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ABSTRACT
The elastic task model enables the adaptation of recurrent real-time
tasks under uncertain or potentially overloaded conditions. The
model was originally defined for sequential tasks executing upon a
preemptive uniprocessor platform; it was later extended to include
tasks with internal parallelism executing on multiple processors.
This paper bridges a gap in the theory of elastic task scheduling
by considering the multiprocessor scheduling of sequential tasks
(i.e., tasks with no internal parallelism). We define algorithms for
scheduling sequential elastic tasks under the global and partitioned
paradigms of multiprocessor scheduling, and provide a simulation-
based comparison of the different approaches.

CCS CONCEPTS
•Computer systems organization→Embedded systems; Real-
time systems; • Software and its engineering→Multiprocessing
/ multiprogramming / multitasking.
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1 INTRODUCTION
Buttazzo et al. introduced the elastic taskmodel as away ofmodeling
recurrent real-time tasks, such as multimedia players or adaptive
control systems, whose periods can change depending on the stress
on the system [4]. The authors compare real-time tasks to physical
springs, where changing a task’s period (and therefore processor
utilization) is analogous to changing the length of the spring, and
keeping the system-wide processor utilization below a certain value
is analogous to compressing multiple contiguous springs to below
a cumulative length. As originally presented, elastic scheduling
seeks to schedule a task set on a single preemptive processor. Each
such task has a worst-case execution time and a range of acceptable
periods, rather than a single period parameter (as in the original
Liu and Layland recurrent task model [18]). Each task must be
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assigned a period within its acceptable range such that the overall
task set utilization remains below a desired value. To determine the
appropriate period value to assign each task, every task also has an
elastic coefficient which acts as an indicator of the task’s resistance
to increasing its period from the minimum (and desired) period,
analogous to a spring’s resistance to being compressed.

In the decades since the elastic task model was introduced, real-
time systems have increasingly utilizedmultiple processors, thereby
enabling the exploitation of both inter-task and intra-task paral-
lelism — it is appropriate that the elastic task model should also
be extended to consider multiprocessors. We have previously ex-
tended the elastic task model to include scheduling of tasks with
intra-task parallelism on heterogeneous multi-core systems under
the federated scheduling paradigm [23]. In this paper we focus
on the scheduling of sequential tasks on homogeneous multi-core
systems. We present algorithms for scheduling systems of such
tasks upon a homogeneous multiprocessor platform under both the
global and partitioned paradigms of multiprocessor scheduling. We
compare the effectiveness of different algorithms via an extensive
series of simulation experiments; based upon the outcomes of these
simulations, we make some recommendations regarding the choice
of algorithms for the multiprocessor scheduling of sequential elastic
tasks.

The remainder of this paper is structured as follows. Section 2
presents our task model. Sections 3 and 4 discuss the global and
partitioned scheduling of tasks respectively. Section 5 details our ex-
perimental evaluation of the different schemes. Section 6 describes
related work, and Section 7 concludes and provides future direction.

2 TASK MODEL AND ASSUMPTIONS
In the model proposed by Buttazzo et al. [4], each elastic task τi is
characterized by a worst-case execution time (WCET) Ci , a mini-
mum (and preferred) period T (min)

i , a maximum acceptable period
T
(max)
i , and an elasticity coefficient Ei . The elasticity coefficient is a
measure of a task’s resistance to changing its period, like a spring’s
resistance to changing its length in the above analogy. A higher
elasticity coefficient indicates a more elastic task. In this work we
seek to schedule a set of n such independent sequential elastic tasks
Γ = τ1...τn onm homogeneous processors.

We refer to elastic tasks represented using this model as period-
elastic tasks. In prior work [22] we had considered an alternative
model of computationally-elastic tasks that specifies a range of pos-
sible computation times and a fixed period, rather than a range of
periods with a fixed execution time, per task. Although the sched-
uling mechanisms described in this paper are also applicable for
computationally-elastic tasks, for simplicity and readability we dis-
cuss only period-elastic tasks, as introduced by Buttazzo et al. [4],
in the remainder of this paper.
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As stated above, a period-elastic elastic task τi is characterized
by the parameters

τi =
(
Ci ,T

(max)
i ,T

(min)
i ,Ei

)
.

All the scheduling approaches that we will be considering in this pa-
per have utilization-based schedulability conditions: only the utiliza-
tion parameters of tasks appear in these schedulability conditions.
We therefore find it convenient to convert the period parameters
of each task (the T (min)

i and T (max)
i parameters) to corresponding

utilization parameters U (max)
i andU (min)

i respectively:

U
(max)
i = Ci/T

(min)
i

U
(min)
i = Ci/T

(max)
i

In the remainder of this manuscript, each task τi is therefore char-
acterized by the parameters

τi = (U
(max)
i ,U

(min)
i ,Ei )

LettingUi denote the actual utilization “allocated” to τi , the desired
elasticity property defined by Buttazzo et al. [4] is equivalent to
specifying that the amounts by which tasks’ utilizations are re-
duced from their desired maximums be in proportion to their Ei
(“elasticity”) coefficients:

∀ i, j,
(U (max)

i −Ui

Ei

)
=

(U (max)
j −Uj

Ej

)
(1)

Letting λ denote the desired equilibrium value such that for all
tasks λ =

(
(U
(max)
i −Ui )/Ei

)
, Expression 1 suggests

Ui ← U
(max)
i − λEi

However, we also require Ui ≥ U
(min)
i ; hence we choose

Ui (λ) ← max
(
U
(max)
i − λEi ,U

(min)
i

)
(2)

Note that for a given value of λ, an elastic task
τi = (U

(max)
i ,U

(min)
i ,Ei ) is just a “regular” Liu and Layland task

with utilization Ui (λ) as given by Expression 2 above.

The problem considered. For each of the multiprocessor sched-
uling strategies we will study in this paper, the question we ask is:
given an n-task system

Γ =
{
τi = (U

(max)
i ,U

(min)
i ,Ei )

}n
i=1

that is to be scheduled upon an m-processor platform, what is
the smallest value of λ for which the Liu and Layland task sys-
tem comprising n tasks with utilizations U1(λ), U2(λ), . . ., Un (λ) is
successfully schedulable by that particular scheduling strategy?

3 GLOBAL SCHEDULING
Under the global paradigm of multiprocessor scheduling for recur-
rent tasks, individual tasks are not restricted to executing upon
specific processors. Instead, a newly-arrived job of a task may begin
execution upon any available processor and a preempted job may
resume execution at a later point in time upon any processor, not
just the one it had been executing upon prior to preemption. We

consider three different global scheduling algorithms: fluid (Sec-
tion 3.1), Earliest Deadline First (Section 3.2), and an algorithm
called PriD [13] that can be thought of as a generalization of EDF
(Section 3.3).

3.1 Fluid Scheduling
The fluid scheduling paradigm of multiprocessor real-time schedul-
ing permits that individual tasks be assigned a fraction f , 0 ≤ f ≤ 1,
of a processor at each instant in time (in contrast to non-fluid sched-
ules, in which each task may execute either upon zero processors
or upon a single processor at each instant). Fluid scheduling is a
convenient abstraction that considerably simplifies many multi-
processor real-time scheduling problems; techniques are known
(see, e.g, [2, 14, 17, 20]) for converting fluid schedules to non-fluid
ones for many problems and under a wide range of conditions and
circumstances.

Fluid scheduling of Liu and Layland tasks – a review. Con-
sider some Liu and Layland task system Γ, and let Ui denote the
utilization of τi ∈ Γ. It has been shown [14] that a necessary and suf-
ficient condition for Γ to be fluid-schedulable upon a multiprocessor
platform comprisingm unit-speed processors is that

maxτi ∈Γ{Ui } ≤ 1 (3)

and ©­«
∑
τi ∈Γ

Ui
ª®¬ ≤ m (4)

Any task system satisfying Conditions 3 and 4 can be fluid-scheduled
by simply assigning each job of τi a fraction Ui of one of the m
processors at each instant between its release date and its deadline.

Extension to period-elastic tasks. In the original elastic schedul-
ing paper [4], Buttazzo et al. present an iterative (Θ(n2)) algorithm
called Task_Compress(Γ,Ud ) for assigning a period to each task in
a system Γ of period-elastic tasks such that the total system utiliza-
tion stays below a desired valueUd — this algorithm is reproduced
in this paper as Algorithm 1. It is evident that Algorithm 1 is, in
essence, determining the smallest value of λ for which( n∑

i=1
Ui (λ)

)
≤ Ud ,

where the Ui (λ)’s are as defined according to Expression 2. Ob-
serve, too, that Algorithm 1 never increases the actual utilization
assigned to any any task τi to beyond U (max)

i — this follows from
the observation that in Line 19, the value assigned to the actual
utilization —the parameter Ui— is obtained by subtracting a posi-
tive quantity fromU

(max)
1 . Hence given an elastic task system Γ of

sequential tasks that is to be fluid-scheduled uponm unit-speed pro-
cessors, we can determine the effective utilizations of the individual
tasks that satisfy Conditions 3 and 4, and therefore bear witness
to the fluid-schedulability of Γ, by simply calling the procedure
Task_Compress(Γ,Ud ) of Algorithm 1 withUd ←m. The instance
Γ can then be fluid-scheduled by assigning each job of each τi ∈ Γ
a fraction of a processor equal to this effective utilization at each
instant between its release date and its deadline.



Multiprocessor Scheduling of Elastic Tasks RTNS 2019, November 6–8, 2019, Toulouse, France

Algorithm 1 Task_Compress(Γ,Ud )

1: U (max) =
∑n
i=1Ci/T

(min)
i

2: U (min) =
∑n
i=1Ci/T

(max)
i

3: if Ud < U (min) then
4: return INFEASIBLE
5: end if
6: ok= 0
7: while ok == 0 do
8: Uf = Ev = 0
9: for each τi do
10: if Ei == 0 or Ti == T

(max)
i then

11: Uf = Uf +Ui
12: else
13: Ev = Ev + Ei
14: end if
15: end for
16: ok= 1
17: for each τi ∈ Γv do
18: if Ei > 0 and Ti < T

(max)
i then

19: Ui = U
(max)
i − (U (max) −Ud +Uf ) ∗ Ei/Ev

20: Ti = Ci/Ui
21: if Ti > T

(max)
i then

22: Ti = T
(max)
i

23: ok= 0
24: end if
25: end if
26: end for
27: end while
28: return FEASIBLE

3.2 Global EDF
While the fluid scheduling model is a convenient abstraction for
considering multiprocessor scheduling, it is not in general directly
implementable. As mentioned above, techniques are known for
converting fluid schedules to non-fluid ones under a variety of
conditions; however, most such conversions yield schedules with
a large number of preemptions and inter-processor migrations. In
environments in which there is a considerable overhead associ-
ated with each preemption and/ or inter-processor migration, this
approach of obtaining a fluid schedule and then converting to a
non-fluid one may incur unacceptably high overhead costs.

Review of results for Liu and Layland tasks. The global Earli-
est Deadline First (EDF) scheduling algorithm has the property that
the total number of preemptions and inter-processor migrations
in a schedule is bounded from above at the number of jobs in the
schedule. (This is easily seen by observing that a job may preempt
an already-executing one only upon its arrival, if it happens to
have an earlier deadline; such preemption may later lead to an
inter-processor migration if the preempted job resumes upon a
different processor.) Global EDF may therefore be a more appropri-
ate algorithm to use in environments characterized by significant
preemption/ migration overhead costs. Goossens et al. showed [13,
Theorem 5] that a system Γ of Liu & Layland tasks is scheduled by

global EDF to meet all deadlines uponm unit-speed processors if
the following condition holds:∑

τi ∈Γ
Ui ≤ m − (m − 1) ×max

τi ∈Γ
{Ui } (5)

(This condition was also shown [13, Theorem 6] to be tight from a
utilization-based perspective: there are systems inwhich

(∑
τi ∈Γ Ui

)
is greater than

(
m − (m − 1) ×maxτi ∈Γ {Ui }

)
by an arbitrarily small

amount, upon which global EDF misses deadlines.)

Extension to period-elastic tasks. Given a system Γ of period-
elastic tasks

Γ =
{
τi = (U

(max)
i ,U

(min)
i ,Ei )

}n
i=1

that is to be scheduled upon anm-processor platform, our objective
is to find the smallest value of λ such that the Liu & Layland task
system with the following utilizations

Ui ←
{
max

(
U
(max)
i − λEi ,U

(min)
i

)}n
i=1

(6)

is schedulable using global EDF. We have chosen to solve this
problem by iterating through the possible values of λ — see Al-
gorithm 2. This algorithm steps through the range [0,Φ] with a
“granularity" ϵ (Line 1 of Algorithm 2), where Φ is the maximum

value among all tasks of the equation
(U (max)

i −U (min)
i

Ei

)
. The algo-

rithm seeks the smallest value of λ or which the Liu & Layland task
system of Expression 6 above is global EDF-schedulable according
to Expression 5. Once this smallest value of λ is determined and
returned by Algorithm 2, we can convert the period-elastic task
system to a regular Liu & Layland task system by computing the
effective utilizations of the tasks according to Expression 2, and
then schedule the Liu & Layland task system so obtained by global
EDF. Algorithm 2 is Θ(Φϵ × n).

Algorithm 2 Global EDF(Γ,m)

1: ϵ ← 0.05 × Φ ▷ “Granularity” of the test...
2: for λ← 0 to Φ by ϵ do
3: S ← 0.0 ▷ Total utilization of compressed tasks
4: M ← 0.0 ▷ Max. utilization amongst compressed tasks
5: for i ← 1 to |Γ | do
6: tmp← max

(
U
(max)
i − λEi ,U

(min)
i

)
7: S ← S+ tmp
8: M ← max(M, tmp)
9: end for
10: if (S ≤ m − (m − 1) ×M) then
11: ▷ By Eqn. 5, the compressed tasks are global-EDF schedulable,
12: return λ
13: end if
14: end for
15: return (global EDF fails)
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Algorithm PriD (Γ,m)
The Liu & Layland task system Γ = {τ1,τ2, . . . τn } is to be scheduled onm processors
Assume the tasks are indexed according to utilization: Ui ≥ Ui+1 for all i , 1 ≤ i < n
for i = 1 tom do
if {τi+1,τi+2, . . . ,τn } is global-EDF schedulable upon (m − i) processors
then
During run-time {τ1,τ2, . . . ,τi }’s jobs will be assigned highest priority and {τi+1,τi+2, . . . ,τn }’s jobs will be assigned EDF-priority
return success

return failure // Not schedulable by PriD

Figure 1: Algorithm PriD priority-assignment rule

3.3 Algorithm PriD
It was observed [1] that global EDF tends to under-perform when
there is even a single task with high utilization. This is easily ex-
plained by examining the utilization-based global-EDF schedulabil-
ity condition of Inequality 5: observe the presence of the(

(m − 1) ×max
τi ∈Γ
{Ui }

)
term on the right-hand side. Since this term is subtracted from the
total computing capacity of the platform (i.e.,m), the consequence
is that a capacity of (m − 1) times the largest individual utilization
becomes unavailable due to the presence of this large-utilization
task. This phenomenon can be looked upon a consequence of the
well-known Dhall effect [9, 10] which has been widely studied in
multiprocessor real-time scheduling theory. Several results have
been obtained within the real-time scheduling theory community
for dealing with such utilization loss; below we first review some
of these results and then seek to extend their applicability to incor-
porate period-elasticity.

Reviewof results for Liu and Layland tasks.Recall that onema-
jor advantage of EDF-generated schedules over those obtained by
converting a fluid-based one is the reduced number of preemptions
and inter-processor migrations: the total number of preemptions
and migrations in an EDF-generated is no greater than the number
of jobs that are scheduled. It turns out that this property is in fact
enjoyed by an entire class of algorithms: all those in which each
job is assigned a single fixed priority and at each instant during
run-time the highest-priority jobs that are eligible to execute are
selected for execution. Algorithms in this class are referred to as
Fixed Job Priority (FJP) [7] scheduling algorithms. The algorithm
fpEDF was proposed [1] as an FJP algorithm that circumvents the
utilization loss caused by the Dhall effect. Under the fpEDF run-
time scheduling algorithm, jobs of tasks with utilization > 0.5 are
statically assigned highest priority while priorities to jobs of the re-
maining tasks are assigned according to EDF. It has been shown [1,
Theorem 4] that a task system Γ is scheduled by fpEDF to meet all
deadlines uponm unit-speed processors if the following condition
holds: ∑

τi ∈Γ
Ui ≤

m + 1
2

(7)

A pragmatic improvement to fpEDF, called Algorithm PriD (for
“priority driven”) was proposed by Goossens et al. [13] — this is

the algorithm that we will be adapting below for period-elastic
tasks. Algorithm PriD is presented in pseudo-code form in Figure 1.
Algorithm PriD, like fpEDF, seeks to circumvent the Dhall effect
by assigning greatest priority to jobs of tasks with high utilization;
however, while fpEDF designates all tasks with utilization > 0.5 to
be “high-utilization” ones, Algorithm PriD determines which tasks
are “high-utilization” based on the characteristics of the task system
under consideration. It is shown [13] that Algorithm PriD strictly
dominates fpEDF: all instances that are deemed schedulable by
fpEDF are also deemed schedulable by PriD while the converse of
this statement is not true – there are instances deemed schedulable
by Algorithm PriD that will not pass the fpEDF schedulability test
of Expression 7.

Extension to period-elastic tasks. Our adaptation of Algorithm
PriD to period-elastic tasks is similar to our adaptation of global
EDF: given an instance of periodic-elastic tasks

Γ =
{
τi = (U

(max)
i ,U

(min)
i ,Ei )

}n
i=1

to be scheduled uponm unit-speed processors, we iterate through
possible values of λ between 0 and Φ, seeking the smallest value
such that the Liu & Layland task system with utilizations

Ui ←
{
max(U (max)

i − λEi ,U
(min)
i

}n
i=1

is deemed schedulable by Algorithm PriD uponm unit-speed pro-
cessors. (The pseudo-code for this algorithm is very similar to the
pseudo-code in Algorithm 2, and hence omitted.)

Algorithm PriD isΘ
(
n × loд(n) +m

)
. Therefore, the overall com-

plexity of iterating over λ values for elastic tasks to be scheduled
under Algorithm PriD is Θ

(
Φ
ϵ × (n × loд(n) +m)

)
4 PARTITIONED SCHEDULING
The partitioned scheduling of Liu & Layland task systems is known
to be equivalent to the bin-packing problem[15, 16], and hence
NP-hard in the strong sense. Several polynomial-time heuristics
have been proposed for solving this problem approximately: most
of these heuristic algorithms for partitioning have the following
common structure. First, they specify an order in which the tasks
are to be considered. Then in considering each task (in the order
chosen), they specify the order in which to consider upon which
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processor to attempt to allocate the task. A task is successfully allo-
cated upon a processor if it is observed to “fit" upon the processor;
within the context of the partitioned EDF-scheduling, a task fits on
a processor if the task’s utilization does not exceed the processor
capacity minus the sum of the utilizations of all tasks previously
allocated to the processor. The algorithm declares success if all
tasks are successfully allocated; otherwise, it declares failure.

Lopez et al. [19] have extensively compared several widely-used
heuristic algorithms that fit this overall structure. They define the
concept of a Reasonable Allocation (RA) partitioning algorithm: an
RA algorithm is one that fails to allocate a task to a multiprocessor
platform only when the task does not fit into any processor upon
the platform. All the heuristic algorithms considered by Lopez et
al. [19] are RA ones — indeed, there seems to be no reason why a
system designer would ever consider using a non-RA partitioning
algorithm. Within the RA algorithms, Lopez et al. [19] compared
heuristics that

(1) use three different ways for ordering the tasks to consider:
arbitrary, in order of increasing utilization, and in order of
decreasing utilization; and

(2) also use three different heuristics for ordering the processors
to consider: “first fit" (assign a task to the first processor
upon which it fits), “worst fit" (assign a task to the processor
with the maximum remaining capacity), and and “best fit"
(assign a task to the processor with the minimum remaining
capacity that exceeds the task’s utilization).

Extension to period-elastic tasks.Any of the partitioning heuris-
tics can be adapted for period-elastic tasks in a manner that is very
similar in structure to the manner in which global EDF and PriD
were adapted for elastic tasks. That is, given an instance of periodic-
elastic tasks

Γ =
{
τi = (U

(max)
i ,U

(min)
i ,Ei )

}n
i=1

to be scheduled uponm unit-speed processors, we iterate through
possible values of λ between 0 and Φ, seeking the smallest value
such that the Liu & Layland task system with utilizations

Ui ←
{
max(U (max)

i − λEi ,U
(min)
i

}n
i=1

is deemed schedulable by upon m unit-speed processors by the
partitioning heuristic. (The pseudo-code for doing so is again very
similar to the pseudo-code in Algorithm 2, and hence omitted.)

We note that after partitioning tasks onto processors, it is highly
unlikely that all processors are fully utilized (i.e. the assigned
utilizations of the partitioned tasks sum to 1.0). The procedure
Task_Compress(Γ,Ud ) of Buttazzo et al. [4] (reproduced here as
Algorithm 1) can be applied to each processor with Ud ← 1.0 to
perhaps increase system utilization while still guaranteeing schedu-
lability,

Sorting tasks and partitioning them is Θ
(
n × loд(n) + n ×m

)
.

Therefore, the overall complexity of iterating over λ values for
elastic tasks to be scheduled under partitioned scheduling is
Θ

(
Φ
ϵ × (n × loд(n) + n ×m)

)

5 SIMULATION EXPERIMENTS
We have performed a simulation-based comparison of the various
algorithms presented in Sections 3 and 4 for the multiprocessor
scheduling of sequential period-elastic tasks; we report on the find-
ings of this comparison below. We describe the setup for these
simulation experiments in Section 5.1 and present our findings in
Section 5.2; based upon these findings, we draw some high-level
conclusions in Section 5.3.

5.1 Experimental Setup
We randomly generate sets of sequential period-elastic tasks and
attempt to schedule them upon a given number of processorsm
using the different scheduling algorithms – fluid, global EDF, PriD,
and partitioned – described in Sections 3 and 4 above. Specifically,

• We separately consider multiprocessor platforms containing
m = 4, 8, and 16 identical processors.
• For each of these values form, we consider task sets with
n = 2 ×m, 2.5 ×m, 3 ×m, n = 4 ×m, and n = 8 ×m tasks.
• For each combination of values of m and n, we also vary
the maximum utilization value any individual task is al-
lowed to be assigned, denoted α . This value can directly
impact schedulability of a task set, particularly when using
the global EDF and PriD algorithms. We study values of of
α = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
• For each selected combination of values of m and n, we
generate task sets in which the maximum utilizations of the
tasks (i.e., theirU (max)

i parameters) sum to 1.1×m ×α , 1.5×
m × α , and 1.9 ×m × α .

Hence a total of 3 × 5 × 6 × 3 = 270 different combinations of
values ofm,n,α , and

(∑
i U
(max)
i

)
are considered. For each such

combination, we generate 1000 task sets in the following manner.
We generate the individualU (max) values using the Randfixedsum
algorithm [11] to provide an unbiased distribution of maximum
utilizations. The corresponding individual task minimum utilization
valuesU (min)

i are uniformly generated over the range (0,U (max)
i ). In

the case that a task set’sU (min)
i values sum to more thanm (i.e. the

task set is not schedulable under fluid scheduling, or therefore, any
other scheduling algorithm), we repeatedly generated new U

(min)
i

values for each task until their sum is sufficiently low. Tasks’ elastic
coefficients is chosen uniformly randomly over the range [1, 5]. For
all algorithms a “granularity” of ϵ = Φ

1,000 was used.
We attempt to schedule each task set generated as described

above using the four algorithms discussed in Sections 3 and 4: fluid,
global EDF, PriD, and partitioned. For partitioned, we first sort the
tasks in order of decreasing utilization (their Ui (λ) parameters),
and attempt to assign them to the available processors using the
the “first-fit,” “worst-fit,” and “best-fit” heuristics. We return the
first λ value that deems the task set schedulable by any of these
heuristics. We note that the ability to partition tasks onto processors
in an efficient manor is an advantage over the global scheduling
algorithms considered in this paper, as it is infeasible to carry out
full simulation of global EDF or PriD.
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5.2 Observations
In our experiments, we noted (i) the fraction of task-sets that were
determined to be schedulable by each of our four algorithms; and
(ii) for those task-sets that were deemed schedulable by all the
algorithms, the minimum λ needed to achieve schedulability by
each algorithm. Our results are presented in graphical form in
Figures 2–4. In these graphs we show results of both the average
minimum normalized λ value ( λΦ–this gives a value on the interval
[0, 1] and is needed to compare λ values across task sets) needed
to achieve schedulability for a given scheduling algorithm, and
the percentage of the 1,000 task sets that each algorithm deemed
scheduleable. To ensure a consistent comparison, we only compare
lambda values for task sets deemed schedulable by all scheduling
algorithms.

As mentioned in Subsection 5.1, there are 270 combinations
ofm,n,α , and

(∑
i U
(max)
i

)
considered in this simulation. Due to

spatial constraints, this paper includes the representative subset of
α = {0.6, 0.8, 1.0}. The remaining data in which α = {0.5, 0.7, 0.9}
and follows the same patterns discussed in this section can be found
online [21].

Figures 2, 3, and 4 show both the λ values and percentage of
schedulable task sets for all four scheduling algorithms (fluid, global
EDF, PriD, and partitioned) for α = 0.6, 0.8, and 1.0, respectively.
Some trends can be noticed across all graphs. We note that fluid
scheduling is an idealized optimal scheduling algorithm; not sur-
prisingly, therefore, it schedules the largest percentage of task-sets
and returns the smallest λ value. This is seen consistently across all
results. It serves as an upper bound for achievable simulation results
for the other scheduling algorithms. We also note that partitioned
scheduling consistently dominates algorithm PriD and global EDF
in both λ value and in percentage of schedulable task sets. This
is consistent with prior observations [3] regarding global versus
partitioned multiprocessor scheduling; in essence, this is likely a re-
flection of the fact that while global scheduling algorithms like PriD
apply schedulability tests that are utilization-based and incorpo-
rate considerable pessimism since they must consider “worst-case"
task-sets with the same utilization parameters as running full simu-
lations is infeasible, partitioned schedulability tests actually attempt
to perform a partition and hence do not necessarily pay the price
in terms of such analysis-based pessimism.

Note that global EDF scheduling always requires the highest
lambda value, and that the percentage of task sets deemed schedu-
lable under global EDF decreases as

(∑
i U
(max)
i

)
increases. This is

a manifestation of the Dhall effect, and our experiments revealed
that this worsens as the number of processors and tasks increase:
for some combinations of m, n, and

(∑
i U
(max)
i

)
that we consid-

ered, global EDF fails to schedule a single task set out of 1000. In
such cases the reported λ is off the chart. The Dhall effect can be
observed to worsen as α increases.

Our experiments also reveal that it becomes more difficult to
schedule tasks (in terms of both λ value and schedulability percent-
age) for all the scheduling algorithms as

(∑
i U
(max)
i

)
increases. The

same is true as the number of processors increases but the ratio
of processors to tasks remains the same. On a constant number
of processors, fluid and partitioned scheduling can return a lower

λ value with more tasks in the task set, and a higher percentage
of task sets are deemed schedulable under partitioned scheduling
(while PriD and global-EDF seem less affected). We believe this
improvement seen to be a reduction in the Dhall effect: as more
tasks are introduced into the system the largest single task is more
likely to decrease. Naturally fluid scheduling always deems 100%
of tasks to be schedulable.

5.3 Recommendation
Based on our observations in the previous subsection and the graphs
in Figures 2–4, we recommend that in the absence of specific knowl-
edge regarding task characteristics that may advocate in favor of
PriD or global EDF, partitioned scheduling be used for the sched-
uling of sequential period-elastic tasks on uniform multiproces-
sor systems, particularly in systems with a large number of tasks.
Among the realistic scheduling algorithms considered in this paper,
it 1) consistently returns the lowest value of λ (and therefore com-
presses tasks the least) and 2) schedules the highest percentage of
task sets.

6 RELATEDWORK
Buttazzo et al. first introduced the elastic task model for sequen-
tial tasks on a preemptive uniprocessor [4]. The sequential model
was later extended to include resource sharing [5] and unknown
computational loads [6]. Chantem et al. proved Buttazzo’s initial
scheduling algorithm to be equivalent to solving a quadratic op-
timization problem and introduced a period-based optimization
problem scheme for period selection [8]; they further extended the
model to include constrained deadlines [8]. Our prior work intro-
duced elastic scheduling of tasks with internal parallelism under
the federated scheduling paradigm [23] and the concept of com-
putational elasticity [22]. Recent work by Gill et al., has applied
elastic scheduling to mixed-criticality systems [12]. We leave the
sequential multi-core scheduling extensions to all of these problems
as future work.

7 CONCLUSION
In this paper we have introduced elastic scheduling for sequential
tasks on multiprocessor systems. We have introduced algorithms
for scheduling such tasks under both global (in a variety of man-
ners) and partitioned scheduling paradigms. We ran an extensive
simulation to compare these methods and conclude that partitioned
scheduling should be used if possible.
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Figure 3: Lambda Values and Schedulability (α = 0.8)
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