larger
buffers we shall use a FIFO design that uses on-chip memory instead
of registers.

The Argo NoC [6] is available in open source. Therefore, we can
obtain the results by synthesizing two configurations of the Argo
NoC for the same FPGA. We can observe, that the S4NOC is about
half the size of the Argo NoC. However, the Argo NoC provides
additional functionality with a TDM shared DMA for the movement
of data between a local memory and the local link of the router.

The biggest S4NOC is still smaller than a single Patmos core. The
example multicore contains 9 Patmos cores. Therefore, the biggest
configuration of the resource requirement of the S4NOC is still less
than 10 % of the complete multicore.

4.2 Performance
We evaluate the performance (bandwidth) of the S4NOC in a 3×3
configuration with the Patmos processors serving as sender and
receiver nodes. For a 3×3 configuration the TDM schedule length
(the TDM round) is 10 clock cycles. Therefore, we can send and
receive one packet from any to any node every 10 clock cycles.

We explore a single virtual channel without any other traffic on the
NoC. Due to strict isolation of virtual channels with the static TDM
schedule, other traffic would not influence the measurement. No con-
tention is possible, the traffic on this virtual channel is independent
of any traffic on any other virtual channel.

For a baseline we send in a tight loop packets without any hand-
shaking. We send 4096 times 16 words, one word at a time. In the
best case we should be able to send (and receive) one word per
10 clock cycles. At the receiver side we check if we received all
packets. Table 4 shows a throughput of one word every 10.1 clock
cycles, which is around the theoretical maximum of one word per
10 clock cycles. The 0.1 clock cycle accounts for the startup cost of
the benchmark.

If we cannot guarantee that the sender does not overrun the net-
work bandwidth and/or the receiver cannot consume the packets at
the rate as they are produced, we need to introduce handshaking. The
simplest form of handshaking is sending one credit back per packet
received. This form of stop and go handshake is simple, but ineffi-
cient. We setup an experiment where again the sender and receiver
exchange packets in a tight loop. The sender sends one packet and
waits for the credit package from the receiver. The receiver waits for
a packet to receive and immediately sends a credit packet back. This
ping/pong results in a lockstep performance of 23 to 48 clock cycles
per packet exchanged, depending on the FIFO size (we explored 2 to
16 entries). More entries in a bubble FIFO increase the latency and
therefore decrease the bandwidth with the stop and go handshake.
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To overlap sending of data packets with sending back credit
packets we setup following experiment. We use a double buffer of
two times four words on the receiver side. The sender can, without
receiving a credit, send four packets. After that the sender waits for
a credit to send another four packets. The receiver will send one
credit at the start for the second buffer and read out the first four
words from the first buffer. The receiver repeats sending a credit and
reading four words of data. With this configuration, even when using
a return channel for credit handshaking, we achieve a throughput of
one word every 12 clock cycles, which is just 20 % slower than the
theoretical bandwidth without handshaking.

4.3 Worst-Case Message Latency
With a statically scheduled path for packets, the worst-case message
latency can be relatively easily computed. From the write of a packet,
it needs to propagate the NI, which in a bubble FIFO will be the
number of FIFO entries in clock cycles. Then the packet waits for
the transmit slot, which is in the worst case just missing the slot
and waiting for a complete TDM round. Then the packet traverses
the NoC with one clock cycle per hop. At the receiving side the
packed has again to pass through the NI, which might be one clock
cycle per FIFO entry, if a bubble FIFO is used. When the NIs use
a memory/pointer based FIFO, the NI traverse time is reduced to a
constant time of a few clock cycles, depending on the interface.

The worst case latency Lmax with an NI latency l, a TDM schedule
length s, and maximum h hops is:

Lmax = 2× l+ s+h (1)

For our 3×3 example with a 2 buffer FIFO l is 2, s is 10, and h,
including the local transition, is 3. Therefore, for this NoC Lmax =

2×2+10+3 = 17 clock cycles. For a larger message with n words
the latency is dominated by the schedule length (which sets the
bandwidth of the NoC):

Lmax = 2× l+n× s+h (2)

4.4 Source Access
The source of the S4NOC, the benchmarks, and a README file
explaining the build process and how to reproduce the results are
available in open source. The source of the S4NOC and the NI
is available as part of the Patmos project at https://github.com/t-
crest/patmos. Detailed instructions how to run the experiments from
this sections can be found at:
https://github.com/t-crest/patmos/tree/master/c/apps/s4noc.

5 CONCLUSION
Multicore systems used for real-time systems need a time-predictable
way to communicate data between processing cores. We present
a statically scheduled network-on-chip, which we call S4NOC.
S4NOC uses time-division multiplexing for all resources and there-
fore provides complete isolation between individual virtual channels.
This isolation enables to compute an upper bound of the message
latency.

The hardware design of a statically scheduled NoC results in a low
resource requirement. The implementation of the S4NOC requires
about 6 % of the resources of a RISC processor pipeline per node.

Although, time-division multiplexing is not work conserving, the
S4NOC design provides more bandwidth than can be practically
used by an application at the low hardware cost.

ACKNOWLEDGMENTS
The work was partially funded by the Danish Council for Inde-
pendent Research | Technology and Production Sciences under the
project PREDICT, contract no. 4184-00127A.

REFERENCES
[1] Accellera Systems Initiative. 2013. Open Core Protocol Specification, Release

3.0. Available at http://accellera.org/downloads/standards/ocp/.
[2] Florian Brandner and Martin Schoeberl. 2012. Static Routing in Symmetric Real-

Time Network-on-Chips. In Proceedings of the 20th International Conference on
Real-Time and Network Systems (RTNS 2012). Pont a Mousson, France, 61–70.
https://doi.org/10.1145/2392987.2392995

[3] Farzaf Fatollahi-Fard, David Donofrio, George Michelogiannakis, and John Shalf.
2016. OpenSoC Fabric: On-chip network generator. In 2016 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 194–203.
https://doi.org/10.1109/ISPASS.2016.7482094

[4] Kees Goossens and Andreas Hansson. 2010. The AEthereal network on chip
after ten years: Goals, evolution, lessons, and future. In Proceedings of the 47th
ACM/IEEE Design Automation Conference (DAC 2010). 306 –311.

[5] Nachiket Kapre and Jan Gray. 2015. Hoplite: Building austere overlay NoCs
for FPGAs. In 25th International Conference on Field Programmable Logic and
Applications (FPL 2015). 1–8. https://doi.org/10.1109/FPL.2015.7293956

[6] Evangelia Kasapaki, Martin Schoeberl, Rasmus Bo Sørensen, Christian T. Müller,
Kees Goossens, and Jens Sparsø. 2016. Argo: A Real-Time Network-on-Chip
Architecture with an Efficient GALS Implementation. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 24 (2016), 479–492. https://doi.org/10.
1109/TVLSI.2015.2405614

[7] Jörg Mische, Martin Frieb, Alexander Stegmeier, and Theo Ungerer. 2019. PIMP
My Many-Core: Pipeline-Integrated Message Passing. In Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS 2019).

[8] Jörg Mische and Theo Ungerer. 2012. Low Power Flitwise Routing in an Unidi-
rectional Torus with Minimal Buffering. In Proceedings of the Fifth International
Workshop on Network on Chip Architectures (NoCArc ’12). ACM, New York, NY,
USA, 63–68. https://doi.org/10.1145/2401716.2401730

[9] Morten B. Petersen, Anthon V. Riber, Simon T. Andersen, and Martin Schoeberl.
2018. Time-Predictable Distributed Shared Memory for Multi-Core Processors.
In 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP
and International Symposium of System-on-Chip (SoC). 1–7. https://doi.org/10.
1109/NORCHIP.2018.8573463

[10] Martin Schoeberl. 2018. One-Way Shared Memory. In 2018 Design, Automation
and Test in Europe Conference Exhibition (DATE). 269–272. https://doi.org/10.
23919/DATE.2018.8342017

[11] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele
Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold
Heckmann, Stefan Hepp, Benedikt Huber, Alexander Jordan, Evangelia Kasapaki,
Jens Knoop, Yonghui Li, Daniel Prokesch, Wolfgang Puffitsch, Peter Puschner,
André Rocha, Cláudio Silva, Jens Sparsø, and Alessandro Tocchi. 2015. T-CREST:
Time-predictable Multi-Core Architecture for Embedded Systems. Journal of
Systems Architecture 61, 9 (2015), 449–471. https://doi.org/10.1016/j.sysarc.
2015.04.002

[12] Martin Schoeberl, Florian Brandner, Jens Sparsø, and Evangelia Kasapaki. 2012. A
Statically Scheduled Time-Division-Multiplexed Network-on-Chip for Real-Time
Systems. In Proceedings of the 6th International Symposium on Networks-on-Chip
(NOCS). IEEE, Lyngby, Denmark, 152–160. https://doi.org/10.1109/NOCS.2012.
25

[13] Martin Schoeberl, Luca Pezzarossa, and Jens Sparsø. 2019. A minimal network
interface for a simple network-on-chip. In Architecture of Computing Systems -
ARCS 2019. Springer, 295–307. https://doi.org/10.1007/978-3-030-18656-2_22

[14] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and Daniel
Prokesch. 2018. Patmos: A Time-predictable Microprocessor. Real-Time Systems
54(2) (Apr 2018), 389–423. https://doi.org/10.1007/s11241-018-9300-4

[15] Jens Sparsø, Evangelia Kasapaki, and Martin Schoeberl. 2013. An Area-efficient
Network Interface for a TDM-based Network-on-Chip. In Proceedings of the Con-
ference on Design, Automation and Test in Europe (DATE ’13). EDA Consortium,
San Jose, CA, USA, 1044–1047.

[16] Saud Wasly, Rodolfo Pellizzoni, and Nachiket Kapre. 2017. HopliteRT: An
efficient FPGA NoC for real-time applications. In 2017 International Conference
on Field Programmable Technology (ICFPT). 64–71. https://doi.org/10.1109/
FPT.2017.8280122

https://github.com/t-crest/patmos
https://github.com/t-crest/patmos
https://github.com/t-crest/patmos/tree/master/c/apps/s4noc
http://accellera.org/downloads/standards/ocp/
https://doi.org/10.1145/2392987.2392995
https://doi.org/10.1109/ISPASS.2016.7482094
https://doi.org/10.1109/FPL.2015.7293956
https://doi.org/10.1109/TVLSI.2015.2405614
https://doi.org/10.1109/TVLSI.2015.2405614
https://doi.org/10.1145/2401716.2401730
https://doi.org/10.1109/NORCHIP.2018.8573463
https://doi.org/10.1109/NORCHIP.2018.8573463
https://doi.org/10.23919/DATE.2018.8342017
https://doi.org/10.23919/DATE.2018.8342017
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1109/NOCS.2012.25
https://doi.org/10.1109/NOCS.2012.25
https://doi.org/10.1007/978-3-030-18656-2_22
https://doi.org/10.1007/s11241-018-9300-4
https://doi.org/10.1109/FPT.2017.8280122
https://doi.org/10.1109/FPT.2017.8280122

	Abstract
	1 Introduction
	2 Related Work
	3 The S4NOC Architecture
	3.1 The Schedule
	3.2 The Router
	3.3 The Network Interface

	4 Evaluation
	4.1 Hardware Cost
	4.2 Performance
	4.3 Worst-Case Message Latency
	4.4 Source Access

	5 Conclusion
	Acknowledgments
	References

