
On the use of supervised machine learning for assessing
schedulability: application to Ethernet TSN

Tieu Long Mai
University of Luxembourg

Luxembourg
long.mai@uni.lu

Nicolas Navet
University of Luxembourg

Luxembourg
nicolas.navet@uni.lu

Jörn Migge
RealTime-at-Work (RTaW)

France
jorn.migge@realtimeatwork.com

ABSTRACT
In this work, we ask if Machine Learning (ML) can provide a viable
alternative to conventional schedulability analysis to determine
whether a real-time Ethernet network meets a set of timing con-
straints. Otherwise said, can an algorithm learn what makes it
difficult for a system to be feasible and predict whether a configura-
tion will be feasible without executing a schedulability analysis? To
get insights into this question, we apply a standard supervised ML
technique, k-nearest neighbors (k-NN), and compare its accuracy
and running times against precise and approximate schedulability
analyses developed in Network-Calculus. The experiments consider
different TSN scheduling solutions based on priority levels com-
bined for one of them with traffic shaping. The results obtained
on an automotive network topology suggest that k-NN is efficient
at predicting the feasibility of realistic TSN networks, with an ac-
curacy ranging from 91.8% to 95.9% depending on the exact TSN
scheduling mechanism and a speedup of 190 over schedulability
analysis for 106 configurations. Unlike schedulability analysis, ML
leads however to a certain rate “false positives” (i.e., configurations
deemed feasible while they are not). Nonetheless ML-based feasi-
bility assessment techniques offer new trade-offs between accuracy
and computation time that are especially interesting in contexts
such as design-space exploration where false positives can be toler-
ated during the exploration process.

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Networks→ Link-layer protocols; • Computing methodologies
→ Supervised learning;

KEYWORDS
Timing verification, schedulability analysis, machine learning, Time
Sensitive Networking (TSN).
ACM Reference format:
Tieu LongMai, Nicolas Navet, and JörnMigge. 2019. On the use of supervised
machine learning for assessing schedulability: application to Ethernet TSN.
In Proceedings of 27th International Conference on Real-Time Networks and
Systems, Toulouse, France, November 6–8, 2019 (RTNS 2019), 11 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RTNS 2019, November 6–8, 2019, Toulouse, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Context: Ethernet TSN for high-speed real-time communication.

Ethernet is becoming the prominent layer 2 protocol for high-speed
communication in real-time systems. However, many of such sys-
tems, be it in the industrial, automotive or telecom domains, have
strong Quality of Service (QoS) requirements including perfor-
mance (e.g., latency, synchronization and throughput requirements),
reliability (e.g., spatial redundancy) and security (e.g., integrity)
that cannot be met with the standard Ethernet technology. The
IEEE802.1 TSN TG (Time Sensitive Networking Technical Group),
started in 2012, develops technologies to address these QoS re-
quirements. TSN TG has developed more than 10 individual stan-
dards, which, after their adoption as amendments to the current
IEEE802.1Q specification, are integrated into the newest edition of
IEEE802.1Q ([17] at the time of writing). The reader interested in a
survey of the TSN standards related to low-latency communication,
and the ongoing works within TSN TG, can consult [29].

Verification of timing constraints. The two main model-based
approaches to assess whether a real-time system meets its temporal
constraints are schedulability analysis and simulation. Schedula-
bility analysis, also called feasibility analysis, worst-case analy-
sis, response time analysis or worst-case traversal time analysis
(WCTT) in the case of networks, is a mathematical model of the
system used to derive upper bounds on the performance metrics
(communication latencies, buffer usage, etc). A simulation model on
the other hand captures the behaviour of the real system through
a set of rules, which, along with the sequence of values provided
by the random generator, dictate the evolution of the model. To be
timing-accurate the model must capture all activities having an im-
pact on the performance metrics, like for example the waiting time
of a packet in a network device. The main drawback of simulation
is that, even if the coverage of the verification can be adjusted to
the requirements (see [30]), it only provides statistical guarantees
and not firm guarantees. In the remainder of this work, we focus
on schedulability analysis as the verification technique.

Design-space exploration for further automating the design of
embedded architectures. The complexity of designing and configur-
ing complex embedded systems, like the Electrical and Electronic
(E/E) architecture of a vehicle platform, calls for Design-Space Ex-
ploration (DSE) algorithms, that is design decisions based on the
systematic exploration of the search space. Regarding network de-
sign, a first step in that direction is the ZeroConfig-TSN (ZCT)
algorithm [28, 33], implemented in the RTaW-Pegase commercial
tool [38], that assists designers in the selection and configuration of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

RTNS 2019, November 6–8, 2019, Toulouse, France Tieu Long Mai, Nicolas Navet, and Jörn Migge

TSN protocols. Beyond protocol selection and configuration several
other important and difficult design problems are good candidates
for DSE, such as the allocation of the functions to the computational
resources or even the topological layout of the E/E architecture.

DSE algorithms typically consist of three distinct steps: creat-
ing candidate solutions, configuring these solutions and evaluating
their performance. For networks, even with optimized implemen-
tations of simulator and schedulability analysis, this last step is
compute intensive and drastically limits the size of the search space
that can be explored. For instance, assessing the feasibility of the
TSN network used in the experiments of this study with 350 flows
scheduled with three priority levels requires an average 805ms
computation time (Intel I7-8700 3.2Ghz) per configuration, result-
ing in about 224 hours for 106 candidate solutions. To mitigate
this problem, this work studies whether ML algorithms can be
a faster alternative to conventional schedulability analysis to de-
termine whether a real-time TSN network meets a set of timing
constraints. A drastic speed-up in feasibility testing thanks to ML
would facilitate the adoption of DSE algorithms in the design of
E/E architectures.

Contribution of the paper. This work explores the extent to which
supervised ML techniques can be used to determine whether a real-
time Ethernet configuration is schedulable or not. The prediction
accuracy and computation time that can be expected from ML
are quantified by comparison with a precise and an approximate
schedulability analysis. Intentionally, to ensure the practicality of
our proposals, we study these questions using standard ML tech-
niques that can run on desktop computers with relatively small
amounts of training data. Although ML has been applied to diverse
related areas including performance evaluation (see Section 5 for
a review of the state-of-the-art), this is to the best of our knowl-
edge the first study to apply ML to determine the feasibility of a
real-time system. To facilitate further research, the data and the R
code used in this study are available as open-source (AGPL V3.0) at
https://github.com/crtes-group-unilux/ML4TSN-Schedulability.

Organisation. The remainder of this document is organised as
follows. In Section 2, we introduce the TSN network model and
define the design problem. In Section 3 we apply a supervised
learning algorithm to predict feasibility. Section 4 provides a recap
of the results obtained and a comparison with the performances
of conventional schedulability analysis. In Section 5, we give an
overview of the applications of ML techniques in related domains.
Finally, Section 6 provides first insights gained about the use of ML
techniques for timing analysis and identifies a number of possible
improvements and research directions.

2 ETHERNET TSN MODEL AND DESIGN
PROBLEM

In this work, we consider that the network topology (layout, link
data rates, etc) has been set as well as the TSN protocols that the
network devices must support. The supported TSN protocols de-
termine the space of scheduling solutions that are feasible (e.g.,
FIFO, priority levels plus traffic shaping, etc). This is realistic with
respect to industrial contexts, like the automotive and aeronautical
domains, where most design choices pertaining to the topology of

the networks and the technologies are made early in the design cy-
cle at a time when the communication needs are not entirely known.
Indeed, many functions become available later in the development
cycle or are added at later evolutions of the platform.

2.1 Designing and configuring TSN networks
In the following, a possible configuration, or candidate solution, refers
to a TSN network that has been configured, while a feasible configu-
ration is a configured TSN network that meets all the application’s
constraints. The configuration of a TSN network involves a number
of sub-problems:

• Group traffic streams into traffic classes and set the relative
priorities of the traffic classes: up to 8 priority levels are
permitted with TSN [17],

• Beyond the priorities of the traffic classes, optionally select
for each traffic class an additional QoS protocol: shaping us-
ing the Credit-Based Shaper (CBS, defined in IEEE802.1Qav),
time-triggered transmission with the Time-Aware Shaper
(TAS, defined in IEEE802.1Qbv), etc.

• Configure each traffic class: parameters for CBS (i.e., class
measurement interval (CMI), values of the “idle slopes” per
traffic class and per egress port), Gate Control List (i.e., the
transmission schedule) for TAS, etc.

• If frame pre-emption (IEEE802.1Qbu) is used, decide the
subset of traffic classes that can be pre-empted by the rest of
the traffic classes.

In this study, we consider the following scheduling solutions
corresponding to distinct trade-offs in terms of their complexity
and their ability to meet diverse timing constraints:

(1) FIFO scheduling (FIFO): all streams belong to the same traffic
class and thus have the same level of priority. This is the
simplest possible solution.

(2) Priority with manual classification (Manual): the streams are
grouped into the three classes shown in Table 1 and their
priority is as follows: command and control (C&C) class
above audio class above video class. This can be seen as the
baseline solution that a designer would try based on the
relative criticality of the streams.

(3) “Concise priorities” with eight priority levels (CP8): “concise
priorities” is the name of the priority assignment algorithm
in RTaW-Pegase, which relies on the same principles as the
Optimal Priority Assignment algorithm for mono-processor
system [4] that has been shown to be optimal with an analy-
sis developed with "the trajectory approach" for the trans-
mission of periodic/sporadic streams in switched Ethernet
network [15]1. With concise priorities, unlike with manual
classification, flows of the same type can be assigned to dif-
ferent traffic classes and more than three priority levels will
be used if required by the timing constraints.

(4) Manual classification with “pre-shaping” (Preshaping): we
re-use the manual classification with three priority levels

1“Concise Priorities” and OPA differ by how unfeasible configurations are handled:
concise priorities returns a priority assignment that tries to minimize the number of
flows not meeting their constraints, while this is not part of standard OPA. Whether
OPA remains optimal in the TSN context with other analyses and other formalisms
such as Network-Calculus, as used in the paper, or Event-Streams [40] is to the best of
our knowledge an open question.

https://github.com/crtes-group-unilux/ML4TSN-Schedulability

Supervised learning for assessing schedulability of TSN networks RTNS 2019, November 6–8, 2019, Toulouse, France

but apply a traffic shaping strategy called “pre-shaping in
transmission” to all video-streams. This traffic shaping strat-
egy, combines standard static priority scheduling with traffic
shaping introduced by inserting idle times, pauses, between
the times at which the successive frames of segmented mes-
sages (e.g., camera frames) are enqueued for transmission.
All the other characteristics of the traffic remain unchanged.
The principles of the algorithm used to set the idle times,
available under the name of “Presh” algorithm in RTaW-
Pegase, are described in [32].

These scheduling solutions have been selected to include two main
QoS strategies, namely static priority scheduling and traffic shaping,
while they can be implemented with basic TSN networking devices
offering only the eight priority levels. In addition, those four solu-
tions are compatible with the standard static priority scheduling
analysis. Two schedulability analyses in Network-Calculus (NC),
based on results published in [8, 9, 37], are used in the experiments:

• The "approximate analysis" which computes WCTTs in lin-
ear time with respect to the number of streams.

• The "precise analysis": WCTT computations execute in a
time that depends on the least commonmultiple (LCM) of the
frame periods, which can lead to an exponential computation
time if periods are coprime.

The reader can refer to [31] for typical computation times and in-
formation about the class of (min,+) functions used in each analysis.
Importantly, the lower bounds proposed in [6, 7] and used in [10]
suggest that the existing NC schedulability analyses for static pri-
ority scheduling are precise in terms of the distance between the
computed upper bounds and the true worst-case latencies.

2.2 TSN model
We consider a standard switched Ethernet network supporting
unicast and multicast communications between a set of software
components distributed over a number of stations. In the following,
the term “traffic flow” or “traffic stream” refers to the data sent to
the receiver of an unicast transmission or the data sent to a certain
receiver of a multicast transmission (i.e., a multicast connection
with n receivers are counted as n distinct traffic flows). A number
of assumptions are placed:

• All packets, also called frames, of the same traffic flow are
delivered over the same path: the routing is static as it is
today the norm in critical systems.

• It is assumed that there are no transmission errors and no
buffer overflows leading to packet losses. If the amount of
memory in switches is known, the latter property can be
checked with schedulability analysis as it returns both upper
bounds on stream latencies and maximum memory usage at
switch ports.

• Streams are either periodic, sporadic (i.e., two successive
frames become ready for transmission at least x ms apart) or
sporadic with bursts (i.e., two successive burst of n frames
become ready for transmission at least x ms apart). The latter
type of traffic corresponds for instance to video streams from
cameras that cannot fit into a single Ethernet frame and must
be segmented into several frames.

• The maximum size of the successive frames belonging to a
stream is known, as required by schedulability analysis.

• The packet switching delay is assumed to be 1.3us at most.
This value, which of course varies from one switch model
to another, is in line with the typical latencies of modern
switches [35].

2.3 Traffic characteristics and network
topology

The traffic is made up of three classes whose characteristics are
summarized in Table 1. The characteristic of the streams and their
proportion is inspired from the case-study provided by an automo-
tive OEM in [27, 34].

Table 1: Characteristics of the three types of traffic. The per-
formance requirement is to meet deadline constraints. The
frame sizes indicated are data payload only.

Audio Streams • 128 or 256 byte frames
• periods: one frame each 1.25ms
• deadline constraints either 5 or
10ms

• proportion: 7/46
Video Streams • ADAS + Vision streams

• 30*1500byte frame each 33ms
(30FPS camera for vision)

• 15*1000byte frame each 33ms
(30FPS camera for ADAS)

• 10ms (ADAS) or 30ms (Vision)
deadlines

• proportion: 7/46
Command & Control • from 53 to 300 byte frames

• periods from 5 to 80ms
• deadlines equal to periods
• proportion: 32/46

In the experiments, the number of streams varies but the pro-
portion of each stream (indicated in Table 1) is a fixed parameter
of the stream generation procedure. Each stream is either unicast
or multicast with a probability 0.5. The number of receivers for a
multicast stream is chosen at random between two and five. The
sender and receiver(s) of a stream are set at random. In this study,
we consider deadline constraints: the WCTT of each stream, com-
puted by schedulability analysis, must be less than the stream’s
deadline.

The topology considered in this study is the one provided by
an automotive OEM in [27]. As shown in Figure 1, the network
comprises 5 switches and 16 nodes, with a data transmission rate
equal to 100Mbps on all links, except for the 1Gbps link from ECU12
to Switch3.

3 PREDICTING FEASIBILITY WITH
SUPERVISED LEARNING

In this section, we apply a supervised ML algorithm, namely k-
Nearest Neighbours (k-NN), to predict whether TSN configurations
are feasible or not. k-NN is a simple though powerful machine

RTNS 2019, November 6–8, 2019, Toulouse, France Tieu Long Mai, Nicolas Navet, and Jörn Migge

Figure 1: Topology of the prototype network used in the ex-
periments (topology from [27]).

learning algorithm, described in standard ML textbooks like [16],
that classifies unlabelled (i.e., unseen) data points by placing them
in the same category as the majority of their “nearest” neighbours,
which are the data points from the training set that are the closest
in the feature space.

3.1 Supervised learning applied to network
classification

Supervised learning is a class of ML algorithms that learn from a
training set to predict the value or the label of unseen data. The
data in the training set are classified into categories: they are given
“labels”. In this study, as illustrated in Figure 2, the training set is a
collection of TSN configurations that vary in terms of their number
of flows and the parameters of each flow. A configuration in the
training set will be labelled as feasible or non-feasible, depending on
the results of the schedulability analysis: a configuration is feasible
if and only if all latency constraints are met.

It should be noted that different schedulability analyses may
return different conclusions depending on their accuracy. To la-
bel the training set, we use the accurate schedulability analysis,
which minimizes the number of "false negatives" (i.e., configura-
tions deemed non feasible while they actually are). A configuration
in the training set is characterized by a set of “features”, that is a
set of properties or domain-specific attributes that summarize this
configuration.

3.2 Feature engineering and feature selection
Defining features to be used in a ML algorithm is called “feature en-
gineering”. This is a crucial step as the features, which are raw data
or which are created from raw data, capture the domain-specific
knowledge needed for the learning to take place. Once a set of
candidate features has been identified, we have to select the ones
that will be the most predictive and remove extraneous ones, as
features with little or without predictive power will reduce the
efficiency of an ML algorithm (this is called the “peaking” effect,
see [12]). Feature engineering and feature selection have given rise
to hundreds of studies over the past two decades (see [12, 20] for
good starting points). Feature engineering is typically done with

expert knowledge, or it can be automated with feature learning
techniques and techniques belonging to deep learning.

In our context, the raw data available to us are relatively limited
in number: number of streams of each type, characteristics of the
streams, topology of the network, etc. There are also characteristics
that we know will tend to make it difficult for a network to be
feasible. For instance, if there is a bottleneck link in the network
(i.e, the maximum load over all links is close to 1), or if the load
is very unbalanced over the links, then it is more likely that the
network will not be feasible than a network with perfectly balanced
link loads with the same total number of flows. In a similar manner,
with prior domain knowledge, it is possible to discard some features
that will not be important factors for feasibility. In this study, we
selected by iterative experiments the features among the raw data
so as to maximize the prediction accuracy. We created a new feature
from the raw data, the Gini index [13] of the load of the links, which
evaluates the unbalancedness of link loads and thus the likelihood
that there is one or several bottleneck links. This feature proves
to increase noticeably the classification accuracy. From empirical
experiments, we identified a set of five features with the most
predictive power: the number of critical flows, the number of audio
flows, the number of video flows, the maximum load of the network
(over all links) and the Gini index of the loads of the links.

3.3 The k-NN classification algorithm
Given a training set made up of data characterized by a vector of d
features, k-NN works as follows:

(1) It stores all data belonging to the training set.
(2) Given an unlabelled data p, the distance from p to each train-

ing set data q is calculated by the Euclidean distance be-
tween the d features of the two data in a d-dimensional
space: dist(p,q) =

√
(p1 − q1) + (p2 − q2) + ... + (pd − qd).

(3) Based on the Euclidean distances, the algorithm identifies
the k data in the training set that are the “nearest” to the
unlabelled data p.

(4) K-NN classifies the data p in the category that is the most
represented among its k nearest neighbours. Here we are
solving a binary classification problem: if the majority of
the k nearest neighbours is feasible, the unlabelled data is
predicted to be feasible, otherwise, it is predicted to be non-
feasible.

The best value for k cannot be known beforehand, it has to be
determined by iterative search (see §3.5). An advantage of k-NN is
its reduced algorithmic complexity, which allows the use of large
training sets. Actually, k-NN does not have a true training phase,
it just stores the training data and postpone computation until
classification. In terms of complexity, given n the number of data
in the training set, the complexity of prediction for each unlabelled
data with k-NN is O(n). For a comparison, the prediction time of
two other popular ML classification algorithms, Decision Trees
and Support Vector Machines [16], is constant but the worst-case
complexity of their training phase is polynomial in the size of the
training set.

Visual exploratory data analysis shows that feasible and non-
feasible configurations in the training set tend to occupy distinct
areas in the feature space (see Figure 4 in [31]). In other words,

Supervised learning for assessing schedulability of TSN networks RTNS 2019, November 6–8, 2019, Toulouse, France

Figure 2: Configurations in the training set are classified as feasible (blue triangle) or non-feasible (red star) based on the results
of the precise schedulability analysis. The ML algorithm then tries to learn the values of the features that are predictive with
respect to the feasibility of the configurations. Here the ML algorithm draws a separation between feasible and non-feasible
configurations that will be used to classify an unlabelled configuration.

whether a new configuration is feasible or not can usually be pre-
dicted by a majority voting among the closest data points in the
feature space. As k-NN relies on the very same classification mecha-
nism, this suggests that it is a technique well suited to our problem.
However, they are also small areas in the feature space where feasi-
ble and non-feasible configurations are mixed, where k-NN, or any
methods trying to draw boundaries between groups like Support
Vector Machines (SVM, see [16]), will not be able to make the right
decision 2.

3.4 Performance criteria and evaluation
technique

The following six metrics are retained to evaluate the performance
of the techniques considered in this study:

• The overall Accuracy (Acc) is the proportion of correct pre-
dictions over all predictions. The accuracy is the primary
performance criterion in the following but it should be com-
plemented with metrics making distinctions about the type
of errors being made and that consider class imbalance.

• The True Positive Rate (TPR), also called the sensitivity of
the model, is the percentage of correct predictions among
all configurations that are feasible.

• The True Negative Rate (TNR), also called the specificity of
the model, is the percentage of correct predictions among
all configurations that are not feasible.

• The False Positive Rate (FPR) is the percentage of configu-
rations falsely predicted as feasible among all non-feasible
configurations.

• The False Negative Rate (FNR) is the percentage of configu-
rations falsely predicted as non feasible among all feasible
configurations.

• The Kappa statistic is an alternative measure of accuracy
that takes into account the accuracy that would come from
chance alone (e.g., suppose an event occurring with a rate
of 1 in 1000, always predicting non-event will lead to an
accuracy of 99.9%).

2Experiments with SVMs not shown here have led to very similar performances as
the ones obtained with k-NN.

To combat model overfitting, that is a model being too specific
to the training data and not generalizing well outside, we use cross-
validation with the standard k-fold technique. With k-fold, the data
set is divided into k equal-size subset. A single subset is retained as
testing set to determine the prediction accuracywhile the remaining
subsets are used all together as training set. The process is repeated
k times until all subsets have served as testing set, then the accuracy
of prediction is computed as the average over all testing sets. k-
fold evaluation guarantees that all configurations in the data set
are used for prediction, i.e., there is no bias due to the prediction
accuracy variability across testing sets. In this study, we perform
5-fold evaluation, i.e., there are 5200 labelled configurations in the
training set (see §3.5) and 1300 unlabelled configurations in the
testing set. With testing sets of size 1300, applying Theorem 2.4
in [19], the margin of error of the prediction accuracy is less than
2.72% at a 95% confidence level.

3.5 Experimental setup
The approach described in §3.1 requires to make certain experimen-
tal choices:

3.5.1 Networks in the training set. The training set is comprised
of random TSN configurations based on the topology and traffic
characteristics described in §2.3 with a total number of flows in
the set [50, 75, 100, 125, 150,175, 200, 225, 250, 275, 300, 325, 350]. The
latter interval for the training set is chosen to be sufficiently wide
to cover the needs of many applications. The type of each flow
and the parameters of each flow are chosen at random with the
characteristics described in §2.3. When the maximum link load
exceeds 1 then the generated configuration is discarded as we know
for certain that no feasible scheduling solution exists. With the
aforementioned settings, the proportion of feasible and non-feasible
configurations with respect to the maximum load over all links is
as shown in Figure 3. On average, over the entire training set, the
proportion of feasible configurations is 8.85% for FIFO, 22.04% for
Manual, 52.77% for CP8 and 55.96% for Preshaping.

3.5.2 Size of the training set. A crucial issue is to choose the size
of the training set; the larger the training set, the better the perfor-
mance of ML but the higher the computation time. To estimate how
many labelled configurations are needed for k-NN to be accurate,

RTNS 2019, November 6–8, 2019, Toulouse, France Tieu Long Mai, Nicolas Navet, and Jörn Migge

Figure 3: The solid green, dashed orange, dotted red and
dash-dotted blue curves resp. represent the percentage of
non-feasible configurations in the training set for FIFO,
Manual, CP8, Preshaping scheduling versus the maximum
load over all links. Logically, the higher the maximum link
load, the more likely a configuration will not be feasible
whatever the scheduling solution.

we increase the size of the training set until the prediction accuracy
of k-NN does not show significant improvements. As can be seen
in Figure 4, the accuracy plateaus past 3250. In the rest of the study,
we integrate a safety margin and use training sets of size 5200. This
value is set based on the prediction accuracy for Preshaping since,
as the experiments will show, it is the scheduling solution whose
feasibility is the most difficult to predict and requires the largest
training set.

3.5.3 Min-max normalization. Like usually done in ML, the five
features retained (see §3.2) are rescaled into the range [0,1] based
on the minimum and maximum possible value taken by a feature.
This normalization allows that all features possess a similar weight
in the Euclidean distance calculation.

3.5.4 Parameter k of k-NN. Since the number of nearest neigh-
bours k leading to the best k-NN performance is unknown, we
tested on the data making up the training set the values of k in the
range [10,100] by step 10 and retained for each scheduling solution
the best value of k (see column 1 in Table 2). The difference between
the best possible accuracy and the one obtained with a value of k
either 10 above or below the best k value is always less than 1.17%.
This suggests that in our problem k-NN is robust with respect to
its parameter k.

3.6 Experimental results
3.6.1 Prediction accuracy. As can be seen in Table 2 the predic-

tion accuracy of k-NN with the best k values ranges from 91.84%
to 95.94%. We note that it tends to decrease when the complexity
of the scheduling mechanism increases. The more powerful the
scheduling mechanism in terms of feasibility, we have here FIFO <

Figure 4: Prediction accuracy of k-NN (y-axis) versus size
of the training set (x-axis). The accuracy increases when
the training set grows, however there is a plateau when the
training set size reaches 3250. The small fluctuation of the
accuracy between 3250 and 5200 (less than 0.11%), can be
explained by the non-deterministic characteristics of the
TSN configurations evaluated. Results shown for Preshap-
ing scheduling with parameter k for k-NN equal to 20.

Manual < CP8 < Preshaping (see last column of Table 2), the harder
it is to predict its outcome on a given configuration, except for the
accuracy of CP8, which is marginally better than Manual.

Table 2: Performance of k-NN for the different scheduling
solutions with the best k values (k*). Accuracy (Acc), True
Positive, True Negative Rates and Kappa statistics (K) ob-
tained by 5-fold evaluation with testing sets of size 1300
each. Experiments done with R package class v7.3-14. The
last column (F) is the percentage of feasible configurations
for each scheduling solution in the training set of 5200 con-
figurations.

k* Acc(%) TPR(%) TNR(%) K F(%)
FIFO 40 95.94 72.82 98.16 67.32 8.54

Manual 30 94.23 84.42 97.0 82.74 22.08
CP8 30 94.65 94.88 94.39 89.84 51.38

Preshaping 60 91.84 92.23 91.36 83.38 54.62

A prediction is wrong either due to a false positive or false nega-
tive. As Table 2 shows, there are differences between TPR and TNR
across scheduling solutions. With FIFO, the TNR is much higher
than the TPR. The reason may be due to the imbalance between
feasible and non-feasible configurations in the training set. Indeed,
with FIFO, non-feasible configurations largely outnumber feasible
configurations with a proportion of 91.46% (versus 45.38% non-
feasible solutions with Preshaping). Since there are much more
“negative” training data, i.e., non-feasible configurations, the ma-
chine learning algorithm may be more likely to conclude to non-
feasibility even when the configuration is actually feasible. We may
also be concerned that with the imbalances in the testing set, a high

Supervised learning for assessing schedulability of TSN networks RTNS 2019, November 6–8, 2019, Toulouse, France

prediction accuracy can be obtained by chance alone. For instance,
prediction accuracy for FIFO could be high just by consistently
predicting non-feasible simple because the large majority of con-
figurations are non feasible. In order to answer this question, we
calculate the Kappa statistic, or Kappa coefficient, which measures
an “agreement” between correct prediction and true labels. If the
Kappa coefficient is low, it is likely that true labels and predicted
labels just match by chance. On the other hand, a Kappa coefficient
higher than 60% is usually considered significant [26]. Table 2 in-
cludes the Kappa coefficients of k-NN prediction for the best value
of k. Since the coefficients range from 67.32% to 83.38%, this sug-
gests that the high accuracy of k-NN prediction is not obtained by
chance alone.

3.6.2 Robustness of prediction. An important practical consid-
eration is that a ML algorithm is able to perform well even if the
unseen data does not meet perfectly the assumptions used in the
training of the algorithm, that is during the learning phase. If the
ML algorithm possesses some generalization ability to adapt to
departure from the training assumptions, the model does not have
to be retrained, and training sets re-regenerated in our context,
each time the characteristics of the network change. We studied the
extent to which changes in the traffic characteristics would influ-
ence the prediction accuracy of k-NN. We study this by keeping the
training set unchanged, while changing some of the characteristics
of the testing set. Precisely, the data payload size (denoted by s) of
each critical flow in the testing set is set to a value randomly chosen
in the range [(1−x) ·s, (1+x) ·s]. The average network load remains
similar whatever the value of x though, as the variations are both
positive and negative with the same intensity in both cases.

In nine successive experiments with testing set of size 1300, the
value of x is set from 0.1 to 0.9 by step of 0.1. Figure 5 summarizes
the results obtained with the best k values, using boxplots, with the
horizontal lines being the baseline prediction accuracies without
changes in the training set. Although, the performance of k-NN
tends to decrease with these changes, the deterioration is limited:
less than 2.2% whatever the scheduling solution and the value of
x . A first explanation is that some of the selected features, namely
the maximum link load and the Gini index, are able to capture the
variations of the data payloads and therefore remain predictive.

4 COMPARISONWITH SCHEDULABILITY
ANALYSIS

It should be pointed out that the results of the precise schedulability
analysis are considered in this study as 100% accurate, as this is the
most accurate technique we have, and as we know for certain that
it does not lead to false positive. In reality, the precise schedulability
analysis is conservative, it returns upper bounds and not the exact
worst-case values. Even if prior works [7, 10] suggest that the
precise analysis for static priority is tight, its pessimism will create
a certain amount of configurations deemed unfeasible while they
are. This phenomenon introduces a bias in the accuracy results
presented here, which leads to the FPR to be overestimated and the
TNR to be underestimated. As our main concern are false positives,
the actual risk with supervised learning may be less than in the
results shown hereafter, though it cannot be precisely quantified.

Figure 5: Boxplot of the prediction accuracies obtained with
k-NN with positive and negative variations of the data pay-
load range for the critical flows in the testing set between
10% and 90% by step of 10%. Each box summarizes the results
of the 9 experiments. The horizontal lines are the baseline
accuracies obtained when the traffic parameters used to gen-
erate the training and the testing set are identical.

Table 3 shows a summary of the accuracy obtained with the dif-
ferent techniques. k-NN is less accurate than the approximate anal-
ysis for the simple FIFO scheduling (−2.98%) and Manual (−2.31%),
but outperforms it for CP8 scheduling (+8.34%). These results sug-
gest that ML is an alternative to approximate analysis for design
space exploration algorithms involving the creation of a large num-
ber of candidate solutions.

k-NN Approx. analysis Prec. analysis
Approach Sup. learning Sched. analysis Sched. analysis

FIFO
Acc.: 95.94%

TPR:72.82% TNR:98.16%

FPR: 1.84%

Acc.: 98.92%
TPR:87.39% TNR:100%

FPR: 0.0%

Acc. :100%
TPR:100% TNR:100%

FPR: 0.0%

Manual
Acc.: 94.23%

TPR:84.42% TNR:97.0%

FPR: 3.0%

Acc.: 96.54%
TPR:84.32% TNR:100%

FPR: 0.0%

Acc. :100%
TPR:100% TNR:100%

FPR: 0.0%

CP8
Acc.: 94.65%

TPR:94.88% TNR:94.39%

FPR: 5.61%

Acc.: 86.31%
TPR:75.35% TNR:100%

FPR: 0.0%

Acc. :100%
TPR:100% TNR:100%

FPR: 0.0%

Preshaping
Acc.: 91.84%

TPR:92.23% TNR:91.36%

FPR: 8.64%

Acc.: NA
TPR:NA TNR:NA

FPR: 0.0%

Acc. :100%
TPR:100% TNR:100%

FPR: 0.0%
Table 3: Summary of accuracy results. The worst accuracy
(86.31% for CP8) is obtained with the approximate schedula-
bility analysis, however, unlikewithML algorithms, none of
the two schedulability analysis lead to false positive. Results
are not available for the approximate analysis with Preshap-
ing scheduling as the toolset does not support it.

In certain contexts, especially in design-space exploration, the
choice of the verification technique should also consider computa-
tion time besides accuracy. Figure 6 shows the trade-offs between

RTNS 2019, November 6–8, 2019, Toulouse, France Tieu Long Mai, Nicolas Navet, and Jörn Migge

accuracy and running times obtained with each of the techniques
for Manual scheduling with computation on a single CPU core.
Considering Manual scheduling provides the fairer picture of the
different trade-offs. Indeed, the FIFO analysis is much simpler than
the others, while for CP8 and Preshaping the time needed to assess
the feasibility of a configuration includes computation that is not
purely related to schedulability analysis but parameters setting
(resp. priorities and shaping parameters). They both require the
execution of several, usually many schedulability analyses each of
the same complexity as the one for Manual scheduling (i.e., static
priority scheduling).

The experiments done in this study lead to the insights summa-
rized below:

• For a small number of configurations (103 here) the machine
learning algorithm experimented is not competitive with
precise and approximate schedulability analysis as it is both
slower and less accurate. Approximate analysis and precise
analysis offer Pareto optimal trade-offs between accuracy
and running times. For a medium number of configurations
(105 here), k-NN is still dominated by the approximate anal-
ysis. In many contexts however, like for Preshaping in this
study, an efficient approximate analysis will not be available
and then k-NN becomes competitive for a relatively small
number of configurations. As k-NN execution time is neg-
ligible compared to schedulability analysis, this is basically
the case as soon as the number of configurations tested is
larger than the size of the training set (5200 in this study).

• For a large number of configurations (106 here), all tech-
niques are meaningful as none is dominated by another for
both the accuracy and running times. However precise analy-
sis may not be practical because of the large execution times.
For instance, with Manual scheduling, the precise analysis
would take about 132 hours compared to less than 3 hours
for the approximate analysis and 42 minutes for supervised
learning, which corresponds to a speedup of 190 in favor of
ML over precise analysis. Once the training time has been
amortized, machine learning techniques are very fast even
for very large number of configurations.

It should be borne in mind that both the approximate and precise
TSN schedulability analyses are very fast on the TSN configurations
tested (resp. 14.77ms and 804.52ms on average for 350 flows). The
areas of maximal efficiency of the different techniques will thus
be different for other schedulability analyses and types of configu-
rations. For instance, with the simpler network topology used in
the technical report [31], k-NN is already Pareto optimal for 105
configurations.

5 RELATEDWORK
Over the last two decades, ML techniques have been successfully ap-
plied to very diverse areas such as bioinformatics, computer vision,
natural language processing, autonomous driving and software
engineering [1, 2]. In recent years, deep learning algorithms, that
perform feature extraction in an automated manner unlike with
traditional ML techniques, have been an especially active field of
research (see [36] for a survey). The two application domains of ML
directly relevant to this work are networking and real-time systems.

Between the two, ML in networking (see [41] for an overview), es-
pecially networking for the Internet, has been by far the most active
area. ML has been applied to solve problems such as intrusion detec-
tion, on-line decision making (parameters and routes adaptation),
protocol design, traffic and performance prediction. For instance,
in [3] an ML algorithm, based on the “expert framework” technique,
is used to predict on-line the round-trip time (RTT) of TCP connec-
tions. This algorithm allows TCP to adapt more quickly to changing
congestion conditions, decreasing thus on average the difference be-
tween the estimated RTT and the true RTT, which results in better
overall TCP performance. In [24] an algorithm belonging to Deep
Belief Networks computes the packet routes dynamically instead of
using conventional solutions based on OSPF (Open Shortest Path
First). Another impressive application of ML is to be found in [42]
where the authors implement a “synthesis-by-simulation” approach
to generate better congestion control protocols for TCP comprising
more than 150 control rules. ML has also found applications in
real-time systems, although the results appear to be more disparate
and less numerous. As early as 2006, [18] proposes the use of ML
for the problem of automatically deriving loop bounds in WCET
estimation. Later, researchers from the same group use a Bayesian
network created from a training set made up of program executions
to predict the presence of instructions in the cache [5]. Then [14]
proposes the use of Deep Learning Neural Networks to predict
the rate of interference suffered by a task in a multicore systems.
Recently, a line of work has been devoted to ML algorithms for Dy-
namic Voltage and Frequency Scaling (DVFS) in battery-powered
devices. For instance, [21] presents a learning-based framework
relying on reinforcement learning for DVFS of real-time tasks on
multi-core systems. ML techniques are also applied to decide the
order of execution of tasks on-line. This has been done in various
contexts. For instance [22] implements a neural network trained
by reinforcement learning with evolutionary strategies to sched-
ule real-time tasks in fog computing infrastructures, while in [25]
multi-core task schedules are decided with Deep Neural networks
trained by reinforcement learning using standard policy gradient
control. Very relevant to this work is [39] that presents a framework
based on the MAST tool suite for real-time systems to generate
massive amount of synthetic test problems, configure them and
perform schedulability analyses. This open-source framework ded-
icated to the study of task scheduling algorithms is similar in the
spirit to the RTaW-Pegase tool [38] used in this study, that can be
operated through a JAVA API and that includes a synthetic problem
generation module named “Netairbench”. Such frameworks are key
to facilitate and speed-up the development and performance assess-
ment of ML algorithms, which requires extensive experiments, be
they based on real or artificial data.

6 DISCUSSION AND PERSPECTIVES
This study shows that standard supervised ML techniques can be
efficient at predicting the feasibility of realistic TSN network config-
urations in terms of computation time and accuracy. In particular
our experiments show that ML techniques outperform in some
contexts a coarse grained schedulability analysis with respect to
those two performance metrics. Importantly, the ML algorithms
experimented in this work neither require huge amount of data

Supervised learning for assessing schedulability of TSN networks RTNS 2019, November 6–8, 2019, Toulouse, France

Figure 6: Accuracy (%) versus total running time (seconds in log scale) on a single computational core for 103 (yellow), 105
(blue) and 106 (red) TSN configurations with Manual scheduling. Running times are averages over sets of configurations with
the number of flows ranging from 50 to 350. Squares, points and triangles identify results with k-NN, Approximate and Precise
analysis respectively. Running times of ML algorithms only increase marginally when the number of configurations grows,
whereas the running time of the analyses increases linearly with size of the testing set. Experiments conducted on one core
of an Intel I7-8700 processor with k-NN algorithm from the class v7.3-14 R package and schedulability analysis from RTaW-
Pegase v3.4.3 Java library [38].

nor important computing power, they can be part of the toolbox
of the network designers and run on standard desktop computers.
Further work is however clearly needed to assess the capabilities
and limits of this approach in other contexts.

A key difference of ML-based feasibility verification with conven-
tional schedulability analysis is the possibility of having a certain
amount of “false positives”, from 1.84% to 8.64% in our experiments.
This may not be a problem in a design-space exploration process
as long as the few retained solutions at the end, the ones proposed
to the designer, are verified by an analysis that is not prone to false
positives. If ML techniques are to be used to predict feasibility in
contexts where no schedulability analysis is available, then the
execution environment should provide runtime mechanisms (e.g.,
task and message dropping) to mitigate the risk of not meeting
timing constraints and ensure that the system is fail-safe.

A well-known pitfall of supervised ML is to rely on training
data that are not representative of the unseen data on which the
ML algorithm will be applied. This may cause ML to fail silently,
that is without ways for the user to know it. For instance, k-NN is
more likely to return a wrong prediction when, in the feature space,
the neighbourhood of the unseen data is sparse (see experiments
in [23]). In our experiments, k-NN proved to be robust to depar-
ture from the data payload assumptions. In this work the network

topology of the configurations in the training set and the testing set
are identical. Changes in the topology was outside the scope of the
study, as, in the design of critical embedded networks, the topology
is usually decided early in the design phases, before the traffic is
entirely known. The problem will probably be more difficult for ML
if the unseen configurations may have different topologies, much
larger training sets with a diversity of topologies will be required
and the overall prediction accuracy might be reduced.

This study can be extended in several other directions:

• In order to minimize the rate of false positives, a measure
of the uncertainty of prediction can be used to decide to
drop a prediction if the uncertainty is too high and rely
instead on a conventional schedulability analysis. This leads
to envision hybrid feasibility verification algorithms where
the clear-cut decisions are taken by ML algorithms, while the
more difficult ones are taken by conventional schedulability
analysis. This approach is explored in [23].

• We intentionally applied standard ML techniques using the
kind of computing power for building the training sets that
can be provided by standard desktop computers in a few
hours. A better prediction accuracy may be achievable with
1) larger training sets, 2) additional features such as the
priorities of the flows to capture additional domain-specific

RTNS 2019, November 6–8, 2019, Toulouse, France Tieu Long Mai, Nicolas Navet, and Jörn Migge

knowledge, and 3) more sophisticated ML algorithms like
XGBoost [11]. Also promising are “ensemblemethods” which
combine the results of several ML algorithms, for instance
by majority voting.

• Semi-supervised learning, making use for the training set of
a small amount of labelled data together with a large amount
of unlabelled data, may prove to be more efficient that su-
pervised learning for the problem of predicting feasibility.
Indeed, as the CPU time needed to create synthetic TSN con-
figurations is negligible compared to the CPU time needed
to label the data by schedulability analysis, semi-supervised
learning would allow the ML algorithms to rely on training
sets several orders of magnitude larger than with supervised
learning.

• To perform well, the k-NN algorithm used in this work re-
quires to be provided with “hand-crafted” features capturing
domain knowledge, such as the Gini index of the link loads
in this study. Most likely not all relevant features have been
identified. A future work is to apply on the same problem
deep learning techniques that automate feature extraction.
However, to do so, deep learning algorithms may require
much larger training set.

In this work, ML is applied to predict the feasibility with respect
to deadline constraints verified by schedulability analysis. There
are other timing constraints that can only be verified by simulation,
such as throughput constraints with complex protocols like TCP.
ML could also be efficient in such contexts as a simulation, for its
results to be sufficiently robust in terms of sample size, typically
takes at least one order of magnitude longer to execute than a
schedulability analysis.

The approach investigated in this work can be applied for veri-
fying the feasibility in other areas of real-time computing, for in-
stance it could be used for end-to-end timing chains across several
resources whose schedulability analyses are typically very compute
intensive. Besides the feasibility problem, ML has the potential to
offer solutions to other difficult problems in the area of real-time
networking. In our view, it could be especially helpful for admission
control in real-time, an emerging need in real-time networks with
the increasing dynamicity of the applications for both the indus-
trial and the automotive domains. Another domain of application
of ML, like exemplified in [25], is resource allocation. In the context
of TSN, ML is a good candidate to help build bandwidth-effective
time-triggered communication schedules for IEEE802.1Qbv.

REFERENCES
[1] M. Allamanis, E.T. Barr, P. Devanbu, and C. Sutton. 2018. A Survey of Machine

Learning for Big Code and Naturalness. Comput. Surveys 51, 4, Article 81 (July
2018), 37 pages. http://doi.acm.org/10.1145/3212695

[2] H. A. Amir, K. William, J. Cavazos, G. Palermo, and C. Silvano. 2018. A Survey
on Compiler Autotuning using Machine Learning. CoRR abs/1801.04405 (2018).
arXiv:1801.04405 http://arxiv.org/abs/1801.04405

[3] N. Arouche, A. Bruno, K. Veenstra, W. Ballenthin, S. Lukin, and K. Obraczka. 2014.
A machine learning framework for TCP round-trip time estimation. EURASIP
Journal on Wireless Communications and Networking 2014, 1 (26 Mar 2014), 47.
https://doi.org/10.1186/1687-1499-2014-47

[4] N. C. Audsley. 2001. On Priority Asignment in Fixed Priority Scheduling. Inf.
Process. Lett. 79, 1 (May 2001), 39–44. http://dx.doi.org/10.1016/S0020-0190(00)
00165-4

[5] M. Bartlett, I. Bate, and J. Cussens. 2010. Instruction Cache Prediction Using
Bayesian Networks. In Proceedings of the 2010 Conference on ECAI 2010: 19th Euro-
pean Conference on Artificial Intelligence. IOS Press, Amsterdam, The Netherlands,

The Netherlands, 1099–1100. http://dl.acm.org/citation.cfm?id=1860967.1861224
[6] H. Bauer, J. Scharbarg, and C. Fraboul. 2010. Improving the Worst-Case Delay

Analysis of an AFDX Network Using an Optimized Trajectory Approach. IEEE
Transactions on Industrial Informatics 6, 4 (Nov 2010), 521–533. https://doi.org/
10.1109/TII.2010.2055877

[7] H. Bauer, J.-L. Scharbarg, and C. Fraboul. 2012. Applying Trajectory ap-
proach with static priority queuing for improving the use of available AFDX
resources. Real-Time Systems 48, 1 (01 Jan 2012), 101–133. https://doi.org/10.
1007/s11241-011-9142-9

[8] A. Bouillard and E. Thierry. 2008. An Algorithmic Toolbox for Network Calculus.
Discrete Event Dynamic Systems 18, 1 (01 Mar 2008), 3–49. https://doi.org/10.
1007/s10626-007-0028-x

[9] M. Boyer, J. Migge, and N. Navet. 2011. A simple and efficient class of functions to
model arrival curve of packetised flows. In 1st International Workshop on Worst-
case Traversal Time, in conj. with the 32nd IEEE Real-Time Systems Symposium
(RTSS 2011).

[10] M. Boyer, N. Navet, and M. Fumey. 2012. Experimental assessment of timing
verification techniques for AFDX. In 6th European Congress on Embedded Real
Time Software and Systems. Toulouse, France. https://hal.archives-ouvertes.fr/
hal-01345472

[11] T. Chen and C. Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’16). ACM, New York, NY, USA, 785–794. https:
//doi.org/10.1145/2939672.2939785

[12] E.R. Dougherty, J. Hua, and C. Sima. 2009. Performance of Feature Selection
Methods. Current Genomics 10, 6 (2009), 365–374. https://doi.org/10.2174/
138920209789177629

[13] F. Farris. 2010. The Gini index and measures of inequality. The American Mathe-
matical Monthly 117, 10 (2010), 851–864.

[14] David Griffin, Benjamin Lesage, Iain Bate, Frank Soboczenski, and Robert I.
Davis. 2017. Forecast-Based Interference: Modelling Multicore Interference from
Observable Factors. In 25th International Conference on Real-Time Networks and
Systems (RTNS 2017).

[15] T. Hamza, J. Scharbarg, and C. Fraboul. 2014. Priority assignment on an avionics
switched Ethernet Network (QoS AFDX). In 2014 10th IEEE Workshop on Factory
Communication Systems (WFCS 2014). 1–8. https://doi.org/10.1109/WFCS.2014.
6837580

[16] T. Hastie, R. Tibshirani, and J.H. Friedman. 2009. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer.

[17] IEEE. 2018. IEEE Standard for Local and metropolitan area networks–Bridges and
Bridged Networks (IEEE Std 802.1Q-2018 ed.).

[18] D. Kazakov and I. Bate. 2006. Towards New Methods for Developing Real-Time
Systems: Automatically Deriving Loop Bounds Using Machine Learning. In 2006
IEEE Conference on Emerging Technologies and Factory Automation. 421–428.
https://doi.org/10.1109/ETFA.2006.355425

[19] J.-Y. Le Boudec. 2010. Performance Evaluation of Computer and Communication
Systems. EPFL Press, Lausanne, Switzerland.

[20] J. Li, K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang, and H. Liu. 2017.
Feature Selection: A Data Perspective. ACM Comput. Surv. 50, 6, Article 94 (Dec.
2017), 45 pages. https://doi.org/10.1145/3136625

[21] F.M. Mahbub ul Islam, M. Lin, L.T. Yang, and R. C. Kim-Kwang. 2018. Task
aware hybrid DVFS for multi-core real-time systems using machine learning.
Information Sciences 433-434 (2018), 315 – 332. https://doi.org/10.1016/j.ins.2017.
08.042

[22] L. Mai, N.-N. Dao, and M. Park. 2018. Real-Time Task Assignment Approach
Leveraging Reinforcement Learning with Evolution Strategies for Long-Term
Latency Minimization in Fog Computing. Sensors 18, 9 (2018). https://doi.org/
10.3390/s18092830

[23] T. L. Mai, N. Navet, and J. Migge. 2019. A Hybrid Machine Learning and Schedu-
lability Analysis Method for the Verification of TSN Networks. In 15th IEEE
International Workshop on Factory Communication Systems (WFCS). https:
//doi.org/10.1109/WFCS.2019.8757948

[24] B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and K. Mizutani.
2017. Routing or Computing? The Paradigm Shift Towards Intelligent Computer
Network Packet Transmission Based on Deep Learning. IEEE Trans. Comput. 66,
11 (Nov 2017), 1946–1960. https://doi.org/10.1109/TC.2017.2709742

[25] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. 2016. Resource Management
with Deep Reinforcement Learning. In Proceedings of the 15th ACM Workshop on
Hot Topics in Networks (HotNets ’16). ACM, New York, NY, USA, 50–56. https:
//doi.org/10.1145/3005745.3005750

[26] M.L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia medica:
Biochemia medica 22, 3 (2012), 276–282.

[27] J. Migge, J. Villanueva, N. Navet, and M. Boyer. 2018. Insights on the Perfor-
mance and Configuration of AVB and TSN in Automotive Ethernet Networks.
In Embedded Real-Time Software and Systems (ERTS 2018). Toulouse, France.
https://hal.archives-ouvertes.fr/hal-01746132

[28] J. Migge, J. Villanueva, N Navet, and M. Boyer. 2018. Performance assessment of
configuration strategies for automotive Ethernet quality-of-service protocols. In

http://doi.acm.org/10.1145/3212695
http://arxiv.org/abs/1801.04405
http://arxiv.org/abs/1801.04405
https://doi.org/10.1186/1687-1499-2014-47
http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://dl.acm.org/citation.cfm?id=1860967.1861224
https://doi.org/10.1109/TII.2010.2055877
https://doi.org/10.1109/TII.2010.2055877
https://doi.org/10.1007/s11241-011-9142-9
https://doi.org/10.1007/s11241-011-9142-9
https://doi.org/10.1007/s10626-007-0028-x
https://doi.org/10.1007/s10626-007-0028-x
https://hal.archives-ouvertes.fr/hal-01345472
https://hal.archives-ouvertes.fr/hal-01345472
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.2174/138920209789177629
https://doi.org/10.2174/138920209789177629
https://doi.org/10.1109/WFCS.2014.6837580
https://doi.org/10.1109/WFCS.2014.6837580
https://doi.org/10.1109/ETFA.2006.355425
https://doi.org/10.1145/3136625
https://doi.org/10.1016/j.ins.2017.08.042
https://doi.org/10.1016/j.ins.2017.08.042
https://doi.org/10.3390/s18092830
https://doi.org/10.3390/s18092830
https://doi.org/10.1109/WFCS.2019.8757948
https://doi.org/10.1109/WFCS.2019.8757948
https://doi.org/10.1109/TC.2017.2709742
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
https://hal.archives-ouvertes.fr/hal-01746132

Supervised learning for assessing schedulability of TSN networks RTNS 2019, November 6–8, 2019, Toulouse, France

Automotive Ethernet Congress. Munich.
[29] A. Nasrallah, A. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, and H. El

Bakoury. 2019. Ultra-Low Latency (ULL) Networks: The IEEE TSN and IETF
DetNet Standards and Related 5G ULL Research. IEEE Communications Surveys
Tutorials 21, 1 (2019). https://doi.org/10.1109/COMST.2018.2869350

[30] N. Navet, S. Louvart, J. Villanueva, S. Campoy-Martinez, and J. Migge. 2014.
Timing verification of automotive communication architectures using quantile
estimation. In Embedded Real-Time Software and Systems (ERTS 2014). Toulouse,
France. http://nicolas.navet.eu/publi/ERTSS2014_quantiles.pdf

[31] N Navet, T.L. Mai, and J. Migge. 2019. Using Machine Learning to Speed Up the
Design Space Exploration of Ethernet TSN networks. Technical Report. University
of Luxembourg. http://hdl.handle.net/10993/38604

[32] N. Navet, J. Migge, J. Villanueva, and M. Boyer. 2018. Pre-shaping Bursty Trans-
missions under IEEE802.1Q as a Simple and Efficient QoS Mechanism. SAE Int.
J. Passeng. Cars – Electron. Electr. Syst. 11 (04 2018). https://doi.org/10.4271/
2018-01-0756 Authors preprint available at http://www.realtimeatwork.com/
wp-content/uploads/preprint-JPCE-Preshaping-2018-web.pdf.

[33] N. Navet, J. Villanueva, and J. Migge. 2018. Automating QoS protocols selection
and configuration for automotive Ethernet networks. In SAE World Congress
Experience (WCX018), session “Vehicle Networks and Communication (Part 2 of 2)”.
Detroit, USA.

[34] N. Navet, J. Villanueva, J. Migge, and M. Boyer. 2017. Experimental assessment of
QoS protocols for in-car Ethernet networks. In 2017 IEEE Standards Association
(IEEE-SA) Ethernet & IP @ Automotive Technology Day. San-Jose, Ca.

[35] Plexxi. 2016. Latency in Ethernet Switches. Retrieved 2019/04/25,
http://www.plexxi.com/wp-content/uploads/2016/01/Latency-in-Ethernet-
Switches.pdf.

[36] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M.P. Reyes, M.-L. Shyu, S.-C. Chen,
and S. S. Iyengar. 2018. A Survey on Deep Learning: Algorithms, Techniques,
and Applications. ACM Comput. Surv. 51, 5, Article 92 (Sept. 2018), 36 pages.
http://doi.acm.org/10.1145/3234150

[37] R. Queck. 2012. Analysis of Ethernet AVB for automotive networks using Network
Nalculus. In 2012 IEEE International Conference on Vehicular Electronics and Safety
(ICVES 2012). 61–67. https://doi.org/10.1109/ICVES.2012.6294261

[38] RealTime-at-Work. 2009. RTaW-Pegase: Modeling, Simulation and auto-
mated Configuration of communication networks. Retrieved 2019/01/24,
https://www.realtimeatwork.com/software/rtaw-pegase.

[39] J.M. Rivas, J.J. Gutiérrez, and M. González Harbour. 2017. A supercomputing
framework for the evaluation of real-time analysis and optimization techniques.
Journal of Systems and Software 124 (2017), 120 – 136. https://doi.org/10.1016/j.
jss.2016.11.010

[40] D. Thiele, P. Axer, and R. Ernst. 2015. Improving Formal Timing Analysis of
Switched Ethernet by Exploiting FIFO Scheduling. In Proceedings of the 52Nd
Annual Design Automation Conference (DAC ’15). ACM, New York, NY, USA,
41:1–41:6. https://doi.org/10.1145/2744769.2744854

[41] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang. 2018. Machine Learning for
Networking: Workflow, Advances and Opportunities. IEEE Network 32, 2 (March
2018), 92–99. https://doi.org/10.1109/MNET.2017.1700200

[42] K. Winstein and H. Balakrishnan. 2013. TCP Ex Machina: Computer-generated
Congestion Control. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM (SIGCOMM ’13). ACM, New York, NY, USA, 123–134. https://doi.org/
10.1145/2486001.2486020

https://doi.org/10.1109/COMST.2018.2869350
http://nicolas.navet.eu/publi/ERTSS2014_quantiles.pdf
http://hdl.handle.net/10993/38604
https://doi.org/10.4271/2018-01-0756
https://doi.org/10.4271/2018-01-0756
http://www.realtimeatwork.com/wp-content/uploads/preprint-JPCE-Preshaping-2018-web.pdf
http://www.realtimeatwork.com/wp-content/uploads/preprint-JPCE-Preshaping-2018-web.pdf
http://doi.acm.org/10.1145/3234150
https://doi.org/10.1109/ICVES.2012.6294261
https://doi.org/10.1016/j.jss.2016.11.010
https://doi.org/10.1016/j.jss.2016.11.010
https://doi.org/10.1145/2744769.2744854
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1145/2486001.2486020
https://doi.org/10.1145/2486001.2486020

	Abstract
	1 Introduction
	2 Ethernet TSN model and design problem
	2.1 Designing and configuring TSN networks
	2.2 TSN model
	2.3 Traffic characteristics and network topology

	3 Predicting feasibility with supervised learning
	3.1 Supervised learning applied to network classification
	3.2 Feature engineering and feature selection
	3.3 The k-NN classification algorithm
	3.4 Performance criteria and evaluation technique
	3.5 Experimental setup
	3.6 Experimental results

	4 Comparison with schedulability analysis
	5 Related work
	6 Discussion and perspectives
	References

