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Figure 1: We identify the major regional delineations of the United States, and find them broadly comparable to US census
Regions and Divisions. Panel A shows the raw communication based social network, including only edges which represent
more than 500 tweets between pairs of nodes. Panel B shows the raw results from the community detection algorithm for all
grid cells with greater than 10 tweets. Panel C shows final results when detected communities have been spatially smoothed.

ABSTRACT
A greater understanding of human dynamics as they play out in
both physical space and through inter-personal communication
is vital for the design and development of intelligent and resilient
cities. Physical context provides insight into the space-time dis-
tribution of population and their activity patterns, while inter-
personal communication can now be measured at the population
scale through digital interactions. In this work, we propose a novel
method to discover these dynamics. We use a dataset of 72 million
tweets to develop a spatially embedded network of communication,
and then use community detection algorithms to explore regional
and urban delineation in the United States.We compare these results
to US census regions and economic and infrastructural networks.
We find that the broad spatial delineation of communities and sub-
communities is consistent with United States regions, states, and
major metropolitan areas. We describe how these methods could be
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extended to generate a measure of social regions that can be con-
sistently applied anywhere there is a sufficiently rich data source.
A deeper understanding of urban social structure measured by
spatially embedded communication networks can enable a better
understanding of the interactions between urban social and physi-
cal contexts. This, in turn, may enable urban managers and policy
makers to identify strategies for supporting urban resilience.
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1 INTRODUCTION
What makes a city? What makes a neighborhood? How do com-
munities simultaneously generate and respond to changes in their
physical context? Ever-larger shares of the global population now
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use digital means to enhance and facilitate communication with
their real world communities. The digital traces left behind from
these communications enable large scale quantitative assessment
of what communities exist, descriptions of their spatial properties,
and estimations of how they co-evolve with their physical and
geo-political context. Current methods for urban and regional de-
lineation center around remote sensing of land surfaces such as
impervious surfaces or buildings, spatial analysis of transportation
infrastructure, and census-based descriptions of infrastructure and
commuter-sheds. Spatially embedded networks of communication
generated from digital trace data allow for detection of communities
across multiple spatial scales. This is a new and rapidly expanding
area of research, with substantial scope for exploration of novel
computational methods and science questions regarding social pro-
cesses, particularly in urban environments. We can explore the
spatial and temporal dynamics of community evolution, and mea-
sure both the degree of geographic cohesion of these communities
as well as explore social teleconnections. These measurements of
community dynamics are potentially globally applicable and up-
datable on an arbitrary timescale, and could may enable a better
understanding of how social phenomena worldwide might interact
with physical systems or geo-political processes.

The multi-modal nature of social media data permits a variety of
previously opaque or separated processes to be observed and linked.
For example, spatial networks can be linked to content of communi-
cations; teleconnections and physical connections between regions,
cities and neighborhoods can be identified and characterized; cen-
sus data can be linked to social media users by spatialization and
demographic inference; and the co-evolution of social processes
with geo-physical processes and events can be observed.

Early work looking at spatially embedded social communication
networks primarily used cell phone call records. Across a broad
range of methods, this literature has thus far found that spatially
embedded networks of social communication are highly localized,
for cell phone calls [4, 7–9], tweets [10], and facebook friendships
[3]. Further, the literature thus far finds that most cases where there
are significant geographic discontinuities in identified communities
can be explained through the effect of well understood processes:
major historical migrations, infrastructure connectivity, or bound-
ary effects due to language differences, social fault lines, or physical
or infrastructural impediments. More recently, this tight geographic
cohesion observed in almost all studies of spatially embedded net-
works of social communication has led to the use of these networks
to infer regions through network clustering algorithms [1, 12, 13].
However, this literature has not yet used these spatially embedded
communication networks to explore urban and regional delineation
in the United States, the problem to which we now turn.

2 DATA
We utilized publicly available Tweets using Twitter’s Streaming
API serviceand selected tweets containing geo-tagged information.
Twitter provides geo-tagging that can be based on an exact location
or assigned through a pre-selected nearby Twitter place, or both.
Twitter Places corresponds to a neighborhood and represented via
a bounding box with an array of latitude and longitude coordinates
that define the locality of tweet. We setup the data collection for

a period of 10 months, between Oct’ 2018 through Jun’ 2019. The
final curated data set consists of 72 million de-identified geo-coded
tweets downloaded from the PlanetSense data enclave [11].

3 METHODS
We first isolate Tweets containing place tags. “Places are specific,
named locations with corresponding geo coordinates. They can be
attached to tweets by specifying a place_id when tweeting. Tweets
associated with places are not necessarily issued from that location
but could also potentially be about that location."1. Place tag infor-
mation is unique to each tweet: it is not the same as the location
optionally described in a user profile. When a user opts into loca-
tion services their tweets contain place-tags whose co-ordinates
are determined from GPS, wifi and cell tower data2. Place tags
can represent a business, neighborhood, region, or other point of
interest.

It was found in [2] that geo-tags, a point based description of user
location, represent a very different type of tweet and Twitter user:
authors of geo-tagged tweets are primarily bots and users sharing
posts from other social media. Consistent with this finding, Twitter
is deprecating the precise geo-tag feature for most categories of
tweets because it is so little used3. Thus, for twitter data going
forward, place tags represent the best available measurement of
the location of individual users, as they choose to represent it, and
so we use place-tags rather than geo-tags.

We further require that each of the tweets in our collection is
either a mention or a reply by checking the meta-data associated
with each tweet. For every user we identify the grid cell(s) they
most commonly tweet from and assign that cell (or cells) as their
‘home’ location. When a user in cell i mentions or replies to a user
in cell j we add 1 to the weight of the link connecting cells i and
j. If a user in grid cell i mentions a user k for whom we have no
geographic information, we discard that mention. If a user’s home
is spread across M cells and they mention a user whose home is
spread across N cells we add a fraction of a mention to the link
between all the cells (there are MN links which are incremented
by a fraction 1/MN ).

Once the aggregated network has been constructed the Louvain
method [5], a standard stochastic community detection algorithm
to identify clusters of densely connected nodes. Since the Louvain
method is stochastic we restart it 100 times and choose the cluster-
ing which produces the highest modularity score. The modularity
score is computed as described in [5], and measures the density
of edges inside communities to edges outside communities. The
Louvain method is selected for two reasons: it is very fast, and it de-
termines the appropriate number of clusters automatically, instead
of requiring selection in advance. We find this approach typically
places the majority of grid cells in spatially contiguous clusters.

This approach typically gives contiguous regions which closely
correspond to known administrative and social divisions, see Fig
1 panel B. We can see in this figure that within the clusters we
sometimes have isolated cells which are assigned to a different
cluster than their surrounding cells e.g. the blue cluster in the

1https://dev.twitter.com/overview/api/places
2https://support.twitter.com/articles/78525#
3https://twitter.com/TwitterSupport/status/1141039841993355264
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south-east contains some red, green and yellow cells. We also have
many cells in sparsely populated regions where we have no data.
For some purposes we would like to smooth the regions so they
are as coherent as possible, even though the data indicates the
assignment is not optimal in terms of modularity. We also would
like to assign cluster membership to cells where we have no data.
Our spatial smoothing consists of 1) identifying the cells which are
assigned to a cluster but are not attached to the largest contiguous
polygon of that cluster, 2) identifying the unassigned cells which
have at least 4 assigned neighbours, 3) iteratively reassigning these
cells to have the same label as the majority of their neighbours until
there is no further change possible. This results in the smoothed
picture in Fig 1, panel C.

To look at subregions we follow [9]. After identifying regions at
the national scale we apply the methodology described above to
tweets originating in and mentioning users from each region sepa-
rately, see e.g. Fig 3 for an example of this hierarchical clustering
approach applied to the red cluster in Fig 1.

4 RESULTS
The results presented here are based on the dataset described in sec-
tion 2. The national level individual scale network constructed con-
tains 3.2 million individual users and 22.9 million relevant @men-
tions. Once these users are binned into the 64x64 uniform grid
shown in Fig 1, this becomes network with 1,558 nodes, which has
a mean degree of 474 and a mean weighted degree of 24,000. We
use a 64x64 grid to balance computational time and map resolution.
We find that coarser grids give very similar results.

The results we find for the full dataset are quite similar when the
same analysis is run on a 2 million tweet randomly sampled subset.
We still identify seven major regions, with the largest communities
in essentially the same location. The communities of the broad
mid-western region (pink, cyan and yellow) have somewhat differ-
ent boundaries than those shown on the full dataset, but together
cover generally the same area as the yellow, pink and magenta
communities from the full dataset shown in Fig 1B.

A. B.

Figure 2: Panel A shows the raw results for a sampled dataset
consisting of 2 million tweets drawn from the full dataset.
Panel B shows the regions and divisions of the US census.

4.1 National Scale
At the national scale shown in Fig 1, we find seven regions that are
broadly consistent with the nine United States Census divisions,
Fig 2B. The community we identify in the western US is shown in
red in Fig 1. The US census West region (in red in Fig 2B) consists
of overlapping states with the addition of Wyoming and Colorado.

The Northeast region we find is shown in green in Fig 1 and in-
cludes the only robust geographic non-continuity: Florida. The US
census Northeast region (in green in Fig 2B) consists of the same
green states, but excludes Florida and the states in the Washington
DC metro region: Maryland, Delaware, and Virginia. These four
states are all included in the South Atlantic division of the South
region. The East South Central division and South Atlantic divi-
sions (light and dark blue, respectively) of the US census together
roughly correspond to the South region (dark blue) with exceptions
for the states that were included in the Northeast cluster. Other
communities we detect have similarly close correspondence with
US census divisions and regions- with differences between the two
of no more than a few states.

The regions we identify are thus generally consistent with one
of the most commonly used descriptors of socially meaningful
divisions of the United States. Note that while US census divisions
are defined based on state boundaries, there is no such constraint
for the communities we detect. Nonetheless, Pennsylvania and
Missouri are the only two states that clearly are split across detected
communities. This suggests that the communities we detect via
twitter are identifying communities with meaningful geopolitical
content.

4.2 Western United States
The western United States is sparsely populated aside from the
coastal regions, and this is reflected in the density of twitter data.
Fig 3 shows the detected communities in the Western US. In Cali-
fornia, identified communities are broadly consistent with major
metropolitan regions and their hinterlands: San Diego is teal, Los
Angeles is green, the interior agricultural regions of Bakersfield and
Fresno are in pink, and the San Francisco and Sacramento metro
regions are combined in red. The states of Washington and Oregon
make up the brown community. The yellow cluster includes most
of Arizona (Fig 3B). The purple cluster is notable for how closely
it follows the interstate highway system (Fig 3C). The blue cluster
contains the cities of Santa Fe, Las Vegas, and Reno.

4.3 Southern United States
Fig 4 shows the Southern region of the US. The detected network
structure (Fig 4B), shows that the largest clusters are well aligned
with major urban areas, and the communities we identify generally
center around an urban area and it’s within-state hinterlands. The
two major exceptions to this outcome are the cities of Memphis,
Tennessee and Charlotte, North Carolina. Memphis sits on the bor-
der between Tennessee and Mississippi, with some of the metro
area located in Mississippi. About 65% of the city’s residents are
African American, nearly half of the statewide population [6]. By
contrast, Mississippi’s population is currently 40% African Ameri-
can [6]. From a demographic perspective, Memphis’ population is
more consistent with Mississippi than it is with Tennessee, and so
it’s reasonable that twitter users in Memphis communicate more
with Mississippi residents than they do with Tennessee residents.
Similarly, a substantial share of the Charlotte, NC MSA is located
in South Carolina. As a result, it’s reasonable that Charlotte and
its suburbs are included in the cluster that includes most of South
Carolina.
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Figure 3: Communities within the Western US. Panel A
shows thenational scale community. Panel B shows the com-
munities detected within panel A, as well as major US met-
ropolitan areas. Panel C additionally shows the interstate
highway system, overlaid on the smoothed detected commu-
nities, in order to demonstrate that identified communities
are consistent with basic geographic delimiters.

Figure 4: Communities within the Southern US. Panel A
shows the identified community at the national scale. Panel
B shows the network structure for the community shown
panel A, as well as major US metropolitan areas. Panel C
shows the smoothed communities.

5 DISCUSSION AND CONCLUSIONS
The results presented here provide suggestive evidence that com-
munities detected in place tagged tweets are representative of real
world social relationships both across the United States as a whole
and also at the scale of major urban areas.

We assess the accuracy these results by considering both their
computational robustness and their external validity. To test the
computational robustness of these results, we explore changes in
detected communities in response to different randomly selected
sub-samples of the core dataset and to variations in the underlying
geographic grid, as briefly shown in Fig 2. To consider the external
validity of these results, we compare the detected communities
to known social, physical, and economic characteristics that we
expect influence community structure, as shown in Figs 2-4. The
concordance we observe between the twitter based communities

and known geo-political regions, infrastructure systems, and demo-
graphic characteristics suggests that these communities have exter-
nal validity. These results could also be more formally compared to
other related interaction networks such as physical infrastructure,
as hinted at in Fig 3C, trade connections via transportation routes
and weights, and other economic input output tables at the city
and regional levels. In a further extension, these networks could
also be used to describe the spread of ideas, measured by hashtags,
memes, or other viral content.
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A ONLINE RESOURCES
Code used to perform the analysis and generate these figures is
open source and available on github at https://github.com/seda-lab/
USmap.
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